九年级数学统计与概率1

合集下载

中考数学一轮复习专题解析—统计与概率

中考数学一轮复习专题解析—统计与概率

中考数学一轮复习专题解析—统计与概率复习目标1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;考点梳理一、数据的收集及整理1.一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展开调查、记录结果、得出结论.2.调查收集数据的方法:普查与抽样调查.要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想.(3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样.3.数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图.【特别提醒】这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.例1. 连云港市实行中考改革,需要根据该市中学生体能的实际情况重新制定中考体育标准.为此,抽取了50名初中毕业的女学生进行“一分钟仰卧起坐”次数测试.测试的情况绘制成表格如下:次数 6 12 15 18 20 25 27 30 32 35 36 人数 1 1 7 18 10 5 2 2 1 1 2⑴求这次抽样测试数据的平均数、众数和中位数;⑵根据这一样本数据的特点,你认为该市中考女生“一分钟仰卧起坐”项目测试的合格标准应定为多少次较为合适?请简要说明理由;⑶根据⑵中你认为合格的标准,试估计该市中考女生“一分钟仰卧起坐”项目测试的合格率是多少?【答案】⑴该组数据的平均数众数为18,中位数为18;⑵该市中考女生一分钟仰卧起坐项目测试的合格标准应定为18次较为合适,因为众数及中位数均为18,且50人中达到18次的人数有41人,确定18次能保证大多数人达标;⑶根据⑵的标准,估计该市中考女生一分钟仰卧起坐项目测试的合格率为82%.二、数据的分析1.基本概念:总体:把所要考查的对象的全体叫做总体;个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本;样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数;极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果通常称为方差.计算方差的公式:设一组数据是,是这组数据的平均数。

初三数学统计与概率试题答案及解析

初三数学统计与概率试题答案及解析

初三数学统计与概率试题答案及解析1.某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球;B乒乓球;C羽毛球;D足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)【答案】(1)200;(2)补图见解析;(3).【解析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.试题解析:(1)根据题意得:20÷=200(人),则这次被调查的学生共有200人;(2)补全图形,如图所示:(3)列表如下:甲乙丙丁所有等可能的结果为12种,其中符合要求的只有2种,则P=.【考点】1.条形统计图;2.扇形统计图;3.列表法与树状图法.2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇今年1-5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1-5月新注册小型企业一共有家.请将折线统计图补充完整.(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.【答案】(1)15,将折线统计图补充完整见解析;(2).【解析】(1)根据3月份有4家,占25%,可求出某镇今年1-5月新注册小型企业一共有的家数,再求出1月份的家数,进而将折线统计图补充完整.(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业,根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙2家企业恰好被抽到的情况,再利用概率公式求解即可求得答案.试题解析:(1)根据统计图可知,3月份有4家,占25%,所以某镇今年1-5月新注册小型企业一共有:4÷25%=16(家),1月份有:16-2-4-3-2=5(家).折线统计图补充如下:(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业.画树状图得:∵共有12种等可能的结果,甲、乙2家企业恰好被抽到的有2种情况,∴所抽取的2家企业恰好都是餐饮企业的概率为:.【考点】1.折线统计图;2.扇形统计图;3.频数、频率和总量的关系;4.列表法或树状图法;5.概率.3.小伟调查了某校八年级学生和家长对“中学生不穿校服”现象的看法,制作了如下的统计图学生及家长对“中学生不穿校服”的态度统计图家长对“中学生不穿校服”的态度统计图(1)求参加这次调查的家长人数;(2)求图2中表示家长“反对”的圆心角的度数;(3)小伟随机调查了表示“赞成”的10位学生的成绩,其各科平均分如下:57,88,72,60,58,80,78,78,91,65,请写出这组数据的中位数和众数;(4)小伟从表示“赞成”的4位同学中随机选择2位进行深入调查,其中包含小明和小亮,请你利用树状图或列表的方法,求出小明和小亮被同时选中的概率.【答案】(1)400;(2)252°;(3)75,78;(4).【解析】(1)根据条形统计图,无所谓的家长有80人,根据扇形统计图,无所谓的家长占20%,据此即可求出家长总人数;(2)根据反对人数和(1)中求出的家长总人数,算出“反对”家长的百分比,即可得到表示家长“反对”的圆心角的度数;(3)先把数据从小到大排列,第五与第六个数的平均数即为这组数据的中位数,众数就是出现次数最多的数;(4)设小明和小亮分别用A、B表示,另外两个同学用C、D表示,画出树状图即可.(1)∵由条形统计图,无所谓的家长有80人,根据扇形统计图,无所谓的家长占20%,∴家长人数是80÷20%=400人;(2)表示家长“反对”的圆心角的度数为×360=252°;(3)把数据从小到大排列为,57,58,60,65,72,78,78,80,88,91,中位数是,众数是78;(4)设小明和小亮分别用A、B表示,另外两个同学用C、D表示,列树状图如下:∴一共有12种等可能的结果,同时选中小明和小亮有2种情况,∴P(小明和小亮同时被选中)=.【考点】1.条形统计图;2.扇形统计图;3.中位数;4.众数;5.列表法与树状图法.4.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?【答案】解:(1)补全频数分布直方图如下:,中位数位于第三组。

