表观遗传学(共20张PPT)
合集下载
表观遗传学教学课件
患者的预后情况。
04
表观遗传学研究方法
基因组学技术
基因组测序
通过全基因组测序技术,可以检测基因组中的变异和表观遗传修饰,了解基因表达的调 控机制。
甲基化测序
甲基化测序技术可以检测基因组中DNA甲基化的水平,研究甲基化与基因表达的关系。
生物信息学分析
数据挖掘
利用生物信息学方法对大规模基因组 数据进行挖掘,寻找表观遗传修饰与 基因表达之间的关联。
详细描述
非编码RNA在表观遗传学中发挥重要作用, 它们通过与mRNA相互作用,影响基因表达 的转录和转录后水平。非编码RNA的异常表 达与多种疾病的发生和发展密切相关。
组蛋白修饰
总结词
组蛋白修饰是指组蛋白上的化学基团, 如乙酰化、甲基化和磷酸化等。
VS
详细描述
组蛋白修饰能够影响染色质的结构和基因 表达,与细胞分化、发育和肿瘤形成等生 物学过程密切相关。组蛋白修饰的异常与 多种疾病的发生和发展密切相关。
80%
药物研发
表观遗传学研究有助于发现新型 药物靶点,推动药物研发的创新 和进步。
表观遗传学面临的挑战与问题
技术难题
表观遗传学研究涉及多种复杂技 术,如高通量测序、染色质免疫 沉淀等,技术难度较大,需要专 业人员操作。
数据解读与分析
表观遗传学研究产生大量数据, 如何准确解读和分析这些数据是 一个挑战。需要发展新的数据分 析方法和算法。
个体化治疗
表观遗传学研究有助于实现个 体化治疗,即根据患者的表观 遗传学特征,制定个性化的治 疗方案。例如,针对特定基因 的靶向治疗等。
疾病预防
表观遗传学研究还有助于疾病 的预防。例如,通过调整饮食 和生活方式等,可以改变个体 的表观遗传学特征,从而预防 某些疾病的发生。
04
表观遗传学研究方法
基因组学技术
基因组测序
通过全基因组测序技术,可以检测基因组中的变异和表观遗传修饰,了解基因表达的调 控机制。
甲基化测序
甲基化测序技术可以检测基因组中DNA甲基化的水平,研究甲基化与基因表达的关系。
生物信息学分析
数据挖掘
利用生物信息学方法对大规模基因组 数据进行挖掘,寻找表观遗传修饰与 基因表达之间的关联。
详细描述
非编码RNA在表观遗传学中发挥重要作用, 它们通过与mRNA相互作用,影响基因表达 的转录和转录后水平。非编码RNA的异常表 达与多种疾病的发生和发展密切相关。
组蛋白修饰
总结词
组蛋白修饰是指组蛋白上的化学基团, 如乙酰化、甲基化和磷酸化等。
VS
详细描述
组蛋白修饰能够影响染色质的结构和基因 表达,与细胞分化、发育和肿瘤形成等生 物学过程密切相关。组蛋白修饰的异常与 多种疾病的发生和发展密切相关。
80%
药物研发
表观遗传学研究有助于发现新型 药物靶点,推动药物研发的创新 和进步。
表观遗传学面临的挑战与问题
技术难题
表观遗传学研究涉及多种复杂技 术,如高通量测序、染色质免疫 沉淀等,技术难度较大,需要专 业人员操作。
数据解读与分析
表观遗传学研究产生大量数据, 如何准确解读和分析这些数据是 一个挑战。需要发展新的数据分 析方法和算法。
个体化治疗
表观遗传学研究有助于实现个 体化治疗,即根据患者的表观 遗传学特征,制定个性化的治 疗方案。例如,针对特定基因 的靶向治疗等。
疾病预防
表观遗传学研究还有助于疾病 的预防。例如,通过调整饮食 和生活方式等,可以改变个体 的表观遗传学特征,从而预防 某些疾病的发生。
2024年度-遗传学表观遗传学PPT课件
研究生物遗传信息传递、表达和调控 的科学。
研究领域
包括基因结构、功能、表达调控,基 因突变、重组、进化,以及遗传与发 育、免疫、疾病等关系。
4
遗传物质基础:DNA与RNA
DNA
脱氧核糖核酸,生物体主要遗传物质,由碱基、磷酸和脱氧 核糖组成。
RNA
核糖核酸,参与蛋白质合成过程,由碱基、磷酸和核糖组成 。
染色质重塑过程及影响因素
ATP依赖的染色质重塑复合物
01
利用ATP水解产生的能量改变核小体结构,使DNA易于接近转
录因子。
组蛋白变体
02
替换常规组蛋白,改变染色质结构和功能。
非编码RNA
03
通过与DNA或蛋白质相互作用调节染色质结构和基因表达。
