将军饮马问题(课堂PPT)
2020中考数学复习 最值问题-将军饮马问题 (51张PPT)
02、将军饮马模型系列 ————“一定两动”之点到点
当P'、N、M、P''共线时,得△PMN周长的最小值,即线段P'P''长,连接OP'、 OP'',可得△OP'P''为等边三角形,所以P'P''=OP'=OP=8.
02、将军饮马模型系列 ————“两定两动”之点到点
在OA、OB上分别取点M、N使得四边 形PMNQ的周长最小。
05、将军过桥
【分析】 考虑MN长度恒定,只要求AM+NB最小值即可。问题 在于AM、NB彼此分离,所以首先通过平移,使AM与 NB连在一起,将AM向下平移使得M、N重合,此时A 点落在A'位置。
问题化为求A'N+NB最小值,显 然,当共线时,值最小,并得出 桥应建的位置.
05、将军过桥
通过几何变换将若干段原本彼此分离线段组合到一起,是解决问题的关键~
此处M点为折点,作点P关于OA对称 的点P',将折线段PM+MN转化为 P'M+MN,即过点P'作OB垂线分别 交OA、OB于点M、N,得PM+MN 最小值(点到直线的连线中,垂线段 最短)
03、几何图形中的将军饮马
寻找几何图形中 端点关于折点所在直线的对称点位置
03、几何图形中的将军饮马 ----正方形中的“将军饮马”
则PC+PD的最小值为( )
A.4
B.5 C.6
D.7
03、几何图形中的将军饮马 ----正方形中的“将军饮马”
【分析】作点C关于P点所在直线AB的对称点C',当C'、P、D共线时, PC+PD最小,最小值为5,故选B.
将军饮马问题课件
将军饮马问题类型一、基本模式类型二、轴对称变换得应用(将军饮马问题)2、如图所示,如果将军从马棚M出发,先赶到河OA上得某一位置P,再马上赶到河OB上得某一位置Q,然后立即返回校场N.请为将军重新设计一条路线(即选择点P与Q),使得总路程MP+PQ+QN最短.【变式】如图所示,将军希望从马棚M出发,先赶到河OA上得某一位置P,再马上赶到河OB 上得某一位置Q。
请为将军设计一条路线(即选择点P与Q),使得总路程MP+PQ最短.3、将军要检阅一队士兵,要求(如图所示):队伍长为a,沿河OB排开(从点P到点Q);将军从马棚M出发到达队头P,从P至Q检阅队伍后再赶到校场N、请问:在什么位置列队(即选择点P与Q),可以使得将军走得总路程MP+PQ+QN最短?4。
如图,点M在锐角∠AOB内部,在OB边上求作一点P,使点P到点M得距离与点P到OA 边得距离之与最小5已知∠MON内有一点P,P关于OM,ON得对称点分别就是与,分别交OM, ON于点A、B,已知=15,则△PAB 得周长为( )ﻫA。
15 B 7、5 C。
10 D. 24ﻫ6、已知∠AOB,试在∠AOB内确定一点P,如图,使P到OA、OB得距离相等,并且到M、N两点得距离也相等、7、已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB得周长取最小值时,求∠APB得度数、8、如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C、若P就是BC边上一动点,则DP长得最小值为______.ﻫ练习1、已知点在直线外,点为直线上得一个动点,探究就是否存在一个定点,当点在直线上运动时,点与、两点得距离总相等,如果存在,请作出定点;若不存在,请说明理由、2、如图,在公路得同旁有两个仓库、,现需要建一货物中转站,要求到、两仓库得距离与最短,这个中转站应建在公路旁得哪个位置比较合理?3、已知:、两点在直线得同侧, 在上求作一点,使得最小。
2.将军饮马模型-课件PPT
3
给妹妹讲初中数学
5 真题训练
2023·黑龙江省齐齐哈尔市
4
给妹妹讲初中数学
5 真题训练
2023·黑龙江省绥化市
5
给妹妹讲初中数学
5 真题训练
2023·广西
给妹妹讲初中数学 6
5 真题训练
2023·四川宜宾
给妹妹讲初中数学 7
5 真题训练
2023·湖南省邵阳市
8
给妹妹讲初中数学
5 真题训练