九年级概率统计知识点总结

九年级概率统计知识点总结

九年级概率统计知识点总结概率统计作为数学中的一门重要学科,是我们在日常生活中经常接触到的。

无论是在购买彩票时,还是在进行市场调查时,概率统计都扮演着重要的角色。

在九年级学习概率统计,我们掌握了一些基本的概念和方法。

在这篇文章中,我将总结九年级概率统计的一些核心知识点,帮助大家更好地理解和运用这些知识。

一、概率的基本概念概率是指某一事件发生的可能性大小。

而事件是指由一个或多个基本事件组成的结果。

基本事件是不可再分解的事件,也就是说它是不可再分解的最小事件。

在计算概率时,我们可以利用“频率”和“古典概率法”等不同的方法。

二、概率的计算在概率的计算中,我们经常会用到“加法法则”和“乘法法则”。

加法法则指若事件A和B互斥(即它们不可能同时发生),则其概率之和等于两事件概率之和。

乘法法则指若事件A和B独立(即一个事件的发生不影响另一个事件的发生),则其概率之积等于两事件概率之积。

三、排列组合排列和组合是概率统计中的重要概念,它们用于计算不同事件发生的可能性。

排列是指从n个不同的元素中取出m个元素进行排列,不同的排列顺序被视为不同的结果。

组合是指从n个不同的元素中取出m个元素进行组合,不同的组合顺序被视为相同的结果。

排列和组合的计算公式分别为P(n,m)=n!/(n-m)!和C(n,m)=n!/[(n-m)!*m!]。

四、样本空间与事件在概率统计中,我们常常需要确定一个实验的可能结果集合,这个集合称为样本空间。

而在样本空间当中,我们可以定义各种不同的事件。

事件是样本空间的一个子集,它包含了某些可能的结果。

事件可以是简单事件,也可以是复合事件。

五、频率与概率频率是指在进行了大量实验后,某一事件发生的次数与实验总次数的比值。

频率是概率的一种估计方式,当做大量的实验时,频率接近于概率。

因此,我们可以用频率来估计概率。

六、条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

当两个事件A和B相互独立时,条件概率P(A|B)=P(A);当两个事件A和B不独立时,条件概率P(A|B)=P(A∩B)/P(B)。

中考数学 精讲篇 考点系统复习 第八章 统计与概率 第一节 统计

中考数学 精讲篇 考点系统复习 第八章 统计与概率 第一节 统计

(3)因出口规格为 75 g,甲厂和乙厂的平均数都为 75 g,故从平均数角 度选择甲厂和乙厂都一样.甲厂的中位数为 76 g,乙厂的中位数为 75 g, 故从中位数角度选择乙厂.甲厂的方差为 6.3,乙厂的方差为 6.6,因为 s2甲<s2乙,故从方差的角度选择甲厂.
(4)从甲厂 20 只鸡腿质量中 71≤x<77 占比为3+2010=1230, 13
的是
( C)
A.扇形统计图能反映各部分在总体中所占的百分比
B.每天阅读 30 分钟以上的居民家庭孩子超过 50%
C.每天阅读 1 小时以上的居民家庭孩子占 20%
D.每天阅读 30 分钟至 1 小时的居民家庭孩子对应扇形的圆心角是 108°
4.已知一组数据:2,3,1,3,6,求出下列统计量:
(1)平均数: 3 3;(2)中位数 3 3;(3)众数:3 3 ;(4)方差:2 2..8. 8
分析上述数据,得到下表:
统计量
平均数 中位数
众数
方差
厂家
甲厂
75
76
b
6.3
乙厂
75
75
77
6.6
请你根据图表中的信息完成下列问题: (1)a=________;b=________; (2)补全频数分布直方图; (3)如果只考虑出口鸡腿规格.请结合表中的某个统计量,为外贸公司选 购鸡腿提供参考建议; (4)某外贸公司从甲厂采购了 20 000 只鸡腿,并将质量(单位:g)在 71≤x<77 的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少 只?
组别 睡眠时间分组 频数 频率
A
t<6
4
0.08
B 6≤t<7

概率论与数理统计重点(数学一)

概率论与数理统计重点(数学一)

概率论与数理统计 ⼀、随机事件和概率 考试内容: 随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率⼏何型概率条件概率概率的基本公式事件的独⽴性独⽴重复试验。

考试要求: 1、了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算。

2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和⼏何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式。

3、理解事件的独⽴性的概念,掌握⽤事件独⽴性进⾏概率计算;理解独⽴重复试验的概念,掌握计算有关事件概率的⽅法。

⼆、随机变量及其分布 考试内容: 随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布 考试要求: 1、理解随机变量的概念。

理解分布函数的概念及性质。

会计算与随机变量相联系的事件的概率。

2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、⼆项分布、⼏何分布、超⼏何分布、泊松(Poisson)分布及其应⽤。

3、了解泊松定理的结论和应⽤条件,会⽤泊松分布近似表⽰⼆项分布。

4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应⽤。

5、会求随机变量函数的分布。

三、多维随机变量及其分布 考试内容: 多维随机变量及其分布 ⼆维离散型随机变量的概率分布、边缘分布和条件分布 ⼆维连续性随机变量的概率密度、边缘概率密度和条件密度随机变量的独⽴性和不相关性 常⽤⼆维随机变量的分布 两个及两个以上随机变量简单函数的分布 考试要求: 1、理解多维随机变量的概念,理解多维随机变量的分布的概念和性质。