Байду номын сангаас
21
组蛋白修饰在基因表达调控中作用
01
组蛋白修饰影响转录因子结合
非编码RNA在肿瘤中发挥着重要的调控作用,包括miRNA、lncRNA 等,它们可通过表观遗传学机制影响肿瘤的发生和发展。
29
神经退行性疾病中表观遗传学机制探讨
DNA甲基化与神经退行 性疾病
DNA甲基化在神经退行性疾病中的研究日 益增多,其与疾病的发生和发展密切相关。
组蛋白修饰与神经退行性疾 病
组蛋白修饰在神经退行性疾病中也发挥着重要作用 ,如乙酰化、磷酸化等修饰可影响神经元功能和生 存。
磷酸化
调节蛋白质构象和活性,影响DNA与组蛋白 相互作用。
甲基化
可发生在不同氨基酸残基上,具有不同效应 ,如基因激活或抑制。
泛素化
标记蛋白质进行降解,参与转录调控和DNA 损伤修复。
19
组蛋白修饰酶系及其作用机制
研究领域
包括基因结构、功能、表达调控,基 因突变、重组、进化,以及遗传与发 育、免疫、疾病等关系。
4
遗传物质基础:DNA与RNA
DNA
脱氧核糖核酸,生物体主要遗传物质,由碱基、磷酸和脱氧 核糖组成。
RNA
核糖核酸,参与蛋白质合成过程,由碱基、磷酸和核糖组成 。
染色质重塑过程及影响因素
ATP依赖的染色质重塑复合物
01
利用ATP水解产生的能量改变核小体结构,使DNA易于接近转
录因子。
组蛋白变体
02
替换常规组蛋白,改变染色质结构和功能。
非编码RNA
03
通过与DNA或蛋白质相互作用调节染色质结构和基因表达。
Байду номын сангаас
21
组蛋白修饰在基因表达调控中作用
01
组蛋白修饰影响转录因子结合
非编码RNA在肿瘤中发挥着重要的调控作用,包括miRNA、lncRNA 等,它们可通过表观遗传学机制影响肿瘤的发生和发展。
29
神经退行性疾病中表观遗传学机制探讨
DNA甲基化与神经退行 性疾病
DNA甲基化在神经退行性疾病中的研究日 益增多,其与疾病的发生和发展密切相关。
组蛋白修饰与神经退行性疾 病
组蛋白修饰在神经退行性疾病中也发挥着重要作用 ,如乙酰化、磷酸化等修饰可影响神经元功能和生 存。
磷酸化
调节蛋白质构象和活性,影响DNA与组蛋白 相互作用。
甲基化
可发生在不同氨基酸残基上,具有不同效应 ,如基因激活或抑制。
泛素化
标记蛋白质进行降解,参与转录调控和DNA 损伤修复。
19
组蛋白修饰酶系及其作用机制
表观遗传学 - EpigeneticsPPT课件
(2)转录抑制复合物干扰基因转录。甲基化DNA结合蛋 白与启动子区内的甲基化CpG岛结合,再与其他一些 蛋白共同形成转录抑制复合物(TRC),阻止转录因 子与启动子区靶序列的结合,从而影响基因的转录。
(3)通过改变染色质结构而抑制基因表达。染色质构型 变化伴随着组氨酸的乙酰化和去乙酰化,许多乙酰化 和去乙酰化本身就分别是转录增强子和转录阻遏物蛋 白。
表观遗传学 Epigenetics
概念
表观遗传学
研究不涉及DNA序列改变的基因表达和调控的可遗传变 化的,或者说是研究从基因演绎为表型的过程和机制 的一门新兴的遗传学分支。
表观遗传
所谓表观遗传就是不基于DNA差异的核酸遗传。即细胞 分裂过程中,DNA 序列不变的前提下,全基因组的基 因表达调控所决定的表型遗传,涉及染色质重编程、 整体的基因表达调控(如隔离子,增强子,弱化子, DNA甲基化,组蛋白修饰等功能 ), 及基因型对表型的 决定作用。
表观遗传学的特点:
可遗传的,即这类改变通过有丝分裂或减数分 裂,能在细胞或个体世代间遗传;
可逆性的基因表达调节,也有较少的能用DNA序列变化来解 释。
表观遗传学的研究内容:
基因选择性转录表达 基因转录后的调控 的调控
DNA甲基化
❖ 目前认为基因调控元件(如启动子)的CpG岛中发生 5mC修饰会在空间上阻碍转录因子复合物与DNA的结 合。因而DNA甲基化一般与基因沉默相关联。
DNA甲基化的转录抑制机制:
(1)直接干扰特异转录因子与各自启动子结合的识别位 置。DNA的大沟是许多蛋白因子与DNA结合的部位,胞 嘧啶的甲基化干扰转录因子与DNA的结合。
染色质重塑是由染色质重塑复合物介导的 一系列以染色质上核小体变化为基本特征 的生物学过程。
