计数器和移位寄存器设计仿真实验报告.

合集下载

移位寄存器实验报告

移位寄存器实验报告

移位寄存器实验报告实验题目:移位寄存器一、实验目的了解移位寄存器的原理,掌握移位寄存器的应用。

二、实验原理移位寄存器是一种存储器件,用于将二进制数据以位为单位进行移位操作。

移位寄存器由若干个D触发器组成,每个D触发器的输出接入下一个D触发器的输入,以此类推,形成了一个环形移位结构。

移位寄存器有三种基本工作模式:串行输入并行输出(SIPO),并行输入串行输出(PISO)和并行输入并行输出(PIPO)。

在SIPO模式下,输入数据串行输入到移位寄存器的最高位,然后逐个向低位移位,最终输出到最低位。

在PISO模式下,输入数据并行输入到移位寄存器的每个位,然后逐个向高位移位,最终输出到最高位。

在PIPO模式下,输入数据并行输入到移位寄存器的每个位,然后逐个向低位移位,最终输出到每个输出端口。

移位寄存器的应用很广泛,其中最常见的是时序信号的处理。

移位寄存器可以用于数字频率合成、序列生成、编码器和解码器等方面。

三、实验设备1. 计算机2. Xilinx ISE14.6软件3. BASYS2开发板4. USB下载器四、实验步骤1. 设计移位寄存器的电路原理图并进行仿真。

2. 在Xilinx ISE14.6软件中创建工程并添加源、约束和测试文件。

3. 将电路原理图转换成Verilog HDL代码。

4. 将Verilog HDL代码综合为综合网表,并进行时序分析。

5. 将综合网表映射到BASYS2开发板上并进行状态机调试。

6. 使用USB下载器将设计好的逻辑文件下载到FPGA上。

7. 连接开发板的输入输出端口,验证移位寄存器的正确性,并观察输出端口结果。

五、实验结果与分析通过移位寄存器的实验,我们学会了如何使用Verilog HDL设计并实现移位寄存器,并对移位寄存器进行了详细的仿真、综合、映射和下载调试。

在实验过程中,我们还学会了串行输入并行输出(SIPO),并行输入串行输出(PISO)和并行输入并行输出(PIPO)三种基本工作模式,掌握了移位寄存器在数字频率合成、序列生成、编码器和解码器等领域中的使用方法。

移位寄存器实验报告结果

移位寄存器实验报告结果

一、实验目的本次实验的主要目的是通过搭建移位寄存器实验电路,验证移位寄存器的逻辑功能,并了解其在数字系统中的应用。

实验内容包括:移位寄存器的基本原理、实验电路搭建、实验现象观察和结果分析。

二、实验原理移位寄存器是一种具有移位功能的寄存器,它可以实现数据的串行输入和串行输出。

在时钟脉冲的作用下,移位寄存器中的数据可以依次左移或右移。

根据移位寄存器存取信息的方式不同,可分为串入串出、串入并出、并入串出、并入并出四种形式。

本实验选用的是4位双向通用移位寄存器,型号为74LS194或CC40194。

74LS194具有5种不同操作模式:即并行送数寄存、右移、左移、保持及清零。

其逻辑符号及引脚排列如图1所示。

图1 74LS194的逻辑符号及其引脚排列三、实验电路搭建1. 电路元件准备:74LS194芯片、电阻、电容、二极管、连接线等。

2. 电路搭建:按照图1所示,将74LS194芯片的引脚与电阻、电容、二极管等元件连接,形成移位寄存器实验电路。

3. 电源连接:将电源正负极分别连接到电路板上的VCC和GND端。

四、实验现象观察1. 实验现象一:串行输入,并行输出。

(1)将74LS194的SR端接地,SL端接高电平,S1、S0端接高电平,CR端接地。

(2)使用串行输入端输入数据,观察并行输出端的数据变化。

(3)实验现象:当输入串行数据时,并行输出端依次输出对应的数据。

2. 实验现象二:并行输入,串行输出。

(1)将74LS194的SR端接地,SL端接高电平,S1、S0端接低电平,CR端接地。

(2)使用并行输入端输入数据,观察串行输出端的数据变化。

(3)实验现象:当输入并行数据时,串行输出端依次输出对应的数据。

3. 实验现象三:左移、右移操作。

(1)将74LS194的SR端接地,SL端接高电平,S1、S0端分别接高电平和低电平,CR端接地。

(2)观察移位寄存器中的数据在时钟脉冲的作用下左移或右移。

(3)实验现象:在时钟脉冲的作用下,移位寄存器中的数据依次左移或右移。

Multisim数电仿真移位寄存器

Multisim数电仿真移位寄存器

4位移位寄存器仿真一、实验目的:1. 熟悉移位寄存器的工作原理及调试方法。

2. 掌握用移位寄存器组成计数器的典型应用。

二、实验准备:移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。

既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。

根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。

本实验选用的4位双向通用移位寄存器,型号为74LS194,其逻辑符号及引其中,3D 、2D 、1D 、0D 为并行输入端;3Q 、2Q 、1Q 、0Q 为并行输出端;R S 为右移串行输入端;L S 为左移串行输入端;1S 、0S 为操作模式控制端;R C 为直接无条件清零端;CP 为时钟脉冲输入端。