理解⼆维离散型随机变量的概率分布、边缘分布和条件分布;理解⼆维连续型随机变量的概率密度、边缘密度和条件密度。

会求与⼆维随机变量相关事件的概率。

2、理解随机变量的独⽴性及不相关性的概念,掌握随机变量相互独⽴的条件。

九年级数学一轮复习教案:概率与统计

九年级数学一轮复习教案:概率与统计

【课标要求】1.统计⑴从事收集、整理、描述和分析的活动,能用计算器处理较复杂的统计数据.⑵通过丰富的实例,感受抽样的必要性,能指出总体、个体、样本,体会不同的抽样可能得到不同的结果.⑶会用扇形统计图、条形统计图、折线统计图表示数据.⑷在具体情境中理解并会计算加权平均数;根据具体问题,能选择合适的统计量表示数据的集中程度.⑸探索如何表示一组数据的离散程度,会计算极差和方差、标准差,并会用它们表示数据的离散程度.⑹通过实例,理解频数、频率的概念,了解频数分布的意义和作用,会列频数分布表,画频数分布直方图和频数折线图,并能解决简单的实际问题.⑺通过实例,体会用样本估计总体的思想,能用样本的平均数、方差来估计总体的平均数和方差.⑻根据统计结果作出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点,并进行交流.⑼能根据问题查找有关资料,获得数据信息;对日常生活中的某些数据发表自己的看法.⑽认识到统计在社会生活及科学领域中的应用,并能解决一些简单的实际问题.2.概率⑴在具体情境中了解概率的意义,运用列举法(包括列表和画树状图)计算简单事件发生的概率.⑵通过实验,获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率的估计值.⑶通过实例进一步丰富对概率的认识,并能解决一些实际问题.【课时分布】概率与统计部分在第一轮复习时大约需要7个课时,其中包括单元测试.下表为内容及课时安排(仅供参考)2、基础知识数据的收集与处理⑴通过调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展开调查、记录结果、得出结论.⑵条形统计图、折线统计图、扇形统计图是三种最常用的统计图.这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.⑶我们把所要考察的对象的全体叫做总体,把组成总体的每一个考察对象叫做个体.从总体中取出的一部分个体叫做总体的一个样本.样本中包含的个体的个数叫做样本容量.⑷普查是通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.⑸用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样.⑹在记录实验数据时,每个对象出现的次数称为频数.每个对象出现的次数与总次数的比值(或者百分比)称为频率.⑺绘制频数分布直方图的步骤是:①计算最大值与最小值的差;②决定组距和组数;③决定分点;④画频数分布表;⑤画出频数分布直方图.数据的代表⑻在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数.⑼将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组数据的中位数.⑽在一组数据中,出现频数最多的数叫做这组数据的众数.⑾在一组数据中,各个数在总结果中所占的百分比称为这个数的权重,每个数乘以它相应的权重后所得的平均数叫做这组数据的加权平均数.⑿一组数据中的最大值减去最小值所得差称为极差.⒀方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果通常称为方差..则这组数据的方差是:用公式可表示为:Array可能性与概率⒂那些无需通过实验就能够预先确定他们在每一次实验中都一定会发生的事件称为必然事件.那些在每一次实验中都一定不会发生的事件称为不可能事件.必然事件和不可能事件统称为确定事件.⒃无法预先确定在一次实验中会不会发生的事件称为不确定事件或随机事件. ⒄表示一个事件发生的可能性大小的数,叫做该事件的概率. ⒅概率的理论计算有:①树状图;②列表法. 2、 能力要求例1为了了解某区九年级7000名学生的体重情况,从中抽查了500名学生的体重,就这个问题来说,下面说法正确的是 ( )A .7000名学生是总体B .每个学生是个体C .500名学生是所抽取的一个样本D .样本容量为500【分析】这个问题主要考查学生对总体、个体、样本、样本容量概念的理解.此题学生容易把研究对象的载体(学生)当作研究对象(体重).【解】D .例2 下面两幅统计图(如图1、图2),反映了某市甲、乙两所中学学生参加课外活动的情况.请你通过图中信息回答下面的问题.⑴通过对图1的分析,写出一条你认为正确的结论; ⑵通过对图2的分析,写出一条你认为正确的结论;⑶2003年甲、乙两所中学参加科技活动的学生人数共有多少?【分析】此题就是考查学生的读图、识图的能力. 从统计图中处理数据的情况一般有以下几种:一、分析数据大小情况;二、分析数据所占的比例;三、分析数据的增加、减少等趋势或波动情况.【解】⑴1997年至2003年甲校学生参加课外活动的人数比乙校增长得快; ⑵甲校学生参加文体活动的人数比参加科技活动的人数多; ⑶200038%110560%1423⨯+⨯=(人).答:2003年两所中学的学生参加科技活动的总人数是1423人.【说明】⑴本题是利用折线统计图和扇形统计图展示数据,折线统计图清楚地反映参加课外活动人数的变化情况,扇形统计图清楚地表示出参加课外活动人数占总人数的比例. ⑵从折线统计图可获得2003年甲校参加课外活动人数为2000人,乙校为1105人,再根据扇形统计图参加各类活动人数的百分比即可算出参加各类活动的人数.这里着重考查了学生的甲、乙两校参加课外活动的学生人数统计图 (1997~2003年)/年乙校 (图1)2003年甲、乙两校学生参加课外活动情况统计图(图2) 甲校 乙校读图能力.例3 某市实行中考改革,需要根据该市中学生体能的实际情况重新制定中考体育标准.为此,抽取了50名初中毕业的女学生进行“一分钟仰卧起坐”次数测试.测试⑵根据这一样本数据的特点,你认为该市中考女生“一分钟仰卧起坐”项目测试的合格标准应定为多少次较为合适?请简要说明理由;⑶根据⑵中你认为合格的标准,试估计该市中考女生“一分钟仰卧起坐”项目测试的合格率是多少?【分析】本题是以统计初步知识在该市怎样定中考女生“一分钟仰卧起坐”项目测试的合格标准中的应用为背景,把制定体育成绩的某项合格指标转化为统计问题,投出了统计中的平均数、众数、中位数运算.【解】⑴该组数据的平均数=,5. 20)2361351322302275251020181871511216(50 1=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯众数为18,中位数为18;⑵该市中考女生一分钟仰卧起坐项目测试的合格标准应定为18次较为合适,因为众数及中位数均为18,且50人中达到18次的人数有41人,确定18次能保证大多少人达标;⑶根据⑵的标准,估计该市中考女生一分钟仰卧起坐项目测试的合格率800.【说明】本题不仅有很强的现实性和很好的问题背景,而且联系学生的生活实际,易引起学生的解题兴趣,既可以有效地考查学生对统计量的计算,又将关注的重点转变为结合学生实际问题进行定量和定性分析,进而整理数据、分析数据、做出判断、预测、估计和决策,突出了题目的教育价值.例4 两人要去某风景区游玩,每天某一时段开往该风景区有三辆车(票价相同),但是他们不知道这些车的舒适程度,也不知道车子开过来的顺序. 两人采取了不同的乘车方案:甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时他不上车,而是仔细观察车的舒适度,如果第二辆车的状况比第一辆车好,他就上第二辆车;如果第二辆车不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题:⑴三辆车按出现的先后顺序工有哪几种不同的可能?⑵ 你认为甲、乙两人采用的方案, 哪一种方案使自己..乘上等车的可能性大? 为什么? 【分析】由于各车的舒适度不同,而且开过来的顺序也事先未知,因此不同的乘车方案使自己乘坐上等车的可能性不一样.我们只要将三种不同的车开来的可能性顺序全部列出来,再对照甲乙二人不同的乘车方案,就可以得出两人乘坐上等车的可能性. 【解】⑴三辆车开来的先后顺序有6种可能,分别是:(上、中、下)、(上、下、中)、(中、上、下)、(中、下、上)、(下、中、上)、(下、上、中);⑵由于不考率其他因素,三辆车6种顺序出现的可能性相同.甲、乙二人分别乘坐上等车的概率,用列表法可得.于是不难看出,甲乘上等车的概率是31;而乙乘上等车的概率是21. ∴乙采取的方案乘坐上等车的可能性大. 【说明】解决本题的关键是通过列表的方法将三辆车开来的顺序列出来,再根据甲、乙两种不同的乘车方案求出他们乘坐上等车的概率.另外本题也可以通过画数状图来求解.例5 某电脑公司现有A 、B 、C 三种型号的甲品牌电脑和D 、E 两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.⑴写出所有选购方案(利用树状图或列表方法表示); ⑵ 如果⑴中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?⑶ 现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A 型号电脑,求购买的A 型号电脑有几台.【分析】本题实际上是要在A ,B ,C 三种型号的甲品牌电脑中选择一种,再从D ,E 两种型号的乙品牌电脑中选择一种,我们可以在所有选购方案中按照题意要求就可以确定符合条件的方案. 【解】⑴ 树状图如下:或列表如下:有6种可能结果:(A ,D ),(A ,E ),(B ,D ),(B ,E ),(C ,D ),(C ,E ). ⑵ 因为选中A 型号电脑有2种方案,即(A ,D )(A ,E ),所以A 型号电脑被选中的概率是31.(3) 由(2)可知,当选用方案(A ,D )时,设购买A 型号、D 型号电脑分别为x ,y台,根据题意,得⎩⎨⎧=+=+.10000050006000,36y x y x解得⎩⎨⎧=-=.116,80y x 经检验不符合题意,舍去;当选用方案(A ,E)时,设购买A 型号、E型号电脑分别为x ,y 台,根据题意,得⎩⎨⎧=+=+.10000020006000,36y x y x 解得⎩⎨⎧==.29,7y x所以希望中学购买了7台A 型号电脑.【分析】本题通过画树状图确定了所有选购方案后,再运用方程组对所有的方案进行取舍,从而确定符合题意的方案,题目设计巧妙,各问之间环环相扣,并且渗透了方程思想,是一道不可多得的好题. 【复习建议】⑴立足教材,理清概念,夯实基础,学生通过复习,应熟练掌握概率与统计的基本知识、基本技能和基本方法.⑵要突出统计思想,用样本估计总体是统计的基本思想,在复习中要使学生更多的机会接触这一思想,使学生对抽样的必要性、样本的代表性、用样本估计总体的可行性,以及对不同的抽样所得结果的不确定性有更多的体会.⑶统计与现实生活、科学领域的联系是非常紧密的,教学中应特别注意将统计的学习与实际问题密切结合,选择典型的、充满趣味性和富有时代气息的现实问题作为例子,使学生在解决问题的过程中,学习数据处理方法,理解统计的概念和原理,培养学生的统计观念.⑷突出概率建模思想,对概率的计算问题,可以把不同背景下的各类问题加以变通,寻找他们之间是否存在相同的数学本质,对相同的一类问题,我们可以用一个概率模型来解决.这样也能对学生思维的灵活性、缜密性和开放性加以锤炼.⑸加强用列表法和树状图求解决简单事件的概率的复习,渗透分类讨论思想. ⑹重视学科间知识、方法的渗透,复习中可综合物理、化学等学科相关知识及特点,用数学的视角来加强相关知识的学习与巩固.。

