2019-2020学年北京交大附中八年级第二学期期末考试数学试卷(含解析)
2019-2020年八年级下学期期末考试数学试题(解析版)

2019-2020年八年级下学期期末考试数学试题(解析版)一、选择题1.直线y=2x+3不经过第()象限.A.一B.二C.三D.四2.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.63.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对4.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=1826.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.57.运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m8.若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个10.如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A 3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形AxxB2016CxxDxx的边长是()A.()xx B.()2016C.()xx D.()xx二、填空题11.一元二次方程x2=x的解是.12.数据﹣2、﹣1、0、1、2的方差是.13.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为.14.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B (1,1),则关于x的方程ax2﹣bx﹣c=0的解为.17.已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y 2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是.18.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y的解;③x1<x<x2;④a(x0﹣x1)(x﹣x2)<0.其中正确的是.三、解答题(共96分)19.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?21.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.22.关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.23.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.24.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t (小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是千米,甲到B市后小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.26.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?27.如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线的函数解析式;(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).①当t=2秒时,判断点P是否在直线ME上,并说明理由;②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.xx学年江苏省南通市田家炳中学八年级(下)期末数学试卷参考答案与试题解析一、选择题1.直线y=2x+3不经过第()象限.A.一B.二C.三D.四【考点】一次函数的性质.【分析】由条件可分别求得直线与两坐标轴的交点,则可确定出其所在的象限,可求得答案.【解答】解:在y=2x+3中,令y=0可求得x=﹣1.5,令x=0可得y=3,∴直线与x轴交于点(﹣1.5,0),与y轴交于点(0,3),∴直线经过第一、二、三象限,∴不经过第四象限,故选D.【点评】本题主要考查一次函数的性质,利用直线与两坐标轴的交点即可确定出直线所在的象限.2.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.6【考点】菱形的性质.【分析】首先根据已知可求得OA,OD的长,再根据勾股定理即可求得BC的长,再由菱形的面积等于底乘以高也等于两对角线的乘积,根据此不难求得DE的长.【解答】解:∵四边形ABCD是菱形,对角线AC=8,DB=6,∴BC==5,∵S菱形ABCD=AC×BD=BC×DE,∴×8×6=5×DE,∴DE==4.8,故选C.【点评】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.3.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对【考点】抛物线与x轴的交点.【分析】利用已知将原式变形得出x12+x22=(x1+x2)2﹣2x1x2,进而利用根与系数关系求出即可.【解答】解:∵二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,∴x12+x22=(x1+x2)2﹣2x1x2=﹣2×(﹣)=,解得:m=±3,故选:C.【点评】此题主要考查了根与系数的关系,得出x12+x22=(x1+x2)2﹣2x1x2是解题关键.4.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【考点】二次函数的图象;一次函数的性质.【分析】根据抛物线的顶点在第四象限,得出n<0,m<0,即可得出一次函数y=mx+n的图象经过二、三、四象限.【解答】解:∵抛物线的顶点在第四象限,∴﹣m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选C.【点评】此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n、m的符号.5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=182【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b 为终止时间的有关数量.6.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.5【考点】众数;加权平均数.【分析】根据众数及平均数的概念求解.【解答】解:年龄为18岁的队员人数最多,众数是18;平均数==19.故选:A.【点评】本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.7.运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m【考点】二次函数的应用.【分析】依题意,该二次函数与x轴的交点的x值为所求.即在抛物线解析式中.令y=0,求x的正数值.【解答】解:把y=0代入y=﹣x2+x+得:﹣ x2+x+=0,解之得:x1=10,x2=﹣2.又x>0,∴x=10,故选:D.【点评】本题主要考查二次函数的实际应用,熟练掌握二次函数的图象和性质是解题的关键.8.若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对【考点】根的判别式.【分析】若方程有两相等根,则根的判别式△=b2﹣4ac=0,建立关于k的等式,求出k的值,再把不合题意的解舍去,即可得出答案.【解答】解:∵方程有两相等的实数根,∴△=b2﹣4ac=[﹣(k﹣1)]2﹣4(k﹣1)×=0,且k﹣1≠0,解得:k=1(舍去)或k=2,∴k的值为2;故选B.【点评】本题考查了根的根判别式,掌握当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根是本题的关键.9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.10.如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A 3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形AxxB2016CxxDxx的边长是()A.()xx B.()2016C.()xx D.()xx【考点】正方形的性质;坐标与图形性质.【专题】规律型.【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2=()1,同理可得:B3C3==()2,故正方形An BnCnDn的边长是:()n﹣1.则正方形Axx B2016CxxDxx的边长是:()xx.故选:D.【点评】此题主要考查了正方形的性质、锐角三角函数;熟练掌握正方形的性质,得出正方形的边长变化规律是解题关键.二、填空题11.一元二次方程x2=x的解是x=0或x= .【考点】解一元二次方程﹣因式分解法.【分析】移项后因式分解法求解可得.【解答】解:∵x2=x,∴x2﹣x=0,即x(x﹣)=0,∴x=0或x﹣=0,解得:x=0或x=,故答案为:x=0或x=.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.12.数据﹣2、﹣1、0、1、2的方差是 2 .【考点】方差.【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.【解答】解:由题意可得,这组数据的平均数是:,∴这组数据的方差是: =2,故答案为:2.【点评】本题考查方差,解题的关键是明确方差的计算方法.13.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为y=﹣2x+1 .【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,把直线y=﹣2x﹣3向上平移4个单位长度后所得直线的解析式为:y=﹣2x﹣3+4,即y=﹣2x+1.故答案为:y=﹣2x+1【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为16 .【考点】根与系数的关系;矩形的性质.【分析】设矩形的长和宽分别为x、y,由矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两个根,根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x+y=8;xy=,然后利用矩形的性质易求得到它的周长.【解答】解:设矩形的长和宽分别为x、y,根据题意得x+y=8;所以矩形的周长=2(x+y)=16.故答案为:16.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=﹣,x1•x2=.也考查了矩形的性质.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1 .【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.【解答】解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为:﹣2<x<﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1 .【考点】二次函数的性质.【专题】数形结合.【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.也考查了二次函数图象与一次函数图象的交点问题.17.已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y 2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是y 2<y3<y1.【考点】二次函数图象上点的坐标特征.【分析】把点的坐标代入可求得y1,y2,y3的值,比较大小即可.【解答】解:∵A(x1,y1)、B(x2,y2)、C(x3,y3)在抛物线上,∴y1=(a﹣3)2﹣2a(a﹣3)+3=﹣a2+12,y2=(a+1)2﹣2a(a+1)+3=﹣a2+4,y3=(a+2)2﹣2a(a+2)+3=﹣a2+7,∵﹣a2+4<﹣a2+7<﹣a2+12,∴y2<y3<y1,故答案为:y2<y3<y1.【点评】本题主要考查二次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.18.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y的解;③x1<x<x2;④a(x0﹣x1)(x﹣x2)<0.其中正确的是①②④.【考点】抛物线与x轴的交点;二次函数图象与系数的关系.【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对③④选项讨论即可得解.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),∴△=b2﹣4ac>0,故本选项正确;②∵点M(x0,y)在二次函数y=ax2+bx+c(a≠0)的图象上,∴x=x0是方程ax2+bx+c=y的解,故本选项正确;③若a>0,则x1<x<x2,若a<0,则x0<x1<x2或x1<x2<x,故本选项错误;④若a>0,则x0﹣x1>0,x﹣x2<0,所以,(x0﹣x1)(x﹣x2)<0,∴a(x0﹣x1)(x﹣x2)<0,若a<0,则(x0﹣x1)与(x﹣x2)同号,∴a(x0﹣x1)(x﹣x2)<0,综上所述,a(x0﹣x1)(x﹣x2)<0正确,故本选项正确.故①②④正确,故答案为①②④【点评】本题考查了二次函数与x轴的交点问题,熟练掌握二次函数图象以及图象上点的坐标特征是解题的关键,③④选项要注意分情况讨论.三、解答题(共96分)19.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.【考点】解一元二次方程﹣公式法;解一元二次方程﹣配方法.【分析】(1)因式分解法求解可得;(2)公式法求解可得.【解答】解:(1)∵(x﹣1)2=0,∴x﹣1=0,即x=1;(2)∵a=﹣2,b=4,c=﹣1,∴△=16﹣4×(﹣2)×(﹣1)=8>0,∴x==﹣2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的基本方法是解题的关键.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40 ,图①中m的值为15 ;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】图表型.【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.【考点】待定系数法求一次函数解析式.【专题】作图题;待定系数法.【分析】(1)利用待定系数法求函数解形式即可;(2)先求一次函数图象与两坐标轴的交点坐标,再利用三角形的面积公式求解即可.【解答】解:(1)设一次函数解析式为y=kx+b,则,解得,∴这个一次函数的解析式为y=2x+1;(2)当y=0时,x=﹣,当x=0时,y=1,所以函数图象与坐标轴的交点为(﹣,0)(0,1),∴三角形的面积=×|﹣|×1=.【点评】本题主要考查待定系数法求一次函数解析式;先求出函数图象与坐标轴的交点坐标是求三角形面积的关键.22.关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.【考点】根与系数的关系;根的判别式.【分析】根据方程有两个实数根结合根的判别式即可得出△=8k+8≥0,解之即可得出k的取值范围,再结合根与系数的关系以及x1+x2<x1x2,即可得出4<2﹣2k,解之即可得出k的取值范围,取两个k的取值范围的交集即可得出结论.【解答】解:不存在,理由如下:∵方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,∴△=(﹣4)2﹣4×1×[﹣2(k﹣1)]=8k+8≥0,解得:k≥﹣1.∵x1+x2=4,x1x2=2﹣2k,x1+x2<x1x2,∴4<2﹣2k,解得:k<﹣1.∵k≥﹣1和k<﹣1没有交集,∴不存在x1+x2<x1x2的情况.【点评】本题考查了根的判别式以及根与系数的关系,根据根的判别式以及根与系数的关系找出关于k的一元一次不等式是解题的关键.23.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.【解答】证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BE D=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.【点评】本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.24.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t (小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是120 千米,甲到B市后 5 小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.【考点】一次函数的应用.【分析】(1)从图中看,甲车3小时到达B市,则3×40=120千米,即A、B 两市的距离是120千米,根据乙车往返的速度都为20千米/时,那么乙车去时所用的时间为:120÷20=6小时,6+2=8,则8小时后乙到达,所以甲到B市后5小时乙到达B市;(2)分别表示A、B两点的坐标,利用待定系数法求解析式,并写t的取值;(3)先分别求出C、D两点的坐标,再求CD的解析式,求直线AB与CD的交点,即此时两车相遇,时间为12小时,计算甲车从第10小时开始返回,则再经过2小时两车相遇.【解答】解:(1)3×40=120,乙车所用时间: =6,2+6﹣3=5,答:A、B两市的距离是120千米,甲到B市后5小时乙到达B市;故答案为:120,5;(2)由题意得:A(10,120),B(13,0),设甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=kt+b,把A(10,120),B(13,0)代入得:,解得:,∴甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=﹣40t+520(10≤t≤13);(3)由题意得:C(8,10),120﹣(10﹣8)×20=80,∴D(10,80),设直线CD的解析式为:S=kt+b,把C(8,120)、D(10,80)代入得:,解得:,∴直线CD的解析式为:S=﹣20t+280,则:,﹣40t+520=﹣20t+280,t=12,12﹣10=2,答:甲车从B市往回返后再经过2小时两车相遇.【点评】本题是一次函数的应用,考查了利用待定系数法求一次函数的解析式,本题属于行程问题,明确路程、时间、速度的关系,注意图形中S所表示的实际意义:两车距A市的路程(千米);理解题意,弄清两直线的交点即为两车相遇所表示的点,并注意自变量t的取值范围.25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.【考点】菱形的判定与性质;全等三角形的判定与性质;三角形中位线定理;正方形的判定.【专题】几何综合题;压轴题.【分析】(1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH 是菱形,则四边形EFGH是正方形.【解答】解:(1)四边形EFGH是菱形.(2分)(2)成立.理由:连接AD,BC.(4分)∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.(6分)∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=BC,FG=AD,GH=BC,EH=AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(7分)(3)补全图形,如答图.判断四边形EFGH是正方形.(9分)理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.(11分)∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.(12分)【点评】此题主要考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.26.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?。
[北师大版]八年级下册数学《期末测试题》含答案解析
![[北师大版]八年级下册数学《期末测试题》含答案解析](https://img.taocdn.com/s3/m/799b0089bb4cf7ec4afed0f3.png)
2019-2020学年度第二学期期末测试八年级数学试题学校________ 班级________ 姓名________ 成绩________一、选择题(本部分共12小题,每小题3分,满分36分,每小题给出四个选项,其中只有一项是正确的)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2.不等式215x -≤的解集在数轴上表示为( ) A.B.C.D.3.下列从左到右的变形,是分解因式的是( ) A. 2242(2)a a a a +=+ B. 22(1)y x xy x x-=-C. 2(3)(3)9a a a +-=-D. 25(2)(3)1x x x x +-=-++4.一个多边形的内角和与外角和相等,则这个多边形的边数为( ) A. 8 B. 6C. 5D. 45.若分式2ab a b +中,a b 都扩大到原来的3倍,则分式2aba b+的值是( ) A. 扩大到原来3倍 B. 缩小3倍 C. 是原来的13D. 不变6.如图,在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,且BD =2CD ,BC =6cm ,则点D 到AB 距离为( )A. 4cmB. 3cmC. 2cmD. 1cm7.如图,将一个含有45o 角的直角三角板的直角顶点放在一张宽为2cm 的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,若测得三角板的一边与纸带的一边所在的直线成30o 角,则三角板最长的长是( )A. 2cmB. 4cmC. 22cm D. 42cm8.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( )A. 1个B. 2个C. 3个D. 4个9.如图,在△ABC 中,∠C =30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,若∠BAD =45°,则∠B 的度数为( )A. 75°B. 65°C. 55°D. 45°10.下列语句:①每一个外角都等于60o 的多边形是六边形;②“反证法”就是举反例说明一个命题是假命题;③“等腰三角形两底角相等”的逆命题是真命题;④分式值为零的条件是分子为零且分母不为零,其中正确的个数为( ) A. 1B. 2C. 3D. 411.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.如图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形”之和,下列等式中,符合这一规律的表达式为( )A 13310=+B. 25916=+C. 491831=+D. 642836=+12.如图,等边△ABC 边长为6,点O 是三边垂直平分线的交点,∠FOG =120°,∠FOG 的两边OF ,OG 分别交AB ,BC 与点D ,E ,∠FOG 绕点O 顺时针旋转时,下列四个结论正确的是( )①OD =OE ;②ODE BDE S S ∆∆=;③2738ODBES =;④△BDE 的周长最小值为9, A. 1个B. 2个C. 3个D. 4个二、填空题(本题共4小题,每小题3分,满分12分)13.分解因式:255x -=__________.14.如图所示,在直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛的坐标分别是(-4,2),(-2,2),右边图案中左眼的坐标是(3,4),则右边图案中右眼的坐标是__.15.若分式方程2322x mx x+=--有增根,则m 等于__________. 16.在△ABC 中,AB =10,CA =8,BC =6,∠BAC 的平分线与∠BCA 的平分线交于点I ,且DI ∥BC 交AB 于点D ,则DI 的长为____.三、解答题:17.解不等式组:22112x x x x ≤+⎧⎪⎨-<+⎪⎩,并把不等式组的解集在数轴上表示出来.18.解分式方程:2303(3)x x x x --=++ 19.先化简,再求值:2144(1)11x x x x -+-÷--,其中x 是不等式30x -≥正整数解.20.如图,平行四边形ABCD 的边OA 在x 轴上,将平行四边形沿对角线AC 对折,AO 的对应线段为AD ,且点D ,C ,O 在同一条直线上,AD 与BC 交于点E .(1)求证:△ABC ≌△CDA .(2)若直线AB 的函数表达式为6y x =-,求三角线ACE 的面积.21.某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用20%的材料. (1)求制作每个甲种边框、乙种边框各用多少米材料?(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排制作甲种边框多少个(不计材料损耗)?22.如图,在平面直角坐标系中,网格图由边长为1的小正方形所构成,Rt △ABC 的顶点分别是A (-1,3),B (-3,-1),C (-3,3).(1)请在图1中作出△ABC 关于点(-1,0)成中心对称△'''A B C ,并分别写出A ,C 对应点的坐标'A ;'C(2)设线段AB 所在直线的函数表达式为y kx b =+,试写出不等式2kx b +>的解集是 ; (3)点M 和点N 分别是直线AB 和y 轴上的动点,若以'A ,'C ,M ,N 为顶点的四边形是平行四边形,求满足条件的M点坐标.23.如图1,在△ABC中,AB=BC=5,AC=6,△ABC沿BC方向向右平移得△DCE,A、C对应点分别是D、E.AC与BD相交于点O.(1)将射线BD绕B点顺时针旋转,且与DC,DE分别相交于F,G,CH∥BG交DE于H,当DF=CF时,求DG的长;(2)如图2,将直线BD绕点O逆时针旋转,与线段AD,BC分别相交于点Q,P.设OQ=x,四边形ABPQ 的周长为y,求y与x之间的函数关系式,并求y的最小值.(3)在(2)中PQ的旋转过程中,△AOQ是否构成等腰三角形?若能构成等腰三角形,求出此时PQ的长?若不能,请说明理由.答案与解析一、选择题1.观察下列图形,其中既是轴对称又是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.x-≤的解集在数轴上表示为()2.不等式215A. B. C. D.【答案】A【解析】【分析】先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.【详解】解不等式得:x⩽3,所以在数轴上表示为故选A.【点睛】本题考查在数轴上表示不等式的解集,解题的关键是掌握在数轴上表示不等式的解集.3.下列从左到右的变形,是分解因式的是( ) A. 2242(2)a a a a +=+ B. 22(1)y x xy x x-=-C. 2(3)(3)9a a a +-=-D. 25(2)(3)1x x x x +-=-++【答案】A 【解析】 【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解. 【详解】2242(2)a a a a +=+是把一个多项式化为几个整式的积的形式,所以A 正确;22(1)yx xy x x-=-中含有分式,所以B 错误;2(3)(3)9a a a +-=-不是把一个多项式化为几个整式的积的形式,所以C 错误; 25(2)(3)1x x x x +-=-++不是把一个多项式化为几个整式的积的形式,所以D 错误.【点睛】本题考查分解因式的定义,解题的关键是掌握分解因式的定义.4.一个多边形的内角和与外角和相等,则这个多边形的边数为( )A. 8B. 6C. 5D. 4【答案】D 【解析】 【分析】利用多边形的内角和与外角和公式列出方程,然后解方程即可.【详解】设多边形的边数为n ,根据题意 (n-2)•180°=360°, 解得n=4.故选:D .【点睛】本题考查了多边形的内角和公式与多边形的外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.5.若分式2ab a b +中,a b 都扩大到原来的3倍,则分式2aba b+的值是( ) A. 扩大到原来3倍 B. 缩小3倍 C. 是原来的13D. 不变【答案】A 【解析】 【分析】把分式中的分子,分母中的 ,a b 都同时变成原来的3倍,就是用 3a, 3b 分别代替式子中的a , b,看得到的式子与原式子的关系. 【详解】将分式2ab a b+中,a b 都扩大到原来的3倍,得到1833ab a b +=6ab a b +,则6ab a b +是2aba b +的3倍.故答案为A.【点睛】本题考查分式的性质,解题的关键是掌握分式的性质.6.如图,在三角形ABC 中,90C =o ∠,AD 平分BAC ∠交BC 于点D ,且2BD CD =,6BC cm =,则点D 到AB的距离为( )A. 4cmB. 3cmC. 2cmD. 1cm【答案】C 【解析】 【分析】如图,在△ABC 中,∠C=90∘,AD 平分∠BAC 交BC 于点D ,且BD=2CD ,BC=9cm ,则点D 到AB 的距离.【详解】如图,过点D作DE⊥AB于E,∵BD:DC=2:1,BC=6,∴DC=112×6=2,∵AD平分∠BAC,∠C=90∘,∴DE=DC=2.故选:C.【点睛】本题考查角平分线的性质和点到直线的距离,解题的关键是掌握角平分线的性质.7.如图,将一个含有45o角的直角三角板的直角顶点放在一张宽为2cm的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,若测得三角板的一边与纸带的一边所在的直线成30o角,则三角板最长的长是()A. 2cmB. 4cmC. 22cmD. 42cm【答案】D【解析】【分析】过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角边,再由等腰直角三角形求出最大边.【详解】过点C作CD⊥AD,∴CD=3,在直角三角形ADC中,∵∠CAD=30°,∴AC=2CD=2×2=4,又∵三角板是有45°角的三角板, ∴AB=AC=4,∴BC 2=AB 2+AC 2=42+42=32, ∴BC= 故选:D.【点睛】本题考查等腰直角三角形和含30度角的直角三角形,解题的关键是掌握等腰直角三角形和含30度角的直角三角形.8.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( )A. 1个B. 2个C. 3个D. 4个【答案】B 【解析】 【分析】先求解不等式组得到关于m 的不等式解集,再根据m 的取值范围即可判定整数解.【详解】不等式组0420x m x -<⎧⎨-<⎩①②由①得x <m ; 由②得x >2;∵m 的取值范围是4<m <5, ∴不等式组0420x m x -<⎧⎨-<⎩的整数解有:3,4两个.故选B .【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m 的取值范围是本题的关键.9.如图,在ABC ∆中,B Ð=55°,30C ∠=o ,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点,M N ,作直线MN ,交BC 于点D ,连接AD ,则BAD ∠的度数为( )A. 65oB. 75oC. 55oD. 45o【答案】A【解析】【分析】根据内角和定理求得∠BAC=95°,由中垂线性质知DA=DC,即∠DAC=∠C=30°,从而得出答案.【详解】在△ABC中,∵∠B=55°,∠C=30°,∴∠BAC=180°−∠B−∠C=95°,由作图可知MN为AC的中垂线,∴DA=DC,∴∠DAC=∠C=30°,∴∠BAD=∠BAC−∠DAC=65°,故选:A.