74LS194有5种不同操作模式:并行送数寄存;右移(方向由3Q →0Q );左移(方向由0Q →3Q );保持及清零。

1S 、0S 和R C 端的控制作用如表3.10.1所示。

表3.10.1:移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或并行数据转换为串行数据等。

把移位寄存器的输出反馈到它的串行输入端,就可进行循环移位,如图3.10.2所示。

把输出端0Q 和右移串行输入端R S 相连接,设初始状态3Q 2Q 1Q 0Q =1000,则在时钟脉冲作用下,3Q 2Q 1Q 0Q 将依次变为0100→0010→0001→1000→……,可见,它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。

图3.10.2电路可以由各个输出端输出在时间上有先三、计算机仿真实验内容:1.逻辑功能验证: (1). 并行输入:1). 从电子仿真软件Multisim7基本界面左侧左列真实元件工具条的“TTL ”元件库中调出74LS194;从“Basic ”元件库中调出单刀双掷开关8只;从“Source ”元件库中调出Vcc 和地线,将它们放置在电子平台上。

数电实验报告 移位寄存器功能测试及设计

数电实验报告   移位寄存器功能测试及设计

实验报告实验六移位寄存器功能测试及设计2.6.1实验目的(1)掌握移位寄存器的工作原理与逻辑功能。

(2)掌握集成移位寄存器74LS74的逻辑功能及应用。

2.6.2实验仪器设备与主要器件实验箱一个;双踪示波器一台;稳压电源一台;函数发生器一台。

74LS74两块;74LS194两块;74LS283两块。

2.6.3实验原理1.双向移位寄存器双向移位寄存器是指在控制信号作用下,既能左移又能右移的多功能移位寄存器。

此外它还有并行输入置数、保持和异步清零等功能。

74LS194是一个典型的4位双向移位寄存器,其中,Rd为异步清零输入端,S1、S0为工作方式选择端。

D0、D1、D2、D3是数据输入端,Q0、Q1、Q2、Q3为并行数据输出端,D1L、D1R分别为左移、右移数据输出端,CP上升沿触发。

2.双向移位寄存器74LS194的应用(1)形成计数器电路,其中D1R=Q3。

0000——1000——1100——1110——1111——0111——0011——0001——0000(2)组成模12计数器电路。

000000——100000——110000——111000——111110——111111——011111——001111——000111——000011——000001——000000。

(3)形成并串转换电路。

2.6.4实验内容(2)如简图2-6-6所示,两个二进制数A(a0a1a2a3)、B(b0b1b2b3)分别存入74LS194(A)、74LS194(B),然后对它们按位相加,其和放入74LS1949(A)的移位输入中。

试才用全加器74LS283和D触发器74LS74组成能实现上述功能的电路,在74LS194(A)输出端Q0、Q1、Q2、Q3用发光二极管指示。

完善图2-6-6并依此图线调试电路,以表格的形式记录四个脉冲后的结果。

cp S0S1 B A Q0 1 0 0010 0011 00111 1 0 1001 1001 10012 1 0 1100 0100 01003 1 0 1110 1010 10104 1 0 1111 0101 0101(3)按单向移位寄存器的电路图2-6-1接线,实现串入-并出,并入-串出两种工作方式的输出序列。

移位寄存器实验报告

移位寄存器实验报告

移位寄存器实验报告姓名:陈素学号:3120100621 专业:软件工程课程名称:逻辑与计算机设计基础实验同组学生姓名:张闻实验时间:y yyy-mm-dd 实验地点:紫金港东4-509 指导老师:一、实验目的和要求掌握移位寄存器的工作原理及设计方法掌握串、并数据转换的概念与方法了解序列信号在CPU控制器设计中的应用二、实验内容和原理2.1 实验原理带并行置入的移位寄存器移位寄存器:每来一个时钟脉冲,寄存器中的数据按顺序向左或向右移动一位必须采用主从触发器或边沿触发器不能采用电平触发器数据移动方式:左移、右移数据输入输出方式串行输入,串行输出串行输入,并行输出并行输入,串行输出串行输入的移位寄存器使用D触发器,可构成串行输入的移位寄存器2.2 标题<正文>带并行输入的右移移位寄存器数据输入移位寄存器的方式:串行输入、并行输入带并行输入的8位右移移位寄存器module shift_reg(clk, S, s_in, p_in, Q); input wire clk, S, s_in; input wire [7:0] p_in; output wire [7:0] Q; wire [7:0] D; wire nS;FD FDQ0(.C(clk), .D(D[0]), .Q(Q[0])), FDQ1(.C(clk), .D(D[1]), .Q(Q[1])), FDQ2(.C(clk), .D(D[2]), .Q(Q[2])), FDQ3(.C(clk), .D(D[3]), .Q(Q[3])), FDQ4(.C(clk), .D(D[4]), .Q(Q[4])), FDQ5(.C(clk), .D(D[5]), .Q(Q[5])), FDQ6(.C(clk), .D(D[6]), .Q(Q[6])), FDQ7(.C(clk), .D(D[7]), .Q(Q[7]));OR2 D0_L(.I0(L_0), .I1(R_0), .O(D[0])), D1_L(.I0(L_1), .I1(R_1), .O(D[1])), D2_L(.I0(L_2), .I1(R_2), .O(D[2])), D3_L(.I0(L_3), .I1(R_3), .O(D[3])), D4_L(.I0(L_4), .I1(R_4), .O(D[4])),串行输入SD5_L(.I0(L_5), .I1(R_5), .O(D[5])), D6_L(.I0(L_6), .I1(R_6), .O(D[6])), D7_L(.I0(L_7), .I1(R_7), .O(D[7]));并行-串行转换器 没有启动命令时并行-串行转换器ser_out并行输入par_in 移位输入7位并行-串行转换器ser_out并行输入par_in 移位输入7位并行-串行转换器2.1 实验内容用Verilog HDL语言,采用结构化描述方法设计一个8位带并行输入的右移移位寄存器。