九年级数学统计与概率

九年级数学统计与概率

九年级数学统计与概率九年级的数学课程中,统计与概率是一个重要的知识点。

统计与概率是数学中研究数据收集、整理和分析的方法,以及基于数据的可能性和不确定性的计算。

本文将介绍统计与概率的基本概念和相关的应用。

一、统计的基本概念统计是数据的收集、整理、分析和解释的过程。

在统计学中,数据可以分为两类:定量数据和定性数据。

定量数据是可以用数字表示的数据,比如身高、年龄等。

定性数据是描述性的数据,比如性别、颜色等。

收集数据是统计的第一步。

常见的数据收集方法包括实地调查、问卷调查和实验等。

收集到的数据可以用表格、图表等形式整理和展示,以便更好地进行分析和理解。

统计的目标是从收集到的数据中提取有用的信息。

常用的统计量有平均数、中位数、众数和标准差等。

平均数是指一组数据的总和除以数据的个数,表示数据的中心趋势;中位数是将数据按从小到大的顺序排列,位于中间位置的数;众数是出现频率最高的数;标准差是一组数据与其平均数的离散程度的度量。

二、概率的基本概念概率是用来描述事件发生的可能性的数值。

在概率理论中,事件可以分为两类:确定性事件和随机事件。

确定性事件是指必然会发生的事件,比如掷一枚硬币的结果只有正面或反面;随机事件是指可能发生也可能不发生的事件,比如掷一颗骰子的结果可能是1、2、3、4、5或6。

概率的计算可以通过频率和几何两种方法进行推导。

频率概率是通过实验和统计得到的频率计算得出的;几何概率是通过几何形状和单位面积计算得出的。

概率的计算可以使用概率公式来求解。

对于一个随机事件A,其概率的计算公式是P(A) = 事件A的样本数 / 样本空间的样本数。

样本空间是指所有可能的结果的集合。

三、统计与概率的应用统计与概率在现实生活中有广泛的应用。

以下列举一些常见的应用领域:1. 调查与研究:统计方法可以用于社会调查、市场研究等领域,通过收集和分析大量的数据来了解人们的行为、态度和需求,从而为决策提供依据。