【点睛】此题考查线段垂直平分线的性质,作图—基本作图,解题关键在于求出∠BAC=95°.10.下列语句:①每一个外角都等于60o的多边形是六边形;②“反证法”就是举反例说明一个命题是假命题;③“等腰三角形两底角相等”的逆命题是真命题;④分式值为零的条件是分子为零且分母不为零,其中正确的个数为()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】根据多边形的外角,反证法的定义,等腰三角形的性质与判定,分式有意义的条件,进行逐一判定分析,即可解答.【详解】①每一个外角都等于60°的多边形是六边形,正确;②“反证法”就是从反面的角度思考问题的证明方法,故错误;③“等腰三角形两底角相等”的逆命题是有两个角相等的三角形为等腰三角形,是真命题,正确; ④分式值为零的条件是分子为零且分母不为零,故正确;正确的有3个.故选C.【点睛】此题考查命题与定理,解题关键在于掌握各性质定理.11.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.如图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形”之和,下列等式中,符合这一规律的表达式为( )A. 13310=+B. 25916=+C. 491831=+D. 642836=+【答案】D【解析】【分析】 三角形数=1+2+3+……+n ,很容易就可以知道一个数是不是三角形数.结合公式,代入验证三角形数就可以得到答案.【详解】A.中3和10是三角形数,但是不相邻;B.中16、9均是正方形数,不是三角形数;C.中18不是三角形数;D.中28=1+2+3+4+5+6+7,36=1+2+3+4+5+6+7+8,所以D 正确;故选D.【点睛】此题考查此题考查规律型:数字的变化类,勾股数,解题关键在于找到变换规律.12.如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,120FOG ∠=o ,FOG ∠的两边,OF OG 与,AB BC 分别相交于,D E ,FOG ∠绕O 点顺时针旋转时,下列四个结论正确的个数是( )①OD OE =;②ODE BDE S S ∆∆=;③433ODBE S =四边形BDE ∆周长最小值是9.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】首先连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,利用全等三角形的对应边相等可对①进行判断;再利用SBODV =SCOEV得到四边形ODBE的面积=13S ABCV,则可对③进行判断,然后作OH⊥DE,则DH=EH,计算出S ODEV=3OE2,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断,接下来由△BDE的周长=BC+DE=4+DE=4+3OE,结合垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.【详解】连接OB,OC,如图.∵△ABC为等边三角形,∴∠ABC=∠ACB=60°.∵点O是△ABC的中心,∴OB=OC,OB. OC分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=∠OCB=30°,∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE.在△BOD 和△COE 中,∠BOD=∠COE ,BO=CO ,∠OBD=∠OCE ,∴△BOD ≌△COE ,∴BD=CE ,OD=OE ,所以①正确;∴S BOD V =S COE V ,∴四边形ODBE 的面积=S OBC V =13 S ABC V =13×42 ,所以③正确; 作OH ⊥DE ,如图,则DH=EH ,∵∠DOE=120°,∴∠ODE=∠OEH=30°.∴OH=12OE ,OE ,∴OE ,∴S △ODE=12 ·12· OE 2, 即S ODE V 随OE 的变化而变化,而四边形ODBE 的面积为定值,∴S ODE V ≠S BDE V ,所以②错误;∵BD=CE ,∴△BDE 的周长OE ,当OE ⊥BC 时,OE 最小,△BDE 的周长最小,此时, ∴△BDE 周长的最小值=4+2=6,所以④错误.故选:B. 【点睛】此题考查旋转的性质、等边三角形的性质和全等三角形的判定与性质,解题关键是牢记旋转前、后的图形全等.二、填空题13.分解因式:255x -=__________.【答案】5(1)(1)x x -+【解析】【分析】先提出公因式5,再直接利用平方差公式分解因式.平方差公式:a 2 -b 2=(a+b )(a-b ).【详解】255x -=5()21x - =5(1)(1)x x -+故答案为:5(1)(1)x x -+.【点睛】此题考查分解因式,解题关键在于先提出公因式.14.如图所示,在直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛的坐标分别是(-4,2),(-2,2),右边图案中左眼的坐标是(3,4),则右边图案中右眼的坐标是__.【答案】(5,4)【解析】【详解】由左图案中左眼的坐标是(-4,2),右图案中左眼的坐标是(3,4),可知左图案向右平移了7个单位长度,向上平移了2个单位长度变为右图案.因此右眼的坐标由(-2,2)变为(5,4). 故答案为:(5,4).15.已知关于x 的方程2322x m x x+=--会产生增根,则m =__________. 【答案】4【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入整式方程算出未知字母的值.【详解】方程两边都乘(x−2),得2x−m=3(x−2),∵原方程有增根,∴最简公分母x−2=0,即增根为x=2,把x=2代入整式方程,得m=4.故答案为:4.【点睛】此题考查分式方程的增根,解题关键在于根据方程有增根进行解答.16.如图所示,△ABC中,AB=10cm,AC=8cm,∠ABC和∠ACB的角平分线交于点O,过点O作BC的平行线MN 交AB于点M,交AC于点N,则△AMN的周长为____.【答案】18【解析】【分析】根据角平分线的定义、平行线的性质,及等角对等边可知OM=BM,ON=CN,则△AMN的周长=AB+AC可求.【详解】∵∠ABC和∠ACB的角平分线交于点O,∴∠ABO=∠CBO,∠ACO=∠BCO,∵BC∥MN,∴∠BOM=∠CBO,∠CON=∠BCO,∴∠BOM=∠ABO,∠CON=∠ACO,∴OM=BM,ON=CN,∴△AMN的周长=AM+AN+MN=AM+OM+AN+NC=AB+AC=18cm.故答案为:18.【点睛】此题考查角平分线的定义,平行线分线段成比例,解题关键在于得出OM=BM,ON=CN.三、解答题17.解不等式组:()-324 211 52x xx x⎧-≥⎪⎨-+<⎪⎩并把其解集在数轴上表示出来.【答案】−7<x⩽1,见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解不等式x−3(x−2)⩾4,得:x⩽1,解不等式52112x x-+<,得:x>−7,则不等式组的解集为−7<x⩽1,将解集表示在数轴上如下:【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则.18.解分式方程:233(3)xx x x--=++【答案】原方程无解.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:2(3)0x x--=30x+=3x=-经检验3x=-是原方程的增根∴原方程无解【点睛】此题考查解分式方程,解题关键在于先去分母.19.先化简,再求值:2144(1)11x x x x -+-÷--,其中x 是不等式30x -≥的正整数解. 【答案】1.【解析】【分析】将原式被除式括号中两项通分并利用同分母分式的减法法则计算,除式分子利用完全平方公式分解因式,分母利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,再由关于x 的不等式求出解集得到x 的范围,在范围中找出正整数解得到x 的值,将x 的值代入化简后的式子中计算,即可得到原式的值.【详解】解:原式=()2211()111x x x x x ---÷--- =()22112x x x x --⨯-- 12x =- 30x -≤的正整数解为1,2,3x =但1,2x x ≠≠所以3x = ∴原式的值112x =- 【点睛】此题考查一元一次不等式的整数解,分式的化简求值,解题关键在于掌握运算法则.20.如图,平行四边形ABCD 的边OA 在x 轴上,将平行四边形沿对角线AC 对折,AO 的对应线段为AD ,且点D ,C ,O 在同一条直线上,AD 与BC 交于点E .(1)求证:△ABC ≌△CDA .(2)若直线AB 的函数表达式为6y x =-,求三角线ACE 的面积.【答案】(1)证明见详解;(2)92 【解析】【分析】(1)利用平行四边形的性质及折叠的性质,可得出CD=AB ,∠DCA=∠BAC ,结合AC=CA 可证出△ABC ≌△CDA (SAS );(2)由点D ,C ,O 在同一直线上可得出∠DCA=∠OCA=90°,利用一次函数图象上点的坐标特征可得出点A 的坐标及OA 的长度,由OC ∥AB 可得出直线OC 的解析式为y=x ,进而可得出∠COA=45°,结合∠OCA=90°可得出△AOC 为等腰直角三角形,利用等腰直角三角形的性质可得出OC 、AC 的长,结合(1)的结论可得出四边形ABDC 为正方形,再利用正方形的面积公式结合S △ACE =14S 正方形ABDC 可求出△ACE 的面积.【详解】(1)证明:∵四边形ABCO 为平行四边形,∴AB=CO ,AB ∥OC ,∴∠BAC=∠OCA .由折叠可知:CD=CO ,∠DCA=∠OCA ,∴CD=AB ,∠DCA=∠BAC .在△ABC 和△CDA 中, AB CD BAC DCA AC CA =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CDA (SAS ).(2)解:∵∠DCA=∠OCA ,点D ,C ,O 同一直线上,∴∠DCA=∠OCA=90°.当y=0时,x-6=0,解得:x=6,∴点A 的坐标为(6,0),OA=6.∵OC ∥AB ,∴直线OC 的解析式为y=x ,∴∠COA=45°,∴△AOC 为等腰直角三角形,∴AC=OC=32∵AB ∥CD ,AB=CD=AC ,∠DCA=90°,∴四边形ABDC 为正方形,2119442ACE ABCD S S AC ∆==⋅=正方形 【点睛】本题考查了平行四边形的性质、折叠的性质、全等三角形的判定、等腰直角三角形、一次函数图象上点的坐标特征以及正方形的面积,解题的关键是:(1)利用全等三角形的判定定理SAS 证出△ABC ≌△CDA ;(2)利用一次函数图象上点的坐标特征及等腰直角三角形的性质,求出正方形边长AC 的长.21.某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用20%的材料.(1)求制作每个甲种边框、乙种边框各用多少米材料?(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排制作甲种边框多少个(不计材料损耗)?【答案】(1)甲框每个2.4米,乙框每个2米;(2)最多可购买甲种边框100个.【解析】【分析】(1)设每个乙种边框所用材料x米,则制作甲盒用(1+20%)x米材料,根据“同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个”,列出方程,即可解答;(2)设生产甲边框y个,则乙边框生产640 2.42y-个,再根据“要求制作乙种边框的数量不少于甲种边框数量的2倍”求出y的取值范围,即可解答.【详解】解(1)设每个乙种边框所用材料x米则121211.2x x-= 2x=经检验:2x=是原方程的解,1.2x=2.4, 答:甲框每个2.4米,乙框每个2米.(2)设生产甲边框y个,则乙边框生产640 2.42y-个,则640 2.422yy-≥100y≤所以最多可购买甲种边框100个.【点睛】此题考查分式方程的应用,一元一次不等式的应用,解题关键在于列出方程.22.由边长为1的小正方形组成的格点中,建立如图平面直角坐标系,△ABC的三个顶点坐标分别为A(−2,1),B(−4,5),C(−5,2).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2;(3)请你判断△AA1A2与△CC1C2的相似比;若不相似,请直接写出△AA1A2的面积.【答案】(1)见解析;(2)见解析;(3)4.【解析】【分析】(1)利用关于y 轴对称点的性质得出对应点位置求出即可;(2)利用关于原点对称点的性质得出对应点坐标进而求出即可;(3)利用相似三角形的判定方法得出即可,再利用三角形面积求法得出答案.【详解】(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求;(3)∵112112CC C C AA A A , ∴△AA 1A 2与△CC 1C 2不相似,S 12AA A △ =12×2×4=4. 【点睛】此题考查作图-旋转变换,作图-轴对称变换,相似三角形的判定,解题关键在于掌握作图法则.23.如图1,在△ABC 中,AB=BC=5,AC=6,△ECD 是△ABC 沿BC 方向平移得到的,连接AE 、BE ,且AC 和BE 相交于点O.(1)求证:四边形ABCE 是菱形;(2)如图2,P 是线段BC 上一动点(不与B. C 重合),连接PO 并延长交线段AE 于点Q ,过Q 作QR ⊥BD 交BD 于R.①四边形PQED的面积是否为定值?若是,请求出其值;若不是,请说明理由;②以点P、Q、R为顶点的三角形与以点B. C. O为顶点的三角形是否可能相似?若可能,请求出线段BP的长;若不可能,请说明理由.【答案】(1)见解析;(2)①24,②75;【解析】【分析】(1)利用平移的性质以及菱形的判定得出即可;(2)①首先过E作EF⊥BD交BD于F,则∠EFB=90°,证出△QOE≌△POB,利用QE=BP,得出四边形PQED的面积为定值;②当∠QPR=∠BCO时,△PQR∽△CBO,此时有OP=OC=3,过O作OG⊥BC交BC于G,得出△OGC∽△BOC,利用相似三角形的性质得出CG的长,进而得出BP的长.【详解】(1)证明:∵△ABC沿BC方向平移得到△ECD,∴EC=AB,AE=BC,∵AB=BC,∴EC=AB=BC=AE,∴四边形ABCE是菱形;(2)①四边形PQED的面积是定值,理由如下:过E作EF⊥BD交BD于F,则∠EFB=90°,∵四边形ABCE是菱形,∴AE∥BC,OB=OE,OA=OC,OC⊥OB,∵AC=6,∴OC=3,∵BC=5,∴OB=4,sin ∠OBC=3=5OC BC , ∴BE=8, ∴EF=BE ⋅sin ∠OBC=8×324=55, ∵AE ∥BC ,∴∠AEO=∠CBO ,四边形PQED 是梯形,在△QOE 和△POB 中AEO CBO OE OBQOE POB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△QOE ≌△POB ,∴QE=BP ,∴S PQED 梯形 =12 (QE+PD)×EF=12 (BP+DP)×EF=12×BD×EF=12×2BC×EF=BC×EF=5×245 =24; ②△PQR 与△CBO 可能相似,∵∠PRQ=∠COB=90°,∠QPR>∠CBO ,∴当∠QPR=∠BCO 时,△PQR ∽△CBO ,此时有OP=OC=3.过O 作OG ⊥BC 交BC 于G.∵∠OCB=∠OCB ,∠OGC=∠BOC ,∴△OGC ∽△BOC ,∴CG:CO=CO:BC ,即CG:3=3:5,∴CG=95, ∴BP=BC−PC=BC−2CG=5−2×95=75 . 【点睛】此题考查相似形综合题,涉及了相似三角形的判定与性质,解直角三角形,菱形的性质,平移的性质等,综合性较强,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.。
北师大版2019-2020学年度第二学期八年级(下)期末数学试卷(含解析) (6)

北师大版2019-2020学年第二学期八年级(下)期末数学试卷姓名:得分:日期:一、选择题(本大题共 12 小题,共 36 分)1、(3分) 下列式子中,属于最简二次根式的是()A.√30B.√36C.√40D.√172、(3分) 若一个三角形的三边长为3、4、x,则使此三角形是直角三角形的x的值是()A.5B.6C.√7D.5或√73、(3分) 某班数学兴趣小组8名同学的毕业升学体育测试成绩依次为:30,29,28,27,28,29,30,28,这组数据的众数是()A.27B.28C.29D.304、(3分) 下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B. C. D.5、(3分) 正方形具有而菱形不一定具有的性质是()A.四边相等B.对角线相等C.对角相等D.对角线互相垂直6、(3分) 直线y=-3x+2经过的象限为()A.第一、二、四象限B.第一、二、三象限C.第一、三、四象限D.第二、三、四象限7、(3分) 如图,广场中心菱形花坛ABCD的周长是32米,∠A=60°,则A、C两点之间的距离为()A.4米B.4√3米C.8米D.8√3米8、(3分) 若式子√k−1+(k-1)0有意义,则一次函数y=(k-1)x+1-k的图象可能是()A. B. C. D.9、(3分) 已知,在平面直角坐标系xOy中,点A(-4,0 ),点B在直线y=x+2上.当A,B两点间的距离最小时,点B的坐标是()A.(−2−√2,−√2)B.(−2−√2,√2)C.(-3,-1 )D.(-3,−√2)10、(3分) A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是()A.1B.2C.3D.411、(3分) 如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=√3,BD=4,则菱形ABCD的周长为()A.4B.4√6C.4√7D.2812、(3分) 如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m-1)D.3(m−2)2二、填空题(本大题共 4 小题,共 12 分)的结果是______.13、(3分) 计算:√24-9√2314、(3分) 一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是______.15、(3分) 如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为______dm.16、(3分) 如图放置的两个正方形的边长分别为4和8,点G为CF中点,则AG的长为______.三、解答题(本大题共 9 小题,共 72 分)17、(4分) 计算√18-√8+(√3+1)(√3-1)18、(4分) 先化简,再求值:已知a=8,b=2,试求a√1a +√4b-√a4+√b的值.19、(8分) 已知长方形的长a=12√32,宽b=13√18.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.20、(8分) 为了让同学们了解自己的体育水平,八年级1班的体育老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:根据以上信息,解答下列问题(1)这个班共有男生______人,共有女生______;(2)补全八年级1班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由21、(8分) 如图:在平行四边形ABCD中,AC的垂直平分线分别交CD、AB于E、F两点,交AC于O点,试判断四边形AECF的形状,并说明理由.22、(8分) 武汉市某校实行学案式教学,需印制若干份数学学案.印刷厂有甲、乙两种收费方式,除按印刷份数收取印刷费外,甲种方式还需收取制版费而乙种不需要,两种印刷方式的费用y (元)与印刷份数x(份)之间的关系如图所示:(1)求甲、乙两种收费方式的函数关系式;(2)当印刷多少份学案时,两种印刷方式收费一样?23、(10分) 如图,在四边形ABCD中,AD∥BC,AB=3,BC=5,连接BD,∠BAD的平分线分别交BD、BC于点E、F,且AE∥CD(1)求AD的长;(2)若∠C=30°,求CD的长.24、(10分) 某酒厂生产A,B两种品牌的酒,平均每天两种酒共可售出600瓶,每种酒每瓶的成本和售价如表所示,设平均每天共获利y元,平均每天售出A种品牌的酒x瓶.(1)请写出y关于x的函数关系式;(2)如果该厂每天至少投入成本25000元,且售出的B种品牌的酒不少于全天销售总量的55%,那么共有几种销售方案?并求出每天至少获利多少元?25、(12分) 已知:如图1,在平面直角坐标系中,直线1:y=-x+4与坐标轴分别相交于点A、Bx相交于点C.与2:y=13(1)求点C的坐标;(2)若平行于y轴的直线x=a交于直线1于点E,交直线l2于点D,交x轴于点M,且ED=2DM,求a的值;(3)如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP之间的位置关系,并证明你的结论.2018-2019学年湖北省恩施州恩施市八年级(下)期末数学试卷【 第 1 题 】【 答 案 】A【 解析 】解:A 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A 符合题意;B 、√36=6,被开方数含能开得尽方的因数或因式,故B 不符合题意;C 、√40=2√10,被开方数含能开得尽方的因数或因式,故C 不符合题意;D 、√17=√77,被开方数含分母,故D 不符合题意;故选:A .检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是. 本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.【 第 2 题 】【 答 案 】D【 解析 】解:当4是直角三角形的斜边时,32+x 2=42,解得x=√7;当4是直角三角形的直角边时,32+42=x 2,解得x=5.故使此三角形是直角三角形的x 的值是5或√7.故选:D .由于直角三角形的斜边不能确定,故应分4是斜边或直角边两种情况进行讨论.本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形是解答此题的关键.【 第 3 题 】【 答 案 】B【 解析 】解:27出现1次;28出现3次;29出现2次;30出现2次;所以,众数是28.故选:B.根据出现次数最多的数是众数解答.本题考查了众数的定义,熟记出现次数最多的是众数是解题的关键.【第 4 题】【答案】D【解析】解:A、对于x的每一个取值,y都有唯一确定的值,y是x的函数,故A不符合题意;B、对于x的每一个取值,y都有唯一确定的值,y是x的函数,故B不符合题意;C、对于x的每一个取值,y都有唯一确定的值,y是x的函数,故C不符合题意;D、对于x的每一个取值,y有不唯一确定的值,y不是x的函数,故D符合题意;故选:D.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.【第 5 题】【答案】B【解析】解:正方形的性质有:四条边相等;对角线互相垂直平分且相等;菱形的性质有:四条边相等;对角线互相垂直平分;因此正方形具有而菱形不一定具有的性质是:对角线相等.故选:B.根据正方形的性质和菱形的性质,容易得出结论.本题考查了正方形的性质、菱形的性质;熟练掌握正方形和菱形的性质是解决问题的关键.【第 6 题】【答案】A【解析】解:∵k=-3,b=2,∴直线y=-3x+2经过第一、二、四象限.故选:A.由k=-3、b=2利用一次函数图象与系数的关系,即可得出直线y=-3x+2经过第一、二、四象限,此题得解.本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.【第 7 题】【答案】D【解析】解:如图,连接AC、BD,AC与BD交于点O,∵菱形花坛ABCD的周长是32米,∠BAD=60°,∴AC⊥BD,AC=2OA,∠CAD=1∠BAD=30°,AD=8米,2=4√3(米),∴OA=AD•cos30°=8×√32∴AC=2OA=8√3米.故选:D.由菱形花坛ABCD的周长是40米,∠BAD=60°,可求得边长AD的长,AC⊥BD,且∠CAD=30°,则可求得OA的长,继而求得答案.此题考查了菱形的性质以及三角函数的性质.注意根据菱形的对角线互相垂直且平分求解是解此题的关键.【第 8 题】【答案】B【解析】解:∵式子√k−1+(k-1)0有意义,∴k-1≥0,且k-1≠0,解得k>1,∴k-1>0,1-k<0,∴一次函数y=(k-1)x+1-k的图象如图所示:故选:B.首先根据二次根式中的被开方数是非负数,以及a0=1(a≠0),判断出k的取值范围,然后判断出k-1、1-k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k-1)x+1-k的图象可能是哪个即可.此题主要考查了一次函数的图象与系数的关系,零指数幂定义以及二次根式有意义的条件;解答此题的关键是要明确:当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b <0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.【第 9 题】【答案】C【解析】解:如图,过点A作AB⊥直线y=x+2于点B,则点B即为所求.∵C(-2,0),D(0,2),∴OC=OD,∴∠OCD=45°,∴△ABC是等腰直角三角形,∴B(-3,-1).故选:C.根据题意画出图形,过点A做AB⊥直线y=x+2于2点B,则点B即为所求点,根据锐角三角函数的定义得出∠OCD=45°,故可判断出△ABC是等腰直角三角形,进而可得出B点坐标.本题考查的是一次函数图象上点的坐标特点,根据题意画出图形,利用数形结合求解是解答此题的关键.【第 10 题】【答案】C【解析】解:由函数图象可知,乙比甲晚出发1小时,故①正确;乙出发3-1=2小时后追上甲,故②错误;甲的速度为:12÷3=4(千米/小时),故③正确;乙的速度为:12÷(3-1)=6(千米/小时),则甲到达B 地用的时间为:20÷4=5(小时),乙到达B 地用的时间为:20÷6=313(小时),1+313=413<5,∴乙先到达B 地,故④正确;正确的有3个.故选:C .观察函数图象,从图象中获取信息,根据速度,路程,时间三者之间的关系求得结果.本题考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息.【 第 11 题 】【 答 案 】C【 解析 】解:∵E ,F 分别是AB ,BC 边上的中点,EF=√3,∴AC=2EF=2√3,∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=12AC=√3,OB=12BD=2, ∴AB=√OA 2+OB 2=√7,∴菱形ABCD 的周长为4√7.故选:C .首先利用三角形的中位线定理得出AC ,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.此题考查菱形的性质,三角形的中位线定理,勾股定理,掌握菱形的性质是解决问题的关键.【 第 12 题 】【 答 案 】B【 解析 】解:由题意可得:A 点坐标为(-1,2+m ),B 点坐标为(1,-2+m ),C 点坐标为(2,m-4),D 点坐标为(0,2+m ),E 点坐标为(0,m ),F 点坐标为(0,-2+m ),G 点坐标为(1,m-4).所以,DE=EF=BG=2+m-m=m-(-2+m )=-2+m-(m-4)=2,又因为AD=BF=GC=1,所以图中阴影部分的面积和等于12×2×1×3=3.故选:B .设AD ⊥y 轴于点D ;BF ⊥y 轴于点F ;BG ⊥CG 于点G ,然后求出A 、B 、C 、D 、E 、F 、G 各点的坐标,计算出长度,利用面积公式即可计算出.本题灵活考查了一次函数点的坐标的求法和三角形面积的求法.【 第 13 题 】【 答 案 】-√6【 解析 】解:原式=2√6-9×√63=-√6,故答案为:-√6根据二次根式的运算法则即可求出答案.本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.【 第 14 题 】【 答 案 】x <-2【 解析 】解:把x=-2代入y 1=kx+b 得,y 1=-2k+b ,把x=-2代入y 2=x+a 得,y 2=-2+a ,由y1=y2,得:-2k+b=-2+a,解得b−ak−1=2,解kx+b>x+a得,(k-1)x>a-b,∵k<0,∴k-1<0,解集为:x<a−bk−1,∴x<-2.故答案为:x<-2.把x=-2代入y1=kx+b与y2=x+a,由y1=y2得出b−ak−1=2,再求不等式的解集.本题主要考查一次函数和一元一次不等式,本题的关键是求出b−ak−1=2,把b−ak−1看作整体求解集.【第 15 题】【答案】25【解析】解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得x=25.故答案为25.先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.本题考查了平面展开-最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.【第 16 题】【答案】2√10【解析】解:连接AC、AF,延长CB交FH于M,则∠FMC=90°,CM=4+8=12,FM=8-4=4,在Rt△CMF中,由勾股定理得:CF=√CM2+FM2=√122+42=4√10,∵四边形CDAB和四边形EFHA是正方形,∴∠CAB=45°,∠FAE=45°,∴∠CAF=45°+45°=90°,∵G为CF的中点,∴AG=12CF=2√10,故答案为:2√10.连接AC、AF,延长CB交FH于M,求出CM和FM,根据勾股定理求出CF,求出∠CAF=90°,根据直角三角形的性质求出AG即可.本题考查了勾股定理、直角三角形斜边上中线的性质、正方形的性质等知识点,能求出∠CAF=90°和求出CF的长度是解此题的关键.【第 17 题】【答案】解:原式=3√2-2√2+3-1=√2+2.【解析】直接化简二次根式以及结合平方差公式计算得出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.【第 18 题】【答案】解:a√1a +√4b-√a4+√b=√a+2√b-√a2+√b =√a+3√b当a=8,b=2时,原式=√82+3√2=√2+3√2=4√2【解析】先把二次根式化成最简二次根式,然后合并同类二次根式,再代入求值.本题主要考查了二次根式的化简求值.注意若被开方数中含有分母,开出来后仍然充当分母.【第 19 题】【答案】解:a=12√32=2√2,b=13√18=√2.(1)长方形的周长=(2√2+√2)×2=6√2;(2)正方形的周长=4√2√2×√2=8,∵6√2=√72.8=√64,∵√72>√64∴6√2>8.【解析】首先化简a=12√32=2√2,b=13√18=√2.(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可.此题考查二次根式的实际运用,掌握二次根式的化简方法以及长方形、正方形的周长与面积计算方法是解决问题的关键.【第 20 题】【答案】解:(1)男生有:1+2+6+3+5+3=20(人),女生有:45-20=25(人),故答案为:20,25;(2)解:男生的平均分为120×(5×1+6×2+7×6+8×3+9×5+10×3)=7.9,女生的众数为8,补全表格如下:故答案为:7.9,8;(3)女生队表现更突出,理由:从众数看,女生队的众数高于男生队的众数,所以女生队表现更突出.【解析】(1)根据条形统计图中的数据可以求得男生的人数,从而可以求得女生的人数;(2)根据统计图中的数据可以计算出男生的平均数和女生的众数,本题得以解决;(3)根据表格中的数据,进行说明理由即可,本题答案不唯一,说的只要合理即可.本题考查方差、众数、中位数、平均数,解答本题的关键是明确题意,利用数形结合的思想解答.【第 21 题】【答案】证明:四边形AECF的形状是菱形,理由是:∵平行四边形ABCD,∴AD∥BC,∴∠DAO=∠ACF,∠AEO=∠CFO,∵EF过AC的中点O,∴OA=OC,在△AEO和△CFO中,{∠EAO=∠OCF ∠AEO=∠CFOOA=OC,∴△AEO≌△CFO(AAS),∴OE=OF,∵OA=CO,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形.【解析】根据平行四边形性质推出AD∥BC,得出∠DAO=∠ACF,∠AEO=∠CFO,根据AAS证△AEO≌△CFO,推出OE=OF即可.本题考查了平行线性质,平行四边形的性质,矩形、菱形的判定等知识点的应用,能熟练地运用性质进行推理是解此题的关键,题型较好,具有一定的代表性,但难度不大.