寄存器实验实验报告

寄存器实验实验报告

寄存器实验实验报告一. 引言寄存器是计算机中重要的数据存储器件之一,用于存储和传输数据。

通过对寄存器进行实验,我们可以更好地理解寄存器的工作原理和应用。

本实验旨在通过设计和测试不同类型的寄存器,深入掌握寄存器的各种功能和操作。

二. 实验设计本实验设计了两个寄存器的实验,分别为移位寄存器和计数器寄存器。

1. 移位寄存器实验移位寄存器是一种特殊的串行寄存器,它能够实现对数据位的移位操作。

本实验设计了一个4位的移位寄存器,分别使用D触发器和JK触发器实现。

实验步骤如下:1) 首先,根据设计要求将4个D或JK触发器连接成移位寄存器电路。

2) 确定输入和输出端口,将输入数据连接到移位寄存器的输入端口。

3) 设计测试用例,输入测试数据并观察输出结果。

4) 分析实验结果,比较不同触发器类型的移位寄存器的性能差异。

2. 计数器寄存器实验计数器寄存器是一种能够实现计数功能的寄存器。

本实验设计了一个二进制计数器,使用T触发器实现。

实验步骤如下:1) 根据设计要求将多个T触发器连接成二进制计数器电路。

2) 设计测试用例,输入计数开始值,并观察输出结果。

3) 测试计数的溢出和循环功能,观察计数器的行为。

4) 分析实验结果,比较不同计数器位数的性能差异。

三. 实验结果与分析在实验过程中,我们完成了移位寄存器和计数器寄存器的设计和测试。

通过观察实验结果,可以得出以下结论:1. 移位寄存器实验中,无论是使用D触发器还是JK触发器,移位寄存器都能够正确地实现数据位的移位操作。

而使用JK触发器的移位寄存器在性能上更加优越,能够实现更复杂的数据操作。

2. 计数器寄存器实验中,二进制计数器能够准确地实现计数功能。

通过设计不同位数的计数器,我们发现位数越多,计数范围越大。

综上所述,寄存器是计算机中重要的存储器件,通过实验我们深入了解了寄存器的工作原理和应用。

移位寄存器和计数器寄存器都具有广泛的应用领域,在数字电路设计和计算机系统中起到了重要作用。

移位寄存器实验报告

移位寄存器实验报告

移位寄存器实验报告移位寄存器实验报告引言移位寄存器是数字电路中常用的模块,它能够将输入的数据按照一定的规则进行移位操作。

本次实验旨在通过实际搭建移位寄存器电路,并通过观察输出结果来验证其功能和性能。

实验目的1. 掌握移位寄存器的工作原理和基本结构;2. 了解不同类型的移位寄存器,并能够根据需求选择合适的类型;3. 熟悉移位寄存器的应用场景和使用方法。

实验器材1. 移位寄存器芯片;2. 电路连接线;3. 示波器;4. 信号发生器。

实验步骤1. 将移位寄存器芯片连接到电路板上,并根据实验要求进行电路连接;2. 使用信号发生器产生输入信号,并将其输入到移位寄存器中;3. 通过示波器观察移位寄存器的输出信号,并记录下观察结果;4. 根据实验要求调整输入信号的频率和幅度,并观察移位寄存器的响应情况;5. 分析实验结果,总结移位寄存器的特性和应用。

实验结果在本次实验中,我们使用了一个4位移位寄存器芯片,并将其连接到电路板上。

通过信号发生器产生的输入信号,我们观察到移位寄存器的输出信号按照一定的规则进行了移位操作。

当输入信号的频率较低时,移位寄存器的输出信号可以清晰地观察到每一位的变化;而当输入信号的频率较高时,移位寄存器的输出信号则呈现出连续的变化。

通过实验结果的观察和分析,我们可以得出以下结论:1. 移位寄存器的工作原理是将输入信号按照一定的规则进行移位操作;2. 移位寄存器的输出信号与输入信号的频率和幅度有关;3. 移位寄存器可以用于数据的平移、扩展、压缩等操作;4. 不同类型的移位寄存器具有不同的特性和应用场景。

讨论与总结移位寄存器作为数字电路中的重要模块,在各种电子设备中都有广泛的应用。

它不仅可以用于数据的移位操作,还可以用于数据的存储、传输和处理。

在计算机系统中,移位寄存器常常用于数据的输入和输出,以及数据的处理和控制。

本次实验通过实际搭建移位寄存器电路,并观察其输出结果,使我们更加深入地了解了移位寄存器的工作原理和应用。

计数器和移位寄存器设计仿真实验报告

计数器和移位寄存器设计仿真实验报告

实验四典型时序电路的功能测试与综合仿真报告15291204 张智博一.74LS290构成的24位计数器方法:第一片74290的Q3与第二片的INB相连,R01,R02相连,INA,R91,R92悬空构成24位计数器。