(3)通过改变染色质结构而抑制基因表达。染色质构型 变化伴随着组氨酸的乙酰化和去乙酰化,许多乙酰化 和去乙酰化本身就分别是转录增强子和转录阻遏物蛋 白。
表观遗传学 Epigenetics
概念
表观遗传学
研究不涉及DNA序列改变的基因表达和调控的可遗传变 化的,或者说是研究从基因演绎为表型的过程和机制 的一门新兴的遗传学分支。
表观遗传
所谓表观遗传就是不基于DNA差异的核酸遗传。即细胞 分裂过程中,DNA 序列不变的前提下,全基因组的基 因表达调控所决定的表型遗传,涉及染色质重编程、 整体的基因表达调控(如隔离子,增强子,弱化子, DNA甲基化,组蛋白修饰等功能 ), 及基因型对表型的 决定作用。
表观遗传学的特点:
可遗传的,即这类改变通过有丝分裂或减数分 裂,能在细胞或个体世代间遗传;
可逆性的基因表达调节,也有较少的能用DNA序列变化来解 释。
表观遗传学的研究内容:
基因选择性转录表达 基因转录后的调控 的调控
DNA甲基化
❖ 目前认为基因调控元件(如启动子)的CpG岛中发生 5mC修饰会在空间上阻碍转录因子复合物与DNA的结 合。因而DNA甲基化一般与基因沉默相关联。
DNA甲基化的转录抑制机制:
(1)直接干扰特异转录因子与各自启动子结合的识别位 置。DNA的大沟是许多蛋白因子与DNA结合的部位,胞 嘧啶的甲基化干扰转录因子与DNA的结合。
染色质重塑是由染色质重塑复合物介导的 一系列以染色质上核小体变化为基本特征 的生物学过程。
表观遗传学概论课件
03
表观遗传变异与疾病关系
肿瘤发生发展中表观遗传变异作用
DNA甲基化异常
抑癌基因高甲基化导致沉默,原癌基因低甲基化而活 化。
组蛋白修饰改变
组蛋白乙酰化、甲基化等修饰异常影响染色质结构和 基因表达。
非编码RNA调控
miRNA、lncRNA等通过调控靶基因表达参与肿瘤发 生发展。
神经系统疾病中表观遗传变异影响
脂肪代谢异常
表观遗传变异调控脂肪细胞分化和脂质代谢相 关基因表达,引发脂肪代谢异常。
糖尿病及其并发症
表观遗传变异在糖尿病及其并发症的发生发展中发挥重要作用。
其他类型疾病与表观遗传变异关系
自身免疫性疾病
表观遗传变异影响免疫细胞分化和功能,导 致自身免疫性疾病。
心血管疾病
表观遗传变异与高血压、动脉粥样硬化等心 血管疾病的发生发展有关。
表观遗传学特点
在不改变DNA序列的前提下,通 过DNA甲基化、组蛋白修饰等方 式调控基因表达。
表观遗传学与遗传学关系
表观遗传学与遗传学相互补充,共同揭示生物遗 传信息的传递和表达机制。
遗传学关注基因序列的遗传信息,而表观遗传学 关注基因表达的调控机制。
二者在生物发育、疾病发生发展等方面具有密切 联系。
组蛋白修饰
定义
组蛋白修饰是指对组蛋白 分子进行化学修饰的过程 ,包括乙酰化、甲基化、 磷酸化等。
机制
通过组蛋白修饰酶的催化 作用,对组蛋白的特定氨 基酸残基进行修饰,改变 组蛋白的电荷和构象。
功能
影响染色质的结构和功能 ,进而调控基因的表达。 与细胞分化、发育、记忆 等生物学过程密切相关。
非编码RNA调控
甲基化DNA免疫共沉淀技术
利用特异性抗体与甲基化DNA结合,通过免疫共 沉淀的方法富集甲基化DNA片段,再进行高通量 测序分析。
表观遗传学.ppt
差异甲基化母源 染色体上的ICs的甲基化呈现出分化状态。
Beckwith-Wiedemann综合征(BWS)是一种过度生长综合 征,常伴有肥胖和先天性脐疝等症状,并有儿童期肿瘤 易患倾向。
它起源于染色体11p15.5区段的多种能造
成该区段印迹基因表达失衡的遗传学和表观遗
在PWS和AS患者中发现,微小染色体缺失集中 的区域有成簇排列的富含CpG岛的基因表达调控元 件,称为印迹中心(imprinting centers , ICs)。
在父源和母源染色体上,这些调控元件的CpG 岛呈现甲基化型的明显差异。
例如 SNRPN的23个 母源 完全甲基化
CpG二联核苷 父源 非甲基化
closed structure that can no longer be accessed by the transcriptional machinery.