【第 22 题】【答案】解:(1)设甲的函数解析式是y=kx+b ,根据题意得:{b =6100k +b =16, 解得:{k =0.1b =6, 则甲的函数解析式是:y=0.1x+6;设乙的函数解析式是y=mx ,根据题意得:100m=12,解得:m=0.12,则乙的函数解析式是:y=0.12x ;(2)根据题意得:0.1x+6=0.12x ,解得:x=300,故当印刷300份学案时,两种印刷方式收费一样.【 解析 】(1)设出两种收费的函数表达式,代入图象上的点,利用待定系数法即可求解;(2)把两个解析式中,令y 相等,则得到一个关于x 的方程,求得当y 相等时x 的值即可. 此题考查了一次函数的应用,待定系数法求函数的解析式,以及一次函数与一元一次方程的关系.理解题意,从图象中获取有用信息是解题的关键.【 第 23 题 】【 答 案 】解:(1)∵AD ∥BC ,∴∠DAF=∠AFB ,∵AF 平分∠DAB ,∴∠DAF=∠BAF ,∴∠BAF=∠AFB ,∴AB=BF=3,∵BC=5,∴CF=5-3=2,∵AD ∥BC ,AE ∥CD ,∴四边形AFCD 是平行四边形,∴AD=CF=2;(2)过B 作AF 的垂线BG ,垂足为G .∵AF ∥DC ,∴∠AFB=∠C=30°,在Rt △BGF 中,GF=BF•cos30°=3×√32=3√32, ∵AB=BF ,BG ⊥AF ,∴AF=2FG=3√3,由(1)知:四边形AFCD 是平行四边形,∴DC=AF=3√3.【 解析 】(1)根据角平分线和平行线的性质:∠BAF=∠AFB ,所以AB=BF=3,再证明四边形AFCD 是平行四边形,可得结论;(2)作高线BG ,根据特殊的三角函数或勾股定理可得FG 的长,所以得AF 的长,由(1)知:四边形AFCD 是平行四边形,得结论.本题考查了平行四边形的判定,三角函数的应用(或勾股定理)、等腰三角形的判定、平行线的性质,正确作出辅助线是关键.【 第 24 题 】【 答 案 】解:(1)由题意,每天生产A 种品牌的酒x 瓶,则每天生产B 种品牌的酒(600-x )瓶, ∴y=20x+15(600-x )=9000+5x .(2)根据题意得:{600−x ≥600×55%50x +35(600−x)≥25000, 解得:26623≤x≤270,∵x 为整数,∴x=267、268、269、270,该酒厂共有4种生产方案:①生产A 种品牌的酒267瓶,B 种品牌的酒333瓶;②生产A 种品牌的酒268瓶,B 种品牌的酒332瓶;③生产A 种品牌的酒269瓶,B 种品牌的酒331瓶;④生产A 种品牌的酒270瓶,B 种品牌的酒330瓶;∵每天获利y=9000+5x ,y 是关于x 的一次函数,且随x 的增大而增大,∴当x=267时,y 有最小值,y 最小=9000+5×267=10335元.【 解析 】(1)根据获利y=A 种品牌的酒的获利+B 种品牌的酒的获利,即可解答.(2)根据生产B 种品牌的酒不少于全天产量的55%,A 种品牌的酒的成本+B 种品牌的酒的成本≥25000,列出方程组,求出x 的取值范围,根据x 为正整数,即可得到生产方案;再根据一次函数的性质,即可求出每天至少获利多少元.本题考查了一次函数的应用,关键从表格种获得成本价和利润,然后根据利润这个等量关系列解析式,根据第二问中的利润和成本做为不等量关系列不等式组分别求出解,然后根据一次函数的性质求出哪种方案获利最小.【 第 25 题 】【 答 案 】解:(1)联立两直线解析式得:{y =−x +4y =13x , 解得:{x =3y =1, 则C 坐标为(3,1);(2)由题意:M (a ,0)D (a ,13a ) E (a ,-a+4)∵DE=2DM ∴|13a-(-a+4)|=2|13a|解得a=2或6.(3)如图2中,过O 作OQ ⊥OP ,交BP 的延长线于点Q ,可得∠POQ=90°,∵∠BPO=135°,∴∠OPQ=45°,∴∠Q=∠OPQ=45°,∴△POQ 为等腰直角三角形,∴OP=OQ ,∵∠AOB=∠POQ=90°,∴∠AOB+∠BOP=∠POQ+∠POB ,即∠AOP=∠BOQ ,∵OA=OB=4,∴OA OP =OB OQ ,∴△AOP ∽△BOQ ,∴∠APO=∠BQO=45°,∴∠APB=∠BPO-∠APO=90°,则AP ⊥BP .【解析】(1)联立两直线解析式得到方程组,求出方程组的解即可确定出C的坐标;(2)将x=1代入两直线方程求出对应y的值,确定出D与E的纵坐标,即OD与OE的长,由OE-OD求出DE的长,根据ED=2DM,求出MN的长,将x=a代入两直线方程,求出M与N对应的横坐标,相减的绝对值等于MN的长列出关于a的方程,求出方程的解即可求出a的值;(3)AP⊥BP,理由为:过O作OQ⊥OP,交BP的延长线于点Q,由∠BPO为135°,得到∠OPQ为45°,又∠POQ为直角,可得出三角形OPQ为等腰直角三角形,再利用两对对应边成比例且夹角相等的两三角形相似得到三角形AOP与三角形BOQ相似,由相似三角形的对应角相等得到∠APO=∠BQO=45°,由∠BPO-∠APO得到∠APB为直角,即AP⊥BP.此题属于一次函数综合题,涉及的知识有:相似三角形的判定与性质,等腰直角三角形的判定与性质,两直线的交点,一次函数与坐标轴的交点,以及坐标与图形性质,属于中考压轴题.- 21 -。
2019-2020学年八年级(下)期末数学试卷(含解析)

2019-2020学年八年级(下)期末数学试卷一、选择题(本大题共10小题,共40.0分)1. 把代数式根号外的因式移入括号内,则原式等于( ) A.B. C. D. 2. 用配方法解一元二次方程2x 2−3x −1=0,配方正确的是( )A. (x −34)2=1716B. (x −34)2=12C. (x −32)2=134D. (x −32)2=114 3. 如图,▱ABCD 的周长为36cm ,△ABC 的周长为28cm ,则对角线AC 的长为( )A. 28cmB. 18cmC. 10cmD. 8cm4. 下面性质中,平行四边形不一定具备的是( )A. 对角互补B. 邻角互补C. 对角相等D. 对角线互相平分5. 下列说法错误的是( ) A. 必然事件的概率为1B. 数据1、2、2、3的平均数是2C. 连续掷一枚硬币,若5次都是正面朝上,则第六次仍然可能正面朝上D. 如果某种活动的中奖率为40%,那么参加这种活动10次必有4次中奖6. 若x 1,x 2是方程2x 2+3x +1=0的两个根,则x 1+x 2的值是( )A. −3B. 32C. 12D. −32 7. 3、下列说法正确的是A. 若a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2B. 若a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2 C. 若a 、b 、c 是 △ABC 的三边,∠A =90°,则a 2+b 2=c 2D. 若a、b、c是△ABC的三边,∠C=90°,则a2+b2=c28.一个跳水运动员从10m高台上跳水,他每一时刻所在高度(单位:m)与所用时间(单位:s)的关系是:ℎ=−5(t−2)(t+1),则运动员起跳到入水所用的时间是()A. −5sB. 2sC. −1sD. 1s9.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则|a|<0是不可能事件;④16的平方根是±4,用式子表示是√16=±4;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个10.如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a//b//c.若a与b之间的距离是3,b与c之间的距离是5,则正方形ABCD的面积是()A. 16B. 30C. 34D. 64二、填空题(本大题共4小题,共20.0分)11.分解因式:4x2−121=______.12.为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)4569户数3421则关于这10户家庭的月用水量的中位数是______ ,平均数是______ ,众数是______ .13. 若m2+m−1=0,n2+n−1=0,且m≠n,则mn=______.14. 如图,四边形ABCD是矩形,AB=2,AD=√2,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是______.三、计算题(本大题共1小题,共8.0分)15. 解下列方程:(7分)(1)(2)X(X+4)=3(X+4)四、解答题(本大题共8小题,共82.0分)16. 计算:(1)√18÷√23×√43.(2)√48÷√3−√12×√12+√24.(3)(1+√5)(1−√5)+(1+√5)2.(4)√12+|√3−2|+(π−3.14)0−√3−1.17. 课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=√3AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=√3AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)18. 现在要从甲、乙两名学生中选择一名学生去参加比赛,因甲乙两人的5次测试总成绩相同,所以根据他们的成绩绘制了尚不完整的统计图表进行分析.第1次第2次第3次第4次第5次甲成绩90708010060乙成绩709090a70请同学们完成下列问题:(1)a=______,x乙−=______;(2)请在图中完成表示乙成绩变化情况的折线;2=200,请你计算乙的方差;(3)S甲(4)可看出______将被选中参加比赛.(第1问和第4问答案可直接填写在答题卡的横线上) 19. 将一条长为20厘米的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形.要使这两个正方形的面积之和等于17平方厘米,那么这段铁丝剪成两段后的长度各是多少?20. 如图,在小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的直角三角形ABE,点E在小正方形的顶点上,且△ABE的面积为5;(2)在方格纸中画出以CD为一边的△CDF,点F在小正方形的顶点上,△CDF的面积为4,射线CF与射线AB交于点N,且∠CNA=45°,连接EF,请直接写出线段EF的长.21. 根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解贵阳市19路公交车的运营情况,公交公司统计了某天19路公交车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天19路公交车平均每班的载客量;(3)如果一个月按30天计算,请估计19路公交车一个月的总载客量,并把结果用科学记数法表示出来.22. 如图,在平行四边形ABCD中,E、F分别是BC、AD上的点,且BE=DF.求证:AE=CF.23. 如图,花园围墙上有一宽1m的矩形门ABCD,量得门框对角线AC的长为2m.现准备打掉部分墙体,使其变为以AC为直径的圆弧形门,问要打掉墙体的面积是多少?(π≈3.14,√3≈1.73)【答案与解析】1.答案:B解析:本题考查二次根式的概念,由负数没有平方根求出a 的范围,判断出a −1为负数,将原式变形即可得到结果.注意a −1为负数,化简后的根式为负.∵ >0, ∴a −1<0, ∴故选B .2.答案:A解析:解:由原方程,得x 2−32x =12,x 2−32x +916=12+916, (x −34)2=1716,故选:A .化二次项系数为1后,把常数项−12移项,应该在左右两边同时加上一次项系数−32的一半的平方. 本题考查了解一元二次方程--配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 3.答案:C解析:解:∵▱ABCD 的周长是36cm ,∴AB +AD =18m ,∵△ABC的周长是28cm,∴AB+BC+AC=28cm,∴AC=(AB+BC+AC)−(AB+AC)=28−18=10(cm).故选:C.平行四边形的周长为相邻两边之和的2倍,即2(AB+BC)=36,则AB+BC=18cm,而△ABC的周长=AB+BC+AC=28,继而即可求出AC的长.本题考查平行四边形的性质,解题关键是掌握平行四边形的周长为相邻两边之和的2倍,难度一般.4.答案:A解析:试题分析:根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行,即可得平行四边形的邻角互补;所以B、C、D正确.∵平行四边形的对角相等,对角线互相平分,对边平行,即可得平行四边形的邻角互补;∴B、C、D正确.故选A.5.答案:D解析:此题主要考查了概率的意义,正确掌握概率的意义是解题关键.直接利用概率的意义进而分别分析得出答案.解:A、必然事件的概率为1,正确,不合题意;B、数据1、2、2、3的平均数是2,正确,不合题意;C、连续掷一枚硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,正确,不合题意;D、如果某种活动的中奖率为40%,那么参加这种活动10次不一定有4次中奖,故此选项错误,符合题意.故选:D.6.答案:D解析:解:根据题意得x1+x2=−32.故选:D.直接根据根与系数的关系求解.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.7.答案:D解析:解:A、勾股定理只限于在直角三角形里应用,故A可排除;B、虽然给出的是直角三角形,但没有给出哪一个是直角,故B可排除;C、在Rt△ABC中,直角所对的边是斜边,C中的斜边应为a,得出的表达式应为,故C也排除;D、符合勾股定理,正确.故选D.8.答案:B解析:解:设运动员起跳到入水所用的时间是xs,根据题意可知:−5(x−2)(x+1)=0,解得:x1=−1(不合题意舍去),x2=2,那么运动员起跳到入水所用的时间是2s.故选:B.根据每一时刻所在高度(单位:m)与所用时间(单位:s)的关系是:ℎ=−5(t−2)(t+1),把ℎ=0代入列出一元二次方程,求出方程的解即可.可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.9.答案:B解析:解:①“明天降雨的概率是50%”表示明天降雨与不降雨可能性相同,此结论错误;②无理数是无线不循环的数,此结论错误;③若a为实数,则|a|<0是不可能事件,此结论正确;④16的平方根是±4,用式子表示是±√16=±4,此结论错误;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.此结论正确;故选:B.根据概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义逐一求解可得.本题主要考查概率的意义,解题的关键是掌握概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义.10.答案:C解析:解:作AE⊥直线b于点E,作CF⊥直线b于点F,∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,∴∠ADE+∠CDF=90°,∵AE⊥直线b,CF⊥直线b,∴∠AED=∠DFC=90°,∴∠ADE+∠DAE=90°,∴∠DAE=∠CDF,在△AED和△DFC中,{∠AED=∠DFC ∠DAE=∠CDF AD=DC,∴△AED≌△DFC(AAS),∴AE=DF,∵AE=3,CF=5,∠CFD=90°,∴DF=3,∴CD=√CF2+DF2=√52+32=√34,∴正方形ABCD的面积是:√34×√34=34,故选:C.先作辅助线AE⊥直线b于点E,CF⊥直线b于点F,然后根据题目中的条件,可以证明△AED和△DFC 全等,即可得到DF=AE,然后根据勾股定理,即可得到CD的长,从而可以得到正方形ABCD的面积.本题考查正方形的性质、全等三角形的判定与性质、勾股定理,平行线之间的距离,解答本题的关键是明确题意,利用数形结合的思想解答.11.答案:(2x+11)(2x−11)解析:解:原式=(2x+11)(2x−11),故答案为:(2x+11)(2x−11).根据平方差公式,可得答案.本题考查了因式分解,利用平方差公式是解题关键.12.答案:5吨;5.3吨;5吨解析:本题考查了众数、加权平均数及中位数的知识,一组数据中出现次数最多的数据叫做众数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;利用加权平均数的计算方法求得其平均数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:表中数据为从小到大排列,5t和5t处在第5位、第6位,其平均数5t为中位数,平均数为:3×4+4×5+2×6+910=5.3吨,数据5t出现了四次最多为众数.故答案为:5吨,5.3吨,5吨.13.答案:−1解析:解:由题意可知:m、n是方程x2+x−1=0的两根,∴mn=−1.故答案为:−1.根据根与系数的关系即可求出答案.本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.14.答案:2√2−2解析:解:连接AE,∵∠ADE=90°,AE=AB=2,AD=√2,∴sin∠AED=ADAE,∴∠AED=45°,∴∠EAD=45°,∠EAB=45°,∴AD=DE=√2,∴阴影部分的面积是:(2×√2−45⋅π×22360−√2×√22)+(45⋅π×22360−√2×√22)=2√2−2,故答案为:2√2−2.根据题意可以求得∠BAE和∠DAE的度数,然后根据图形可知阴影部分的面积就是矩形的面积与矩形中间空白部分的面积之差再加上扇形EAF与△ADE的面积之差的和,本题得以解决.本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.答案:解析:(1)用公式法解方程;(2)用因式分解法解方程。
(真题卷附答案)2019-2020学年北京市八下期末数学试卷

2019-2020学年北京市八下期末数学试卷1.下列生活垃圾分类标志中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.2.用配方法解方程x2−6x+1=0,方程应变形为( )A.(x−3)2=8B.(x−3)2=10C.(x−6)2=10D.(x−6)2=83.下列曲线中不能表示y是x的函数的是( )A.B.C.D.4.一元二次方程x2−2x+3=0根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断5.一个多边形的内角和是外角和的2倍,这个多边形的边数为( )A.5B.6C.7D.86.A,B两地被池塘隔开,小明先在AB外选一点C,然后分别步测出AC,BC的中点D,E,并测出DE的长为20m,则AB的长为( )A.10m B.20m C.30m D.40m7.下图是利用平面直角坐标系画出的北京世园会部分景区图.若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示竹里馆的点的坐标为(−3,1),表示海坨天境的点的坐标为(−2,4),则下列表示国际馆的点的坐标正确的是( )A.(8,1)B.(7,−2)C.(4,2)D.(−2,1)8.甲、乙两人在同一个单位上班.某天早高峰期间两人分别从各自家中同时出发去单位上班,两人与各自家的距离s(千米)和时间x(分钟)的关系如图1所示,两人与单位的距离z(千米)和时间x(分钟)的关系如图2所示,甲与单位的距离记作z甲,乙与单位的距离记作z乙,则下列说法中正确的是( )A.甲乙两人的家与单位的距离相同B.两人出发20分钟时,z乙−z甲的值最大C.甲、乙从家出发到达单位所用时间相同D.两人离家20分钟时,乙离单位近9.方程x2−2x=0的解是.10.平行四边形ABCD中,若∠A=2∠B,则∠A的度数为.11.在平面直角坐标系中,点P(1,2)关于y轴的对称点Q的坐标是.12.如果m是方程x2−2x−6=0的一个根,那么代数式2m−m2+7的值为.13.已知点A(x1,y1),B(x2,y2)是函数y=kx(k≠0)图象上任意两点,且当x1<x2时,总有y1>y2成立,写出一个符合题意的k值.14. 如图,直线 y =kx +b 与 y =mx +n 相交于点 M ,则关于 x ,y 的方程组 {y =kx +b,y =mx +n的解是 .15. 关于 x 的方程 x 2−2x −m =0 有两个不相等的实数根,则 m 的取值范围是 .16. 如图,平面直角坐标系 xOy 中,正方形 ABCD 的顶点 A 与原点重合,点 B 在 x 轴正半轴上,点 D 在 y 轴正半轴上,正方形 ABCD 边长为 2,点 E 是 AD 的中点,点 P 是 BD 上一个动点.当 PA +PE 最小时,P 点的坐标是 .17. 解方程:x 2−3x −4=0.18. 已知一次函数 y =kx +b 经过点 A (3,0),B (0,3).(1) 求 k ,b 的值.(2) 在平面直角坐标系 xOy 中,画出函数图象;(3) 结合图象直接写出不等式 kx +b >0 的解集.19. 已知:如图,平行四边形 ABCD 中,E ,F 是 AB ,CD 上两点,且 AE =CF .求证:DE =BF .20.已知关于x的一元二次方程x2+(m−1)x−m=0.(1) 求证:方程总有两个实数根;(2) 若方程的一根为负数,求m的取值范围.21.下面是小明设计的作矩形ABCD的尺规作图过程.已知:Rt△ABC中,∠ABC=90∘.求作:矩形ABCD.作法:如图,1.以点A为圆心,BC长为半径作弧;2.以点C为圆心,AB长为半径作弧;3.两弧交于点D,点B和点D在AC异侧;4.连接AD,CD.所以四边形ABCD是矩形.(1) 根据小明设计的尺规作图过程,使用直尺和圆规,补全图形(保留作图痕迹);(2) 完成下面的证明.证明:∵AB=,BC=,∴四边形ABCD是平行四边形()(填推理的依据)又∵∠ABC=90∘,∴四边形ABCD是矩形.()(填推理的依据)22.为深化疫情防控国际合作、共同应对全球公共卫生危机,我国有序开展医疗物资出口工作.2020年3月,国内某企业口罩出口订单额为1000万元,2020年5月该企业口罩出口订单额为1440 万元.求该企业 2020 年 3 月到 5 月口罩出口订单额的月平均增长率.23. 已知:如图,在矩形 ABCD 中,对角线 AC 的垂直平分线 EF 分别与 AC ,BC ,AD 交于点 O ,E ,F ,连接 AE 和 CF .(1) 求证:四边形 AECF 为菱形;(2) 若 AB =√3,BC =3,求菱形 AECF 边长.24. 已知直线 y =x +1 与 y =−2x +b 交于点 P (1,m ),(1) 求 b ,m 的值;(2) 若 y =−2x +b 与 x 轴交于 A 点,B 是 x 轴上一点,且 S △PAB =4,求 B 的横坐标.25. 如图,在 △ABC 中,AB =4 cm ,BC =5 cm ,点 P 是线段 BC 上一动点.设 PB =x cm ,PA =y cm .(点 P 可以与点 B 、点 C 重合).小云根据学习函数的经验,对函数 y 随自变量 x 变化而变化的规律进行了探究. 下面是小云的探究过程,请补充完整. 通过测量,得到 x ,y 数据如下:x 00.51 1.5234 4.55y4.0 3.6 3.3 2.9 2.7m2.5 2.73.0(1) 经测量 m 的值为 ;(保留一位小数)(2) 在平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y),并画出函数图象;(3) 结合函数图象解决问题,当△ABP为等腰三角形时,PB的长度约为(结果保留一位小数).26.已知直线y=kx+2与y轴交于点A.将点A向右平移2个单位,再向上平移1个单位,得到点B.(1) 求点A,B坐标.(2) 点B关于x轴的对称点为点C.若直线y=kx+2与线段BC有公共点,求k的取值范围.27.正方形ABCD中,将线段AB绕点B顺时针旋转α(其中0∘<α<90∘),得到线段BE,连接AE.过点C作CF⊥AE交AE延长线于点F,连接EC,DF.(1) 在图中补全图形;(2) 求∠AEC的度数;(3) 用等式表示线段AF,DF,CF的数量关系,并证明.28.在平面直角坐标系xOy中,把图形G上的点到直线l距离的最大值d定义为图形G到直线l的最大距离.如图1,直线l经过(0,3)点且垂直于y轴,A(−2,2),B(2,2),C(0,−2),则△ABC到直线l的最大距离为5.(1) 如图2,正方形ABCD的中心在原点,顶点都在坐标轴上,A(0,2).①求正方形ABCD到直线y=x+4的最大距离.②当正方形ABCD到直线y=x+b的最大距离小于3√2时,直接写出b的取值范围.(2) 若正方形边长为2,中心P在x轴上,且有一条边垂直于x轴,该正方形到直线y=x的最大距离大于2√2,求P点横坐标的取值范围.答案1. 【答案】B【解析】A、既不是中心对称图形,也不是轴对称图形,故本选项不合题意;B、既是中心对称图形又是轴对称图形,故本选项符合题意;C、不是中心对称图形,是轴对称图形,故本选项不合题意;D、既不是中心对称图形,也不是轴对称图形,故本选项不合题意.故选:B.2. 【答案】A【解析】∵x2−6x+1=0,∴x2−6x=−1,∴x2−6x+9=−1+9,∴(x−3)2=8.3. 【答案】A【解析】A的图象都不满足对于x的每一个取值,y都有唯一确定的值与之对应,故A选项不能表示y是x函数;B选项的图象,对于x的每一个取值,y都有唯一一个确定的值与之对应,故B选项能表示y 是x函数;C选项的图象,对于x的每一个取值,y都有唯一一个确定的值与之对应,故C选项能表示y 是x函数;D选项的图象,对于x的每一个取值,y都有唯一一个确定的值与之对应,故D选项能表示y 是x函数.4. 【答案】C【解析】∵a=1,b=−2,c=3,∴b2−4ac=4−4×1×3=−8<0,∴此方程没有实数根.故选C.5. 【答案】B6. 【答案】D【解析】∵D,E分别是AC,BC的中点,∴AB=2DE,∵DE=20m,∴AB=40m.7. 【答案】C【解析】将竹里馆的点的坐标(−3,1)向右平移3个单位,再向下平移1个单位可得原点(0,0)即中国馆所在位置,所以国际馆的点的坐标为(4,2).8. 【答案】B【解析】A:由图1可得:甲距离单位4千米,乙距离单位5千米,故此选项错误;B:由图2可得:x=20时,z乙与z甲落差最大,故此选项正确;C:由图1可得:甲到达单位所需时间为30分钟,乙到达单位所需时间为40分钟,故此选项错误;D:由图2可得:x=20时,z乙>z甲,甲离单位更近,故此选项错误.9. 【答案】x1=2,x2=0【解析】x(x−2)=0,x1=2,x2=0.10. 【答案】120°【解析】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180∘,∵∠A=2∠B,∴2∠B+∠B=180∘,∴∠B=60∘,∴∠A=120∘.故答案为:120∘.11. 【答案】(−1,2)【解析】关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.故Q坐标为(−1,2).12. 【答案】1【解析】由题意可知:m2−2m−6=0,整理得:m2=6+2m,∴2m−m2+7=2m−(6+2m)+7=2m−6−2m+7= 1.13. 【答案】−1或−2(答案不唯一,值小于0即可)【解析】∵当x1<x2时,总有y1>y2成立,∴y随x的增大而减小,∴k<0.故答案为:−1或−2(答案不唯一,值小于0即可).14. 【答案】 {x =2,y =4【解析】 ∵ 两直线的交点坐标为 (2,4),∴ 方程组 {y =kx +b,y =mx +n的解是 {x =2,y =4.15. 【答案】 m >−1【解析】关于 x 的方程 x 2−2x −m =0 有两个不相等的实数根,所以 Δ=(−2)2−4×1×(−m )=4+4m >0,所以 m >−1.16. 【答案】 (23,43)【解析】由正方形的性质可知点 A 与点 C 关于对角线 BD 对称,连接 AC ,连接 CE 交 BD 于点 Pʹ,连接 PʹA ,由对称得 PʹA =PʹC ,∴PʹA +PʹE =PʹC +PʹE =CE ,∴ 当点 P 在点 Pʹ 时,PA +PE 最小,其最小值为 PʹA +PʹE ,此时,点 Pʹ 为 BD 和 CE 的交点.∵ 正方形 ABCD 边长为 2,点 E 是 AD 的中点,∴AB =BC =CD =AD =2,AE =DE =1,∴B (2,0),D (0,2),E (0,1),C (2,2),设直线 BD 的解析式为 y =kx +b ,将点 B ,点 D 坐标代入可得 {2k +b =0,b =2,解得 {k =−1,b =2,所以直线 BD 的解析式为 y =−x +2,同理可得直线 CE 的解析式为 y =12x +1, 联立得 {y =−x +2,y =12x +1,解得 {x =23,y =43.所以 Pʹ(23,43),即当 PA +PE 最小时,P 点的坐标是 (23,43).17. 【答案】 x 2−3x −4=0,(x −4)(x +1)=0,∴x −4=0 或 x +1=0,∴x 1=4,x 2=−1.18. 【答案】(1) 由题意,将点 A (3,0),B (0,3) 带入一次函数的解析式得:{3k +b =0,b =3, 解得 {k =−1,b =3. 即 k =−1,b =3;(2) 先描出点 A (3,0),B (0,3),再过 A ,B 画直线即可,如图所示:(3) x <3.【解析】(3) 由(2)的函数图象得:当 x <3 时,一次函数的图象位于 x 轴的上方,即 y >0,则不等式 kx +b >0 的解集为 x <3.19. 【答案】在平行四边形 ABCD 中,AB ∥CD ,AB =CD ,∵AE =CF ,∴BE =DF ,BE ∥DF .∴ 四边形 DEBF 是平行四边形.∴DE =BF .20. 【答案】(1) Δ=(m −1)2−4×1×(−m )=m 2+2m +1=(m +1)2,∴(m +1)2≥0,∴ 方程总有实数根.(2) ∵x 2+(m −1)x −m =(x +m )(x −1)=0,∴x 1=−m ,x 2=1,若方程的一根为负数,则 −m <0,m >0.21. 【答案】(1) 如图,四边形ABCD即为所求作矩形;(2) CD;AD;两组对边分别相等的四边形是平行四边形;有一个角是直角的平行四边形是矩形22. 【答案】设该企业2020年3月到5月口罩出口订单额的月平均增长率为x,依题意,得:1000(1+x)2=1440,解得:x1=0.2=20%,x2=−2.2(不合题意,舍去),答:该企业2020年3月到5月口罩出口订单额的月平均增长率为20%.23. 【答案】(1) 证明:∵AC的垂直平分线EF分别与AC,BC,AD交于点O,E,F,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠FAO=∠ECO,在△AOF和△COE中,∵∠FAO=∠ECO,OA=OC,∠AOF=∠COE,∴△AOF≌△COE(ASA),∴AF=CE,∴AE=EC=CF=AF,∴四边形AECF为菱形;(2) 设AE=CE=x,则BE=3−x,∵四边形ABCD是矩形,∴∠B=90∘,在Rt△ABE中,由勾股定理得:AB2+BE2=AE2,即(√3)2+(3−x)2=x2,解得:x=2,即AE=2,∴菱形AECF的边长是2.24. 【答案】(1) 已知直线y=x+1与y=−2x+b交于点P(1,m),∴m=1+1,m=−2+b,∴m=2,b=4.(2) 由(1)得直线y=−2x+b的解析式为:y=−2x+4,点P坐标为(1,2),当y=0时,x=2,∴直线y=−2x+4与x轴交点A的坐标为(2,0),∵S△PAB=4,P(1,2),∴S△PAB=12AB⋅∣y P∣=4,∴AB=4,∴B的横坐标为6或−2.25. 【答案】(1) 2.4(2) 函数图象如图所示:(3) 4cm或2.5cm【解析】(1) 经过测量,当PB=3cm时,PA的长约为2.4cm,即当x=3时,m的值约为2.4.(3) 分三种情况:若BP=BA=4cm,则△ABP为等腰三角形;若PB=PA,则△ABP为等腰三角形,此时x=y,由图象可得x≈2.5cm;若AP=AB=4cm,由于x=5时,y=3,所以此时P,C两点重合,AC=3cm,因为AC<AB,故此种情况不存在;综上,当△ABP为等腰三角形时,PB的长度约为4cm或2.5cm.26. 【答案】(1) 因为当x=0时,y=2,所以A(0,2),点A向右平移2个单位,再向上平移1个单位,得到点B(0+2,2+1),即B(2,3).(2) 由(1)可得点B关于x轴的对称点为点C(2,−3),如图,当x=2,−3≤y≤3时,直线y=kx+2与线段BC有公共点,即−3≤2k+2≤3.解得−52≤k≤12.27. 【答案】(1) 根据题意,可以画出图形,如图所示:(2) ∵AB旋转到BE,∴△ABE和△BCE都为等腰三角形,∵∠ABE=α,∴∠EBC=90∘−α,∴∠BEA=90∘−12α,∠BEC=45∘+12α,∵∠AEC=∠BEA+∠BEC,∴∠AEC=90∘−12α+45∘+12α=135∘.(3) 在AF上取AH=CF,∵∠AOD=∠COF,∠ADO=∠OFC=90∘,∴∠DAH=∠DCF,在△AHD和△CFD中{AH=CF,∠DAH=∠DCF, AD=CD,∴△AHD≌△CFD,∴∠ADH=∠CDF,DH=DF,∵∠ADH+∠HDO=90∘,∴∠CDF+∠HDO=90∘,∴△HDF为等腰直角三角形,∴HF=√2DF,∵AF=AH+HF,∴AF=CF+√2DF.28. 【答案】(1) ①如图,延长CB交直线y=x+4于点E,记直线y=x+4与y轴交与点F,由直线y=x+4可知,∠CFE=45∘,∵正方形ABCD的中心在原点,顶点都在坐标轴上,A(0,2),∴CE⊥EF,CF=4+2=6,∴CE2+EF2=CF2,∴CE=EF=3√2,即正方形ABCD到直线y=x+4的最大距离为3√2.② −4<b<4.(2) 当正方形ABCD在如图所示位置时,该正方形到直线y=x的距离为2√2,此时点P的横坐标为−2或2,若要该正方形到直线y=x的最大距离大于为2√2,则点P横坐标的取值范围为x<−2或x>2.【解析】(1) 由①可知,当b=4时,正方形ABCD到直线y=x+b的最大距离为3√2,若要使正方形ABCD到直线y=x+b的最大距离小于3√2,则b的取值范围为−4<b<4.。