50Hz,5v方波电压源提供时钟信号,用白炽灯显示输出信号。

实验电路:输出由000000变为000001,000010,000011,000100,001000,001001,001010,001011,001100,010001,010000,010010,010011,010100,011000,011001,011010,011011,011100,100000,100001,100010,100011,100100,最终又回到000000,实现一次进位。

二.74LS161构成的24位计数器方法:运用多次置零法用两片74LS161构成了24位计数器,两片计数器的时钟信号都由方波电压源提供,第一片芯片的Q3和第二片芯片的Q0通过与非门,构成两个74LS161的LOAD信号,第一片的CO接第二片的ENT,其他ENT和ENP接Vcc(5v)。

输出接白炽灯。

电路图:实验现象:以下为1—24的计数过程三.74LS194构成的8位双向移位寄存器方法:通过两片194级联,控制MA,MB的值,来控制左右移动实验电路由两片74LS194芯片构成。

两个Ma接在一起,两个Mb接在一起,第一片的Dr,第二片的Dl,分别通过开关接到Vcc(5v)上。

第一片的Q3接到第二片的Dr,第二片的Q0接到第一片的Dl。

8个输出端分别接白炽灯。

实验电路:实验现象:右移:接通Ma,Dr后,D0到D7全部为0,白炽灯从00000000变为10000000,11000000,左移:接通Mb,Dl后,D0到D7全为0,白炽灯由00000000变为00000001,00000011,。

实验三 D 触发器、移位寄存器、二进制计数器的 Verilog实现

实验三    D 触发器、移位寄存器、二进制计数器的 Verilog实现

实验三D触发器、移位寄存器、二进制计数器的Verilog实现及仿真器的使用一、实验目的:本次实验利用Verilog语言输入方式、定义引脚(两种方法)、;掌握任意进制计数器的设计方法,进一步掌握时钟的具体使用方法,进而掌握仿真器的使用方法。

二、实验要求:1、利用Verilog硬件描述语言,参考提供源程序,设计带进位的4位二进制计数器;2、利用Verilog硬件描述语言,自行设计七段码译码器;3、在原理图中调用计数器模块和译码器模块构成一个可以直接驱动数码管的单元模块。

带有清零端的D触发器源程序moduleR_SY_D_FF ( RB, D, CLK, Q, QB );input RB, D, CLK;output Q, QB ;reg Q;assign QB = ~Q;always @( posedge CLK or negedge RB )Q <= ( !RB )? 0: D;endmodule串行输入并行输出移位寄存器源程序module SIN_POUT_SHIFT ( RSTB, IN, CLK, Q );input RSTB, CLK, IN;output [3:0] Q;reg [3:0] Q;always @( posedge CLK or negedge RSTB )Q <= ( !RSTB )? 0: {Q,IN};endmodule并入串出移位寄存器module PIN_SOUT_SHIFT ( LOAD, IN, CLK, Q );input LOAD, CLK;input [3:0] IN;output [3:0] Q;Q;reg [3:0]always @( posedge CLK or posedge LOAD )if ( LOAD )Q <= IN;elseQ <= Q << 1;endmodule带进位二进制计数器源程序:module cnt4e(clk,clr,ena,cout,q); input clk,clr,ena;output [3:0] q;output cout;reg [3:0]q;always @(posedge clr or posedge clk) beginif(clr) q='b0000;else if (ena) q=q+1;endassign cout=&q;endmodule。

计数器的设计实验报告

计数器的设计实验报告

计数器的设计实验报告一、实验目的本次实验的目的是设计并实现一个简单的计数器,通过对计数器的设计和调试,深入理解数字电路的基本原理和逻辑设计方法,掌握计数器的工作原理、功能和应用,提高自己的电路设计和调试能力。

二、实验原理计数器是一种能够对输入脉冲进行计数,并在达到设定计数值时产生输出信号的数字电路。

计数器按照计数方式可以分为加法计数器、减法计数器和可逆计数器;按照计数进制可以分为二进制计数器、十进制计数器和任意进制计数器。

本次实验设计的是一个简单的十进制加法计数器,采用同步时序逻辑电路设计方法。

计数器由触发器、门电路等组成,通过对触发器的时钟信号和输入信号的控制,实现计数功能。

三、实验设备与器材1、数字电路实验箱2、集成电路芯片:74LS160(十进制同步加法计数器)、74LS00(二输入与非门)、74LS04(六反相器)3、示波器4、直流电源5、导线若干四、实验内容与步骤1、设计电路根据实验要求,选择合适的计数器芯片 74LS160,并确定其引脚功能。