组成核小体的组蛋白可以被多种化学加合物所 修饰,如磷酸化、乙酰化和甲基化等,组蛋白的这 类结构修饰可使染色质的构型发生改变,称为染色 质构型重塑。组蛋白中不同氨基酸残基的乙酰化一 般与活化的染色质构型常染色质(euchromatin)和 有表达活性的基因相关联;而组蛋白的甲基化则与 浓缩的异染色质(hetero-chromatin)和表达受抑的 基因相关联。
activity. Methylated cytosines are recognized by methyl-CpG-binding proteins (MBDs), which in turn recruit histone deacetylases (HDACs) to the site of methylation, convert-ing the chromatin into a
Beckwith-Wiedemann综合征(BWS)是一种过度生长综合 征,常伴有肥胖和先天性脐疝等症状,并有儿童期肿瘤 易患倾向。
它起源于染色体11p15.5区段的多种能造
成该区段印迹基因表达失衡的遗传学和表观遗
在PWS和AS患者中发现,微小染色体缺失集中 的区域有成簇排列的富含CpG岛的基因表达调控元 件,称为印迹中心(imprinting centers , ICs)。
在父源和母源染色体上,这些调控元件的CpG 岛呈现甲基化型的明显差异。
例如 SNRPN的23个 母源 完全甲基化
CpG二联核苷 父源 非甲基化
closed structure that can no longer be accessed by the transcriptional machinery.
组成核小体的组蛋白可以被多种化学加合物所 修饰,如磷酸化、乙酰化和甲基化等,组蛋白的这 类结构修饰可使染色质的构型发生改变,称为染色 质构型重塑。组蛋白中不同氨基酸残基的乙酰化一 般与活化的染色质构型常染色质(euchromatin)和 有表达活性的基因相关联;而组蛋白的甲基化则与 浓缩的异染色质(hetero-chromatin)和表达受抑的 基因相关联。
activity. Methylated cytosines are recognized by methyl-CpG-binding proteins (MBDs), which in turn recruit histone deacetylases (HDACs) to the site of methylation, convert-ing the chromatin into a
第十一章-表观遗传学PPT课件
二、基因组印迹(genomic imprinting)
概念:依赖于父、母源性的等位基因的差异性 表达,即父亲和母亲的基因组在个体发育中有 着不同的影响,这种现象称基因组印迹。
两个亲本的等位基因差异性甲基化是基因组印 迹现象的基础。
疾病的基础: 15q11-13 微缺失
Prader-Willi syndrome, PWS(父源):肥胖、矮 小, 中度智力低下
2. 表遗传(epigenetic)信息
,提供何时、何地、如何应
用遗传学信息的指令,保证
基因适时启闭
One genome--------multiple epigenome
-
12
一、表观遗传修饰
表达模式的信息标记: DNA特定碱基的修饰:胞嘧啶的甲基化; 染色质构型重塑:如,组蛋白的乙酰化、 甲基化
果蝇中的杂色(眼)位置效应(positioneffect variegation): 野生红眼基因W+(显性) 突变白眼基因w(隐性)
基因定位于X染色体长臂末端
W+
“W+/W+”和“W+/w”均表现正常红眼 意外情况: W+异位至着丝粒附近(异染
色质区), “W+/w”杂合体表现为花斑 眼(杂色),即:部分细胞正常红色, 部分少量红色,部分白色。
设计实验拟解决:“RNA 干扰”是否与转入的RNA 结构有关。
-
22
意外发现:导入双链RNA的产生功能干扰的有效 性远高于导入单链RNA, sense or antisense RNA导入均如此。
仅需少数分子即可产生干扰效应,提示酶促反 应或分子扩增的存在。
-
23
上述现象提示: 1. 存在超越简单反义RNA作用的机理。 2. RNA靶向的作用也不能排除。 3. 同时可能存在RNA与染色质的直接作用,影 响RNA的转录。
表观遗传学简介课件
借以调控基因表达活性,在生殖与发育、遗传与进化、生理与病理现象中 具有重要的生物学意义,表观遗传学及应运而生的人类表观基因组计划 (HEP)已成为近年关注的热点问题。已知表观遗传学现象与多种人类疾 病有着密切的关系,如肿瘤、基因印迹病等。同时基因甲基化异常存在可 逆性,这可能为相关疾病的治疗提供崭新的途径。
DNA甲基化
DNA 甲基化是生物关闭基因表达的一种有效手段,也是印迹遗传的主要 机制之一;基因的去甲基化可能使得印迹丢失,基因过度表达,甚至引起 肿瘤或癌症的发生,如促肿瘤生长因子IGF2基因过度表达引发大肠癌。
在特定组织中,非甲基化基因表达,甲基化基因不表达,基因选择性的去甲 基化形成特异的组织类型。
表观遗传有三个密切相关的含义:
(1) 可遗传的,即这类改变通过有丝分裂或减数分裂,能在细胞或个体世 代间遗传;
(2) 可逆性的基因表达调节; (3) 没有DNA序列的变化或不能用DNA序列变化来解释。
表观遗传学的研究内容
主要包括:
(1)基因选择性转录表达的调控:DNA 甲基化、组蛋白共价修饰等所导致 的基因组印迹、染色质重构(塑)等; (2)基因转录后的调控: 针对mRNA的调控。如基因组中非编码RNA(主 要来源于内含子和转录的基因间序列)、miRNA(能够自我折叠形成发夹 状结构,通过RNAi或类似于RNAi的机制起作用)、反义RNA、内含子和 核糖体开关等