2019—2020学年度第二学期期末考试八年级数学试题及答案

2019—2020学年度第二学期期末考试八年级数学试题注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷.2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.3.答题前,务必将自己的学校、班级、姓名、准考证号填写在答题纸上相应位置.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上)1.下列图形中,既是轴对称图形又是中心对称图形的是A .B.C.D.2.下列调查中,最适宜采用普查方式的是A.对科学通信卫星上某种零部件的调查B.对我国初中学生视力状况的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查3.与5是同类二次根式的是A.3B.10C.25D.154.下列分式中,最简分式是A.24aB.21aa+C.22a ba b-+D.2a aba b++5.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6),下列事件中是必然事件的为A.两枚骰子朝上一面的点数和为6 B.两枚骰子朝上一面的点数均为偶数C.两枚骰子朝上一面的点数和不小于2 D.两枚骰子朝上一面的点数均为奇数6.已知反比例函数y=3x,下列结论中,不正确...的是A.图像必经过点(1,3)B.y随x的增大而减小C.图像在第一、三象限内D.若x>1,则0<y<37.小峰不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的玻璃,他带了两块碎玻璃,其编号应该是A.①,②B.①,④C.③,④D.②,③八年级数学试题第1页共6页八年级数学试题 第2页 共6页8.如图,在矩形ABCD 中,AB =3,BC =4,若点P 是AD 边上的一个动点,则点P 到矩形 的对角线AC 、BD 的距离之和为A .2.4B .2.5C .3D .3.6二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题纸相应位置上).9. 使二次根式1x -有意义的x 的取值范围是 ▲ . 10.当x = ▲ 时,分式12x x +-的值为0. 11.若点A (1,m )在反比例函数2y x=的图像上,则m 的值为 ▲ . 12.比较大小:32 ▲ 23.(填“>”、“<”或“=”)13.一个不透明的盒子里装有黑、白两种球共40个(除颜色外其它均相同),小明将盒子里 的球搅匀后,从中随机摸出一个记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 65124 178 302 481 599 1803 摸到白球的频率mn0.650.620.5930.6040.6010.5990.601请估计摸到白球的概率为 ▲ (精确到0.01).14.平行四边形ABCD 的对角线AC 、BD 相交于点O ,当AC 、BD 满足 ▲ 时,平行四边形ABCD 为菱形.15.实数a 、b 在数轴上对应点的位置如右图所示,化简2()a b a --的结果是 ▲ .16.如图,过点P (5,3)作PM ⊥x 轴于点M 、PN ⊥y 轴于点N ,反比例函数ky x=(0)x >的图像交PM 于点A 、交PN 于点B .若四边形OAPB 的面积为10,则k = ▲ .ABP MNOxy 第16题图ABCDP第8题图ba第15题图第7题图① ②③④八年级数学试题 第3页 共6页三、解答题(本大题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分6分)计算:(1)282- (2)(32)(32)+-18.(本题满分6分)解方程:11322xx x-=--- 19.(本题满分6分) 先化简再求值:31(1)12x x x x -+-⋅--,其中x =3.20.(本题满分6分)关注“安全”是一个永恒不变的话题.某中学对部分学生就安全知识的了解程度,采取了随机抽样调查的方式,将收集到的信息分为4种类别:A.非常了解;B.基本了解;C.了解很少;D.不了解.请你根据统计图中所提供的信息解答下列问题.(1)接受问卷调查的学生共有 ▲ 人,扇形统计图中“了解很少”部分所对应扇形的圆心角为 ▲ °;(2)请补全条形统计图;(3)若该学校共有学生3000人,估计该学校学生中对安全知识达到 “非常了解”和“基 本了解”程度的总人数.ACB D50%扇形统计图10 20 30 40 0ABCD5 类别人数 条形统计图1530八年级数学试题 第4页 共6页21.(本题满分6分)如图,在□ABCD 中,∠BAD 的角平分线分别交BC 以及DC 的延长线于点E 、 F . (1)求证:BC =DF ;(2)若∠F =65°,求∠D 的度数.22.(本题满分6分)已知m 是3的整数部分,n 是3的小数部分. (1)m = ▲ ,n = ▲ ; (2)求代数式22m n - 的值.23.(本题满分8分)彭师傅检修一条长为900米的煤气管道,计划用若干小时完成,在实际检修过程中,每小时检修的管道长是原计划的1.2倍,结果提前3小时完成任务.彭师傅原计划每小时检修管道多少米?24.(本题满分8分)如图,点A (m ,4),B (n ,1)在反比例函数(0)ky x x =>的图像上,过点A 、B 分别作x轴的垂线,垂足为点C 和点D ,且CD =3. (1)求m 、n 的值,并写出反比例函数的表达式;(2)若直线AB 的函数表达式为(0)y ax b a =+≠,请结合图像直接写出不等式k ax b x+< 的解集.A B C D E F ABCDO xy八年级数学试题 第5页 共6页25.(本题满分10分)问题呈现:我们知道反比例函数(0)k y k x =≠的图像是双曲线,那么函数k y n x m =++(k 、m 、n 为常数且k ≠0)的图像还是双曲线吗?它与反比例函数(0)ky k x=≠的图像有怎样的关系呢?让我们一起开启探索之旅……探索思考:我们可以借鉴以前研究函数的方法,首先探索函数41y x =+的图像. (1)填写下表,并画出函数41y x =+的图像. ①列表:x … -5-3-20 1 3 … y……②描点并连线.(2)观察图像,写出该函数图像的两条不同类型的特征: ① ▲ ; ② ▲ . 理解运用:函数41y x =+的图像是由函数4y x=的图像向 ▲ 平移 ▲ 个单位,其对称中心的坐标为 ▲ .灵活应用:根据上述画函数图像的经验,想一想函数421y x =++的图像大致位置,并根据图像指出,当x 满足 ▲ 时,y ≥3.–1 –2 –3 –4 –5 –6 1 2 3 4 5 6 –1 –2 –3 –4 –5 –6 1 2 3 4 5 6 xy O八年级数学试题 第6页 共6页26.(本题满分10分) 在数学兴趣小组活动中,小悦进行数学探究活动.将边长为1的正方形ABCD 与边长为2的正方形AEFG 按图①位置放置,AD 与AE 在同一条直线上,AB 与AG 在同一条直线上.连接DG 、BE ,易得DG =BE 且DG BE ⊥(不需要说明理由).(1)如图②,小悦将正方形ABCD 绕点A 逆时针旋转,旋转角为α(30 º <α<180 º). (Ⅰ)连接DG 、BE ,求证:DG =BE 且DG BE ⊥.(Ⅱ)在旋转过程中,如图③连接BG 、GE 、ED 、DB ,求出四边形BGED 面积的最 大值.(2)如图④,分别取BG 、GE 、ED 、DB 的中点M 、N 、P 、Q ,连接MN 、NP 、PQ 、 QM ,则四边形MNPQ 的形状为 ▲ ,四边形MNPQ 面积的最大值是 ▲ .A B C D EF G 图① AB C DG E F图③ A B C D EF G MQ P N图④A BCD GEF 图②八年级数学试题 第7页 共6页八年级数学答题纸题号 1-8 9-16 17 18 19 20 21 22 23 24 25 26 总分得分一、选择题(本大题共8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案二、填空题(本大题共8小题,每小题3分,共24分)9. 10. 11. 12. 13. 14. 15. 16. 三、解答题(本大题共有10小题,共72分) 17.(本题满分6分) (1) (2)18.(本题满分6分)19.(本题满分6分)20.(本题满分6分)(1)________;________.10 20 30 40ABCD5 类别人数条形统计图1530(3)21.(本题满分6分)(1)(2)22.(本题满分6分)(1)________;________.(2)23.(本题满分8分)AB CDEF八年级数学试题第8页共6页八年级数学试题 第9页 共6页24.(本题满分8分) (1)(2)25.(本题满分10分)探索思考:(1) ①x … -5-3-20 1 3 … y……② (2)①:________________________________________________________________; ②:________________________________________________________________.ABC DO xy–1 –2 –3 –4 –5 –6 12 3 45 6 –1–2 –3 –4 –5 –612 3 4 5 6 x y O理解运用:________________;________________;________________.灵活应用:__________________________________.26.(本题满分10分)(1)(Ⅰ)(Ⅱ)(2)________________;________________.ABCDGEF图②ABCDGEF图③八年级数学试题第10页共6页八年级数学试题 第11页 共6页八年级数学试题参考答案及评分细则一、选择题(每小题3分,共24分.) 1.D 2.A 3.C 4.B 5.C 6.B 7.D 8.A 二、填空题(每小题3分,共24分.)9.x ≥1 10.1- 11.2 12.>13.0.6014.AC ⊥BD15.b16.5三、解答题(本大题共有10小题,共72分) 17.解:(1)原式=222-=2. ················································································ 3分 (2)原式=92-=7. ··················································································· 3分 18.解:两边同乘以(2)x -1(1)3(2)x x =----2x = ································································································· 4分 检验:当2x =时,(2)x -=0 ································································· 5分 ∴2x =是原分式方程的增根,原分式方程无解. ······································· 6分 19.解:原式24112x x x x --=⋅-- 2x =+ ························································································ 4分 把3x =代入(2)x + 原式32=+5=. ·························································································· 6分 20.解:(1)60;90; ··············································································· 2分 (2)如图所示,就是我们所要补全的条件统计图; ······················· 4分 (3)30103000200060+⨯=(人) 答:该学校学生中对安全知识达到 “非常了解”和“基本了解”程度的 总人数为2000人. ········································································ 6分21.解:(1)∵四边形ABCD 为平行四边形1010 20 30 40 0ABCD5 类别人数 条形统计图1530八年级数学试题 第12页 共6页∴BA ∥CD ,AD =BC ···································································································· 1分 ∴∠BAF =∠F ∵AE 平分∠BAD ∴∠BAF =∠DAF∴∠DAF =∠F ··············································································································· 2分 ∴AD =DF∴BC =DF ······················································································································ 3分 (2)∵AD =DF∴∠F =∠DAF =65° ············································································ 5分 ∴∠D =50°. ····················································································· 6分 22.解:(1)1;31- ························································································ 2分 (2)原式()()m n m n =+⋅- ········································································ 3分 3(131)=⋅-+233=-. ··························································· 6分23.解:设彭师傅原计划每小时检修管道x 米,根据题意可得:90090031.2x x =+ ····················································································· 3分 解得:50x = ······················································································ 4分 经检验:50x =是原分式方程的解. ························································ 5分 答:彭师傅原计划每小时检修管道50米. ················································ 6分 24.解:(1)根据题意得:43m nn m =⎧⎨-=⎩·······································2分 解得:14m n =⎧⎨=⎩·································· 4分把(14),代入ky x= ∴4k =∴反比例函数的表达式为4y x=. ·························································· 6分 (2)01x <<或4x >. ········································································ 8分ABCO xy八年级数学试题 第13页 共6页25.解: (1)探索思考: ①列表:···························································································· 1分x … -5 -3 -2 0 1 3 … y…-1-2-4421…② ······································································································ 3分(2)①图像是中心对称图形; ········································································· 4分 ②当1x >-时,y 随着x 的增大减小. ························································ 5分 ③图像是轴对称图形 ④图像经过点(0,4) ⑤与x 轴没有交点…… (注:仅写两条即可) 理解运用:左;1;(1,0)-. ···················································································· 8分 灵活应用:13x -<≤. ························································································· 10分 26.解:(1) (Ⅰ)证明:∵正方形ABCD 和正方形AEFG∴AD =AB ,AE =AG ,∠BAD =∠GAE =90° ··············································· 1分 ∴∠DAG =∠BAE–1 –2 –3 –4 –5 –6 1 2 34 56 –1–2 –3 –4 –5 –612 3 4 5 6 xyO八年级数学试题 第14页 共6页在△DAG 和△BAE 中, DA BA DAG BAE GA EA =⎧⎪=⎨⎪=⎩∠∠ ∴△DAG ≌△BAE ·················································································· 2分 ∴DG =BE ···························································································· 3分 ∴∠DGA =∠BEA∵∠DGA +∠GHE =∠BEA +∠GAE ∴∠GHE =∠GAE =90°∴DG ⊥BE ···························································································· 4分 (Ⅱ)连接BE 、DG 相交点H ∵BE ⊥DG∴S 四边形BGED =S △BGE +S △BDE=1122GH BE DH BE ⋅+⋅ =12DG BE ⋅ =212BE ······························································································ 6分 当α=90°时BE 最大值=BA +AE =21+∴S 四边形BGED 的最大值为21(21)2+即为3222+. ········································· 8分(2)正方形;3224+. ······································································· 10分ABCDGEF图②ABCDG EF图③ HH。
2019~2020学年度第二学期期末考试八年级数学答案

2019~2020学年度第二学期期末考试八年级数学参考答案一.选择题(共10小题,每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案BDDCADCDCB二.填空题(共6小题,每小题3分,共18分)11. 3 12.86 13. 45°14.y =5x ,y =4x +2; 15.-3≤k ≤2 且k ≠0; 16. 102-. 第14题第1个空2分,第2个空1分第15题 左、右端点值各1分;没写k ≠0扣1分;没带等号扣1分第15题 代数法: 解析:∵y 1<y 2 ∴kx -2<2x +3 ∴(k -2)x <5 经分析得:k -2≤0 且2-5k ≥-1 解得:-3≤k <0或 0<k ≤2 几何法:-3≤k <0或 0<k ≤2第16题三.解答题(共8小题,共72分)17.解:(1)∵直线y =kx +b 与直线y =x 平行,∴k =1,……………2分把(1,-1)代入y =x +b 得:b +1=-1,∴b =-2, ………………………………3分 (2)把(1,-1),(-1,3)代入y =kx +b 得:13k b k b +=-⎧⎨-+=⎩, 解得:21k b =-⎧⎨=⎩, ……………………………6分 把(m ,7)代入y =-2x +1得:-2m +1=7, ∴m =-3,……………………………8分18.证明:(1)∵E 是CD 的中点,∴DE =CE , …………………1分∵CF //OD ,∴∠ODE =∠FCE , ………………………………………3分在△EDO 和△ECF 中,,,,ODE FCE DE O E CE DE B F ⎧⎪⎨⎪∠=∠∠∠=⎩= ∴△EDO ≌△ECF ,…………………4分 (2)∵△EDO ≌△ECF ∴OD=CF , ……………………………………5分 ∵CF //OD ,∴四边形OCFD 是平行四边形形, ……………………………………6分 ∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD =90°, ……………………………7分 ∴四边形OCFD 是矩形. ……………………………………8分19. (1)a =20,b =28, ………………………………2分 (2)72°, ………………………………3分 (3)814181088714618510+++×+×+×+×=6.4, ………………………………5分答:所有被调查学生课外阅读的平均本数为6.4本.………………………………6分 (4)12008141810814×++++=528, ……………………………7分答:估计该校八年级学生课外阅读7本及以上的人数约有528人.………………8分 20.解:(1)画图如图:………3分 (2)画图如图:………6分 (3)画图如图:………8分21.解:(1)把D (3,m )代入y =x -2得:m =3-2=1, ………1分 ∴点D 的坐标为(3,1)把D (3,1)代入y =kx +7得:3k +7=1,∴k = -2, …………………………3分 (2)由(1)得:直线AB 的解析式为y = -2x +7,当y =n 时,x -2=n ,x = n +2 ∴点M 的坐标为(n +2,n )当x =n 时,y = -2n +7 ∴点N 的坐标为(n ,-2n +7) …………………………5分 ∵点P (n ,n ), ∴PM = 2,PN =7-3n , ∵PN =2PM , ∴47-3=n , ∴n = 1或311, …………………………8分22.(A B 总计(t)C x-60300-x240D 260-x x260总计(t)200 300 500(2)①y1 = -5x+5300;y2 = 20x+4500;………………………………5分②由题意得:60030002600xxxx⎧≥≥≥⎪≥⎪⎪⎨⎪⎩---,解得60≤x≤260,………………………………6分∴y1-y2= -25x+800<0,∴y1<y2,∴A城总运费比B城总运费少………………………………7分(3)设两城总运费为W元,则W= -5x+5300+15(300﹣x)+(35﹣a)x=(15﹣a)x+9800;若0<a<15时15﹣a>0,W随x的增大而增大,∴当x=60时y取最小值,∴60(15﹣a)+9800≥10160,解得a≤9,∴0<a≤9 ………………8分若a=15时W=9800,不符合题意;若a>15时15﹣a<0,W随x的增大而减少,∴当x=260时y取最小值,∴260(15﹣a)+9800≥10160,解得a≤13813,不符合题意;………………9分综合可得:0<a≤9.……………………………………………10分23.(1)①证明:连接AG,∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,AD=BC,∵∠BAD=90°,BG=GF,∴AG=BG,……………………………………1分∴∠BAG=∠ABG,∴∠GAD=∠GBC,………………………2分在△GAD和△GBC中,AD BCDAG CBGAG BG=⎧⎪∠=∠⎨⎪=⎩∴△GAD≌△GBC,∴DG=CG;…………………………………………………………………………3分②解:连接FC 交DG 于点Q ,取FC 的中点H ,连接DH , ∵CE 垂直平分BF , ∴FC =BC ,∵四边形ABCD 是矩形, ∴AD =BC ,AB =DC , ∵BC =2AB , ∴FC =2CD ,∵∠FDC =90°,FH =HC , ∴FH =HC =DH ,∴CD =HC =DH , ∴△CDH 是等边三角形,∴∠FCD =60°,∴∠DFC =90°-∠FCD =30°, ………………5分 ∵FC =BC ,BG =GF , ∴∠FCG =∠BCG ,∵△GAD ≌△GBC ,∴∠ADG =∠BCG , ∴∠ADG =∠FCG ,∴∠FQG -∠ADG =∠FQG -∠FCG , ∴∠DGC =∠DFC =30°; ………………7分 (2)34; …………………………………………………………………………10分 24.解:(1)∵y =k (x -3)+4 ……………………………………2分∴当x =3时,y =4 ∴点P 的坐标为(3,4). ……………………………………3分 (2)延长AB 交x 轴于点E ,直线y =kx -3k +4交y 轴于点G ,∵当x =0时,y =4-3k , ∴G (0,4-3k ), ∴OG =4-3k .……………………4分 ∵BP 平分∠OBA , ∴∠ABP=∠OBP ,∵AB //y 轴, ∴∠ABP=∠OGB , ……………5分 ∴∠OBG=∠OGB , ∴OB =OG =4-3k . ……………6分 在Rt △OBE 中,222OB BE OE =+, ∴222)3-4()34(6k k =++,∴43-=k . …………………………………………7分(3)作PS ⊥x 轴于点S ,NT ⊥x 轴于点T , 在Rt △OPS 中,522=+=PS OS OP ,设M (m ,0) 当m =3时,PM =NM =4, ∴N (7,0) 当0<m <3时,可证△PMS ≌△MNT ,PS =MT =4,MS =NT =3-m , ∴N (4+m ,m -3) 当m >3时,可证△PMS ≌△MNT ,PS =MT =4,MS =NT =m -3, ∴N (4+m ,m -3) ∴点N 在直线y =x -7上 ………………………9分若直线y =x -7与y 轴交于点Q (0,7),则∠OQN =45°,作点O 关于直线y =x -7的对称点O '(7,-7),当点P 、N 、O '三点共线时,ON+PN 最小为PO ',此时,△OPN 的周长最小为OP+PO ',在Rt △O 'PR 中,137''22=+=PR RO PO ,………………10分 设直线PO '的解析式为y =kx +b , 把(3,4),(7,-7)代入得:3477k b k b +=⎧⎨+=-⎩, 解得:11-4494k b ⎧=⎪⎪⎨⎪=⎪⎩………11分 ∴直线PO '的解析式为449411-+=x y , 71149-44y x y x =-⎧⎪⎨=+⎪⎩, 解得:771528-15x y ⎧=⎪⎪⎨⎪=⎪⎩∴点N 的坐标为(1577,1528-).………12分。
2019~2020学年度第二学期期末测试题八年级数学试题含答案

2019~2020学年度名校第二学期期末测试题八年级数学第I 卷(选择题 共36分)一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列从左到右的变形是分解因式的是( )A 、(x -4)(x +4)=x 2-16B 、x 2-y 2+2=(x +y )(x -y )+2C 、2ab +2ac =2a (b +c )D 、(x -1)(x -2)=(x -2)(x -1). 2.下列方程是关于x 的一元二次方程的是( ); A 、02=++c bx ax B 、2112=+x xC 、1222-=+x x xD 、)1(2)1(32+=+x x 3.分式222b ab a a+-,22b a b -,2222b ab a b ++的最简公分母是( )A 、(a ²-2ab+b ²)(a ²-b ²)(a ²+2ab+b ²)B 、(a+b )2(a -b )2²C 、(a+b )²(a-b )²(a ²-b ²)D 、44b a - 4.把方程x 2-4x+1=0配方后所得到的方程是( ).A. (x -2)2+1=0B. (x -4)2+5=0C. (x -2)2-3=0D. (x -2)2+5= 0 5.下列命题中正确的是( ). A. 对角线相等的四边形是矩形 B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线平分每一组对角的四边形是正方形6.如图,矩形ABCD ,对角线AC 、BD 交于点O ,AE ⊥BD 于点E ,∠AOB =45°,则∠BAE 的大小为( ).A. 15°B. 22.5°C. 30°D. 45°7.若一个正多边形的每个内角等于120°,则这个多边形的边数是( ) A .8 B .7 C .6 D .5 8.若关于x 的一元二次方程ax 2-4x +1=0有实数根,则a 满足( ) A .a ≠0 B .4a ≤ C .40a a ≤≠且 D .40a a <≠且9.正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针方向旋转90后,B 点的坐标为( ) A .(22)-, B .(41), C .(31), D .(40), 10.如下图左:∠A+∠B+∠C+∠D+∠E+∠F 等于( ) A 、180º B 、360º C 、540º D 、720º 11.如图,已知□ABCD 中,点M 是BC 的中点,且AM =6,BD =12,AD =45,则该平行四边形的面积为( ).A .245B .36C . 48D .72 12.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:(1)AE =BF ;(2)AE⊥BF ;(3)AO =OE ;(4)AOB DEOF S S ∆=四边形中正确的有( ) A .4个 B .3个 C .2个 D .1个ABC DEO第6题FEDCBAABCDM第11题(第12题图)BO二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.) 13.分解因式:a 3b+2a 2b 2+a b 3= 。
北京市2019-2020年八年级下学期期末考试数学试卷