设计计数器的清零、置数和计数控制电路,使用与非门和反相器实现。

画出完整的电路原理图。

2、连接电路在数字电路实验箱上,按照电路原理图连接芯片和导线。

仔细检查电路连接是否正确,确保无短路和断路现象。

3、调试电路接通直流电源,观察计数器的初始状态。

输入计数脉冲,用示波器观察计数器的输出波形,检查计数是否正确。

若计数不正确,逐步排查故障,如检查芯片引脚连接、电源电压等,直至计数器正常工作。

4、功能测试测试计数器的清零功能,观察计数器是否能在清零信号作用下回到初始状态。

测试计数器的置数功能,设置不同的预置数,观察计数器是否能按照预置数开始计数。

五、实验结果与分析1、实验结果成功实现了十进制加法计数器的设计,计数器能够在输入脉冲的作用下进行正确计数。

清零和置数功能正常,能够满足实验要求。

2、结果分析通过对计数器输出波形的观察和分析,验证了计数器的工作原理和逻辑功能。

移位寄存器实验报告doc

移位寄存器实验报告doc

移位寄存器实验报告篇一:移位寄存器实验报告移位寄存器实验报告(一)实验原理移位寄存器是用来寄存二进制数字信息并且能进行信息移位的时序逻辑电路。

根据移位寄存器存取信息的方式可分为串入串出、串入并出、并入串出、并入并出4种形式。

74194是一种典型的中规模集成移位寄存器,由4个RS触发器和一些门电路构成的4位双向移位寄存器。

该移位寄存器有左移,右移、并行输入数据,保持及异步清零等5种功能。

有如下功能表(三)实验内容1. 按如下电路图连接电路十个输入端,四个输出端,主体为74194. 2. 波形图参数设置:End time:2usGrid size:100ns 波形说明:clk:时钟信号;clrn:置0 s1s0:模式控制端 sl_r:串行输入端 abcd:并行输入 qabcd:并行输出结论:clrn优先级最高,且低有效高无效;s1s0模式控制,01右移,10左移,00保持,11置数重载;sl_r控制左移之后空位补0或补1。

3. 数码管显示移位(1)电路图(2)下载验证管脚分配:a,b,c,d:86,87,88,89 bsg[3..0]:99,100,101,102 clk:122 clk0:125 clrn:95 q[6..0]:51,49,48,47,46,44,43 s0,s1:73,72 sl_r:82,83 结论:下载结果与仿真结果一致,下载正确。

一、实验日志1.移位寄存器的实验真的挺纠结的,本来想用7449的,但是下载结果出现了错误,想到它在这个电路图中的功能比较单一,就自己写了一个my7449,终于对了。

五、思考题(1)简单说明移位寄存器的概念及应用情况?概念:移位寄存器是用来寄存二进制数字信息且能进行信息移动的时序逻辑电路。

根据移位寄存器存取信息的方式不同可以分为串入串出,串入并出,并入串出,并入并处4种形式。

应用:移位寄存器可以构成计数器,顺序脉冲发生器,串行累加器,串并转换,并串转换等。

移位寄存器型计数器设计性实验报告

移位寄存器型计数器设计性实验报告
实验室
数电实验室
1.实验目的
1)熟悉环形计数器的逻辑功能及特点。
2)掌握自启动扭环计数器的逻辑功能及特点。
2.实验原理、实验流程或装置示意图
实验原理:用两片74LS74双D触发器,分别组成环形计数器和扭环形计数器。
下图为74LS74双D触发器引脚图及功能表:
环形计数器原理图:
扭环形计数器原理图:
3.实验设备及材料
电路就会自动返回有效状态工作。
4)优缺点:
优点:每次状态变化只有一个触发器翻转,不存在竞争冒险现象,电路比较简单。
缺点:电路状态利用率不高。
2.对实验现象、实验结果的分析及其结论
实验成功的完成了熟悉环形计数器的逻辑功能及特点。掌握自启动扭环计数器的逻辑功能及特点。以及了解和使用芯片74LS74。这次设计性实验,让我对数字电路有了更深刻的了解和认识,对以后数字电路这一块的设计,让我有了更多的方式可供选择。锻炼了我们多方面思维的能力。
签名:
年月日
二、实验报告
1.实验现象与结果
环形计数器:
1)4位环形计数器只有4个有效工作状态,即只能计4个数。
2)状态利用率很低:由4个触发器组成的二进制计数器有16个不同的状态。因此,有12个无效状态。
3)能够自启动:如由于某种原因而进入无效状态时,只要继续输入计数脉冲CP,
电路就会自动返回有效状态工作。
2.要注意实验的完整性,准确地测出结果。
3.如果是实际操作一定要检查芯片和导线的好坏,以免实验结果不正确。
4.测试逻辑功能时,不能关闭开关。
5.实验数据处理方法
逻辑分析法观察法对比法
6.参考文献
1.申忠如.数字电子技术基础.西安交通大学出版社
2.阎石.数字电子技术基础.第五版.高等教育出版社

数字系统电路实验报告(3篇)

数字系统电路实验报告(3篇)

第1篇一、实验目的1. 理解数字系统电路的基本原理和组成。

2. 掌握数字电路的基本实验方法和步骤。

3. 通过实验加深对数字电路知识的理解和应用。

4. 培养学生的动手能力和团队合作精神。

二、实验原理数字系统电路是由数字逻辑电路构成的,它按照一定的逻辑关系对输入信号进行处理,产生相应的输出信号。

数字系统电路主要包括逻辑门电路、触发器、计数器、寄存器等基本单元电路。

三、实验仪器与设备1. 数字电路实验箱2. 数字万用表3. 示波器4. 逻辑分析仪5. 编程器四、实验内容1. 逻辑门电路实验(1)实验目的:熟悉TTL、CMOS逻辑门电路的逻辑功能和测试方法。