2. 数据分析:统计方法可以应用于数据分析领域,如金融数据分析、销售业绩分析等。

中考数学 课外提升作业 第八章 统计与概率 第一节 统 计

中考数学 课外提升作业 第八章 统计与概率 第一节 统 计

C.众数是 10
D.方差是 0.81
9.(2020·攀枝花)如图是某校参加各兴趣小组的学生人数分布扇形统计 图,已知参加 STEAM 课程兴趣小组的人数为 120 人,则该校参加各兴趣 小组的学生共有 600 人.
10.(2021·通辽)为迎接中国共产党建党一百周年,某班 50 名同学进行
了党史知识竞赛,测试成绩统计如下表,其中有两个数据被遮盖.
( C)
A.本次调查的样本容量是 600
B.选“责任”的有 120 人
C.“生命”所对应的扇形圆心
角度数为 64.8°
D.选“感恩”的人数最多
6.(2021·泰安)为了落实“作业、睡眠、手机、读物、体质”等五项管
理要求,了解学生的睡眠状况,调查了一个班 50 名学生每天的睡眠时间,
绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,
第八章 统计与概率 第一节 统 计
1.(2021·柳州)以下调查中,最适合用来全面调查的是 A.调查柳江流域水质情况 B.了解全国中学生的心理健康状况 C.了解全班学生的身高情况 D.调查春节联欢晚会收视率
( C)
2.(2020·徐州)为了解某市参加中考的 32 000 名学生的体重情况,抽 查了其中 1 500 名学生的体重进行统计分析,下列叙述中正确的是( C ) A.32 000 名学生是总体 B.每名学生是总体的一个个体 C.1 500 名学生的体重是总体的一个样本 D.以上调查是普查
( D)
A.样本的容量是 4
B.样本的中位数是 3
C.样本的众数是 3
D.样本的平均数是 3.5
5.(2020·威海)为了调查疫情对青少年人生观、价值观产生的影响,某
学校团委对八年级学生进行了问卷调查,其中一项是:疫情期间出现的

完整word版上海中考数学统计与概率

完整word版上海中考数学统计与概率

上海中考数学——概率与统计一、选择题13335101.200532,、、六个学生进行投篮比赛,投进的个数分别为、(上海市、年、分)】这六个数的中位数为【64C5DA3B、、、、34122.2008张黑桃的牌共分)(上海市从一副未曾启封的扑克牌中取出年Ⅱ组张红桃,31 】张牌中任取张,洗匀后,从这张牌恰好是黑桃的概率是【 D C B1 A....2112333.201042320202126(单、分)某市五月份连续五天的日最高气温分别为、、(上海市、年°C 】)位:,这组数据的中位数和众数分别是【A. 22°C26°C B. 22°C20°C C. 21°C26°C D. 21°C20°C ,,,,57586135 44.2012】,,,,的中位数是【(,上海市,分)数据 A 5 B 6C7D8...5.20134 011334 】,的中位数和平均数分别是【(,年上海市数据分),,,A 22.4 B22 C12 D32 和(和)(和()(和))二、填空题1.20022“”5万元,由(上海市五一年长假期间平均每天的营业额为分)某出租车公司在55×31155(万元)根据所学的统计知识,你认为这样的推断月份的总营业额约为=此推断▲.是否合理?答:2.200425867109,(上海市,年,分)一个射箭运动员连续射靶,次,所得环数分别是,▲。

则这个运动员所得环数的标准差为3.20084200861“”限塑令年月分)为了了解某所初级中学学生对日起实施的年(上海市1200802“不知名学生,结果显示有是否知道,从该校全体学生名学生名中,随机抽查了”“”▲“”.不知道约有道名学生.由此,估计该校全体学生中对限塑令4.2009461“”志愿者,那么小名学生中任选(上海市世博会年名作为分)如果从小明等▲.明被选中的概率是5.20104“”“”2“□□更城市的生活、让张卡片,随机放入(上海市年分)若将分别写有”□□1“城市让生活更内(每个只放美好中的两个张卡片),则其中的文字恰好组成▲”的概率是美好252011486.只和三等品年只,二等品分)有(上海市只型号相同的杯子,其中一等品 1 ▲1 .只,从中随机抽取只杯子,恰好是一等品的概率是63420127.如果从个红球和分)布袋中装有(个白球,它们除颜色外其他都相同,上海市▲.布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是6050048.2012名学生参加生命安全知识测试,测试分数均大于或等于分)上海市(某校100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大且小于▲8090 名.值),结合表的信息,可测得测试分数在分数段的学生有~77”theorem“9.20134张相同的卡的英文单词定理(个字母分别写在年上海市中的分)将▲e .的概率为片上,字面朝下随意放在桌子上,任取一张,那么取到字母410.2013某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,(分)年上海市▲.那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为三、解答题20200271.名男生测量他们的年某校在六年级和九年级男生中分别随机抽取分)(上海市身高,绘制的频数分布直方图如图所示,其中两条点划线上端的数值分别是每个年级被抽20名男生身高的平均数,该根据该图提供的信息填空:__________120九年级六年级被抽取的名男生身高的中位数所在组的范围是厘米;()__________20厘米.被抽取的名男生身高的中位数所在组的范围是__________ 2厘米.(估计这所学校九年级男生的平均身高比六年级男生的平均身高高)1631533厘米厘米且低于()估计这所学校六、九两个年级全体男生中,身高不低于__________.的男生所占的百分比是320200372.名学生在电脑培训前后各参加了一次水平分)年某校初二年级全体(上海市”“”“”“三个等级。

2023年中考数学复习第一部分考点梳理第八章统计与概率第1节统计

2023年中考数学复习第一部分考点梳理第八章统计与概率第1节统计
男子
1000 m得分
女子
800 m得分
30
28
27
29
30
30
27
29
29
30
29
30
下列结论中,不正确的是( C )
A.男生得分的众数高于女生
B.男生得分的中位数高于女生
C.男生得分的平均数高于女生 D.男生得分的方差高于女生
基础过关
基础过关
能力提升
-6-
8.1 统

6.(2021·浙江丽水)根据第七次全国人口普查,华东A,B,C,D,E,F
所占的百分比
B.每天阅读30分钟以上的居民家庭孩子
超过50%
C.每天阅读1小时以上的居民家庭孩子占20%
D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心
角是108°
基础过关
基础过关
能力提升
-4-
8.1 统

4.某校为推荐一项作品参加“科技创新”比赛,对甲、乙、丙、
丁四项候选作品进行量化评分,具体成绩(百分制)如表:
人数是 270 .
基础过关
基础过关
能力提升
-8-
8.1 统