表观遗传学治疗
由于表观遗传学修饰机制参与人类多种疾病的致病,且表观遗传学的改 变在一定程度上具有可逆性(reversibility),这就要求我们寻找逆转基 因沉默的有效治疗方法,因此,表观遗传学治疗(epigenetic therapy) 应运而生。如,DNA甲基化抑制剂和组蛋白去乙酰化酶抑制剂等。
DNA甲基化
DNA 甲基化是生物关闭基因表达的一种有效手段,也是印迹遗传的主要 机制之一;基因的去甲基化可能使得印迹丢失,基因过度表达,甚至引起 肿瘤或癌症的发生,如促肿瘤生长因子IGF2基因过度表达引发大肠癌。
在特定组织中,非甲基化基因表达,甲基化基因不表达,基因选择性的去甲 基化形成特异的组织类型。
表观遗传有三个密切相关的含义:
(1) 可遗传的,即这类改变通过有丝分裂或减数分裂,能在细胞或个体世 代间遗传;
(2) 可逆性的基因表达调节; (3) 没有DNA序列的变化或不能用DNA序列变化来解释。
表观遗传学的研究内容
主要包括:
(1)基因选择性转录表达的调控:DNA 甲基化、组蛋白共价修饰等所导致 的基因组印迹、染色质重构(塑)等; (2)基因转录后的调控: 针对mRNA的调控。如基因组中非编码RNA(主 要来源于内含子和转录的基因间序列)、miRNA(能够自我折叠形成发夹 状结构,通过RNAi或类似于RNAi的机制起作用)、反义RNA、内含子和 核糖体开关等
表观遗传学治疗
由于表观遗传学修饰机制参与人类多种疾病的致病,且表观遗传学的改 变在一定程度上具有可逆性(reversibility),这就要求我们寻找逆转基 因沉默的有效治疗方法,因此,表观遗传学治疗(epigenetic therapy) 应运而生。如,DNA甲基化抑制剂和组蛋白去乙酰化酶抑制剂等。
《表观遗传学》PPT课件
发展高通量表观遗传学检测技术
研发高通量、高灵敏度的表观遗传学检测技术,提高检测效率和准确 性。
推动表观遗传学在临床应用中的转化
加强表观遗传学与临床医学的交叉融合,推动表观遗传学研究成果在 临床应用中的转化。
关注表观遗传学的伦理和社会问题
在推动表观遗传学发展的同时,关注相关的伦理和社会问题,确保技 术的合理应用和社会责任。
03
神经系统发育与表 观遗传
表观遗传调控在神经系统发育过 程中发挥关键作用,影响神经细 胞的分化和功能。
代谢性疾病与表观遗传关联
肥胖与表观遗传
肥胖的发生和发展与DNA甲基化、组蛋白修饰等表观遗传调控密 切相关。
糖尿病与表观遗传
糖尿病及其并发症的发病机制涉及多种表观遗传调控异常。
心血管疾病与表观遗传
揭示生物多样性的本质
生物多样性的形成不仅与基因序列的 变异有关,还与基因表达的调控密切 相关。
解析复杂疾病的发生机制
许多复杂疾病如癌症、神经退行性疾 病等的发生与表观遗传调控异常密切 相关。
指导个体化医疗和精准治疗
通过解析患者的表观遗传特征,可以 为个体化医疗和精准治疗提供指导。
推动生物技术的发展
表观遗传学的研究为基因编辑、细胞 重编程等生物技术的发展提供了新的 思路和方法。
3
亚硫酸氢盐测序PCR
结合重亚硫酸盐处理和PCR技术,对特定区域的 DNA甲基化进行高灵敏度检测。
组蛋白修饰检测技术
染色质免疫沉淀技术
利用特异性抗体与组蛋白修饰结合,通过沉淀和洗脱步骤富集特 定修饰的组蛋白,进而研究其功能。
质谱分析技术
通过质谱仪对组蛋白修饰进行定性和定量分析,揭示修饰的种类 和程度。
《表观遗传学》PPT 课件
研发高通量、高灵敏度的表观遗传学检测技术,提高检测效率和准确 性。
推动表观遗传学在临床应用中的转化
加强表观遗传学与临床医学的交叉融合,推动表观遗传学研究成果在 临床应用中的转化。
关注表观遗传学的伦理和社会问题
在推动表观遗传学发展的同时,关注相关的伦理和社会问题,确保技 术的合理应用和社会责任。
03
神经系统发育与表 观遗传
表观遗传调控在神经系统发育过 程中发挥关键作用,影响神经细 胞的分化和功能。
代谢性疾病与表观遗传关联
肥胖与表观遗传
肥胖的发生和发展与DNA甲基化、组蛋白修饰等表观遗传调控密 切相关。
糖尿病与表观遗传
糖尿病及其并发症的发病机制涉及多种表观遗传调控异常。
心血管疾病与表观遗传
揭示生物多样性的本质
生物多样性的形成不仅与基因序列的 变异有关,还与基因表达的调控密切 相关。
解析复杂疾病的发生机制
许多复杂疾病如癌症、神经退行性疾 病等的发生与表观遗传调控异常密切 相关。
指导个体化医疗和精准治疗
通过解析患者的表观遗传特征,可以 为个体化医疗和精准治疗提供指导。
推动生物技术的发展
表观遗传学的研究为基因编辑、细胞 重编程等生物技术的发展提供了新的 思路和方法。
3
亚硫酸氢盐测序PCR
结合重亚硫酸盐处理和PCR技术,对特定区域的 DNA甲基化进行高灵敏度检测。
组蛋白修饰检测技术
染色质免疫沉淀技术
利用特异性抗体与组蛋白修饰结合,通过沉淀和洗脱步骤富集特 定修饰的组蛋白,进而研究其功能。
质谱分析技术
通过质谱仪对组蛋白修饰进行定性和定量分析,揭示修饰的种类 和程度。
《表观遗传学》PPT 课件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
异性降解的现象。PTGS是启动了细胞质内靶mRNA序列特异性的降解机制。
• 近几年来RNAi研究取得了突破性进展,被《Science》杂志评为2001年的十大科 学进展之一,并名列2002年十大科学进展之首。由于使用RNAi技术可以特异性剔 除或关闭特定基因的表达,所以该技术已被广泛用于探索基因功能和传染性疾病及 恶性肿瘤的基因治疗领域。
表观遗传学 EPIGENETICS
什么是表观遗传学?