(2)实验步骤:1)搭建TTL与非门电路,测试其逻辑功能;2)搭建CMOS与非门电路,测试其逻辑功能;3)测试TTL与门、或门、非门等基本逻辑门电路的逻辑功能。

2. 触发器实验(1)实验目的:掌握触发器的逻辑功能、工作原理和应用。

(2)实验步骤:1)搭建D触发器电路,测试其逻辑功能;2)搭建JK触发器电路,测试其逻辑功能;3)搭建计数器电路,实现计数功能。

3. 计数器实验(1)实验目的:掌握计数器的逻辑功能、工作原理和应用。

(2)实验步骤:1)搭建同步计数器电路,实现加法计数功能;2)搭建异步计数器电路,实现加法计数功能;3)搭建计数器电路,实现定时功能。

4. 寄存器实验(1)实验目的:掌握寄存器的逻辑功能、工作原理和应用。

(2)实验步骤:1)搭建4位并行加法器电路,实现加法运算功能;2)搭建4位并行乘法器电路,实现乘法运算功能;3)搭建移位寄存器电路,实现数据移位功能。

五、实验结果与分析1. 逻辑门电路实验通过搭建TTL与非门电路和CMOS与非门电路,测试了它们的逻辑功能,验证了实验原理的正确性。

2. 触发器实验通过搭建D触发器和JK触发器电路,测试了它们的逻辑功能,实现了计数器电路,验证了实验原理的正确性。

3. 计数器实验通过搭建同步计数器和异步计数器电路,实现了加法计数和定时功能,验证了实验原理的正确性。

数字电子技术实验4.7 移位寄存器及其应用的Multisim仿真实验

数字电子技术实验4.7 移位寄存器及其应用的Multisim仿真实验

7 SL 2 SR
9 S0 10 S1
1 ~CLR 11 CLK
74LS194D
S1 J1
Key = 1
S0 J2
Key = 0
图4-66 环形计数器仿真电路图
实验4.7 移位寄存器及其应用
五、实验室操作实验内容
1.测试74LS194的逻辑功能 2.环形计数器 3.移位寄存器的扩展
图4-67 扩展后的移位寄存器
实验4.7 移位寄存器及其应用
一、实验目的
1.掌握中规模4位双向移位寄存器逻辑功能的测试方法。 2.熟悉移位寄存器的应用——构成环形计数器及其测试方法。 3.了解移位寄存器的扩展及其测试方法。
实验4.7 移位寄存器及其应用
二、实验设备及材料
1.装有Multisim 14的计算机。 2.数字电路实验箱。 3.数字万用表。 4.74LS194×2。
实验4.7 移位寄存器及其应用
三、实验原理
功能 清除 送数 右移 左移
保持
表4-40 74LS194功能表


输出
S1 S0 CP SL
SR
D0 D1 D2 D3
Q0
Q1
Q2
Q3
0 ×× × × × ×××× 0
0
0
0
1 11 ↑×× ab cd
a
b
c
d
1
01

×
DSR × × × × DSR
Q0
QA QB QC QD
XLA1
1
F
CQT
图4-63 字信号发生器控制面板图 图4-64 字信号发生器数据控制方式设置
图4-65 74LS194逻辑功能测试波形图

数电实验之移位寄存器

数电实验之移位寄存器

数电实验之移位寄存器移位寄存器一实验目的1.学习用D触发器构成移位寄存器(环行计数器)2.掌握中规模集成电路双向移位寄存器逻辑功能及使用方法二实验原理1、用4个D触发器组成4位移位寄存器,将每位即各D触发器的输出Q1、Q2、Q3、Q4分别接到四个0—1指示器(LED)将最后一位输出Q4反馈接到第一位D触发器的输入端,则构成一简单的四位移位环行计数器。

2、移位寄存器具有移位功能,是指寄存器中所存的代码能够在时钟脉冲的作用下依次左移或右移。

对于即能左移又能右移的寄存器称为双向移位寄存器。

只需要改变左移、右移的控制信号便可实现双向移位的要求。

根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。

本实验选用的4位双向移位寄存器,型号为74LS194A(或CD40194),两者功能相同,其引脚分布图如下图18.1所示:其中A、B、C、D为并行输入端,A为高位依次排列;QA、QB、QC、QD为并行输出端;SR为右移串行输入端;SL为左移串行输入端;S1、S0为操作模式控制端;CLR为异步清零端;低电平有效;CLK为CP时钟脉冲输入端。

74LS194A有5种工作模式:并行输入,右移(QD→QA),左移(QD←QA),保持和清零。

74LS194功能表如表18.1所示:表18.1三实验器件数字实验箱集成电路芯片:74LS74×2 (CD4013×2);74LS75 ;74LS76 ;74LS194A(CD40194)。

图18.1四实验内容1.用74LS74组成移位寄存器,使第一个输出端点亮LED并使其右移循环。

顺序是FF1、FF2、FF3、FF4。

A) 1. 用两个74LS74按图18.2连接:图18.21. CP时钟输入先不接到电路中(单步脉冲源或连续脉冲源);1. 连接线路完毕,检查无误后加+5V电源;2. 观察4个输出端的LED应该是不亮的,如果有亮的话,应按清零端的逻辑开关,(给出一个低电平信号清零后,再将开关置于高电平)即将4个D触发器输出端的LED清零。