(2个动点不关联,转化为图形到图形的最值问题)
1个图形做对称图形,与另1个图形的最值。
点到点
图形到图形 直线到直线,垂直 直线到圆,过圆心 圆到圆,过两圆圆心
给妹妹讲初中数学 示例图
4 解题技巧
第五步:求最值。
解题技巧
找到图形中的最短值后,根据题意求解值即可。
给妹妹讲初中数学
4 解题技巧
解题技巧
2 模型探究
给妹妹讲初中数学
4 解题技巧
给妹妹讲初中数学
4 解题技巧
给妹妹讲初中数学
4 解题技巧
(2019,陕西)
给妹妹讲初中数学
4 解题技巧
给妹妹讲初中数学
4 解题技巧
给妹妹讲初中数学
4 解题技巧
(2020,云南)
给妹妹讲初中数学
4 解题技巧
(2019,沈阳)
给妹妹讲初中数学
4 解题技巧
1. 找出最值经过的所有点,标记定点和动点。
2. 画出所有动点的运动轨迹。
3. 判断最值的两个端点是动点还是定点。
4. 根据端点情况,做对称点/对称图形。
5. 求最值。
找动点 画轨迹 判两端 做对称 求最值
给妹妹讲初中数学
将军饮马专题ppt课件
第8题图
返回
1 综合训练
1. 如图,在矩形ABCD中,AB=2,AD=1,点E为AB的中点,M、N是CD上的两 动点,且MN=1,则EM+EN的最小值为____。
1 综合训练
2. 如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个 动点,则下列线段的长等于AP+EP最小值的是 ____。
之
间
,
线
段
最
短
2
用模型战试题
每一个试题都是模型,每一种模型都有方法
综合训练
针对训练1
2
1. 如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AB 边上一点,且AE=2,则线段EF+CF的最小值为( B ) A. 3 B. 2 3 C. 2 D. 2
第1题图
返回
2 针对训练2
两动一定型 2
例7
在∠MON的内部 有一点A,在OM上找 一点B,在ON上找一 点C,使得△BAC周长
最短.
在 OM上找一点C,在 ON上找一点D,使 得四边形ABCD周 长最短.
例9
在∠MON的内部 有一点A,在OM上 找一点B,在ON上 找一点C,使得AB +BC最短.
【传说】
早在古罗马时代,传说亚历山大城有一位精通数学 和物理的学者,名叫海伦.一天,一位罗马将军专程 去拜访他,向他请教一个百思不得其解的问题.
将军每天从军营A出发,先到河边饮马,然后再去 河岸同侧的军营B开会,应该怎样走才能使路程最短 ?这个问题的答案并不难,据说海伦略加思索就解决 了它.
从此以后,这个被称为“将军饮马”的问题便流传至 今.
A. 3 B. 2 3 C. 3 1 D. 3 2
将军饮马问题ppt课件
5
将军饮马:
例1变式1:已知美羊羊在A地玩耍,这时喜 羊羊在小溪的对面C玩耍,并且AC两地是关 于小溪的对称点,它俩在小溪的任意一点E 处汇合,再一起回家的最短路线是什么?
A
M C
N
B
6
(二)一次轴对称: 两点在一条直线同侧
例2.如图:一位将军骑马从城堡A到城堡B, 途)二次轴对称:两点在两相交直线内部
例4答案:如图,A是马厩,B为帐篷,牧马人某一天要从 马厩牵出马,先到草地边某一处牧马,再到河边饮马, 然后回到帐篷.请你帮他确定这一天的最短路线.
A′ C
D
B′
A B
15
(四)二次轴对称:两点在两相交直线内部
例4变式1:已知: MON和 MON内两点A、B。 求作:点C和点D,使得点C在OM上, 点D在ON上,且AC+CD+BD+AB最短。
M
N
C
C'
∵ 直线MN是点B、B’的对称轴, 点C、C’在对称轴上,∴BC=B’C,BB' C’=B’C’.
∴BC+AC = B’C+AC = B’A.
∴BC ’ +AC ’ = B’C ’ +AC ’
在△AB ’ C’中,AB ’ < AC’+B ’ C’,
∴ BC+AC < BC ’ +AC ’ ,即AC+BC最小.
将军饮马问题
1
2
看图思考: 为什么有的人会经常践踏草地呢?