表观遗传学是研究除DNA序列 变化外的其他机制引起的细胞表 型和基因表达的可遗传的改变。 表观遗传学调控真核基因表达, 与人类重大疾病,如肿瘤、神经 退行性疾病、自身免疫性疾病等 密切相关。
举两个例子~
在胚胎发育过程中,果蝇存在很多体节。对 Hox 基因来 说,在有些体节中表达,有些中不表达。一开始,这种表 达或不表达经不在了,由原来不 表达(Hox 基因)的细胞衍生的后代呢,这些基因仍然不 表达;表达那些 Hox 基因的细胞衍生的细胞,仍然表达。
• 最常见的DNA甲基化形式是将甲基加到胞嘧啶环的 5‘位置上,形成5’-甲基胞嘧啶。哺乳动物中大约有 5%的胞嘧啶被甲基化,而甲基化与否,基因的转录活 性相差了上百万倍。
• DNA甲基化的作用主要体现于抑制基因转录活性,而具 体的抑制机制还尚未明确
• MeCP1所结合的DNA序列常需要有10个以上的甲基化CpG, 这一蛋白广泛存在于许多组织。
工蜂和蜂王都由同种受精卵发育而来,如 果能吃到蜂王浆,就变成蜂后;吃不到就 变成工蜂。
与工蜂相比,蜂王的成熟期短平均在半
个月左右,而工蜂则需要二十天以上;
寿命长蜂王可以活几年,而工蜂则只有
几十天的寿命;有生殖能力蜂王每天可
蜂王
工蜂
以产下几百枚卵,而工蜂一般终生都不
能产卵
♢在第一个例子中,细胞记住了那些基因表达还是不表 达,而且是在没有最开始的那些转录因子的情况下。
• MeCP2含有一个甲基化DNA结合区,因此在细胞内可以特 异性地结合在甲基化的DNA上。除MBD外,MeCP 2还有一 个转录抑制功能区。推想,MeCP2的转录抑制机制是通过 MBD与甲基化DNA结合,使TRD有机会与转录复合物或转录 因子发生蛋白质与蛋白质间的相互作用,最终控制基因的表达。
• 实验证明, MeCP2还可以与组蛋白脱乙酰酶结合,彼此作用,修 饰染色质结构,控制转录活性。
RNAi的第一步是由Dicer将dsRNA切割成约 23bp的片段。此外, 在Dicer切割dsRNA的 过程中,还需要另一种蛋白质受体破坏酶 (RDE-4)的参与,以促使对dsRNA的有效加工。 加工产生的siRNA随后掺入RISC复合体。二 者一旦进行组装,复合体中的核酸酶成分就 会在ATP作用下催化dsRNA的变性和置换反 应。单链RNA的出现,激活RISC复合体,激活 后的复合体被引导到与其中siRNA互补的 mRNA序列。因RNA的置换反应,原siRNA 的反义链便可与mRNA中相应的序列互补, 或降解该mRNA,或抑制其翻译。在此模型 中,后期处理路线的选择基本上取决于siRNA 与同源mRNA之间的匹配程度。如果二者完 全互补,则发生降解;如果匹配程度不很合适, 则在很大程度上是抑制翻译。有时候,在同 源mRNA被切割之后,还可发生两种情况:一 是通过RdRP的作用,使siRNA延长,导致 dsRNA再次进入RNAi途径。二是受到切割 的mRNA进一步降解。而完成此任务后的 RISC复合物则参与另一轮mRNA的降解循 环。
当基因表达调控需要,甲基化的DNA可以发生去甲基化,那 么去甲基化区域是如何建立并得以维持呢?