实验五--时序逻辑电路实验报告

实验五--时序逻辑电路实验报告

实验五时序逻辑电路(计数器和寄存器)-实验报告一、实验目的1.掌握同步计数器设计方法与测试方法。

2.掌握常用中规模集成计数器的逻辑功能和使用方法。

二、实验设备设备:THHD-2型数字电子计数实验箱、示波器、信号源器件:74LS163、74LS00、74LS20等。

三、实验原理和实验电路1.计数器计数器不仅可用来计数,也可用于分频、定时和数字运算。

在实际工程应用中,一般很少使用小规模的触发器组成计数器,而是直接选用中规模集成计数器。

2.(1) 四位二进制(十六进制)计数器74LS161(74LS163)74LSl61是同步置数、异步清零的4位二进制加法计数器,其功能表见表5.1。

74LSl63是同步置数、同步清零的4位二进制加法计数器。

除清零为同步外,其他功能与74LSl61相同。

二者的外部引脚图也相同,如图5.1所示。

表5.1 74LSl61(74LS163)的功能表清零预置使能时钟预置数据输入输出工作模式R D LD EP ET CP A B C D Q A Q B Q C Q D0 ××××()××××0 0 0 0 异步清零1 0 ××D A D B D C D D D A D B D C D D同步置数1 1 0 ××××××保持数据保持1 1 ×0 ×××××保持数据保持1 1 1 1 ××××计数加1计数3.集成计数器的应用——实现任意M进制计数器一般情况任意M进制计数器的结构分为3类,第一类是由触发器构成的简单计数器。

第二类是由集成二进制计数器构成计数器。

第三类是由移位寄存器构成的移位寄存型计数器。

第一类,可利用时序逻辑电路的设计方法步骤进行设计。

数字电路实验报告-移位寄存器及其应用

数字电路实验报告-移位寄存器及其应用

电学实验报告模板实验原理移位寄存器是逻辑电路中的一种重要逻辑部件,它能存储数据,还可以用来实现数据的串行-并行转换、数据的运算和处理。

1.寄存器(1)D触发器图1 D触发器图1所示D触发器。

每来一个CLK脉冲,触发器都在该CLK脉冲的上升沿时刻,接收输入数据D,使之作为触发器的新状态。

D触发器的特性方程为(2)用D触发器构成并行寄存器图2 用D触发器构成并行寄存器图2所示为用D触发器构成四位并行寄存器。

为异步清零控制端,高电平有效。

当时,各触发器输出端Q的状态,取决于CLK上升沿时刻的D端状态。

2.移位寄存器(1)用D触发器构成移位寄存器图3 用D触发器构成4位串行移位寄存器图3所示为用D触发器构成的4位串行移位寄存器。

其中左边第一个触发器的输入端接收输入数据,其余的每一个触发器的输入端均与左边相邻的触发器的Q端连接。

当时钟信号CLK的上升沿时刻,各触发器同时接收输入数据。

四位寄存器的所存数据右移一位。

(2)双向移位寄存器74LS194图4 双向移位寄存器74LS194逻辑框图图4 所示为集成电路芯片双向移位寄存器74LS194逻辑框图。

为便于扩展逻辑功能,在基本移位寄存器的基础上增加了左右移控制、并行输入、保持和异步清零等功能。

74LS194的逻辑功能如表1所列。

表13.用移位寄存器构成计数器(1)环形计数器图5 环形计数器如果将移位寄存器的串行移位输出端接回到串行移位输入端,如图5所示。

那么,在时钟CLK的作用下,寄存器里的数据将不断循环右移。

例如,电路的初始状态为,则电路的状态转换图如图6所示。

可以认为,这是一个模4计数器。

图6 环形计数器状态转换图实验内容及步骤1. 用两片74LS74构成四位移位寄存器(1)74LS74引脚图图10 74LS74引脚图(2)用74LS74构成四位移位寄存器图11 用74LS74构成四位移位寄存器实验电路按照图11连接电路。

首先设置,使寄存器清零。

然后,设置,在CLK输入端输入单次脉冲信号当作时钟信号,通过输出端的发光二极管观察的状态,判断移位的效果。

移位寄存器和计数器实验(lu)资料

移位寄存器和计数器实验(lu)资料

2020/7/4
天道酬勤
27
预测波形:
2020/7/4
天道酬勤
28
3.置最小数法(非8421码)
同步预置最小数,最小数=N-M。本例中最
小数=16-7=9,即计数器从“1001”计到 “1111”。可利用“QCC”经反相后置数。电路最 简单。
0
00 01 11 10
Ø 0Ø0 0 ØØØ Ø ØØØ 1 ØØØ
0111→1110→1100→1000 √ 1001→0010 √ 0000 →0001√ 1101→1010 →0100 √ 1011→0110→1100→1000 √
电路具有自启动 1111→1110 → 1100→1000 √
φ φ 0000
φ ↑ DB C A
1↑
0000~1111
1
φ Qn3 Qn2 Qn1 Qn0
0
φ Qn3 Qn2 Qn1 Qn0
功能
异步清零 同步并入 8421计数 保持QCC=QCCn 保持QCC= 0
2020/7/4
天道酬勤
22
P150J2-设计过程:
反馈函数
Q3 Q2 Q1 Q0 QCC
CP
2020/7/4
天道酬勤
3
2. 功能表
2020/7/4
天道酬勤
4
当M0M1= 00 时,执行保持操作; 当M0M1= 01 时,执行左移操作; 当M0M1= 10 时,执行右移操作; 当M0M1= 11 时,执行并入操作;
2020/7/4
天道酬勤
5
举例1:试用74194附加门电路设计101001序列 信号发生器,用实验验证,用示波器双踪观察并 记录时钟和输出波形。