北京市2019-2020年八年级下学期期末考试数学试卷一、选择题:(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.1.一元二次方程3x2﹣4x﹣5=0的二次项系数、一次项系数、常数项分别是()A. 3,﹣4,﹣5 B. 3,﹣4,5 C. 3,4,5 D. 3,4,﹣52.函数y=中自变量x的取值范围是()A. x≤3 B. x≠3 C. x≠﹣3 D. x≥33.下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B.C. D.4.已知P1(﹣3,y1),P2(2,y2)是一次函数y=2x+1的图象上的两个点,则y1,y2的大小关系是()A. y1>y2 B. y1<y2 C. y1=y2 D.不能确定5.用配方法解方程x2﹣4x﹣7=0时,原方程应变形为()A.(x﹣2)2=11 B.(x+2)2=11 C.(x﹣4)2=23 D.(x+4)2=236.本市5月份某一周每天的最高气温统计如下表:温度/℃22242629天数2131则这组数据的中位数和平均数分别是()A. 24,25 B.25,26 C. 26,24 D. 26,257.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为()A. 14 B. 12 C. 24 D. 488.(3分)(2014•烟台)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A. 28° B. 52° C. 62° D. 72°9.如图,直线y1=﹣x+m与y2=kx+n相交于点A,若点A的横坐标为2,则下列结论中错误的是()A. k>0 B. m>nC.当x<2时,y2>y1 D. 2k+n=m﹣210.如图,若点P为函数y=kx+b(﹣4≤x≤4)图象上的一动点,m表示点P到原点O的距离,则下列图象中,能表示m与点P的横坐标x的函数关系的图象大致是()A. B.C. D.二、填空题:(本题共18分,每小题3分)11.在▱ABCD中,若∠B=50°,则∠C= °.12.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为.13.若关于x的方程9x2﹣6x+m=0有两个相等的实数根,则m的值为.14.某通讯公司的4G上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图象如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a的值为.15.用两个全等的直角三角形无缝隙不重叠地拼下列图形:①矩形;②菱形;③正方形;④等腰三角形;⑤等边三角形.一定能够拼成的图形是.16.边长为a的菱形是由边长为a的正方形“形变”得到的,若这个菱形一组对边之间的距离为h,则称为这个菱形的“形变度”.(1)一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为;(2)如图,A、B、C为菱形网格(每个小菱形的边长为1,“形变度”为)中的格点,则△ABC的面积为.三、解答题:(本题共22分,第17题4分,第18题8分,第19题5分,第20题5分)17.计算:(+)×﹣4.18.(1)解方程:x(x﹣1)=2﹣2x;(2)若x=1是方程x2﹣4mx+2m2=0的一个根,求代数式3(m﹣1)2﹣1的值.19.如图,E、F是▱ABCD对角线AC上的两点,AF=CE.求证:BE=DF.20.在平面直角坐标系xOy中,一次函数的图象经过点A(1,﹣3)和B(2,0).(1)求这个一次函数的解析式;(2)若以O、A、B、C为顶点的四边形为菱形,则点C的坐标为(直接写出答案).四、解答题:(本题共10分,第21题5分,第22题5分)21.如图,菱形ABCD的对角线AC、BD相交于点O,DE∥AC,DE=AC,连接AE、CE.若AB=2,∠ABC=60°,求AE的长.22.列方程解应用题:随着经济的增长和人民生活水平的提高,我国公民出境旅游人数逐年上升,据统计,2012年我国公民出境旅游总人数约为8000万人次,2014年约为11520万人次,求我国公民出境旅游总人数的年平均增长率.五、解答题:(本题共20分,第23题6分,第24题7分,第25题7分)23.如图,在▱ABCD中,对角线AC、BD相交于点O,点E为点B关于直线AC的对称点,连接EB、ED.(1)求∠BED的度数;(2)过点B作BE的垂线交EA的延长线于点F,请补全图形,并证明DE=AC+BF.24.已知:关于x的方程mx2﹣(3m+1)x+2m+2=0(m>1).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2(其中x1>x2),若y是关于m的函数,且y=mx2﹣2x1,求这个函数的解析式;(3)将(2)中所得的函数的图象在直线m=2的左侧部分沿直线m=2翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当关于m的函数y=2m+b的图象与此图象有两个公共点时,b的取值范围是(直接写出答案).25.如图,正方形ABCD中,P为BD上一动点,过点P 作PQ⊥AP交CD边于点Q.(1)求证:PA=PQ;(2)用等式表示PB2、PD2、AQ2之间的数量关系,并证明;(3)点P从点B出发,沿BD方向移动,若移动的路径长为2,则AQ的中点M移动的路径长为(直接写出答案).八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.1.一元二次方程3x2﹣4x﹣5=0的二次项系数、一次项系数、常数项分别是()A. 3,﹣4,﹣5 B. 3,﹣4,5 C. 3,4,5 D. 3,4,﹣5考点:一元二次方程的一般形式.分析:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).其中a,b,c 分别叫二次项系数,一次项系数,常数项.解答:解:一元二次方程3x2﹣4x﹣5=0的二次项系数、一次项系数、常数项分别是3,﹣4,﹣5.故选A.点评:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.函数y=中自变量x的取值范围是()A. x≤3 B. x≠3 C. x≠﹣3 D. x≥3考点:函数自变量的取值范围.分析:根据二次根式的意义,被开方数是非负数即可解答.解答:解:根据题意得:x﹣3≥0,解得x≥3,故选D点评:本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足被开方数非负.3.下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B.C. D.考点:函数的概念.分析:根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.解答:解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选C.点评:本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.已知P1(﹣3,y1),P2(2,y2)是一次函数y=2x+1的图象上的两个点,则y1,y2的大小关系是()A. y1>y2 B. y1<y2 C. y1=y2 D.不能确定考点:一次函数图象上点的坐标特征;一次函数的性质.专题:探究型.分析:先根据一次函数y=2x+1中k=2判断出函数的增减性,再根据﹣3<2进行解答即可.解答:解:∵一次函数y=2x+1中k=2>0,∴此函数是增函数,∵﹣3<2,∴y1<y2.故选B.点评:本题开查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数的增减性是解答此题的关键.5.用配方法解方程x2﹣4x﹣7=0时,原方程应变形为()A.(x﹣2)2=11 B.(x+2)2=11 C.(x﹣4)2=23 D.(x+4)2=23考点:解一元二次方程-配方法.专题:计算题.分析:方程常数项移到右边,两边加上4变形得到结果即可.解答:解:方程x2﹣4x﹣7=0,变形得:x2﹣4x=7,配方得:x2﹣4x+4=11,即(x﹣2)2=11,故选A点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.6.本市5月份某一周每天的最高气温统计如下表:温度/℃22242629天数2131则这组数据的中位数和平均数分别是()A. 24,25 B. 25,26 C. 26,24 D. 26,25考点:中位数;加权平均数.分析:利用中位数及平均数的定义求解即可.解答:解:按从小到大的顺序排列数为22,22,24,26,26,26,29,由中位数的定义可得:这组数据的中位数是26,这组数据的平均数分别是=25,故选:D.点评:本题主要考查了中位数与加权平均数,解题的关键是熟记中位数与加权平均数的定义.7.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为()A. 14 B. 12 C. 24 D. 48考点:中点四边形.分析:有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH矩形,根据矩形的面积公式解答即可.解答:解:∵点E、F分别为四边形ABCD的边AD、AB的中点,∴EF∥BD,且EF=BD=3.同理求得EH∥AC∥GF,且EH=GF=AC=4,又∵AC⊥BD,∴EF∥GH,FG∥HE且EF⊥FG.四边形EFGH是矩形.∴四边形EFGH的面积=EF•EH=3×4=12,即四边形EFGH的面积是12.故选B.点评:本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.8.(3分)(2014•烟台)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A. 28° B. 52° C. 62° D. 72°考点:菱形的性质;全等三角形的判定与性质.分析:根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.解答:解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选:C.点评:本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.9.(3分)(2015春•海淀区期末)如图,直线y1=﹣x+m与y2=kx+n相交于点A,若点A的横坐标为2,则下列结论中错误的是()A. k>0 B. m>nC.当x<2时,y2>y1 D. 2k+n=m﹣2考点:两条直线相交或平行问题.分析:由函数图象可判断A;由直线与y轴的交点位置可判断B;由函数图象可知当x>2时,对应的函数值的大小关系可判断C;把A点横坐标代入两函数解析式可判断D;可得出答案.解答:解:∵y2=kx+n在第一、三、四象限,∴k>0,故A正确;由图象可知直线y1与y轴的交点在直线y2相与y轴交点的上方,∴m>n,故B正确;由函数图象可知当x<2时,直线y1的图象在y2的上方,∴y1>y2,故C不正确;∵A点为两直线的交点,∴2k+n=m﹣2,故D正确;故选C.点评:本题主要考函数的交点问题,能够从函数图象中得出相应的信息是解题的关键.注意数形结合.10.如图,若点P为函数y=kx+b(﹣4≤x≤4)图象上的一动点,m表示点P到原点O的距离,则下列图象中,能表示m与点P的横坐标x的函数关系的图象大致是()A. B.C. D.考点:动点问题的函数图象.分析:当OP垂直于直线y=kx+b时,由垂线段最短可知:OP<2,故此函数在y轴的左侧有最小值,且最小值小于2,从而得出答案.解答:解:如图所示:过点O作OP垂直于直线y=kx+b,∵OP垂直于直线y=kx+b,∴OP<2,且点P的横坐标<0.故此当x<0时,函数有最小值,且最小值<2,根据选项可知A符合题意.故选:A.点评:本题主要考查的是动点问题的函数图象,由垂线段最短判定出当x<0时,函数有最小值,且最小值小于2是解题的关键.二、填空题:(本题共18分,每小题3分)11.在▱ABCD中,若∠B=50°,则∠C= 130 °.考点:平行四边形的性质.分析:根据平行四边形的邻角互补即可得出∠C的度数.解答:解:∵在▱ABCD中∠B=50°,∴∠C=180°﹣∠A=180°﹣50°=130°.故答案为130°.点评:本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的对角相等,邻角互补的性质.12.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为y=﹣2x+1 .考点:一次函数图象与几何变换.分析:直接根据“上加下减”的原则进行解答即可.解答:解:由“上加下减”的原则可知,把直线y=﹣2x﹣3向上平移4个单位长度后所得直线的解析式为:y=﹣2x﹣3+4,即y=﹣2x+1.故答案为:y=﹣2x+1点评:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13.若关于x的方程9x2﹣6x+m=0有两个相等的实数根,则m的值为 1 .考点:根的判别式.分析:关于x的方程9x2﹣6x+m=0有两个相等的实数根,则△=0,据此列出关于m的新方程,通过解新方程即可求得m的值.解答:解:∵关于x的方程9x2﹣6x+m=0有两个相等的实数根,则△=62﹣4×9m=0,即36﹣36m=0,解得,m=1,故答案为:1.点评:本题考查了根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.某通讯公司的4G上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图象如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a的值为59 .考点:一次函数的应用.分析:由该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,可知a=30+0.29×(600﹣500).解答:解:∵该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,根据图象可知:a=a=30+0.29×(600﹣500)=59元.故答案为:59.点评:本题考查了一次函数的应用,根据图象正确理解横纵坐标的对应关系是解决问题的关键.15.用两个全等的直角三角形无缝隙不重叠地拼下列图形:①矩形;②菱形;③正方形;④等腰三角形;⑤等边三角形.一定能够拼成的图形是①④.考点:图形的剪拼.分析:此题需要动手操作或画图,用完全相同的直角三角形一定可以拼成矩形、等腰三角形.解答:解:根据题意,用形状和大小完全相同的直角三角形一定能拼出矩形和等腰三角形,共2种图形.画出图形如下所示:故答案为:①④.点评:本题考查了图形的剪拼,同时考查了学生的动手操作能力和想象观察能力,难度一般.16.边长为a的菱形是由边长为a的正方形“形变”得到的,若这个菱形一组对边之间的距离为h,则称为这个菱形的“形变度”.(1)一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为1:3 ;(2)如图,A、B、C为菱形网格(每个小菱形的边长为1,“形变度”为)中的格点,则△ABC的面积为12 .考点:菱形的性质.分析:(1)分别表示出正方形的面积和菱形的面积,再根据“形变度”为3,即可得到菱形与其“形变”前的正方形的面积之比;(2)根据两面积之比=菱形的“形变度”,即可解答.解答:解:(1)∵边长为a的正方形面积=a2,边长为a的菱形面积=ah,∴菱形面积:正方形面积=ah:a2=h:a,∵菱形的变形度为3,即=3,∴“形变度”为3的菱形与其“形变”前的正方形的面积之比=1:3,故答案为:1:3;(2)∵菱形的边长为1,“形变度”为,∴菱形形变前的面积与形变后的面积之比为,∴S△ABC=(36﹣×3×3﹣×3×6﹣×3×6)×=×=12,故答案为:12.点评:本题考查了正方形的性质,菱形的性质以及四边形综合,根据题意得出菱形形变前的面积与形变后的面积之比是解题关键.三、解答题:(本题共22分,第17题4分,第18题8分,第19题5分,第20题5分)17.计算:(+)×﹣4.考点:二次根式的混合运算.专题:计算题.分析:先把各二次根式化为最简二次根式,再进行二次根式的乘法运算得到原式=4+3﹣2,然后合并即可.解答:解:原式=(2+)×﹣2=2×+×﹣2=4+3﹣2=4+.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.(1)解方程:x(x﹣1)=2﹣2x;(2)若x=1是方程x2﹣4mx+2m2=0的一个根,求代数式3(m﹣1)2﹣1的值.考点:解一元二次方程-因式分解法;一元二次方程的解.分析:(1)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)把x=1代入方程后求出(m﹣1)2=0.5,即可求出答案.解答:解:(1)x(x﹣1)=2﹣2x,x(x﹣1)+2(x﹣1)=0,(x﹣1)(x+2)=0,x﹣1=0,x+2=0,x1=1,x2=﹣2;(2)把x=1代入方程x2﹣4mx+2m2=0得:1﹣4m+2m2=0,2(m2﹣2m)+1=0,2(m﹣1)2=1,(m﹣1)2=0.5,即3(m﹣1)2﹣1=3×0.5﹣1=0.5.点评:本题考查了一元二次方程的解,解一元二次方程,求代数式的值的应用,能求出(m ﹣1)2=0.5是解(2)的关键,难度适中.19.如图,E、F是▱ABCD对角线AC上的两点,AF=CE.求证:BE=DF.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:根据平行四边形的对边相等可得AB=CD,对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠BAE=∠DCF,然后利用“边角边”证明△ABE和△CDF全等,根据全等三角形对应边相等可得BE=DF.解答:证明:∵AF=CE.∴AE=CF,∵在▱ABCD中,AB=CD,AB∥CD,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴BE=DF.点评:本题考查了平行四边形的性质,全等三角形的判定与性质,理解平行四边形的对边平行且相等,是解答本题的关键.20.在平面直角坐标系xOy中,一次函数的图象经过点A(1,﹣3)和B(2,0).(1)求这个一次函数的解析式;(2)若以O、A、B、C为顶点的四边形为菱形,则点C的坐标为(1,3)(直接写出答案).考点:菱形的性质;待定系数法求一次函数解析式.专题:计算题.分析:(1)利用待定系数法求一次函数解析式;(2)由于AO=AB,于是可判断菱形为OABC,再根据菱形的性质得点C与点A关于y轴对称,然后根据关于y轴对称的点的坐标特征写出C点坐标.解答:解:(1)设一次函数解析式为y=kx+b,把A(1,﹣3)、B(2,0)代入得,解得,所以一次函数解析式为y=3x﹣6;(2)如图,因为OA=AB,所以以O、A、B、C为顶点的菱形的对角线为OB和AC,因为OB与AC互相垂直平分,所以点C与点A关于y轴对称,所以C点坐标为(1,3).故答案为(1,3).点评:本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.也考查了待定系数法求一次函数解析式.四、解答题:(本题共10分,第21题5分,第22题5分)21.如图,菱形ABCD的对角线AC、BD相交于点O,DE∥AC,DE=AC,连接AE、CE.若AB=2,∠ABC=60°,求AE的长.考点:菱形的性质.专题:计算题.分析:先根据菱形的性质得OB=OD,OA=OC,AB=CB,AC⊥BD,再利用∠ABC=60°可判断△A BC为等边三角形,所以AC=AB=2,则根据等边三角形的性质得OA=AC=1,OD=OB=AC=,接着判定四边形OCED为矩形,得到∠OCE=90°,CE=OD=,然后利用勾股定理计算AE.解答:解:∵菱形ABCD的对角线AC、BD相交于点O,∴OB=OD,OA=OC,AB=CB,AC⊥BD,BD平分∠ABC,∵∠ABC=60°,∴△ABC为等边三角形,∴AC=AB=2,在Rt△AOB中,OA=AC=1,OD=OB=AC=,∵DE=AC,∴DE=OC,而DE∥AC,∴四边形OCED为平行四边形,而OC⊥OD,∴四边形OCED为矩形,∴∠OCE=90°,CE=OD=,在Rt△ACE中,AE===.点评:本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.也考查了等边三角形的判定与性质.22.列方程解应用题:随着经济的增长和人民生活水平的提高,我国公民出境旅游人数逐年上升,据统计,2012年我国公民出境旅游总人数约为8000万人次,2014年约为11520万人次,求我国公民出境旅游总人数的年平均增长率.考点:一元二次方程的应用.专题:增长率问题.分析:设年平均增长率为x.根据题意2013年公民出境旅游总人数为 8000(1+x)万人次,2014年公民出境旅游总人数 5000(1+x)2 万人次.根据题意得方程求解;解答:解:设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得:8000(1+x)2 =11520,解得 x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.点评:此题考查一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.五、解答题:(本题共20分,第23题6分,第24题7分,第25题7分)23.如图,在▱ABCD中,对角线AC、BD相交于点O,点E为点B关于直线AC的对称点,连接EB、ED.(1)求∠BED的度数;(2)过点B作BE的垂线交EA的延长线于点F,请补全图形,并证明DE=AC+BF.考点:平行四边形的性质.分析:(1)如图,设直线AC与BE交于N,由点E为点B关于直线AC的对称点,得到AN ⊥BE,BN=EN,根据平行四边形的性质得到BO=DO,于是得到AN∥EM,即可得到结论;(2)延长BA交DE于M,连接FM,由于BF∥AN∥EM,根据平行线等分线段定理得到FA=AE,BA=AM,再根据平行四边形的性质即可得到结论.解答:解:(1)如图,设直线AC与BE交于N,∵点E为点B关于直线AC的对称点,∴AN⊥BE,BN=EN,∵四边形ABCD是平行四边形,∴BO=DO,∴AN∥EM,∴DE⊥BE,∴∠BED=90°,(2)如图,延长BA交DE于M,连接FM,∵BE⊥BF,AN⊥BE,BE⊥DE,∴BF∥AN∥EM,∵BN=EN,∴FA=AE,BA=AM,∴四边形BFME是平行四边形,∴EM=BF,∵AC∥DM,CD∥AM,∴四边形ACDM是平行四边形,∴DM=AC,∴DE=EM+DM=AC+BF.点评:本题考查了平行四边形的性质,线段的垂直平分线的性质,平行线等分线段定理,三角形的中位线定理,熟练掌握平分线等分线段定理是解题的关键.24.已知:关于x的方程mx2﹣(3m+1)x+2m+2=0(m>1).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2(其中x1>x2),若y是关于m的函数,且y=mx2﹣2x1,求这个函数的解析式;(3)将(2)中所得的函数的图象在直线m=2的左侧部分沿直线m=2翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当关于m的函数y=2m+b的图象与此图象有两个公共点时,b的取值范围是b<﹣5 (直接写出答案).考点:抛物线与x轴的交点;解一元二次方程-公式法;根的判别式.分析:(1)要证明无论m取何值方程必有两个不相等的实数根,只要证明△≥0即可,而,△=(3m+1)2﹣4m(2m+2)=(m﹣1)2.由m>1,可得到△>0;(2)利用求根公式可得,因为m>1,x1>x2.所以.然后代入y=mx2﹣2x1,即可得到函数的解析式即可;(3)先求出对折后的函数的解析式,进而求得与函数y=2m+b的交点坐标,根据题意列出不等式组,解不等式组即可求得.解答:(1)证明:由题意得,△=(3m+1)2﹣4m(2m+2)=(m﹣1)2.∵m>1,∴△=(m﹣1)2>0.∴方程有两个不等实根.(2)由题意得,.∵m>1,x1>x2,∴.∴.(3)根据题意新的函数为:y=解得,函数y=2m+b的图象与此图象有两个公共点时,则,解得b<﹣5.故答案为b<﹣5.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了解一元一次方程和解不等式组.25.如图,正方形ABCD中,P为BD上一动点,过点P 作PQ⊥AP交CD边于点Q.(1)求证:PA=PQ;(2)用等式表示PB2、PD2、AQ2之间的数量关系,并证明;(3)点P从点B出发,沿BD方向移动,若移动的路径长为2,则AQ的中点M移动的路径长为(直接写出答案).考点:四边形综合题.分析:(1)过点P作PE⊥AD于点E,PF⊥CD于点F,由正方形的性质得出PE=PF,证出四边形PEDF是正方形,得出∠EPF=90°,由ASA证明△APE≌△QPF,得出对应边相等即可;(2)延长FP交AB于点G,由正方形的性质得出△PBG是等腰直角三角形,得出BP2=2PG2,同理PD2=2PE2,再由△PAQ是等腰直角三角形,得出AQ2=2PA2,即可得出结论;(3)当点P在B点处时,点Q与点C重合,AQ的中点即为点O,则AQ的中点M移动的路径长为OM的长;连接PC,由正方形的性质得出PA=PC,再求出CQ的长,由三角形中位线定理求出OM的长即可.解答:(1)证明:过点P作PE⊥AD于点E,PF⊥CD于点F,如图1所示:∴∠PED=∠PEA=∠PFQ=90°,∵四边形ABCD是正方形,∴∠ADC=90°,∠ADB=∠CDB=45°,∴PE=PF,∴四边形PEDF是正方形,∴∠EPF=90°,∴∠EPQ+∠FPQ=90°,∵AP⊥PQ,∴∠EPQ+∠APE=90°,∴∠APE=∠FPQ,在△APE和△QPF中,,∴△APE≌△QPF(ASA),∴PA=PQ;(2)解:PD2+PB2=AQ2,理由如下:延长FP交AB于点G,如图2所示:∵四边形ABCD是正方形,∴AB∥CD,∠PBG=45°,∴∠BGP=∠PFD=90°,∴△PBG是等腰直角三角形,由勾股定理得:BP2=2PG2,同理:PD2=2PE2,由(1)得PA=PQ,AP⊥PQ,∴△PAQ是等腰直角三角形,由勾股定理得:AQ2=2PA2,∵∠AEP=∠AGP=∠BAD=90°,∴四边形AEPG为矩形,∴PE=AG,∵PA2=AG2+PG2,∴PD2+PB2=2PE2+2PG2=2AG2+2PG2=2AP2=AQ2;(3)解:当点P在B点处时,点Q与点C重合,AQ的中点即为点O,则AQ的中点M移动的路径长为OM的长;连接PC,如图3所示:由正方形的对称性得:PA=PC,由(2)得:△PBG是等腰直角三角形,∴FC=BG===,由(1)得:PA=PQ,∴PC=PQ,∵PF⊥CQ,∴FQ=FC=,∴CQ=2,∵O是AC的中点,M是AQ的中点,∴OM=CQ=;故答案为:.点评:本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、三角函数、勾股定理、三角形的中位线定理等知识;本题综合性强,难度较大.。
2019-2020学年度北师大版初二数学第二学期期末考试试卷( 含答案)

2019-2020学年度第二学期期末考试八年级数学试题一、选择题:(每题2分,12小题,共24分)1.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下面的多边形中,内角和与外角和相等的是()A.B.C.D.3.长和宽分别是a,b的长方形的周长为10,面积为6,则a2b+ab2的值为()A.15 B.16 C.30 D.604.如图,AB∥CD∥EF,AC=4,CE=6,BD=3,则DF的值是()A.4.5 B.5 C.2 D.1.55.如图,BE、CD相交于点A,连接BC,DE,下列条件中不能判断△ABC∽ADE的是()A.∠B=∠D B.∠C=∠E C.=D.=6.关于x的元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为()A.﹣5 B.﹣2 C.0 D.﹣87.某超市今年二月份的营业额为82万元,四月份的营业额比三月份的营业额多20万元,若二月份到四月份每个月的月销售额增长率都相同,若设增长率为x,根据题意可列方程()A.82(1+x)2=82(1+x)+20 B.82(1+x)2=82(1+x)C.82(1+x)2=82+20 D.82(1+x)=82+208.如图,▱ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为28,则△ABE的周长为()A.28 B.24 C.21 D.149.如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转,则第2019秒时,菱形两对角线交点D的横坐标为()A.B.C.1 D.﹣110.如图,菱形ABCD的对角线AC、BD相交于点O,过点C作CE⊥AD于点E,连接OE,若OB=8,S菱形ABCD=96,则OE的长为()A.2B.2C.6 D.811.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD 上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6 B.4 C.4.8 D.512.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=6.M是BD的中点,则CM的长为()A.B.2 C.D.3二、填空题:(每题2分,8小题,共16分)13.因式分解:m2n+2mn2+n3=.14.若分式有意义,则实数x的取值范围是.15.若关于x的分式方程=有增根,则m的值为.16.设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2=.17.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C 的方向平移,得到△A′B′O′,当点A′与点C重合时,点A与点B′之间的距离为.18.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.19.如图,在Rt△ABC中,∠B=90°,AB=2,BC=3,D、E分别是AB、AC的中点,延长BC至点F,使CF=BC,连接DF、EF,则EF的长为.20.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的有(只填序号).三、计算题:(4小题,共18分)21.(1)化简;(m+2+)•(2)先化简,再求值;(+x+2)÷,其中|x|=222.解方程:(1)x2﹣2x﹣5=0;(2)=.四、解答题:(5小题,共42分)23.阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t =±9因为2m2+n2≥0,所以2m2+n2=9.上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题,并写出解答过程.已知实数x,y满足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.24.某书店积极响应政府“改革创新,奋发有为”的号召,举办“读书节“系列活动.活动中故事类图书的标价是典籍类图书标价的1.5倍,若顾客用540元购买图书,能单独购买故事类图书的数量恰好比单独购买典籍类图书的数量少10本.(1)求活动中典籍类图书的标价;(2)该店经理为鼓励广大读者购书,免费为购买故事类的读者赠送图1所示的精致矩形包书纸.在图1的包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.已知该包书纸的面积为875cm2(含阴影部分),且正好可以包好图2中的《中国故事》这本书,该书的长为21cm,宽为15cm,厚为1cm,请直接写出该包书纸包这本书时折叠进去的宽度.25.如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD 的平行线,两线交于点E.(1)求证:四边形ADBE是矩形;(2)连接DE,交AB与点O,若BC=8,AO=3,求△ABC的面积.26.如图,已知:AD为△ABC的中线,过B、C两点分别作AD所在直线的垂线段BE和CF,E、F为垂足,过点E作EG∥AB交BC于点H,连结HF并延长交AB于点P.(1)求证:DE=DF(2)若BH:HC=11:5;①求:DF:DA的值;②求证:四边形HGAP为平行四边形.27.如图,矩形ABCD中,AB=12,AD=9,E为BC上一点,且BE=4,动点F从点A出发沿射线AB方向以每秒3个单位的速度运动.连接DF,DE,EF.过点E作DF的平行线交射线AB于点H,设点F的运动时间为t(不考虑D、E、F在一条直线上的情况).(1)填空:当t=时,AF=CE,此时BH=;(2)当△BEF与△BEH相似时,求t的值;(3)当F在线段AB上时,设△DEF的面积为S,△DEF的周长为C.①求S关于t的函数关系式;②直接写出C的最小值.参考答案与试题解析一.选择题(共12小题)1.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.2.下面的多边形中,内角和与外角和相等的是()A.B.C.D.【分析】根据多边形的内角和公式(n﹣2)•180°与多边形的外角和定理列式进行计算即可得解.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故选:B.3.