◑如果一个DNA位点未曾被甲基化,识别这种非甲基化序列的
蛋白质可以保护它不受甲基化作用。一旦一个位点已经被甲基 化,则可能有两种去甲基化方式。一种是与半保留复制相联系 的被动方式,即在复制时阻断维持甲基化酶的作用,因而在第二 次复制周期之后,子代双螺旋即可去甲基化。另一种则是由 DNA脱甲基酶直接催化去掉该位置的甲基化基团,或移走被甲 基化的胞苷。
♢在第二个例子中,细胞的遗传基本上是一致的,后天 的环境、食物、营养不同,对它造成了非常显著的表型 的差别。
这些由后天影响(环境、食物等) 而引起表现型发生变化的现象就属于 表观遗传学所研究的方向
• 表观遗传学是研究基因的核苷酸序列不发生改变的
情况下,基因表达的可遗传的变化的一门遗传学分支学 科。表观遗传的现象很多,已知的有:
• 非编码RNA 从长度上来划分可以分为3类:小于50 nt,包 括microRNA,siRNA;50 nt到500 nt,包括rRNA, tRNA,snRNA,snoRNA等等;大于500 nt,包括Xist RNA等等。
RNA干 扰• RNA干扰是指在进化过程中高度保守的、由双链RNA诱发的、同源mRNA高效特
miRNA是通过与目的mRNA序列中的部分碱基序列配对,调 节基因的表达。
在秀丽隐杆线虫中发现了miRNA---lin 4 RNA,它与 lin 14 mRNA相互作用,使后者的表达受阻。 lin 14基因调节 幼虫的发育,但它的表达受lin 4的控制。lin 14 RNA中含有可 与lin 4 mRNA 3’-UTR某些区段中的同源序列互补,从而阻 遏lin 14转录后的翻译
DNA甲基化(DNA methylation) 基因组印记(genomic imprinting), 母体效应(maternal effects), 基因沉默(gene silencing), 核仁显性休眠转座子激活, RNA编辑(RNA editing)等。
• DNA甲基化是最早被发现、也是目前研究最深入的表观遗传 调控机制之一。广义上的DNA甲基化是指DNA序列上特定 的碱基在DNA甲基转移酶(DNMT)的催化作用下,以s一 腺苷甲硫氨酸(SAM)作为甲基供体,通过共价键结合的方 式获得一个甲基基团的化学修饰过程。
• 细胞通过这种方式可以在不影响遗传序列的 前提下,对基因表达进行调控。果蝇那个例 子就是和DNA的甲基化有关。
• 除此之外,甲基化还和基因组印记有关。
非编码RNA调控
• ncRNA是由基因组转录产生的一类不编码蛋白质的遗传信 息分子。对真核细胞中ncRNA及其基因的发掘和功能研究, 可揭示由ncRNA介导的遗传信息传递方式和调控网络,从 不同于蛋白质编码基因的角度注释和阐明基因组的结构与功 能,深入阐明生命活动的本质和规律。
• 近几年来RNAi研究取得了突破性进展,被《Science》杂志评为2001年的十大科 学进展之一,并名列2002年十大科学进展之首。由于使用RNAi技术可以特异性剔 除或关闭特定基因的表达,所以该技术已被广泛用于探索基因功能和传染性疾病及 恶性肿瘤的基因治疗领域。
表观遗传学 EPIGENETICS
什么是表观遗传学?
表观遗传学是研究除DNA序列 变化外的其他机制引起的细胞表 型和基因表达的可遗传的改变。 表观遗传学调控真核基因表达, 与人类重大疾病,如肿瘤、神经 退行性疾病、自身免疫性疾病等 密切相关。
举两个例子~
在胚胎发育过程中,果蝇存在很多体节。对 Hox 基因来 说,在有些体节中表达,有些中不表达。一开始,这种表 达或不表达经不在了,由原来不 表达(Hox 基因)的细胞衍生的后代呢,这些基因仍然不 表达;表达那些 Hox 基因的细胞衍生的细胞,仍然表达。
• 最常见的DNA甲基化形式是将甲基加到胞嘧啶环的 5‘位置上,形成5’-甲基胞嘧啶。哺乳动物中大约有 5%的胞嘧啶被甲基化,而甲基化与否,基因的转录活 性相差了上百万倍。
• DNA甲基化的作用主要体现于抑制基因转录活性,而具 体的抑制机制还尚未明确
• MeCP1所结合的DNA序列常需要有10个以上的甲基化CpG, 这一蛋白广泛存在于许多组织。
工蜂和蜂王都由同种受精卵发育而来,如 果能吃到蜂王浆,就变成蜂后;吃不到就 变成工蜂。
与工蜂相比,蜂王的成熟期短平均在半
个月左右,而工蜂则需要二十天以上;
寿命长蜂王可以活几年,而工蜂则只有
几十天的寿命;有生殖能力蜂王每天可
蜂王
工蜂
以产下几百枚卵,而工蜂一般终生都不
能产卵
♢在第一个例子中,细胞记住了那些基因表达还是不表 达,而且是在没有最开始的那些转录因子的情况下。