禁爱止护践草踏坪 绿地里本没有路,走的人多了… …
两点之间,线段最短
3
将军饮马问题:
两线段之和最短这个问题早在古罗马时代就有 了,传说亚历山大城有一位精通数学和物理的学者, 名叫海伦.一天,一位罗马将军专程去拜访他,向 他请教一个百思不得其解的问题:
将军饮马问题 -[优质PPT]
(二)一次轴对称: 两点在一条直线同侧
例2变式1:已知:P、Q是△ABC的边AB、 AC上的点,你能在BC上确定一点R, 使△PQR的周长最短吗?
(三)二次轴对称:一点在两相交直线内部
例3已知如图 MON 和 MON内一点A ,
求作:OM上一点B, ON上一点C, 使AB+BC+AC最小
作法(1)作点A关于OM、 O
课题学习:最短路径
看图思考: 为什么有的人会经常践踏草地呢?
禁爱止护践草踏坪 绿地里本没有路,走的人多了… …
两点之间,线段最短 连接直线外一点与直线上各点的所有线段中,垂线段最短
将军饮马问题:
将军每天骑马从城堡A出发,到城堡B, 途中马要到小溪边饮水一次。将军问怎样走 路程最短?
这就是被称为"将军饮马"而 广为流传的问题。
将军饮马:(一)两点在一条直线两侧
例1.如图:古希腊一位将军骑马从城堡A到城堡B, 途中马要到小溪边饮水一次。问将军怎样走路程 最短?
A
最短路线:
P
A ---P--- B.
根据:
B 两点之间线段最短.
(二)一次轴对称: 两点在一条直线同侧
例2.如图:一位将军骑马从城堡A到城堡B, 途中马要到河边饮水一次,
通过几何变换找对称图形。
(2)把A,B在直线同侧的问题转化为 在直线的两侧,化折线为直线,
(3)可利用“两点之间线段最短” 加以解决。
反
思
我的收获;
是
进
步 的
我的疑惑;
阶
梯
面对一个新的求线段最短问题时,
我们可以通过怎样的途径去研究它?
畅想网络
Imagination Network
将军饮马课件
P'N为PM+MN最小值(依据:垂线段最短)
秒杀技巧
对 称一定点,垂 直出最短
模型巧记
将军饮马问题难, 两定一动一直线。 对称转化是关键, 勾股定理帮忙算。
M' 8
模型应用 三 角 形 中 的 将 军 饮 马
2、如图,在Rt△ABC中,∠ACB=90°,AC=6,AB=12, AD平分∠CAB,点F是AC的中点,点E是AD上的动点,则 CE+EF的最小值为___3__3___.
CE+EF的最小值
C'
=C'F
模型应用 圆 中 的 将 军 饮 马
(
3.如图,MN是⊙O的直径,已知点A是⊙O上一个三等分点,点 B是AN的中点,点P是半径ON上的动点,若⊙O的半径为1,求 AP+BP的最小值。
秒杀技巧 定点双 对 称,连 接出最短
模型拓展 将军饮马模型系列 ——“一定两动”之点到线
在OA、OB上分别取M、N使得PM+MN最小
A
A
P'
M
P
MM
P
O
B
N
O
B
NN
思路:此处M点为动点,作点P关于OA对称的点P',将折线段PM+MN
转化为P'M+MN,即过点P'作OB垂线分别交OA、OB于点M、N,得
著名的恩施大峡谷a和世界级自然保护区星斗山b位于笔直的沪渝高速公路x同侧ab50kmab到直线x的距离分别为10km和40km要在沪渝高速公路旁修建一服务区p向ab两景区运送游客
学习目标: 1.会将复杂的数学问题转化为线段最值问题,建立线段之和最小值问 题的几何模型。 2.能依据与线段最值相关的知识点,运用模型解决问题。 学习重难点: 从复杂图形中分离出几何模型,并能运用模型解决因动点产生的线 段之和最小值问题。 知识链接: 1.轴对称的性质。 2.勾股定理的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A'
M
C . .A
.B
O
.N
D .B '
.
14
(四)二次轴对称:两点在两相交直线内部
• 例4变式2:如图,OMCN是矩形的台球桌面, 有黑、白两球分别位于B、A两点的位置上,
• 试问怎样撞击白球,使白球A依次碰撞球台 边OM、ON后,反弹击中黑球?
C
B N
M A
O
.
15
(四)二次轴对称:两点在两相交直线内部
M
N
C
C'
∵ 直线MN是点B、B’的对称轴, 点C、C’在对称轴上,∴BC=B’C,BB'C’=B’C’.