长和宽分别是a,b的长方形的周长为10,面积为6,则a2b+ab2的值为()A.15 B.16 C.30 D.60【分析】直接利用矩形面积求法结合提取公因式法分解因式计算即可.【解答】解:∵长和宽分别是a,b的长方形的周长为10,面积为6,∴2(a+b)=10,ab=6,故a+b=5,则a2b+ab2=ab(a+b)=30.故选:C.4.如图,AB∥CD∥EF,AC=4,CE=6,BD=3,则DF的值是()A.4.5 B.5 C.2 D.1.5【分析】直接根据平行线分线段成比例定理即可得出结论.【解答】解:∵直线AB∥CD∥EF,AC=4,CE=6,BD=3,∴=,即=,解得DF=4.5.故选:A.5.如图,BE、CD相交于点A,连接BC,DE,下列条件中不能判断△ABC∽ADE的是()A.∠B=∠D B.∠C=∠E C.=D.=【分析】分别根相似三角形的判定方法,逐项判断即可.【解答】解:∵∠BAC=∠DAE,∴当∠B=∠D或∠C=∠E时,可利用两角对应相等的两个三角形相似证得△ABC∽ADE,故A、B选项可判断两三角形相似;当=时,可得=,结合∠BAC=∠DAE,则可证得△ABC∽△AED,而不能得出△ABC∽△ADE,故C不能判断△ABC∽ADE;当=时,结合∠BAC=∠DAE,可证得△ABC∽△ADE,故D能判断△ABC∽△ADE;故选:C.6.关于x的元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为()A.﹣5 B.﹣2 C.0 D.﹣8【分析】利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况,有两个不相等的实根,即△>0【解答】解:依题意,关于x的一元二次方程,有两个不相等的实数根,即△=b2﹣4ac=42+8c>0,得c>﹣2根据选项,只有C选项符合,故选:C.7.某超市今年二月份的营业额为82万元,四月份的营业额比三月份的营业额多20万元,若二月份到四月份每个月的月销售额增长率都相同,若设增长率为x,根据题意可列方程()A.82(1+x)2=82(1+x)+20 B.82(1+x)2=82(1+x)C.82(1+x)2=82+20 D.82(1+x)=82+20【分析】根据题意可以列出相应的方程,本题得以解决.【解答】解:由题意可得,82(1+x)2=82(1+x)+20,故选:A.8.如图,▱ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为28,则△ABE的周长为()A.28 B.24 C.21 D.14【分析】先判断出EO是BD的中垂线,得出BE=ED,从而可得出△ABE的周长=AB+AD,再由平行四边形的周长为24,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵平行四边形的周长为28,∴AB+AD=14∵OE⊥BD,∴OE是线段BD的中垂线,∴BE=ED,∴△ABE的周长=AB+BE+AE=AB+AD=14,故选:D.9.如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转,则第2019秒时,菱形两对角线交点D的横坐标为()A.B.C.1 D.﹣1【分析】根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标.【解答】解:菱形OABC的顶点O(0,0),B(2,2),得D点坐标为(,),即(1,1).∴OD=每秒旋转45°,则第2019秒时,得45°×2019,45°×2019÷360=252.375周,OD旋转了252又周,菱形的对角线交点D的坐标为(﹣,0),故选:B.10.如图,菱形ABCD的对角线AC、BD相交于点O,过点C作CE⊥AD于点E,连接OE,若OB=8,S菱形ABCD=96,则OE的长为()A.2B.2C.6 D.8【分析】由菱形的性质得出BD=16,由菱形的面积得出AC=12,再由直角三角形斜边上的中线性质即可得出结果.【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD=BD,BD⊥AC,∴BD=16,∵S菱形ABCD═AC×BD=96,∴AC=12,∵CE⊥AD,∴∠AEC=90°,∴OE=AC=6,故选:C.11.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD 上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6 B.4 C.4.8 D.5【分析】根据题意和三角形相似的判定和性质,可以求得CD的长,本题得以解决.【解答】解:作DH∥EG交AB于点H,则△AEG∽△ADH,∴,∵EF⊥AC,∠C=90°,∴∠EFA=∠C=90°,∴EF∥CD,∴△AEF∽△ADC,∴,∴,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12﹣x,∵EF⊥AC,EF⊥EG,DH∥EG,∴EG∥AC∥DH,∴△BDH∽△BCA,∴,即,解得,x=4,∴CD=4,故选:B.12.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=6.M是BD的中点,则CM的长为()A.B.2 C.D.3【分析】延长BC到E使BE=AD,则四边形ACED是平行四边形,根据三角形的中位线的性质得到CM=DE=AB,根据跟勾股定理得到AB===5,于是得到结论.【解答】解:延长BC到E使BE=AD,则四边形ACED是平行四边形,∵BC=3,AD=6,∴C是BE的中点,∵M是BD的中点,∴CM=DE=AB,∵AC⊥BC,∴AB===5,∴CM=,故选:C.二.填空题(共8小题)13.因式分解:m2n+2mn2+n3=n(m+n)2.【分析】首先提取公因式n,再利用完全平方公式分解因式得出答案.【解答】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.14.若分式有意义,则实数x的取值范围是x≠5 .【分析】根据分式有意义的条件可得x﹣5≠0,再解即可.【解答】解:由题意得:x﹣5≠0,解得:x≠5,故答案为:x≠5.15.若关于x的分式方程=有增根,则m的值为 3 .【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入计算即可求出m的值.【解答】解:去分母得:3x=m+3,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入方程得:6=m+3,解得:m=3,故答案为:316.设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2=0 .【分析】直接根据根与系数的关系求解.【解答】解:∵x1、x2是方程x2﹣x﹣1=0的两根,∴x1+x2=1,x1×x2=﹣1,∴x1+x2+x1x2=1﹣1=0.故答案为:0.17.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C 的方向平移,得到△A′B′O′,当点A′与点C重合时,点A与点B′之间的距离为10 .【分析】由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'===10;故答案为10.18.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.【分析】证出∠ACD=∠DCB=∠B,证明△ACD∽△ABC,得出=,即可得出结果.【解答】解:∵BC的垂直平分线MN交AB于点D,∴CD=BD=3,∴∠B=∠DCB,AB=AD+BD=5,∵CD平分∠ACB,∴∠ACD=∠DCB=∠B,∵∠A=∠A,∴△ACD∽△ABC,∴=,∴AC2=AD×AB=2×5=10,∴AC=.故答案为:.19.如图,在Rt△ABC中,∠B=90°,AB=2,BC=3,D、E分别是AB、AC的中点,延长BC至点F,使CF=BC,连接DF、EF,则EF的长为.【分析】连接DE,CD,根据三角形中位线的性质得到DE∥BC,DE=BC,推出四边形DCFE是平行四边形,得到EF=CD,根据勾股定理即可得到结论.【解答】解:连接DE,CD,∵D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴DE∥CF,∵CF=BC,∴DE=CF,∴四边形DCFE是平行四边形,∴EF=CD,∵在Rt△ABC中,∠B=90°,AB=2,BC=3,∴CD===,∴EF=CD=,故答案为:.20.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的有①②④⑤(只填序号).【分析】①②、证明△ABH≌△ADF,得AF=AH,再得AC平分∠FAH,则AM既是中线,又是高线,得AC⊥FH,证明BH=HM=MF=FD,则FH=2BH;所以①②都正确;③可以直接求出FC的长,计算S△ACF≠1,错误;④根据正方形边长为2,分别计算CE和AF的长得结论正确;⑤利用相似先得出EG2=FG•CG,再根据同角的三角函数列式计算CG的长为1,则DG=CG,得出⑤也正确.【解答】解:①②如图1,∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,在△ABH和△ADF中,,∴△ABH≌△ADF(SAS),∴AH=AF,∠BAH=∠FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故①②正确;③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,∴AC=2,MC=DF=2﹣2,∴FC=2﹣DF=2﹣(2﹣2)=4﹣2,S△AFC=CF•AD≠1,故③不正确;④AF==2,∵△ADF∽△CEF,∴=,∴CE=,∴CE=AF,故④正确;⑤延长CE和AD交于N,如图2,∵AE⊥CE,AE平分∠CAD,∴CE=EN,∵EG∥DN,∴CG=DG,在Rt△FEC中,EG⊥FC,∴∠GEF=∠GCE,∴△EFG∽△CEG,∴=,∴EG2=FG•CG,∴EG2=FG•DG,故选项⑤正确;故答案为:①②④⑤.三、计算题:(4小题,共18分)21.(1)化简;(m+2+)•(2)先化简,再求值;(+x+2)÷,其中|x|=2【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,约分即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,求出x的值代入计算即可求出值.【解答】解:(1)原式=•=•=m+1;(2)原式=•=,由|x|=2,得到x=2或﹣2(舍去),当x=2时,原式=19.22.解方程:(1)x2﹣2x﹣5=0;(2)=.【分析】(1)利用公式法求解可得;(2)两边都乘以(x+1)(x﹣2)化为整式方程,解之求得x的值,继而检验即可得.【解答】解:(1)∵a=1,b=﹣2,c=﹣5,∴△=4﹣4×1×(﹣5)=24>0,则x==1±,∴;(2)两边都乘以(x+1)(x﹣2),得:x+1=4(x﹣2),解得x=3,经检验x=3是方程的解.四、解答题:(5小题,共42分)23.阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t =±9因为2m2+n2≥0,所以2m2+n2=9.上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题,并写出解答过程.已知实数x,y满足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.【分析】设t=x2+y2(t≥0),则原方程转化为(4t+3)(4t﹣3)=27,然后解该方程即可.【解答】解:设t=x2+y2(t≥0),则原方程转化为(4t+3)(4t﹣3)=27,整理,得16t2﹣9=27,所以t2=.∵t≥0,∴t=.∴x2+y2的值是.【点评】考查了换元法解一元二次方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.24.某书店积极响应政府“改革创新,奋发有为”的号召,举办“读书节“系列活动.活动中故事类图书的标价是典籍类图书标价的1.5倍,若顾客用540元购买图书,能单独购买故事类图书的数量恰好比单独购买典籍类图书的数量少10本.(1)求活动中典籍类图书的标价;(2)该店经理为鼓励广大读者购书,免费为购买故事类的读者赠送图1所示的精致矩形包书纸.在图1的包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.已知该包书纸的面积为875cm2(含阴影部分),且正好可以包好图2中的《中国故事》这本书,该书的长为21cm,宽为15cm,厚为1cm,请直接写出该包书纸包这本书时折叠进去的宽度.【分析】(1)设典籍类图书的标价为x元,根据购买两种图书的数量差是10本,列出方程并解答;(2)矩形面积=(2宽+1+2折叠进去的宽度)×(长+2折叠进去的宽度).【解答】解:(1)设典籍类图书的标价为x元,由题意,得﹣10=.解得x=18.经检验:x=18是原分式方程的解,且符合题意.答:典籍类图书的标价为18元;(2)设折叠进去的宽度为ycm,则(2y+15×2+1)(2y+21)=875,化简得y2+26y﹣56=0,∴y=2或﹣28(不合题意,舍去),答:折叠进去的宽度为2cm.【点评】此题考查了分式方程和一元二次方程的应用,(2)题结合了矩形面积的求法考查了图形的折叠问题,能够得到折叠进去的宽度和矩形纸的长、宽的关系,是解决问题的关键.25.如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD 的平行线,两线交于点E.(1)求证:四边形ADBE是矩形;(2)连接DE,交AB与点O,若BC=8,AO=3,求△ABC的面积.【分析】(1)先求出四边形ADBE是平行四边形,根据等腰三角形的性质求出∠ADB=90°,根据矩形的判定得出即可;(2)根据矩形的性质得出AB=DE=2AO=6,求出BD,根据勾股定理求出AD,根据三角形面积公式求出即可.【解答】(1)证明:∵AE∥BC,BE∥AD,∴四边形ADBE是平行四边形,∵AB=AC,AD是BC边的中线,∴AD⊥BC,即∠ADB=90°,∴四边形ADBE为矩形;(2)解:∵在矩形ADBE中,AO=3,∴AB=2AO=6,∵D是BC的中点,∴DB=BC=4,∵∠ADB=90°,∴AD===2,∴△ABC的面积=BC•AD=×8×2=8.【点评】本题考查了等腰三角形的性质和矩形的性质和判定,能求出四边形ADCE是矩形是解此题的关键.26.如图,已知:AD为△ABC的中线,过B、C两点分别作AD所在直线的垂线段BE和CF,E、F为垂足,过点E作EG∥AB交BC于点H,连结HF并延长交AB于点P.(1)求证:DE=DF(2)若BH:HC=11:5;①求:DF:DA的值;②求证:四边形HGAP为平行四边形.【分析】(1)由AAS证明△BDE≌△CDF,即可得出结论;(2)①设BH=11x,则HC=5x,BC=16x,则,DH=3x,由平行线得出△EDH∽△ADB,得出,即可得出结论;②求出=,证出FH∥AC,即PH∥AC,即可得出结论.【解答】(1)证明:∵AD为△ABC的中线,∴BD=CD,∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴DE=DF;(2)①解:设BH=11x,则HC=5x,BC=16x,则,DH=3x,∵EG∥AB,∴△EDH∽△ADB,∴,∵DE=DF,∴;②证明:∵,∴,∵,∴=,∴FH∥AC,∴PH∥AC,∵EG∥AB,∴四边形HGAP为平行四边形.【点评】本题考查了平行四边形的判定、平行线的判定、全等三角形的判定与性质、相似三角形的判定与性质等知识;熟练掌握平行四边形的判定是关键.27.如图,矩形ABCD中,AB=12,AD=9,E为BC上一点,且BE=4,动点F从点A出发沿射线AB方向以每秒3个单位的速度运动.连接DF,DE,EF.过点E作DF的平行线交射线AB于点H,设点F的运动时间为t(不考虑D、E、F在一条直线上的情况).(1)填空:当t=时,AF=CE,此时BH=;(2)当△BEF与△BEH相似时,求t的值;(3)当F在线段AB上时,设△DEF的面积为S,△DEF的周长为C.①求S关于t的函数关系式;②直接写出C的最小值.【分析】(1)在Rt△ABC中,利用勾股定理可求得AB的长,即可得到AD、t的值,从而确定AE的长,由DE=AE﹣AD即可得解.(2)若△DEG与△ACB相似,要分两种情况:①AG:DE=DH:GE,②AH:EG=DH:DE,根据这些比例线段即可求得t的值.(需注意的是在求DE的表达式时,要分AD>AE和AD<AE两种情况);(3)分别表示出线段FD和线段AD的长,利用面积公式列出函数关系式即可.【解答】解:(1)∵BC=AD=9,BE=4,∴CE=9﹣4=5∵AF=CE即:3t=5,∴t=,∵EH∥DF∴△DAF∽△EBH,∴=即:=解得:BH=;当t=时,AF=CE,此时BH=;(2)由EH∥DF得∠AFD=∠BHE,又∵∠A=∠CBH=90°∴△EBH∽△DAF,∴即=∴BH=当点F在点B的左边时,即t<4时,BF=12﹣3t此时,当△BEF∽△BHE时:即42=(12﹣3t)×解得:t1=2此时,当△BEF∽△BEH时:有BF=BH,即12﹣3t=解得:t2=当点F在点B的右边时,即t>4时,BF=3t﹣12此时,当△BEF∽△BHE时:即42=(3t﹣12)×解得:t3=2+2(3)①∵EH∥DF∴△DFE的面积=△DFH的面积=FH•AD=(12﹣3t+t)×9=54﹣②如图,∵BE=4,∴CE=5,根据勾股定理得,DE=13,是定值,所以当C最小时DE+EF最小,作点E关于AB的对称点E'连接DE,此时DE+EF最小,在Rt△CDE'中,CD=12,CE'=BC+BE'=BC+BE=13,根据勾股定理得,DE'==,∴C的最小值=13+.【点评】此题考查了勾股定理、轴对称的性质、平行四边形及梯形的判定和性质、解直角三角形、相似三角形等相关知识,综合性强,是一道难度较大的压轴题.。
北师大版2019-2020学年度第二学期八年级(下)期末数学试卷(含解析) (11)

北师大版2019-2020学年第二学期八年级(下)期末数学试卷一、选择题(每题3分,共30分)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+anB.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x3.(3分)不等式5+2x<1的解集在数轴上表示正确的是()A.B.C.D.4.(3分)已知一个多边形的内角和是360°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形5.(3分)要使分式有意义,则x的取值应满足()A.x≠2B.x≠1C.x=2D.x=﹣1 6.(3分)如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16cm B.14cm C.12cm D.8cm7.(3分)若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣8.(3分)如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是()A.60°B.90°C.120°D.150°9.(3分)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,则BC的长为()A.18B.14C.12D.610.(3分)定义新运算“⊕”如下:当a>b时,a⊕b=ab+b;当a<b时,a⊕b=ab﹣b,若3⊕(x+2)>0,则x的取值范围是()A.﹣1<x<1或x<﹣2B.x<﹣2或1<x<2C.﹣2<x<1或x>1D.x<﹣2或x>2二、填空题(每3分,共15分)11.(3分)在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是.12.(3分)若a2﹣5ab﹣b2=0,则的值为.13.(3分)如图所示,在四边形ABCD中,AD∥CB,且AD>BC,BC=6cm,动点P,Q分别从A,C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动,则秒后四边形ABQP为平行四边形.14.(3分)在代数式,,,,x+中,是分式的有个.15.(3分)如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EFA.其中正确结论的序号是.三、解答题(共计75分)16.(10分)分解因式(1)a2x2y﹣axy2(2)a2(x﹣y)+b2(y﹣x)17.(10分)(1)化简求值:(﹣)÷,其中m=﹣1(2)解不等式组.并把它的解集在数轴上表示出来.18.(7分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF,求证:DE =BF.19.(11分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;直接写出点B2的坐标;(3)作出△ABC关于原点O成中心对称的△A3B3C3,并直接写出B3的坐标.20.(8分)探索发现:=1﹣;=﹣;=﹣…根据你发现的规律,回答下列问题:(1)=,=;(2)利用你发现的规律计算:+++…+(3)灵活利用规律解方程:++…+=.21.(8分)如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,求证:DE =FE.22.(12分)我市某学校2016年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2017年为大力推动校园足球运动,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过3000元,那么这所学校最多可购买多少个乙种足球?23.(9分)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB 于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明.参考答案一、选择题(每题3分,共30分)1.解:A、只是中心对称图形,故本选项错误;B、只是中心对称,故本选项错误;C、只是轴对称图形不是中心对称图形,故本选项错误;D、即是轴对称图形也是中心对称图形,故本选项正确;故选:D.2.解:(A)该变形为去括号,故A不是因式分解;(B)该等式右边没有化为几个整式的乘积形式,故B不是因式分解;(D)该等式右边没有化为几个整式的乘积形式,故D不是因式分解;故选:C.3.解:5+2x<1,移项得2x<﹣4,系数化为1得x<﹣2.故选:C.4.解:设这个多边形的边数为n,则有(n﹣2)180°=360°,解得:n=4,故这个多边形是四边形.故选:A.5.解:由题意得,x﹣2≠0,解得,x≠2,故选:A.6.解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∵▱ABCD的周长为40cm,∴AB+BC=20cm,∵BC=AB,∴BC=20×=8cm,7.解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,∵关于x的方程+=3的解为正数,∴﹣2m+9>0,解得:m<,当x=3时,x==3,解得:m=,故m的取值范围是:m<且m≠.故选:B.8.解:旋转角是∠BAB′=180°﹣30°=150°.故选:D.9.解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=CE=AC=.∵△CDE的周长为24,∴CD=9,∴BC=2CD=18.故选:A.10.解:当3>x+2,即x<1时,3(x+2)+x+2>0,解得:x>﹣2,∴﹣2<x<1;当3<x+2,即x>1时,3(x+2)﹣(x+2)>0,解得:x>﹣2,综上,﹣2<x<1或x>1,故选:C.二、填空题(每3分,共15分)11.解:根据中心对称的性质,得点P(2,﹣3)关于原点的对称点P′的坐标是(﹣2,3).故答案为:(﹣2,3).12.解:对a2﹣5ab﹣b2=0两边同除ab,得﹣5﹣=0,整理得,=5,故答案为:5.13.解:∵运动时间为x秒,∴AP=x,QC=2x,∵四边形ABQP是平行四边形,∴AP=BQ,∴x=6﹣2x,∴x=2.答:2秒后四边形ABQP是平行四边形.故答案为:2.14.解:在代数式,,,,x+中,是分式的有,,故答案为:215.解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,(含①的只有B和D,它们的区别在于有没有④.它们都是含30°的直角三角形,并且斜边是相等的),∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),故④正确.∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,故②正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=AG,故③,故答案为①②③④.三、解答题(共计75分)16.解:(1)原式=axy(ax﹣y);(2)原式=a2(x﹣y)﹣b2(x﹣y)=(x﹣y)(a+b)(a﹣b).17.解:(1)原式==m﹣3将m=1代入,原式=﹣4;(2)由①得,x>1,由②得,x<4,所以不等式组的解集为1<x<4,18.证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△EAD和△FCB中∴△EAD≌△FCB(SAS),∴DE=BF.19.解:(1)△A1B1C1如图所示.(2)△AB2C2如图所示,点B2(4,﹣2).(3)△A3B3C3如图所示,B3的坐标(﹣4,﹣4).20.解:(1)=﹣,=﹣;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)(﹣+﹣+…+﹣)=,(﹣)=﹣=,=,解得x=50,经检验,x=50为原方程的根.故答案为﹣,﹣.21.证明:∵DE是△ABC的中位线∴AE=EC,∵CF∥BD∴∠A=∠ECF,且AE=CE,∠AED=∠CEF∴△AED≌△CEF(ASA)∴DE=EF22.解:(1)设购买一个甲种足球需要x元,,解得,x=50,经检验,x=50是原分式方程的解,∴x+20=70,即购买一个甲种足球需50元,一个乙种足球需70元;(2)设这所学校再次购买了y个乙种足球,70(1﹣10%)y+50(1+10%)(50﹣y)≤3000,解得,y≤31.25,∴最多可购买31个足球,即这所学校最多可购买31个乙种足球.23.解:图2结论:PD+PE+PF=AB.证明:过点P作MN∥BC分别交AB,AC于M,N两点,∵PE∥AC,PF∥AB,∴四边形AEPF是平行四边形,∵MN∥BC,PF∥AB∴四边形BDPM是平行四边形,∴AE=PF,∠EPM=∠B,∠EPM=∠ANM=∠C,∵AB=AC,∴∠B=∠C,∴∠EMP=∠EPM,∴PE=EM,∴PE+PF=AE+EM=AM.∵四边形BDPM是平行四边形,∴MB=PD.∴PD+PE+PF=MB+AM=AB,即PD+PE+PF=AB.图3结论:PE+PF﹣PD=AB.。
北师大版2019-2020学年度初二数学第二学期期末考试试卷( 含答案)

2019-2020学年度第二学期期末考试八年级数学试题一、选择题:(每题2分,12小题,共24分)1.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下面的多边形中,内角和与外角和相等的是()A.B.C.D.3.长和宽分别是a,b的长方形的周长为10,面积为6,则a2b+ab2的值为()A.15 B.16 C.30 D.604.如图,AB∥CD∥EF,AC=4,CE=6,BD=3,则DF的值是()A.4.5 B.5 C.2 D.1.55.如图,BE、CD相交于点A,连接BC,DE,下列条件中不能判断△ABC∽ADE的是()A.∠B=∠D B.∠C=∠E C.=D.=6.关于x的元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为()A.﹣5 B.﹣2 C.0 D.﹣87.某超市今年二月份的营业额为82万元,四月份的营业额比三月份的营业额多20万元,若二月份到四月份每个月的月销售额增长率都相同,若设增长率为x,根据题意可列方程()A.82(1+x)2=82(1+x)+20 B.82(1+x)2=82(1+x)C.82(1+x)2=82+20 D.82(1+x)=82+208.如图,▱ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为28,则△ABE的周长为()A.28 B.24 C.21 D.149.如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转,则第2019秒时,菱形两对角线交点D的横坐标为()A.B.C.1 D.﹣110.如图,菱形ABCD的对角线AC、BD相交于点O,过点C作CE⊥AD于点E,连接OE,若OB=8,S菱形ABCD=96,则OE的长为()A.2B.2C.6 D.811.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD 上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6 B.4 C.4.8 D.512.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=6.M是BD的中点,则CM的长为()A.B.2 C.D.3二、填空题:(每题2分,8小题,共16分)13.因式分解:m2n+2mn2+n3=.14.若分式有意义,则实数x的取值范围是.15.若关于x的分式方程=有增根,则m的值为.16.设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2=.17.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C 的方向平移,得到△A′B′O′,当点A′与点C重合时,点A与点B′之间的距离为.18.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.19.如图,在Rt△ABC中,∠B=90°,AB=2,BC=3,D、E分别是AB、AC的中点,延长BC至点F,使CF=BC,连接DF、EF,则EF的长为.20.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的有(只填序号).三、计算题:(4小题,共18分)21.(1)化简;(m+2+)•(2)先化简,再求值;(+x+2)÷,其中|x|=222.解方程:(1)x2﹣2x﹣5=0;(2)=.四、解答题:(5小题,共42分)23.阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t =±9因为2m2+n2≥0,所以2m2+n2=9.上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题,并写出解答过程.已知实数x,y满足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.24.某书店积极响应政府“改革创新,奋发有为”的号召,举办“读书节“系列活动.活动中故事类图书的标价是典籍类图书标价的1.5倍,若顾客用540元购买图书,能单独购买故事类图书的数量恰好比单独购买典籍类图书的数量少10本.(1)求活动中典籍类图书的标价;(2)该店经理为鼓励广大读者购书,免费为购买故事类的读者赠送图1所示的精致矩形包书纸.在图1的包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.已知该包书纸的面积为875cm2(含阴影部分),且正好可以包好图2中的《中国故事》这本书,该书的长为21cm,宽为15cm,厚为1cm,请直接写出该包书纸包这本书时折叠进去的宽度.25.如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD 的平行线,两线交于点E.(1)求证:四边形ADBE是矩形;(2)连接DE,交AB与点O,若BC=8,AO=3,求△ABC的面积.26.如图,已知:AD为△ABC的中线,过B、C两点分别作AD所在直线的垂线段BE和CF,E、F为垂足,过点E作EG∥AB交BC于点H,连结HF并延长交AB于点P.(1)求证:DE=DF(2)若BH:HC=11:5;①求:DF:DA的值;②求证:四边形HGAP为平行四边形.27.如图,矩形ABCD中,AB=12,AD=9,E为BC上一点,且BE=4,动点F从点A出发沿射线AB方向以每秒3个单位的速度运动.连接DF,DE,EF.过点E作DF的平行线交射线AB于点H,设点F的运动时间为t(不考虑D、E、F在一条直线上的情况).