8.某外贸公司要出口一批规格为200克/盒的红枣,现有甲、乙
两个厂家提供货源,它们的价格相同,品质也相近.质检员从两
厂产品中各随机抽取15盒进行检测,测得它们的平均质量均
为200克,每盒红枣的质量如图所示,则产品更符合规格要求的
厂家是 甲 .(填“甲”或“乙”)
a1+2,a2+2,a3+2的平均数和方差分别是( B )
A.4,3
B.6,3
C.3,4
D.6,5

人教版九年级数学上册《概率与统计》试卷(含答案)

人教版九年级数学上册《概率与统计》试卷(含答案)

人教版九年级数学上册《概率与统计》试
卷(含答案)
第一部分:选择题
1. 设A、B是两个事件,且P(A)=0.4,P(B)=0.6,P(A∩B)=0.2,求P(A∪B)的概率是多少?
- A. 0.4
- B. 0.6
- C. 0.8
- D. 1.0
2. 在一批产品中,有80%合格品,20%为不合格品。

随机抽取
5个产品,其中至少有1个不合格品的概率是多少?
- A. 0.672
- B. 0.336
- C. 0.032
- D. 0.016
3. 掷一个均匀硬币4次,全为正面的概率是多少?
- A. 1/2
- B. 1/8
- C. 1/16
- D. 1/32
第二部分:填空题
4. 在一次调查中,有280人接受了采访,其中45人选择了选项A,占比约为()。