数字电路课程_移位寄存器功能测试实验报告

数字电路课程_移位寄存器功能测试实验报告

实验报告
一、实验名称:移存器功能测试
二、实验内容:
1、利用两块74HC(LS)74(四个触发器)构成一个单向的
移位寄存器
由于在MULTISIM中未找到双D触发器,如图1为用两
个D触发器代替双D触发器,连线大致相同。

图1
2、测试74HC(LS)194的功能
S S=00保持
(1)
10
图2 S S=01右移
(2)
10
图3
S S=10左移
(3)
10
图4
S S=11并行送数
(4)
10
图5
3、用两片74HC(LS)194做出模16的扭环计数器
利用两片74HC (LS )194级联,将第一片74HC (LS )194的Q 3输出端接到第二片74HC (LS )194的D 0,再按31SR D Q 将第二片Q 3输出端和高电平+5V 共同输入与非门74LS00,把与非门的输出接到第一片的SR D ,连接电路如图
6。

图6
三、注意事项
1、集成电路要轻插轻拔。

四、收获
1、 实际操作中,74LS74双列直插式元件每列为8个引脚,
和实验指导书中不同,应使每列的第8个引脚闲置;
2、 实验接线时,可采用按功能分块连线,比如先接输入、
输出端,再接控制端,最后接地和电源,既提高准确率又提高效率;
3、做实验之前应检查实验装置是否完好,我们试验中就遇
到一个LED不亮的情况,最后影响实验现象观察;
4、通过实验对 74LS194移存器的原理有了更进一步的了
解,对第三个实验部分电路稍作调整用可实现模为其他数的扭环计数器。

移位寄存器实验报告

移位寄存器实验报告

移位寄存器实验报告移位寄存器和计数器的设计实—期:专业班级:_姓名:_____________ 学号:一、实验目的1. 了解二进制加法计数器的工作过程。

2. 掌握任意进制计数器的设计方法。

实验内容(一)用D触发器设计左移移位寄存器(二)利用74LS161和74LS00设计实现任意进制的计数器设计要求:以实验台号的个位数作为所设计的任意进制计数器(0、1、2任选)三、实验原理图1. 由4个D触发器改成的4位异步二进制加法计数器(输入二进制:11110000)2. 测试74LS161的功能输入端 输出时 清 置 P T Qn钟 J —| —A零 数3. 熟悉用74LS161设计十进制计数器的方法。

①利用置位端实现十进制计数器。

16 15 14 13 12 1 1 10 9 74LS16112 3 4 5 16 7 8 捺出 LD數据输入Ci- GND 允许”邃 <―二^允详置人出 Qo Qi O2 Q?② 利用复位端实现十进制计数器。

四、实验结果及数据处理1. 左移寄存器实验数据记录表要求:输入二进制:11110000移位寄存器状态XX X X 清零+ 1X X 置数+1 1 1 1计数X 1 1 0 X 不计数X 1 1 X 0 不计数1 1— CP-共阴极共阴机数码管数码管C BI s1D C B A74LS161q 小 Ditl IT 「「-1(741SQ0]移位脉冲的次Q4Q3Q2Q1 000001000120011301114111151110 6110071000 800002. 画出你所设计的任意进制计数器的线路图(计数器从零开始计数),并简述设计思路8 进制利用复位法实现8进制计数器,8=1000B将A端同与非门相连,当A端=1时,使复位端获得信号,复位,从而实现8进制。

五、思考题1. 74LS161是同步还是异步,加法还是减法计数器?答:在上图电路中74LS161是异步加法计数器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四典型时序电路的功能测试与综合仿真报告
15291204张智博一.74LS290构成的24位计数器
方法:第一片74290的Q3与第二片的INB相连,R01,R02相连,INA,R91,R92悬空构成24位计数器。

50Hz,5v方波电压源提供时钟信号,用白炽灯显示输出信号。

实验电路:
实验现象:
输出由000000变为000001,000010,000011,000100,001000,001001,001010,001011,001100,010001,010000,010010,010011,010100,011000,011001,011010,011011,011100,100000,100001,100010,100011,100100,最终又回到000000,实现一次进位。

二.74LS161构成的24位计数器
方法:运用多次置零法
用两片74LS161构成了24位计数器,两片计数器的时钟信号都由方波电压源提供,第一片芯片的Q3和第二片芯片的Q0通过与非门,构成两个74LS161的LOAD信号,第一片的CO接第二片的ENT,其他ENT和ENP接Vcc(5v)。

输出接白炽灯。

电路图:
实验现象:以下为1—24的计数过程
三.74LS194构成的8位双向移位寄存器
方法:通过两片194级联,控制MA,MB的值,来控制左右移动
实验电路由两片74LS194芯片构成。

两个Ma接在一起,两个Mb接在一起,第一片的Dr,第二片的Dl,分别通过开关接到Vcc(5v)上。

第一片的Q3接到第二片的Dr,第二片的Q0接到第一片的Dl。

8个输出端分别接白炽灯。

实验电路:
实验现象:
右移:
接通Ma,Dr后,D0到D7全部为0,白炽灯从00000000变为10000000,11000000,11100000,11110000,11111000,11111100,11111110,11111111,实现右移功能。

左移:
接通Mb,Dl后,D0到D7全为0,白炽灯由00000000变为00000001,00000011,00000111,00001111,00011111,00111111,01111111,11111111。

实现左移功能。

相关文档
最新文档