(1)填空:当t=时,AF=CE,此时BH=;(2)当△BEF与△BEH相似时,求t的值;(3)当F在线段AB上时,设△DEF的面积为S,△DEF的周长为C.①求S关于t的函数关系式;②直接写出C的最小值.参考答案与试题解析一.选择题(共12小题)1.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.2.下面的多边形中,内角和与外角和相等的是()A.B.C.D.【分析】根据多边形的内角和公式(n﹣2)•180°与多边形的外角和定理列式进行计算即可得解.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故选:B.3.长和宽分别是a,b的长方形的周长为10,面积为6,则a2b+ab2的值为()A.15 B.16 C.30 D.60【分析】直接利用矩形面积求法结合提取公因式法分解因式计算即可.【解答】解:∵长和宽分别是a,b的长方形的周长为10,面积为6,∴2(a+b)=10,ab=6,故a+b=5,则a2b+ab2=ab(a+b)=30.故选:C.4.如图,AB∥CD∥EF,AC=4,CE=6,BD=3,则DF的值是()A.4.5 B.5 C.2 D.1.5【分析】直接根据平行线分线段成比例定理即可得出结论.【解答】解:∵直线AB∥CD∥EF,AC=4,CE=6,BD=3,∴=,即=,解得DF=4.5.故选:A.5.如图,BE、CD相交于点A,连接BC,DE,下列条件中不能判断△ABC∽ADE的是()A.∠B=∠D B.∠C=∠E C.=D.=【分析】分别根相似三角形的判定方法,逐项判断即可.【解答】解:∵∠BAC=∠DAE,∴当∠B=∠D或∠C=∠E时,可利用两角对应相等的两个三角形相似证得△ABC∽ADE,故A、B选项可判断两三角形相似;当=时,可得=,结合∠BAC=∠DAE,则可证得△ABC∽△AED,而不能得出△ABC∽△ADE,故C不能判断△ABC∽ADE;当=时,结合∠BAC=∠DAE,可证得△ABC∽△ADE,故D能判断△ABC∽△ADE;故选:C.6.关于x的元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为()A.﹣5 B.﹣2 C.0 D.﹣8【分析】利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况,有两个不相等的实根,即△>0【解答】解:依题意,关于x的一元二次方程,有两个不相等的实数根,即△=b2﹣4ac=42+8c>0,得c>﹣2根据选项,只有C选项符合,故选:C.7.某超市今年二月份的营业额为82万元,四月份的营业额比三月份的营业额多20万元,若二月份到四月份每个月的月销售额增长率都相同,若设增长率为x,根据题意可列方程()A.82(1+x)2=82(1+x)+20 B.82(1+x)2=82(1+x)C.82(1+x)2=82+20 D.82(1+x)=82+20【分析】根据题意可以列出相应的方程,本题得以解决.【解答】解:由题意可得,82(1+x)2=82(1+x)+20,故选:A.8.如图,▱ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为28,则△ABE的周长为()A.28 B.24 C.21 D.14【分析】先判断出EO是BD的中垂线,得出BE=ED,从而可得出△ABE的周长=AB+AD,再由平行四边形的周长为24,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵平行四边形的周长为28,∴AB+AD=14∵OE⊥BD,∴OE是线段BD的中垂线,∴BE=ED,∴△ABE的周长=AB+BE+AE=AB+AD=14,故选:D.9.如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转,则第2019秒时,菱形两对角线交点D的横坐标为()A.B.C.1 D.﹣1【分析】根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标.【解答】解:菱形OABC的顶点O(0,0),B(2,2),得D点坐标为(,),即(1,1).∴OD=每秒旋转45°,则第2019秒时,得45°×2019,45°×2019÷360=252.375周,OD旋转了252又周,菱形的对角线交点D的坐标为(﹣,0),故选:B.10.如图,菱形ABCD的对角线AC、BD相交于点O,过点C作CE⊥AD于点E,连接OE,若OB=8,S菱形ABCD=96,则OE的长为()A.2B.2C.6 D.8【分析】由菱形的性质得出BD=16,由菱形的面积得出AC=12,再由直角三角形斜边上的中线性质即可得出结果.【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD=BD,BD⊥AC,∴BD=16,∵S菱形ABCD═AC×BD=96,∴AC=12,∵CE⊥AD,∴∠AEC=90°,∴OE=AC=6,故选:C.11.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD 上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6 B.4 C.4.8 D.5【分析】根据题意和三角形相似的判定和性质,可以求得CD的长,本题得以解决.【解答】解:作DH∥EG交AB于点H,则△AEG∽△ADH,∴,∵EF⊥AC,∠C=90°,∴∠EFA=∠C=90°,∴EF∥CD,∴△AEF∽△ADC,∴,∴,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12﹣x,∵EF⊥AC,EF⊥EG,DH∥EG,∴EG∥AC∥DH,∴△BDH∽△BCA,∴,即,解得,x=4,∴CD=4,故选:B.12.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=6.M是BD的中点,则CM的长为()A.B.2 C.D.3【分析】延长BC到E使BE=AD,则四边形ACED是平行四边形,根据三角形的中位线的性质得到CM=DE=AB,根据跟勾股定理得到AB===5,于是得到结论.【解答】解:延长BC到E使BE=AD,则四边形ACED是平行四边形,∵BC=3,AD=6,∴C是BE的中点,∵M是BD的中点,∴CM=DE=AB,∵AC⊥BC,∴AB===5,∴CM=,故选:C.二.填空题(共8小题)13.因式分解:m2n+2mn2+n3=n(m+n)2.【分析】首先提取公因式n,再利用完全平方公式分解因式得出答案.【解答】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.14.若分式有意义,则实数x的取值范围是x≠5 .【分析】根据分式有意义的条件可得x﹣5≠0,再解即可.【解答】解:由题意得:x﹣5≠0,解得:x≠5,故答案为:x≠5.15.若关于x的分式方程=有增根,则m的值为 3 .【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入计算即可求出m的值.【解答】解:去分母得:3x=m+3,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入方程得:6=m+3,解得:m=3,故答案为:316.设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2=0 .【分析】直接根据根与系数的关系求解.【解答】解:∵x1、x2是方程x2﹣x﹣1=0的两根,∴x1+x2=1,x1×x2=﹣1,∴x1+x2+x1x2=1﹣1=0.故答案为:0.17.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C 的方向平移,得到△A′B′O′,当点A′与点C重合时,点A与点B′之间的距离为10 .【分析】由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'===10;故答案为10.18.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.【分析】证出∠ACD=∠DCB=∠B,证明△ACD∽△ABC,得出=,即可得出结果.【解答】解:∵BC的垂直平分线MN交AB于点D,∴CD=BD=3,∴∠B=∠DCB,AB=AD+BD=5,∵CD平分∠ACB,∴∠ACD=∠DCB=∠B,∵∠A=∠A,∴△ACD∽△ABC,∴=,∴AC2=AD×AB=2×5=10,∴AC=.故答案为:.19.如图,在Rt△ABC中,∠B=90°,AB=2,BC=3,D、E分别是AB、AC的中点,延长BC至点F,使CF=BC,连接DF、EF,则EF的长为.【分析】连接DE,CD,根据三角形中位线的性质得到DE∥BC,DE=BC,推出四边形DCFE是平行四边形,得到EF=CD,根据勾股定理即可得到结论.【解答】解:连接DE,CD,∵D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴DE∥CF,∵CF=BC,∴DE=CF,∴四边形DCFE是平行四边形,∴EF=CD,∵在Rt△ABC中,∠B=90°,AB=2,BC=3,∴CD===,∴EF=CD=,故答案为:.20.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的有①②④⑤(只填序号).【分析】①②、证明△ABH≌△ADF,得AF=AH,再得AC平分∠FAH,则AM既是中线,又是高线,得AC⊥FH,证明BH=HM=MF=FD,则FH=2BH;所以①②都正确;③可以直接求出FC的长,计算S△ACF≠1,错误;④根据正方形边长为2,分别计算CE和AF的长得结论正确;⑤利用相似先得出EG2=FG•CG,再根据同角的三角函数列式计算CG的长为1,则DG=CG,得出⑤也正确.【解答】解:①②如图1,∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,在△ABH和△ADF中,,∴△ABH≌△ADF(SAS),∴AH=AF,∠BAH=∠FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故①②正确;③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,∴AC=2,MC=DF=2﹣2,∴FC=2﹣DF=2﹣(2﹣2)=4﹣2,S△AFC=CF•AD≠1,故③不正确;④AF==2,∵△ADF∽△CEF,∴=,∴CE=,∴CE=AF,故④正确;⑤延长CE和AD交于N,如图2,∵AE⊥CE,AE平分∠CAD,∴CE=EN,∵EG∥DN,∴CG=DG,在Rt△FEC中,EG⊥FC,∴∠GEF=∠GCE,∴△EFG∽△CEG,∴=,∴EG2=FG•CG,∴EG2=FG•DG,故选项⑤正确;故答案为:①②④⑤.三、计算题:(4小题,共18分)21.(1)化简;(m+2+)•(2)先化简,再求值;(+x+2)÷,其中|x|=2【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,约分即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,求出x的值代入计算即可求出值.【解答】解:(1)原式=•=•=m+1;(2)原式=•=,由|x|=2,得到x=2或﹣2(舍去),当x=2时,原式=19.22.解方程:(1)x2﹣2x﹣5=0;(2)=.【分析】(1)利用公式法求解可得;(2)两边都乘以(x+1)(x﹣2)化为整式方程,解之求得x的值,继而检验即可得.【解答】解:(1)∵a=1,b=﹣2,c=﹣5,∴△=4﹣4×1×(﹣5)=24>0,则x==1±,∴;(2)两边都乘以(x+1)(x﹣2),得:x+1=4(x﹣2),解得x=3,经检验x=3是方程的解.四、解答题:(5小题,共42分)23.阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t =±9因为2m2+n2≥0,所以2m2+n2=9.上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题,并写出解答过程.已知实数x,y满足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.【分析】设t=x2+y2(t≥0),则原方程转化为(4t+3)(4t﹣3)=27,然后解该方程即可.【解答】解:设t=x2+y2(t≥0),则原方程转化为(4t+3)(4t﹣3)=27,整理,得16t2﹣9=27,所以t2=.∵t≥0,∴t=.∴x2+y2的值是.【点评】考查了换元法解一元二次方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.24.某书店积极响应政府“改革创新,奋发有为”的号召,举办“读书节“系列活动.活动中故事类图书的标价是典籍类图书标价的1.5倍,若顾客用540元购买图书,能单独购买故事类图书的数量恰好比单独购买典籍类图书的数量少10本.(1)求活动中典籍类图书的标价;(2)该店经理为鼓励广大读者购书,免费为购买故事类的读者赠送图1所示的精致矩形包书纸.在图1的包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.已知该包书纸的面积为875cm2(含阴影部分),且正好可以包好图2中的《中国故事》这本书,该书的长为21cm,宽为15cm,厚为1cm,请直接写出该包书纸包这本书时折叠进去的宽度.【分析】(1)设典籍类图书的标价为x元,根据购买两种图书的数量差是10本,列出方程并解答;(2)矩形面积=(2宽+1+2折叠进去的宽度)×(长+2折叠进去的宽度).【解答】解:(1)设典籍类图书的标价为x元,由题意,得﹣10=.解得x=18.经检验:x=18是原分式方程的解,且符合题意.答:典籍类图书的标价为18元;(2)设折叠进去的宽度为ycm,则(2y+15×2+1)(2y+21)=875,化简得y2+26y﹣56=0,∴y=2或﹣28(不合题意,舍去),答:折叠进去的宽度为2cm.【点评】此题考查了分式方程和一元二次方程的应用,(2)题结合了矩形面积的求法考查了图形的折叠问题,能够得到折叠进去的宽度和矩形纸的长、宽的关系,是解决问题的关键.25.如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD 的平行线,两线交于点E.(1)求证:四边形ADBE是矩形;(2)连接DE,交AB与点O,若BC=8,AO=3,求△ABC的面积.【分析】(1)先求出四边形ADBE是平行四边形,根据等腰三角形的性质求出∠ADB=90°,根据矩形的判定得出即可;(2)根据矩形的性质得出AB=DE=2AO=6,求出BD,根据勾股定理求出AD,根据三角形面积公式求出即可.【解答】(1)证明:∵AE∥BC,BE∥AD,∴四边形ADBE是平行四边形,∵AB=AC,AD是BC边的中线,∴AD⊥BC,即∠ADB=90°,∴四边形ADBE为矩形;(2)解:∵在矩形ADBE中,AO=3,∴AB=2AO=6,∵D是BC的中点,∴DB=BC=4,∵∠ADB=90°,∴AD===2,∴△ABC的面积=BC•AD=×8×2=8.【点评】本题考查了等腰三角形的性质和矩形的性质和判定,能求出四边形ADCE是矩形是解此题的关键.26.如图,已知:AD为△ABC的中线,过B、C两点分别作AD所在直线的垂线段BE和CF,E、F为垂足,过点E作EG∥AB交BC于点H,连结HF并延长交AB于点P.(1)求证:DE=DF(2)若BH:HC=11:5;①求:DF:DA的值;②求证:四边形HGAP为平行四边形.【分析】(1)由AAS证明△BDE≌△CDF,即可得出结论;(2)①设BH=11x,则HC=5x,BC=16x,则,DH=3x,由平行线得出△EDH∽△ADB,得出,即可得出结论;②求出=,证出FH∥AC,即PH∥AC,即可得出结论.【解答】(1)证明:∵AD为△ABC的中线,∴BD=CD,∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴DE=DF;(2)①解:设BH=11x,则HC=5x,BC=16x,则,DH=3x,∵EG∥AB,∴△EDH∽△ADB,∴,∵DE=DF,∴;②证明:∵,∴,∵,∴=,∴FH∥AC,∴PH∥AC,∵EG∥AB,∴四边形HGAP为平行四边形.【点评】本题考查了平行四边形的判定、平行线的判定、全等三角形的判定与性质、相似三角形的判定与性质等知识;熟练掌握平行四边形的判定是关键.27.如图,矩形ABCD中,AB=12,AD=9,E为BC上一点,且BE=4,动点F从点A出发沿射线AB方向以每秒3个单位的速度运动.连接DF,DE,EF.过点E作DF的平行线交射线AB于点H,设点F的运动时间为t(不考虑D、E、F在一条直线上的情况).(1)填空:当t=时,AF=CE,此时BH=;(2)当△BEF与△BEH相似时,求t的值;(3)当F在线段AB上时,设△DEF的面积为S,△DEF的周长为C.①求S关于t的函数关系式;②直接写出C的最小值.【分析】(1)在Rt△ABC中,利用勾股定理可求得AB的长,即可得到AD、t的值,从而确定AE的长,由DE=AE﹣AD即可得解.(2)若△DEG与△ACB相似,要分两种情况:①AG:DE=DH:GE,②AH:EG=DH:DE,根据这些比例线段即可求得t的值.(需注意的是在求DE的表达式时,要分AD>AE和AD<AE两种情况);(3)分别表示出线段FD和线段AD的长,利用面积公式列出函数关系式即可.【解答】解:(1)∵BC=AD=9,BE=4,∴CE=9﹣4=5∵AF=CE即:3t=5,∴t=,∵EH∥DF∴△DAF∽△EBH,∴=即:=解得:BH=;当t=时,AF=CE,此时BH=;(2)由EH∥DF得∠AFD=∠BHE,又∵∠A=∠CBH=90°∴△EBH∽△DAF,∴即=∴BH=当点F在点B的左边时,即t<4时,BF=12﹣3t此时,当△BEF∽△BHE时:即42=(12﹣3t)×解得:t1=2此时,当△BEF∽△BEH时:有BF=BH,即12﹣3t=解得:t2=当点F在点B的右边时,即t>4时,BF=3t﹣12此时,当△BEF∽△BHE时:即42=(3t﹣12)×解得:t3=2+2(3)①∵EH∥DF∴△DFE的面积=△DFH的面积=FH•AD=(12﹣3t+t)×9=54﹣②如图,∵BE=4,∴CE=5,根据勾股定理得,DE=13,是定值,所以当C最小时DE+EF最小,作点E关于AB的对称点E'连接DE,此时DE+EF最小,在Rt△CDE'中,CD=12,CE'=BC+BE'=BC+BE=13,根据勾股定理得,DE'==,∴C的最小值=13+.【点评】此题考查了勾股定理、轴对称的性质、平行四边形及梯形的判定和性质、解直角三角形、相似三角形等相关知识,综合性强,是一道难度较大的压轴题.。
2019-2020学年北京市名校初二下期末综合测试数学试题含解析

2019-2020学年北京市名校初二下期末综合测试数学试题一、选择题(每题只有一个答案正确)1.如图,平行四边形ABCD中,E是BC边的中点,连接DE并延长交AB的延长线于点F,则在题中条件下,下列结论不能成立的是()A.BE=CE B.AB=BF C.DE=BE D.AB=DC2.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.23.分式可变形为()A.B.-C.D.4.已知点P(a,m),Q(b,n)是反比例函数y2x=图象上两个不同的点,则下列说法不正确的是()A.am=2 B.若a+b=0,则m+n=0C.若b=3a,则n13=m D.若a<b,则m>n5.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.6.下列计算正确的是()A.a3•a2=a6B.(a3)4=a7C.3a2﹣2a2=a2D.3a2×2a2=6a27.如图,被笑脸盖住的点的坐标可能是()A .(3,2)B .(-3,2)C .(-3,-2)D .(3,-2)8.下列调查适合普查的是( )A .调查2011年3月份市场上西湖龙井茶的质量B .了解萧山电视台188热线的收视率情况C .网上调查萧山人民的生活幸福指数D .了解全班同学身体健康状况9.若一次函数的6y x b =-+图象上有两点()()122,,1,A y B y -,则下列12,y y 大小关系正确的是( ) A .12y y < B .12y y > C .12y y ≤ D .12y y ≥10.如图,购买一种苹果,所付款金额y (元)与购买量x (千克)之间的函数图象由线段OA 和射线AB 组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省( )元.A .4B .5C .6D .7 二、填空题11.要使分式13x -有意义,x 应满足的条件是__________ 12.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若BD=2,AE=3,则正方形ODCE 的边长等于________.13.写出一个轴对称图形但不是中心对称图形的四边形:__________________14.如图,将ABC ∆沿BC 所在的直线平移得到DEF ∆,如果7AB =,2GC =,5DF =,那么GE =______.15.如图,每个小正方形边长为1,A 、B 、C 是小正方形的顶点,则AB 2=_____,∠ABC =_____°.16.如图,在ABC 中,已知90ABC ∠=︒,9cm AB BC ==,现将ABC 沿所在的直线向右平移4cm 得到A B C ''',BC 于A C ''相交于点D ,若4cm CD =,则阴影部分的面积为______2cm .17.如图,在矩形ABCD 中,AB 8=,BC 4=,将矩形沿AC 折叠,则重叠部分AEC 的面积为______.三、解答题18.分解因式(1)20a 3-30a 2(2)25(x+y )2-9(x-y )219.(6分)如图,一次函数y =3x+1的图象l 与x 轴、y 轴分别交于A 、B 两点(1)l 上有一P 点,它的纵坐标为2,求点P 的坐标;(2)求A 、B 两点间的距离AB .20.(6分)提出问题:(1)如图1,在正方形ABCD 中,点E ,H 分别在BC ,AB 上,若AE ⊥DH 于点O ,求证:AE =DH ; 类比探究:(2)如图2,在正方形ABCD 中,点H ,E ,G ,F 分别在AB ,BC ,CD ,DA 上,若EF ⊥HG 于点O ,探究线段EF 与HG 的数量关系,并说明理由.21.(6分)如图,ABCD 的对角线AC 、BD 相交于点O ,对角线AC 绕点O 逆时针旋转,分别交边DC 、AB 于点E 、F .(1)求证:CE AF =;(2)若2DB =,1BC =,5CD AC 绕点O 逆时针方向旋转45︒时,判断四边形BEDF 的形状,并说明理由.22.(8分)如图,在平面直角坐标系中有△ABC ,其中A (﹣3,4),B (﹣4,2),C (﹣2,1).把△ABC 绕原点顺时针旋转90°,得到△A 1B 1C 1.再把△A 1B 1C 1向左平移2个单位,向下平移5个单位得到△A 2B 2C 2. (1)画出△A 1B 1C 1和△A 2B 2C 2.(2)直接写出点B 1、B 2坐标.(3)P (a ,b )是△ABC 的AC 边上任意一点,△ABC 经旋转平移后P 对应的点分别为P 1、P 2,请直接写出点P 1、P 2的坐标.23.(8分)如图,在ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.24.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=12∠BAC=60°,于是BCAB=2BDAB3;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.25.(10分)如图,在△ABC 中,AB=AC ,点D ,E 在BC 边上,AD AE =.求证:BD CE =.参考答案一、选择题(每题只有一个答案正确)1.C【解析】【分析】A 选项:由中点的定义可得;B 选项:先根据AAS 证明△BEF ≌△CED 可得:DC =BF ,再加上AB =DC 即可得;C 选项:DE 和BE 不是对应边,故是错误的;D 选项:由平行四边形的性质可得.【详解】解:∵平行四边形ABCD 中,E 是BC 边的中点,∴AB=DC,AB//DC,BE=CE,(故A 、D 选项正确)∴∠EBF=∠ECD,∠EFB=∠EDC,在△BEF 和△CED 中EBF ECD EFB EDC BE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BEF≌△CED(AAS)∴DC=BF,又∵AB=DC,∴AB=BF.(故B选项正确).所以A、B、D选项正确.故选C.【点睛】运用了平行四边形的性质,解题时,关键根据平行四边形的性质和中点的定义证明△BEF≌△CED,得到DC=BF,再根据等量代换得到AB=BF.2.B【解析】【分析】先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形A BNM′为平行四边形,即可求出MP+NP=M′N=AB=1.【详解】解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选B.3.D【解析】【分析】根据分式的基本性质进行判断.【详解】A. 分子、分母同时除以−1,则原式=,故本选项错误;B. 分子、分母同时除以−1,则原式=,故本选项错误;C. 分子、分母同时除以−1,则原式=,故本选项错误;D. 分子、分母同时除以−1,则原式=,故本选项正确.故选:D.【点睛】此题考查分式的基本性质,解题关键在于掌握运算法则.4.D【解析】【分析】根据题意得:am=bn=2,将B,C选项代入可判断,根据反比例函数图象的性质可直接判断D是错误的.【详解】∵点P(a,m),Q(b,n)是反比例函数y2x=图象上两个不同的点,∴am=bn=2,若a+b=0,则a=﹣b,∴﹣bm=bn,∴﹣m=n即m+n=0,若b=3a,∴am=3an,∴n13=m,故A,B,C正确,若a<0<b,则m<0,n>0,∴m<n,故D是错误的,故选D.【点睛】本题考查了反比例函数图象上点的坐标特征,关键是灵活运用反比例函数图象的性质解决问题.5.B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.6.C【解析】【分析】根据同底数幂乘法、幂的乘方、整式加减法和乘法运算法则进行分析.【详解】A. a3•a2=a5,本选项错误;B. (a3)4=a12,本选项错误;C. 3a2﹣2a2=a2,本选项正确;D. 3a2×2a2=6a4,本选项错误.故选C【点睛】本题考核知识点:整式运算.解题关键点:掌握整式运算法则.7.C【解析】【分析】判断出笑脸盖住的点在第三象限,再根据第三象限内点的坐标特征解答.【详解】由图可知,被笑脸盖住的点在第三象限,(3,2),(-3,2),(-3,-2),(3,-2)四个点只有(-3,-2)在第三象限.故选C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.D【解析】解:A、B、C范围广,工作量大,不宜采用普查,只能采用抽样调查;D工作量小,没有破坏性,适合普查.故选D.9.B【解析】【分析】首先观察一次函数的x 项的系数,当x 项的系数大于0,则一次函数随着x 的增大而增大,当x 小于0,则一次函数随着x 的减小而增大.因此只需要比较A 、B 点的横坐标即可.【详解】解:根据一次函数的解析式6y x b =-+可得此一次函数随着x 的增大而减小因为()()122,,1,A y B y -根据-2<1,可得12y y >故选B.【点睛】本题主要考查一次函数的一次项系数的含义,这是必考点,必须熟练掌握.10.C【解析】【分析】观察函数图象找出点的坐标,利用待定系数法求出线段OA 和设AB 的函数关系式,再分别求出当x=1和x=5时,y 值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数.【详解】解:设y 关于x 的函数关系式为y=kx+b ,当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b 中,020b k b =⎧⎨+=⎩,解得:100k b =⎧⎨=⎩, ∴y=10x(0≤x≤2);当x>2时,将(2,20),(4,36)代入y=kx+b 中,220436k b k b +=⎧⎨+=⎩,解得:84k b =⎧⎨=⎩, ∴y=8x+4(x≥2).当x=1时,y=10x=10,当x=5时,y=44,10×5-44=6(元),故选C .【点睛】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.二、填空题x11.3【解析】【分析】本题主要考查分式有意义的条件:分母不能为1.【详解】解:∵x-2≠1,∴x≠2,故答案是:x≠2.【点睛】本题考查的是分式有意义的条件,当分母不为1时,分式有意义.12.1【解析】【分析】设正方形ODCE的边长为x,则CD=CE=x,根据全等三角形的性质得到AF=AE,BF=BD,根据勾股定理即可得到结论.【详解】解:设正方形ODCE的边长为x,则CD=CE=x,∵△AFO≌△AEO,△BDO≌△BFO,∴AF=AE,BF=BD,∴AB=2+3=5,∵AC2+BC2=AB2,∴(3+x)2+(2+x)2=52,∴x=1,∴正方形ODCE的边长等于1,故答案为:1.本题考查了勾股定理的证明,全等三角形的性质,正方形的性质,熟练掌握勾股定理是解题的关键. 13.等腰梯形(答案不唯一)【解析】【分析】根据轴对称图形和中心对称图形的概念,知符合条件的图形有等腰三角形,等腰梯形,角,射线,正五边形等.【详解】是轴对称图形但不是中心对称图形的,例如:等腰梯形,等腰三角形,角,射线,正五边形等. 故答案为:等腰梯形(答案不唯一).【点睛】此题主要考查了中心对称图形和轴对称图形,此题为开放性试题.注意:只要是有奇数条对称轴的图形一定不是中心对称图形.14.145【解析】【分析】根据已知条件和平移的性质推出AB=DE=7,△ABC ∽△GEC ,即可根据相似三角形性质计算GE 的长度.【详解】解:∵△ABC 沿着射线BC 的方向平移得到△DEF ,AB=7,∴DE=7,∠A=∠CGE ,∠B=∠DEC ,∴△DEF ∽△GEC , ∴EG GC ED DF=, ∵2GC =,5DF =, ∴275EG =, ∴EG=145, 故填:145. 【点睛】本题主要考查平移的性质、相似三角形的判定和性质,解题的关键在于求证三角形相似,找到对应边. 15.10 1.【解析】【分析】连接AC ,根据勾股定理得到AB 2,BC 2,AC 2的长度,证明△ABC 是等腰直角三角形,继而可得出∠ABC 的【详解】连接AC .根据勾股定理可以得到:AB 2=12+32=10,AC 2=BC 2=12+22=5,∵5+5=10,即AC 2+BC 2=AB 2,∴△ABC 是等腰直角三角形,∴∠ABC =1°.故答案为:10,1.【点睛】考查了勾股定理及其逆定理,判断△ABC 是等腰直角三角形是解决本题的关键.16.1【解析】【分析】根据平移的性质求出A′B ,然后根据阴影部分的面积ABC A BD S S ∆∆'=-列式计算即可得解.【详解】解:∵AB =BC =9cm ,平移距离为4cm ,∴A′B =9−4=5cm ,∵4cm CD =,∴B 945cm D =-=,∵∠ABC =90°,∴阴影部分的面积ABC A BD S S ∆∆'=-=1199552822⨯⨯-⨯⨯=, 故答案为:1.【点睛】本题考查了平移的性质,是基础题,熟记平移的性质是解题的关键.17.1【解析】【分析】首先证明AE=CE ,根据勾股定理列出关于线段AE 的方程,解方程求出AE 的长问题即可解决.【详解】解:由题意得:∠DCA=∠ACE ,∵四边形ABCD 为矩形,∴DC//AB ,∠B=90°,∴∠DCA=∠CAE ,∴∠CAE=∠ACE ,∴AE=CE(设为x),则BE=8-x ,由勾股定理得:x 2=(8-x) 2+42,解得:x=5,∴S △AEC =12×5×4=1, 故答案为1.【点睛】本题考查了矩形的性质、折叠的性质、勾股定理的应用等,熟练掌握和灵活运用相关的性质及定理是解题的关键.本题也要注意数形结合思想的运用.三、解答题18.(1)10a 2(2a ﹣3)(2)4(4x+y)(x+4y)【解析】分析:(1)利用提公因式法,找到并提取公因式10a 2即可;(2)利用平方差公式进行因式分解,然后整理化简即可.详解:(1)解:20a 3﹣30a 2=10a 2(2a ﹣3)(2)解:25(x+y )2﹣9(x ﹣y )2=[5(x+y )+3(x ﹣y )][5(x+y )﹣3(x ﹣y )]=(8x+2y )(2x+8y );=4(4x+y)(x+4y) .点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).19.(1)1);(1)1.【解析】【分析】(1)把y=1代入函数解析式,求出x 即可;(1)求出A 、B 的坐标,再根据勾股定理求出即可.【详解】(1)把y=1代入得:,解得:所以点P1);x+1,(1)y=3当x=0时,y=1,当y=0时,,解得:即A(0),B(0,1),即OB=1,所以A、B两点间的距离.