填入百分数形式。

5. 甲乙两个班级参加学校篮球赛的比赛,甲班和乙班分别有32人和36人。

现在从甲班中选择3名球员和从乙班中选择4名球员作为代表队的成员,共有可能的组合数是()。

第三部分:解答题
6. 一批红、绿两色球,红球4个,绿球3个。

现从中任意取3个球,求取出3个红球的概率。

7. 在一次抽奖活动中,有8张奖券,其中2张为一等奖,6张为二等奖。

若从中任意抽取3张奖券,求至少得到1张一等奖的概率。

---
答案:
1. C
2. A
3. B
4. 16%
5. 1296
6. 1/35
7. 13/28。

初中 统计和概率 教案

初中 统计和概率 教案

初中统计和概率教案教学目标:1. 知识与技能目标:学生能够理解统计与概率的基本概念,掌握常用的统计图形和概率计算方法。

2. 过程与方法目标:学生能够运用统计与概率的方法解决实际问题,提高数据分析能力和解决问题的能力。

3. 情感态度与价值观目标:学生能够认识统计与概率在生活中的重要性,培养对数据和概率的兴趣和好奇心。

教学重难点:1. 重点:统计与概率的基本概念、统计图形和概率计算方法。

2. 难点:对实际问题进行统计分析和对概率计算的理解与应用。

教学准备:1. 教学材料:教科书、统计图形的示例、概率事件的示例。

2. 教学工具:黑板、投影仪、计算机。

教学过程:一、导入(5分钟)1. 引导学生回顾之前学习的数学知识,提出与统计和概率相关的问题,引发学生的兴趣。

2. 学生分享对统计和概率的已有知识,教师总结并引出本节课的主题。

二、新课导入(10分钟)1. 教师介绍统计与概率的定义和基本概念,解释统计与概率在生活中的应用。

2. 学生跟随教师一起学习统计与概率的基本概念,理解数据的收集、整理和分析的过程。

三、统计图形(10分钟)1. 教师介绍常用的统计图形,如条形图、折线图和饼图,并通过示例展示它们的特点和作用。

2. 学生跟随教师一起学习统计图形的制作方法,练习分析统计图形中的信息。

四、概率计算(10分钟)1. 教师介绍概率的基本概念,如必然事件、不可能事件和随机事件,解释概率的计算方法。

2. 学生跟随教师一起学习概率的计算方法,如古典概率和条件概率,并通过示例进行计算练习。

五、实际问题分析(10分钟)1. 教师提出一个实际问题,如调查学生最喜欢的学科,学生运用统计与概率的方法进行分析。

2. 学生分组讨论,选择合适的统计图形和概率计算方法,展示解题过程和结果。

六、总结与反思(5分钟)1. 学生自主总结本节课所学的统计与概率的知识和技能。

2. 教师引导学生反思统计与概率在生活中的应用和重要性,鼓励学生提出问题和建议。

【小升初冲刺】数学专项复习:三、统计与概率1.简单的排列、组合--基础(学生版)通用版

【小升初冲刺】数学专项复习:三、统计与概率1.简单的排列、组合--基础(学生版)通用版

1.简单的排列、组合【知识点睛】1.排列组合的概念:所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序.组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序.排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数.2.解决排列、组合问题的基本原理:分类计数原理与分步计数原理.(1)分类计数原理(也称加法原理):指完成一件事有很多种方法,各种方法相互独立,但用其中任何一种方法都可以做完这件事.那么各种不同的方法数加起来,其和就是完成这件事的方法总数.如从甲地到乙地,乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从甲地到乙地,所以共有3+2=5种不同的走法.(2)分步计数原理(也称乘法原理):指完成一件事,需要分成多个步骤,每个步骤中又有多种方法,各个步骤中的方法相互依存,只有各个步骤都完成才算做完这件事.那么,每个步骤中的方法数相乘,其积就是完成这件事的方法总数.如从甲地经过丙地到乙地,先有3条路可到丙地,再有2路可到乙地,所以共有3×2=6种不同的走法.【小题狂做】一.选择题(共9小题)1.(2018春•辛集市期末)用4、0、5三张数字卡片可以组成()个不同的三位数.A.4B.5C.62.(2018春•淮北期末)用0、3、5可以组成()个没有重复数字的不同三位数.A.6B.4C.23.(2017秋•皇姑区期末)用2,4,7这三个数字,一共可以组成()个最简分数,【分子、分母每次分别只能使用一个数字】A.4B.6C.5D.34.(2018•湘潭)学习小组有6人,若从中挑选3人去参加一项体验活动,则共计有()种远择方法.A.12B.15C.18D.205.(2018•溧阳市)算盘的一个上珠表示5,一个下珠表示1(如图),现在用1个上珠和2个下珠,一共可以表示出()种不同的三位数A.6B.12C.216.(2017秋•如东县期末)由两个8和两个6可以组成()个不同四位数.A.8B.7C.67.(2017•宿迁)用张卡片摆三位数,能摆成多少个不同的三位数?A.2个B.4个C.6个8.(2017•长沙)8位老朋友聚会,每两人之间握一次手,一共握了()次手.A.16B.24C.28D.409.(2016秋•枣庄期末)用7、3、9三个数字可组成()个三位数.A.3B.4C.6D.7二.填空题(共12小题)10.(2018秋•黄冈期末)盒子里有除颜色外其他都相同的6个红色的小球和4个蓝色的小球,从中任意摸出一个小球,有种可能;从中任意摸出两个小球,有种可能.11.(2018秋•乳源县期末)用“2”“5”“8”三个数字组成的三位数一共有个,其中十位上是5的有个(同一个数中每个数字只用一次)12.(2018秋•醴陵市期末)用2、0、7可以组成个不同的三位数,其中最小的三位数是.13.(2018秋•深圳期末)用这三张卡片能组成个不同的两位数,能组成个不同的三位数.14.(2018秋•扬州期中)用1、2、7这三个数字和小数点,可以组成个不同的两位小数.15.(2018秋•兴仁县期中)用5、1、2组成最大的三位数是,最小的三位数是,它们的差是16.(2017秋•常州期末)用8、2、5这三张数字卡片一共能组成个不同的三位数.17.(2017秋•如东县期末)用1、2、3、4这四个不同的数可以组成个没有重复的四位数.18.(2018•徐州)由1、2、3这三个数字能组成的三位数一共有个,它们的和是.19.(2016秋•泰安期末)用8、3、7可以组成个不同的三位数.20.(2016秋•西湖区校级期末)用三张数字卡片,可以摆出个不同的三位数,它们分别是:.21.(2017•南城县校级模拟)用3、7、1、5、0、8组成一个最大的六位数是,组成一个最小的五位数是.。

初中统计与概率知识点

初中统计与概率知识点

初中统计与概率知识点内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)(一)统计篇主要知识点(三种统计图,科学计数法,近似数,有效数字,平均数,众数,中位数,普查,抽查,频数,频率,极差,方差,标准差)一、生活中的数据(一)(七年级上册第六章)三种统计图略二、生活中的数据(二)(七年级下册第三章)1.科学计数法:①一个绝对值小于1的数也可以用科学记数法表示成的形式,其中,n是负整数。

②技巧:n的绝对值等于这个数的左边第一个非零数字前面的零的个数。

③一百万=1×106 一亿=1×1082.近似数和有效数字:目标:取近似数,能指出近似数的有效数字。

精确数是与实际完全符合的数,近似数是与实际非常接近的数。

有时我们根据具体情况,采用四舍五入法选择一个数的近似数。

注意:用四舍五入法取近似数时,很容易将小数点末尾的零去掉,一定要注意精确到的数位(及四舍五入到的数位)。

如0.73049四舍五入到千分位是0.730,注意不要去掉末尾的零。

四舍五入到哪一位,就说这个近似数精确到哪一位。

对于一个近似数,从左边第一个不是0的数字起,到精确的数位(即四舍五入到的数位)止,所有的数字都叫做这个数的有效数字。

三、数据的代表(八年级上册第八章)1.平均数:目标:会求一组数据的平均数与加权平均数我们常用平均数(算术平均数)表示一组数据的“平均水平”。

在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而,在计算这组数据的平均数时,往往给每个数据一个“权”,这样的平均数叫做加权平均数。

例如;你的小测成绩是80分,期末考成绩是90分,老师要计算总的平均成绩,就按照小测40%、期末成绩60%的比例来算,所以你的平均成绩是:80×40%+90×60%=86学校食堂吃饭,吃三碗的有χ人,吃两碗的有 y 人,吃一碗的 z 人。

平均每人吃多少?(3×χ+ 2×y + 1×z)÷(χ + y + z)这里x、y、z分别就是权数值,“加权”就是考虑到不同变量在总体中的比例份额。

九年级数学统计与概率的应用

九年级数学统计与概率的应用

九年级数学统计与概率的应用数学是学科中的一门重要分支,其应用领域非常广泛。

在九年级数学课程中,统计与概率是一个重要的学习内容。

通过学习统计与概率,我们可以更好地理解和应用数学知识,解决实际问题。

本文将针对九年级数学统计与概率的应用进行讨论。

首先,让我们来了解一下统计学的基本概念和应用。

统计学是一门研究收集、分类、总结和分析数据的学科。

在现实生活中,我们经常需要进行数据的收集和分析,以便做出合理的决策。

比如,我们可以通过调查问卷的方式收集人们对某个产品的评价,然后根据这些数据来改进产品质量。

此外,统计学还可以用于预测和推测。

比如,我们可以通过对历史数据的分析,来预测未来某个指标的趋势。

其次,让我们来讨论一下概率论的应用。

概率论是数学中研究随机事件的理论。

概率论的应用范围非常广泛,涵盖了生活的方方面面。

比如,在赌博场所,概率论可以帮助我们判断某个赌博游戏的胜率,从而做出正确的决策。

此外,概率论还可以用于风险评估。

比如,在金融投资领域,我们可以通过概率论来评估某个投资组合的风险水平,从而合理配置投资资产。

在九年级数学的学习中,我们可以通过练习习题来巩固和应用所学的知识。

例如,我们可以用统计学的知识来分析和解释一段文本中出现的词汇频率。

通过统计词汇的使用情况,我们可以了解作者的写作风格和主题偏好。

此外,我们还可以通过统计学的方法来研究人口数据、经济数据等。

比如,我们可以通过统计数据来分析人口的年龄结构,从而对人口的发展趋势有所了解。

另外,我们还可以通过概率论的知识来解决一些有趣的问题。

比如,“生日悖论”是一个经典的概率问题。

它的问题是:在一个房间里,至少有多少人才能保证其中两个人的生日相同的概率大于50%?通过运用概率的思维,我们可以计算得出答案是23个人。

这个问题引发了很多思考,而且与实际生活密切相关。

总结起来,九年级数学统计与概率的应用广泛而有趣。

通过学习统计与概率,我们可以提高数据分析的能力,更好地理解和应用数学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