• MeCP2含有一个甲基化DNA结合区,因此在细胞内可以特 异性地结合在甲基化的DNA上。除MBD外,MeCP 2还有一 个转录抑制功能区。推想,MeCP2的转录抑制机制是通过 MBD与甲基化DNA结合,使TRD有机会与转录复合物或转录 因子发生蛋白质与蛋白质间的相互作用,最终控制基因的表达。
• 实验证明, MeCP2还可以与组蛋白脱乙酰酶结合,彼此作用,修 饰染色质结构,控制转录活性。
RNAi的第一步是由Dicer将dsRNA切割成约 23bp的片段。此外, 在Dicer切割dsRNA的 过程中,还需要另一种蛋白质受体破坏酶 (RDE-4)的参与,以促使对dsRNA的有效加工。 加工产生的siRNA随后掺入RISC复合体。二 者一旦进行组装,复合体中的核酸酶成分就 会在ATP作用下催化dsRNA的变性和置换反 应。单链RNA的出现,激活RISC复合体,激活 后的复合体被引导到与其中siRNA互补的 mRNA序列。因RNA的置换反应,原siRNA 的反义链便可与mRNA中相应的序列互补, 或降解该mRNA,或抑制其翻译。在此模型 中,后期处理路线的选择基本上取决于siRNA 与同源mRNA之间的匹配程度。如果二者完 全互补,则发生降解;如果匹配程度不很合适, 则在很大程度上是抑制翻译。有时候,在同 源mRNA被切割之后,还可发生两种情况:一 是通过RdRP的作用,使siRNA延长,导致 dsRNA再次进入RNAi途径。二是受到切割 的mRNA进一步降解。而完成此任务后的 RISC复合物则参与另一轮mRNA的降解循 环。
当基因表达调控需要,甲基化的DNA可以发生去甲基化,那 么去甲基化区域是如何建立并得以维持呢?
◑如果一个DNA位点未曾被甲基化,识别这种非甲基化序列的
蛋白质可以保护它不受甲基化作用。一旦一个位点已经被甲基 化,则可能有两种去甲基化方式。一种是与半保留复制相联系 的被动方式,即在复制时阻断维持甲基化酶的作用,因而在第二 次复制周期之后,子代双螺旋即可去甲基化。另一种则是由 DNA脱甲基酶直接催化去掉该位置的甲基化基团,或移走被甲 基化的胞苷。
♢在第二个例子中,细胞的遗传基本上是一致的,后天 的环境、食物、营养不同,对它造成了非常显著的表型 的差别。
这些由后天影响(环境、食物等) 而引起表现型发生变化的现象就属于 表观遗传学所研究的方向
• 表观遗传学是研究基因的核苷酸序列不发生改变的
情况下,基因表达的可遗传的变化的一门遗传学分支学 科。表观遗传的现象很多,已知的有:
• 非编码RNA 从长度上来划分可以分为3类:小于50 nt,包 括microRNA,siRNA;50 nt到500 nt,包括rRNA, tRNA,snRNA,snoRNA等等;大于500 nt,包括Xist RNA等等。
RNA干 扰• RNA干扰是指在进化过程中高度保守的、由双链RNA诱发的、同源mRNA高效特
miRNA是通过与目的mRNA序列中的部分碱基序列配对,调 节基因的表达。
在秀丽隐杆线虫中发现了miRNA---lin 4 RNA,它与 lin 14 mRNA相互作用,使后者的表达受阻。 lin 14基因调节 幼虫的发育,但它的表达受lin 4的控制。lin 14 RNA中含有可 与lin 4 mRNA 3’-UTR某些区段中的同源序列互补,从而阻 遏lin 14转录后的翻译
DNA甲基化(DNA methylation) 基因组印记(genomic imprinting), 母体效应(maternal effects), 基因沉默(gene silencing), 核仁显性休眠转座子激活, RNA编辑(RNA editing)等。
• DNA甲基化是最早被发现、也是目前研究最深入的表观遗传 调控机制之一。广义上的DNA甲基化是指DNA序列上特定 的碱基在DNA甲基转移酶(DNMT)的催化作用下,以s一 腺苷甲硫氨酸(SAM)作为甲基供体,通过共价键结合的方 式获得一个甲基基团的化学修饰过程。
• 细胞通过这种方式可以在不影响遗传序列的 前提下,对基因表达进行调控。果蝇那个例 子就是和DNA的甲基化有关。
• 除此之外,甲基化还和基因组印记有关。
非编码RNA调控
• ncRNA是由基因组转录产生的一类不编码蛋白质的遗传信 息分子。对真核细胞中ncRNA及其基因的发掘和功能研究, 可揭示由ncRNA介导的遗传信息传递方式和调控网络,从 不同于蛋白质编码基因的角度注释和阐明基因组的结构与功 能,深入阐明生命活动的本质和规律。