∴BC+AC = B’C+AC = B’A.
∴BC ’ +AC ’ = B’C ’ +AC ’
在△AB ’ C’中,AB ’ < AC’+B ’ C’,
∴ BC+AC < BC ’ +AC ’ ,即AC+BC最小.
例4变式2:
M
作 法 :(1)作 点 A关 于 O M 的 对 称 点 A',
点 B关 于 O N的 对 称 点 B'.
. ( 2 ) 连 结 A '和 B ', 交 O M 于 C , 交 O N 于 D 。 A
A.'
则 点 C、 D为 所 求 。
.C
B.
.
N
.D
O
B'
.
16
将军饮马的实质: (1)求最短路线问题------
问:这位将军怎样走路程最短?
A
B
河
.
5
(二)一次轴对称:两点在一条直线同侧
例2作法:
(1)作点B关于直线 MN 的对称点 B’
(2)连结B’A,交MN于点 C;
所以 点C就是所求的点.
B
A
M
N
C
B’
.
6
(二)一次轴对称: 两点在一条直线同侧
例2证明:在MN 上任取另一点C’, B
A
连结BC、BC’、 AC’ 、 B’C’ .
.
3
将军饮马:(一)两点在一条直线两侧
例1.如图:古希腊一位将军骑马从城堡A到城堡B, 途中马要到小溪边饮水一次。问将军怎样走路程 最短?
A
最短路线:
P
A ---P--- B.
B
根据: 两点之间线段最短.
.
4
(二)一次轴对称: 两点在一条直线同侧
例2.如图:一位将军骑马从城堡A到城堡B, 途中马要到河边饮水一次,
通过几何变换找对称图形。
(2)把A,B在直线同侧的问题转化为 在直线的两侧,化折线为直线,
(3)可利用“两点之间线段最短” 加以解决。
.
17
反
思
我的收阶
梯
面对一个新的求线段最短问题时,
我们可以通过怎样的途径去研究它?
.
18
问:这位将军怎样走路程最短?
M 草地
O
.驻地A
N 河边
.
10
(三)二次轴对称:一点在两相交直线内部
例3变式1:已知P是△ABC的边BC上的点, 你能在AB、AC上分别确定一点Q和R, 使△PQR的周长最短吗?
.
11
(四)二次轴对称:两点在两相交直线内部
例4:如图,A为马厩,B为帐篷,将军某一天要 从马厩牵出马,先到草地边某一处牧马, 再到河边饮马,然后回到帐篷, 请你帮助确定这一天的最短路线。
.A '
M
B.
.A
作法(1)作点A关于OM、 O
ON的对称点A’、A”
.N . C
A ''
( 2 ) 连 结 A '和 A '', 交 O M 于 B , 交 O N 于 C 。
则点B,C为所求。
.
9
(三)二次轴对称:一点在两相交直线内部
例3.如图:一位将军骑马从驻地A出发,先牵马去草地 OM吃草,再牵马去河边ON喝水, 最后回到驻地A,
课题学习:最短路径
.
1
看图思考: 为什么有的人会经常践踏草地呢?
禁爱止护践草踏坪 绿地里本没有路,走的人多了… …
两点之间,线段最短 连接直线外一点与直线上各点. 的所有线段中,垂线段最2 短
将军饮马问题:
将军每天骑马从城堡A出发,到城堡B, 途中马要到小溪边饮水一次。将军问怎样走 路程最短?
这就是被称为"将军饮马"而 广为流传的问题。
.
7
(二)一次轴对称: 两点在一条直线同侧
例2变式1:已知:P、Q是△ABC的边AB、 AC上的点,你能在BC上确定一点R, 使△PQR的周长最短吗?
.
8
(三)二次轴对称:一点在两相交直线内部
例3已知如图 MON 和 MON内一点A ,
求作:OM上一点B, ON上一点C, 使AB+BC+AC最小
.
12
(四)二次轴对称:两点在两相交直线内部
例4答案:如图,A是马厩,B为帐篷,牧马人某一天要从 马厩牵出马,先到草地边某一处牧马,再到河边饮马, 然后回到帐篷.请你帮他确定这一天的最短路线.
A′ C
D
B′
A B
.
13
(四)二次轴对称:两点在两相交直线内部
例4变式1:已知:MON和 MON内两点A、B。 求作:点C和点D,使得点C在OM上, 点D在ON上,且AC+CD+BD+AB最短。