第4章复习 ┃ 考点攻略
(1)请你选择一个统计量(平均数、中位数或众数)来代表这 个公司员工的工资水平;
(2)假设副董事长的工资从5000元提升到20000元,董事长 的工资从5500元提升到30000元,那么新的平均数、中位数、众 数又是多少?
环保监督”小组,小明、小红分别是七(4)班和七(6)班代表队的 学生,用列表法或画树状图的方法说明同时抽到小明和小红的 概率是多少?
数学·新课标(BS)
第4章复习 ┃ 考点攻略 [解析] 利用表格中提供的数据,容易得到得分的众数、中
位数和平均数;在画树状图的时候可以设出七(4)班另外两名学 生为A、B,七(10)班另外两名学生为a、b,这样就容易表示 了.
数学·新课标(BS)
第4章复习 ┃ 考点攻略 ► 考例点3 三某校统七计年与级概各率班的分应别用选出3名学生组成班级代表队,
参加“低碳生活进校园,绿色环保我先行”知识竞赛,得分最 多的班级为优胜班级,各代表队比赛结果如下:
数学·新课标(BS)

第4章复习 ┃ 考点攻略 (1)写出表格中得分的众数、中位数和平均数; (2)学校从获胜班级的代表队中各抽取1名学生组成“绿色

再见!
(3)你认为哪个统计量更能反映这个公司员工的工资水平? 简要地说明理由.] 先分析数据,求出平均数、中位数或众数,然后做
出正确的判定.
数学·新课标(BS)
第4章复习 ┃ 考点攻略


(1)



-x


1 33
×(1×5500

1×5000

2×3500
数学·新课标(BS)
第4章复习 ┃ 考点攻略
方法技巧 评判游戏是否公平,通常计算出双方获胜的概率,由概率的等与 不等来评判,若相等,则公平;若不等,则不公平.要使不公平的游 戏变成公平的游戏,可有两种改变的方法:(1)修改游戏规则,使游 戏双方获胜的概率相等;(2)修改游戏工具,选择或设计使游戏双方 获胜的概率相等的游戏工具.要想改变游戏规则,应从两方面着手: (1)调配发生事件的概率;(2)调配每次发生事件的配分.
(3)中位数或众数 1500 元更能反映这个公司员工的工资水
平.因为虽然平均数、中位数、众数都是描述一组数据集中趋势
的特征数,但平均数受两个极端值的影响.因而 1500 元更合适.
数学·新课标(BS)
第4章复习 ┃ 考点攻略
► 考例点2 二如图转X盘4-游1戏是两个可以自由转动的转盘,甲转盘被等 分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有 相应的数字.小亮和小颖利用它们做游戏,游戏规则是:
理由;若游戏规则不公平,请你设计出一种公平的游戏规则.
数学·新课标(BS)
第4章复习 ┃ 考点攻略 [解析] 本题主要考查了游戏公平性的判定.本题可以通过
列表法(也可以用画树状图法),列出所有可能性情况,然后分 别计算出双方获胜的概率,再比较其大小,看是否相等.为使 游戏公平,也就是使双方每次平均得分相等,只有在配分上做 文章,当然也有其他方法,此处不做说明.

1×3000+5×2500+3×2000+20×1500)≈2091(元).
从表中可以看出中位数是 1500 元,众数是 1500 元,
所以代表这个公司员工的工资水平应是中位数或众数,这个
统计量是 1500 元.
(2)按(1)中的方法可得新的平均数是 3288 元,中位数是 1500
元,众数是 1500 元.
同时转动两个转盘,当转盘停止后,指针所指区域内的数 字之和小于10,小颖获胜;指针所指区域内的数字之和等于10, 为平局;指针所指区域内的数字之和大于10,小亮获胜.如果 指针恰好指在分割线上,那么重转一次,直到指针指向一个数 字为止.
数学·新课标(BS)
第4章复习 ┃ 考点攻略 (1)请你通过列表的方法求小颖获胜的概率; (2)你认为该游戏规则是否公平?若游戏规则公平,请说明
数学·新课标(BS)
第4章复习 ┃ 考点攻略
解:(1)列表如下.
6
1
1+6=7
2
2+6=8
3
3+6=9
7 1+7=8 2+7=9 3+7=10
8 1+8=9 2+8=10 3+8=11
9 1+9=10 2+9=11 3+9=12
可见,共有12种等可能的情况,其中和小于10的情况有6 种.
数学·新课标(BS)
方法技巧 利用列表法或树状图法求概率的关键是:(1)注意各种情况出现 的 可 能 性 务 必 相 同 ; (2) 某 一 事 件 发 生 的 概 率 = 某 各一 种事 情件 况发 出生 现的 的次 次数 数;(3)在考察各种情况出现的次数和某一事件发 生的次数时不能重复也不能遗漏.
数学·新课标(BS)
数学·新课标(BS)
第4章复习 ┃ 考点攻略
解:(1)众数 90,中位数 90,平均数 89. (2)设七(4)班另外两名学生分别为 A、B,七(6)班另外两名学生分 别为 a、b,据此可画树状图 X4-2:
图 X4-2 所以同时抽到小明和小红的概率 P=91.
数学·新课标(BS)
第4章复习 ┃ 考点攻略
第4章复习 ┃ 考点攻略
所以小颖获胜的概率为162=12. (2)该游戏规则不公平. 由(1)可知,共有 12 种等可能的情况,其和大于 10 的情况有 3 种, 所以小亮获胜的概率为132=14,显然12>14. 所以该游戏规则不公平. 游戏规则可修改为:当两个转盘指针所指区域内的数字之和大于 或等于 10 时,小亮获胜;当两个转盘指针所指区域内的数字之和小 于 10 时,小颖获胜.(修改规则的方式很多,只要修改后的游戏规则 符合题目要求即可,例如游戏规则也可修改为:当两个转盘指针所指 区域内的数字之和为奇数时,小亮获胜;为偶数时,小颖获胜.)
相关文档
最新文档