【点睛】本题考查了一次函数的图象和性质、一次函数图象上点的坐标特征等知识点,能求出A、B的坐标是解(1)的关键.20.(1)见解析;(2)EF=GH,理由见解析【解析】【分析】(1)由正方形的性质可得AB=DA,∠ABE=90°=∠DAH.又由∠ADO+∠OAD=90°,可证得∠HAO=∠ADO,继而证得△ABE≌△DAH,可得AE=DH;(2)将FE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH.根据(1)的结论得AM=DN,所以EF=GH;【详解】(1)证明:∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAH.∴∠HAO+∠OAD=90°.∵AE⊥DH,∴∠ADO+∠OAD=90°.∴∠HAO=∠ADO.在△ABE和△DAH中,∴△ABE≌△DAH(ASA),∴AE=DH;(2)解:EF=GH.理由:如图所示:将FE平移到AM处,则AM∥EF,AM=EF.将GH平移到DN处,则DN∥GH,DN=GH.∵EF⊥GH,∴AM⊥DN,根据(1)的结论得AM=DN,所以EF=GH.【点睛】此题考查四边形综合题,解题关键在于证明△ABE≌△DAH,再根据平移的性质求得AM=EF,DN=GH. 21.(1)证明见解析;(2)平行四边形DEBF是菱形,证明见解析.【解析】【分析】(1)由“ASA”可证△COE≌△AOF,可得CE=AF;(2)由勾股定理的逆定理可证∠DBC=90°,通过证明四边形DEBF是平行四边形,可得DO=BO=1=BC,可得∠BOC=45°,由旋转的性质可得∠EOC=45°,可得EF⊥BD,即可证平行四边形DEBF是菱形.【详解】证明:(1)∵四边形ABCD是平行四边形∴CD∥AB,AO=CO,AB=CD∴∠DCO=∠BAO,且AO=CO,∠AOF=∠COE∴△COE≌△AOF(ASA)∴CE=AF,(2)四边形BEDF是菱形理由如下如图,连接DF,BE,∵DB=2,BC=1,5CD∴DB2+BC2=5=CD2,∴∠DBC=90°由(1)可得AF=CE,且AB=CD∴DE=BF,且DE∥BF∴四边形DEBF是平行四边形∴DO=BO=1,∴OB=BC=1,且∠OBC=90°∴∠BOC=45°,∵当AC绕点O逆时针方向旋转45°时∴∠EOC=45°∴∠EOB=90°,即EF⊥BD∴平行四边形DEBF是菱形【点睛】本题考查了旋转的性质,全等三角形的判定和性质,平行四边形的判定和性质,证明∠DBC=90°是本题的关键.22.(1)见解析;(2)B1(2,4)、B2(0,﹣1);(3)P1(b,﹣a),P2(b﹣2,﹣a﹣5).【解析】【分析】(1)根据△ABC绕原点顺时针旋转90°,得到△A1B1C1,△A1B1C1向左平移2个单位,再向下平移5个单位得到△A2B2C2.(2)根据图形得出对应点的坐标即可;(3)根据旋转和平移后的点P的位置,即可得出点P1、P2的坐标.【详解】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求:(2)点B1坐标为(2,4)、B2坐标为(0,﹣1);(3)由题意知点P1坐标为(b,﹣a),点P2的坐标为(b﹣2,﹣a﹣5).【点睛】考查了利用平移变换以及旋转变换进行作图,解题时注意:确定平移后图形的基本要素有两个:平移方向、平移距离.决定旋转后图形位置的因素为:旋转角度、旋转方向、旋转中心.23.(1)见解析;(2) OF =.【解析】【分析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据直角三角形斜边中线可得:OF=AC,利用勾股定理计算AC的长,可得结论.【详解】(1)证明:∵四边形ABCD是平行四边形∴AB=CD,AB∥CD.∵DF=CE,∴DF+DE=CE+ED,即:FE=CD.∵点F、E在直线CD上∴AB=FE,AB∥FE.∴四边形ABEF是平行四边形又∵BE⊥CD,垂足是E,∴∠BEF=90°.∴四边形ABEF是矩形.(2)解:∵四边形ABEF是矩形O,∴∠AFC=90°,AB=FE.∵AB=6,DE=2,∴FD=4.∵FD=CE,∴CE=4.∴FC=10.在Rt△AFD中,∠AFD=90°.∵∠ADF=45°,∴AF=FD=4.在Rt△AFC中,∠AFC=90°.∴.∵点O是平行四边形ABCD对角线的交点,∴O为AC中点在Rt△AFC中,∠AFC=90°.O为AC中点.∴OF=AC=.【点睛】本题考查了矩形的判定和性质,平行四边形的性质,勾股定理,正确的识别图形是解题的关键.24.迁移应用:①证明见解析;②3AD+BD;拓展延伸:①证明见解析;②3【解析】【分析】迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;②结论:3AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=32AD,由AD=AE,AH⊥DE,推出DH=HE,由3,即可解决问题;拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得HFBF=cos30°,由此即可解决问题.【详解】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,DA EADAB EACAB AC⎧⎪∠∠⎨⎪⎩==,=∴△DAB≌△EAC,②解:结论:CD=3AD+BD.理由:如图2-1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=3 AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=3AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BFH=30°,∴HFBF=cos30°,∴.【点睛】本题考查全等三角形的判定和性质、等腰三角形的性质、四点共圆、等边三角形的判定和性质、锐角三角函数等知识,解题关键是灵活应用所学知识解决问题,学会添加辅助圆解决问题,属于中考压轴题.25.见解析【解析】试题分析:证明△ABE≌△ACD 即可.试题解析:法1:∵AB=AC,∴∠B=∠C,∵AD=CE,∴∠ADE=∠AED,∴△ABE≌△ACD,∴BE=CD ,∴BD=CE,法2:如图,作AF⊥BC于F,∵AB=AC,∴BF=CF,∵AD=AE,∴DF=EF,∴BF-DF=CF-EF, 即BD=CE.。
北师大版2019-2020学年度第二学期八年级(下)期末数学试卷(含解析) (13)

北师大版2019-2020学年第二学期八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(3分)下列汽车标志中,是中心对称图形的是()A.B.C.D.2.(3分)若分式有意义,则实数x的取值范围是()A.x≠0B.x=0C.x≠﹣4D.x≠43.(3分)不等式的正整数解的个数是()A.0个B.4个C.6个D.7个4.(3分)如图,在四边形ABCD中,点D在AC的垂直平分线上,AB∥CD.若∠BAC=25°,则∠ADC的度数是()A.130°B.120°C.100°D.50°5.(3分)若关于x的分式方程有增根,则k的值是()A.﹣1B.﹣2C.2D.16.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C′,使得点A′恰好落在AB边上,则α等于()A.150°B.90°C.60°D.30°7.(3分)如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=4,F为CE的中点,连接DF,则AF的长等于()A.2B.3C.D.28.(3分)如图,在Rt△ABC中,∠BAC=90°,∠ACB=30°,AB=2,将△ABC沿直线BC向右平移得到△DEF,连接AD,若AD=2,则点C到DF的距离为()A.1B.2C.2.5D.49.(3分)为打击毒品犯罪,我县缉毒警察乘警车,对同时从县城乘汽车出发到A地的两名毒犯实行抓捕,警车比汽车提前15分钟到A地,A地距离县城8千米,警车的平均速度是汽车平均速度的2.5倍,若设汽车的平均速度是每小时x千米,根据题意可列方程为()A.+15=B.=+15C.=D.=10.(3分)如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD =1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF =;④S△AEF=.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(共4小题,每小题3分,计12分)11.(3分)已知某个正多边形的每个内角都是120°,这个正多边形的内角和为°.12.(3分)如果多项式x2+(2﹣k)xy+9y2是一个完全平方式,那么k的值为.13.(3分)在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对题.14.(3分)如图,平行四边形ABCD中,点O是对角线AC的中点,点E在边AB上,连结DE,取DE的中点F,连结EO并延长交CD于点G.若BE=3CG,OF=2,则线段AE的长是.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)解方程:=﹣1.16.(5分)解不等式组:17.(5分)如图,已知直线l和l外一点P,用尺规作l的垂线,使它经过点P.(保留作图痕迹,不写作法)18.(5分)如图,在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R =6.8cm,r=1.6cm,请利用因式分解求出剩余阴影部分的面积.(结果保留π)19.(7分)先化简,再求值:(1+)÷,其中x=2.20.(7分)如图,在△ABC中,AB=AC,点M、N分别在BC所在的直线上且BM=CN,求证:△AMN是等腰三角形.21.(7分)如图,已知△ABC各顶点的坐标分别为A(﹣3,﹣4),B(﹣1,﹣3),C (﹣4,﹣1).(1)画出△ABC以点B为旋转中心,按顺时针方向旋转90°后得到的△A1BC1;(2)将△ABC先向右平移5个单位长度,再向上平移3个单位长度,得到△A2B2C2;①在图中画出△A2B2C2,并写出点A的对应点A2的坐标;②如果将△A2B2C2看成是由△ABC经过一次平移得到的,请指出这一平移的平移方向和平移距离.22.(7分)四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF、AC、DE,当BF⊥AE时,求证:四边形ACED是平行四边形.23.(8分)问题背景:对于形如x2﹣120x+3600这样的二次三项式,可以直接用完全平方公式将它分解成(x﹣60)2,对于二次三项式x2﹣120x+3456,就不能直接用完全平方公式分解因式了.此时常采用将x2﹣120x加上一项602,使它与x2﹣120x的和成为一个完全平方式,再减去602,整个式子的值不变,于是有:x2﹣120x+3456=x2﹣2×60x+602﹣602+3456=(x﹣60)2﹣144=(x﹣60)2﹣122=(x﹣60+12)(x﹣60﹣12)=(x﹣48)(x﹣72)问题解决:(1)请你按照上面的方法分解因式:x2﹣140x+4756;(2)已知一个长方形的面积为a2+8ab+12b2,宽为a+2b,求这个长方形的长.24.(10分)某校为了改善办公条件,计划从厂家购买A、B两种型号电脑已知每台A种型号电脑价格比每台B种型号电脑价格多0.1万元,且用10万元购买A种型号电脑的数量与用8万元购买B种型号电脑的数量相同.(1)求A、B两种型号电脑每台价格各为多少万元?(2)学校预计用不多于9.2万元的资金购进这两种电脑共20台,则最多可购买A种型号电脑多少台?25.(12分)在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF.②请判断△AGC的形状,并说明理由;(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG.那么△AGC又是怎样的形状.(直接写出结论不必证明)2018-2019学年陕西省汉中市城固县八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(3分)下列汽车标志中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各项分析判断即可.【解答】解:A、不是中心对称图形,故本项错误;②不是中心对称图形,故本项错误;③是中心对称图形,故本项正确;④不是中心对称图形,故本项错误.故选:C.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)若分式有意义,则实数x的取值范围是()A.x≠0B.x=0C.x≠﹣4D.x≠4【分析】根据分式有意义的条件即可求出答案.【解答】解:x+4≠0,∴x≠﹣4,故选:C.【点评】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.3.(3分)不等式的正整数解的个数是()A.0个B.4个C.6个D.7个【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,即可得其正整数解.【解答】解:去分母得:3(x+1)>2(2x+1)﹣6,去括号得:3x+3>4x+2﹣6,移项得:3x﹣4x>2﹣6﹣3,合并同类项得:﹣x>﹣7,系数化为1得:x<7,故不等式的正整数解有1、2、3、4,5,6这6个,故选:C.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.(3分)如图,在四边形ABCD中,点D在AC的垂直平分线上,AB∥CD.若∠BAC=25°,则∠ADC的度数是()A.130°B.120°C.100°D.50°【分析】根据平行线的性质求出∠ACD,根据线段垂直平分线的性质得到DA=DC,得到∠DAC=∠DCA,根据三角形内角和定理计算即可.【解答】解:∵AB∥CD,∴∠ACD=∠BAC=25°,∵点D在AC的垂直平分线上,∴DA=DC,∴∠DAC=∠DCA=25°,∴∠ADC=130°,故选:A.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.(3分)若关于x的分式方程有增根,则k的值是()A.﹣1B.﹣2C.2D.1【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣5)=0,得到x=5,然后代入化为整式方程的方程算出k的值.【解答】解:方程两边都乘(x﹣5),得x﹣6+x﹣5=﹣k,∵原方程有增根,∴最简公分母(x﹣5)=0,解得x=5,当x=5时,k=1.故选:D.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.6.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C′,使得点A′恰好落在AB边上,则α等于()A.150°B.90°C.60°D.30°【分析】由在Rt△ABC中,∠ACB=90°,∠ABC=30°,可求得∠A的度数,又由将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C′,易得△ACA′是等边三角形,继而求得答案.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠ABC=30°,∴∠A=90°﹣∠ABC=60°,∵将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C′,∴AC=A′C,∴△ACA′是等边三角形,∴α=∠ACA′=60°.故选:C.【点评】此题考查了旋转的性质以及等边三角形的判定与性质.注意证得△ACA′是等边三角形是关键.7.(3分)如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=4,F为CE的中点,连接DF,则AF的长等于()A.2B.3C.D.2【分析】根据三角形中位线定理求出DF,根据勾股定理计算,得到答案.【解答】解:∵F为CE的中点,D为BC的中点,∴DF=BE=2,DF∥BE,∴∠ADF=90°,∴AF===2,故选:D.【点评】本题考查的是三角形中位线定理、勾股定理,三角形的中位线平行于第三边,且等于第三边的一半.8.(3分)如图,在Rt△ABC中,∠BAC=90°,∠ACB=30°,AB=2,将△ABC沿直线BC向右平移得到△DEF,连接AD,若AD=2,则点C到DF的距离为()A.1B.2C.2.5D.4【分析】作CG⊥DF,根据平移性质得出AD=CF=2、∠ACB=∠F=30°,由直角三角形的性质可得答案.【解答】解:如图,作CG⊥DF于点G,由平移知,AD=CF=2,∠ACB=∠F=30°,∴CG=CF=1,故选:A.【点评】本题主要考查平移的性质,熟练掌握平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等是解题的关键.9.(3分)为打击毒品犯罪,我县缉毒警察乘警车,对同时从县城乘汽车出发到A地的两名毒犯实行抓捕,警车比汽车提前15分钟到A地,A地距离县城8千米,警车的平均速度是汽车平均速度的2.5倍,若设汽车的平均速度是每小时x千米,根据题意可列方程为()A.+15=B.=+15C.=D.=【分析】设汽车的平均速度是每小时x千米,则警车的平均速度是每小时2.5x千米,根据时间=路程÷速度结合警车比汽车提前小时(15分钟)到A地,即可得出关于x的分式方程,此题得解.【解答】解:设汽车的平均速度是每小时x千米,则警车的平均速度是每小时2.5x千米,依题意,得:=+.故选:D.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.10.(3分)如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD =1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF =;④S△AEF=.其中正确的有()A .1个B .2个C .3个D .4个【分析】连接EC ,作CH ⊥EF 于H .首先证明△BAD ≌△CAE ,再证明△EFC 是等边三角形即可解决问题;【解答】解:连接EC ,作CH ⊥EF 于H .∵△ABC ,△ADE 都是等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =∠ABC =∠ACB =60°,∴∠BAD =∠CAE ,∴△BAD ≌△CAE ,∴BD =EC =1,∠ACE =∠ABD =60°,∵EF ∥BC ,∴∠EFC =∠ACB =60°,∴△EFC 是等边三角形,CH =,∴EF =EC =BD ,∵EF ∥BD ,∴四边形BDEF 是平行四边形,故②正确,∵BD =CF =1,BA =BC ,∠ABD =∠BCF ,∴△ABD ≌△BCF ,故①正确,∵S 平行四边形BDEF =BD •CH =, 故③正确,S △AEF =S △AEC =•S △ABD =故④错误,故选:C .【点评】本题考查平行四边形的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,属于中考选择题中的压轴题.二、填空题(共4小题,每小题3分,计12分)11.(3分)已知某个正多边形的每个内角都是120°,这个正多边形的内角和为720°.【分析】设所求正多边形边数为n,根据内角与外角互为邻补角,可以求出外角的度数.根据任何多边形的外角和都是360度,由60°•n=360°,求解即可.【解答】解:设所求正多边形边数为n,∵正n边形的每个内角都等于120°,∴正n边形的每个外角都等于180°﹣120°=60°.又因为多边形的外角和为360°,即60°•n=360°,∴n=6.所以这个正多边形是正六边形.则内角和是:(6﹣2)×180=720°.故答案为:720.【点评】本题考查了多边形内角和外角的知识,解答本题的关键在于熟练掌握任何多边形的外角和都是360°并根据外角和求出正多边形的边数.12.(3分)如果多项式x2+(2﹣k)xy+9y2是一个完全平方式,那么k的值为8或﹣4.【分析】根据完全平方公式的结构特征判断确定出k的值即可.【解答】解:∵多项式x2+(2﹣k)xy+9y2是一个完全平方式,∴2﹣k=±6,解得:k=8或﹣4,故答案为8或﹣4【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.(3分)在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对19题.【分析】求至少要答对的题数,首先应求出在竞赛中的得分,然后根据题意在竞赛中的得分不低于60列出不等式,解答即可.【解答】解:设他至少应选对x道题,则不选或错选为25﹣x道题.依题意得4x﹣2(25﹣x)≥60得x≥又∵x应为正整数且不能超过25所以:他至少要答对19道题.【点评】本题考查一元一次不等式组的应用,用不等式解答应用问题时,要注意对未知数的限制条件.14.(3分)如图,平行四边形ABCD中,点O是对角线AC的中点,点E在边AB上,连结DE,取DE的中点F,连结EO并延长交CD于点G.若BE=3CG,OF=2,则线段AE的长是.【分析】由题意可求AB=CD,AB∥CD,即可证△AEO≌△CGO可得AE=CG,即可得DG=BE,由三角形中位线定理可求DG=2OF=4,即可求AE的长.【解答】解:∵点O是AC的中点,点F是DE的中点∴OF∥DG,DG=2OF=4∵四边形ABCD是平行四边形∴AB=CD,AB∥CD∴∠ACD=∠BAC且AO=CO,∠AOE=∠COG∴△AEO≌△CGO(ASA)∴AE=CG,且AB=CD∴BE=DG=4∵BE=3CG∴AE=CG=故答案为:【点评】本题考查了平行四边形的性质,全等三角形的性质和判定,三角形中位线的定理,熟练运用平行四边形的性质是本题的关键.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)解方程:=﹣1.【分析】观察可得方程最简公分母为:2x﹣4,将方程去分母转化为整式方程即可求解.【解答】解:化为整式方程得:2﹣2x=x﹣2x+4,解得:x=﹣2,把x=﹣2代入原分式方程中,等式两边相等,经检验x=﹣2是分式方程的解.【点评】此题考查分式方程的解法,解分式方程去分母时有常数项的注意不要漏乘,求解后要进行检验,这两项是都是容易忽略的地方,要注意检查.16.(5分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≥﹣3,解不等式②得:x<4,∴不等式组的解集是﹣3≤x<4.【点评】本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.17.(5分)如图,已知直线l和l外一点P,用尺规作l的垂线,使它经过点P.(保留作图痕迹,不写作法)【分析】利于基本作图(过一点作已知直线的垂线))作l′⊥l.【解答】解:如图,直线l为所作.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).18.(5分)如图,在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R =6.8cm,r=1.6cm,请利用因式分解求出剩余阴影部分的面积.(结果保留π)【分析】根据题意和图形,可以用因式分解求出剩余阴影部分的面积.【解答】解:∵R=6.8cm,r=1.6cm,∴剩余阴影部分的面积是:πR2﹣4πr2=π(R+2r)(R﹣2r)=π(6.8+2×1.6)×(6.8﹣2×1.6)=36π,即剩余阴影部分的面积是36π.【点评】本题考查因式分解的应用,解答本题的关键是明确题意,利用数形结合的思想解答.19.(7分)先化简,再求值:(1+)÷,其中x=2.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.【解答】解:(1+)÷=÷=•=,当x=2时,原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(7分)如图,在△ABC中,AB=AC,点M、N分别在BC所在的直线上且BM=CN,求证:△AMN是等腰三角形.【分析】作AH⊥BC于H.证明AH垂直平分线段MN即可解决问题.【解答】证明:作AH⊥BC于H.∵AB=AC,AH⊥BC,∴BH=CH,∵BM=CN,∴HM=HN,∴AM=AN,∴△AMN是等腰三角形.【点评】本题考查等腰三角形的性质和判定,线段的垂直平分线的性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.21.(7分)如图,已知△ABC各顶点的坐标分别为A(﹣3,﹣4),B(﹣1,﹣3),C (﹣4,﹣1).(1)画出△ABC以点B为旋转中心,按顺时针方向旋转90°后得到的△A1BC1;(2)将△ABC先向右平移5个单位长度,再向上平移3个单位长度,得到△A2B2C2;①在图中画出△A2B2C2,并写出点A的对应点A2的坐标;②如果将△A2B2C2看成是由△ABC经过一次平移得到的,请指出这一平移的平移方向和平移距离.【分析】(1)利用网格特点和旋转的性质画出点A、C的对应点点A1、C1,从而得到△A1BC1.(2)①利用点平移的坐标规律写出点A2、B2、C2的坐标,然后描点即可;②平移的方向为从B到点B2,再利用勾股定理计算出BB2得到平移的距离.【解答】解:(1)如图,△A1BC1为所作;(2)①如图,△A2B2C2为所作;点A2的坐标为(2,﹣1);②如果将△A2B2C2看成是由△ABC经过一次平移得到的,则平移方向为从点B点到B1点,和平移距离==.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.22.(7分)四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF、AC、DE,当BF⊥AE时,求证:四边形ACED是平行四边形.【分析】(1)只要证明AB=CD,AB=BE即可解决问题.(2)只要证明△DAF≌△CEF推出AD=CE,即可解决问题.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AE平分∠BAD,∴∠EAB=∠EAD=∠AEB,∴AB=BE,∴BE=CD.(2)∵BA=BE,BF⊥AE,∴AF=EF,∵AD∥CE,∴∠DAF=∠CEF,在△ADF和△ECF中,,∴△DAF≌△CEF∴AD=CE,∵AD∥CE,∴四边形ADEC是平行四边形.【点评】本题考查平行四边形的性质、角平分线的定义、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(8分)问题背景:对于形如x2﹣120x+3600这样的二次三项式,可以直接用完全平方公式将它分解成(x﹣60)2,对于二次三项式x2﹣120x+3456,就不能直接用完全平方公式分解因式了.此时常采用将x2﹣120x加上一项602,使它与x2﹣120x的和成为一个完全平方式,再减去602,整个式子的值不变,于是有:x2﹣120x+3456=x2﹣2×60x+602﹣602+3456=(x﹣60)2﹣144=(x﹣60)2﹣122=(x﹣60+12)(x﹣60﹣12)=(x﹣48)(x﹣72)问题解决:(1)请你按照上面的方法分解因式:x2﹣140x+4756;(2)已知一个长方形的面积为a2+8ab+12b2,宽为a+2b,求这个长方形的长.【分析】(1)根据题目中的例子,可以对题目中的式子因式分解;(2)根据整式的除法和因式分解可以求得这个长方形的长.【解答】解:(1)x2﹣140x+4756=x2﹣2×70x+702﹣702+4756=(x﹣70)2﹣144=(x﹣70)2﹣122=(x﹣70+12)(x﹣70﹣12)=(x﹣58)(x﹣82);(2)∵一个长方形的面积为a2+8ab+12b2,宽为a+2b,∴这个长方形的长是:(a2+8ab+12b2)÷(a+2b)=(a+2b)(a+6b)÷(a+2b)=a+6b,即这个长方形的长是a+6b.【点评】本题考查因式分解的应用、整式的除法,解答本题的关键是明确因式分解的方法.24.(10分)某校为了改善办公条件,计划从厂家购买A、B两种型号电脑已知每台A种型号电脑价格比每台B种型号电脑价格多0.1万元,且用10万元购买A种型号电脑的数量与用8万元购买B种型号电脑的数量相同.(1)求A、B两种型号电脑每台价格各为多少万元?(2)学校预计用不多于9.2万元的资金购进这两种电脑共20台,则最多可购买A种型号电脑多少台?【分析】(1)设求A种型号电脑每台价格为x万元,则B种型号电脑每台价格(x﹣0.1)万元.根据“用10万元购买A种型号电脑的数量与用8万购买B种型号电脑的数量相同”列出方程并解答.(2)设购买A种型号电脑y台,则购买B种型号电脑(20﹣y)台.根据“A种型号电脑至少要购进10台”、“用不多于9.2万元的资金购进这两种电脑”解答.【解答】解:(1)设求A种型号电脑每台价格为x万元,则B种型号电脑每台价格(x ﹣0.1)万元.根据题意得:=,解得:X=0.5.经检验:x=0.5是原方程的解,x﹣0.1=0.4答:A、B两种型号电脑每台价格分别是0.5万元和0.4万元.(2)设购买A种型号电脑y台,则购买B种型号电脑(20﹣y)台.根据题意得:0.5y+0.4(20﹣y)≤9.2.解得:y≤12,所以y=12.最大值答:最多可购买A种型号电脑12台.【点评】考查了分式方程的应用和一元一次不等式的应用.分析题意,找到合适的数量关系是解决问题的关键.25.(12分)在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF.②请判断△AGC的形状,并说明理由;(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG.那么△AGC又是怎样的形状.(直接写出结论不必证明)【分析】(1)①先判定四边形ABCD是矩形,再根据矩形的性质可得∠ABC=90°,AB∥DC,AD∥BC,然后根据平行线的性质求出∠F=∠FDC,∠BEF=∠ADF,再根据DF是∠ADC的平分线,利用角平分线的定义得到∠ADF=∠FDC,从而得到∠F=∠BEF,然后根据等角对等边的性质即可证明;②连接BG,根据等腰直角三角形的性质可得∠F=∠BEF=45°,再根据等腰三角形三线合一的性质求出BG=FG,∠F=∠CBG=45°,然后利用“边角边”证明△AFG和△CBG全等,根据全等三角形对应边相等可得AG=CG,再求出∠GAC+∠ACG=90°,然后求出∠AGC=90°,然后根据等腰直角三角形的定义判断即可;(2)连接BG,根据旋转的性质可得△BFG是等边三角形,再根据角平分线的定义以及平行线的性质求出AF=AD,平行四边形的对角相等求出∠ABC=∠ADC=60°,然后求出∠CBG=60°,从而得到∠AFG=∠CBG,然后利用“边角边”证明△AFG和△CBG 全等,根据全等三角形对应边相等可得AG=CG,全等三角形对应角相等可得∠FAG=∠BCG,然后求出∠GAC+∠ACG=120°,再求出∠AGC=60°,然后根据等边三角形的判定方法判定即可.【解答】(1)证明:①∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,∴∠ABC=90°,AB∥DC,AD∥BC,∴∠F=∠FDC,∠BEF=∠ADF,∵DF是∠ADC的平分线,∴∠ADF=∠FDC,∴∠F=∠BEF,∴BF=BE;②△AGC是等腰直角三角形.理由如下:连接BG,由①知,BF=BE,∠FBC=90°,∴∠F=∠BEF=45°,∵G是EF的中点,∴BG=FG,∠F=∠CBG=45°,∵∠FAD=90°,∴AF=AD,又∵AD=BC,∴AF=BC,在△AFG和△CBG中,,∴△AFG≌△CBG(SAS),∴AG=CG,∴∠FAG=∠BCG,又∵∠FAG+∠GAC+∠ACB=90°,∴∠BCG+∠GAC+∠ACB=90°,即∠GAC+∠ACG=90°,∴∠AGC=90°,∴△AGC是等腰直角三角形;(2)连接BG,∵FB绕点F顺时针旋转60°至FG,∴△BFG是等边三角形,∴FG=BG,∠FBG=60°,又∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=∠ADC=60°∴∠CBG=180°﹣∠FBG﹣∠ABC=180°﹣60°﹣60°=60°,∴∠AFG=∠CBG,∵DF是∠ADC的平分线,∴∠ADF=∠FDC,∵AB∥DC,∴∠AFD=∠FDC,∴∠AFD=∠ADF,∴AF=AD,在△AFG和△CBG中,,∴△AFG≌△CBG(SAS),∴AG=CG,∠FAG=∠BCG,在△ABC中,∠GAC+∠ACG=∠ACB+∠BCG+∠GAC=∠ACB+∠BAG+∠GAC=∠ACB+∠BAC=180°﹣60°=120°,∴∠AGC=180°﹣(∠GAC+∠ACG)=180°﹣120°=60°,∴△AGC是等边三角形.【点评】本题考查了平行四边形的性质,全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质,难度较大,作辅助线构造全等三角形是解题的关键.。
2019-2020学年下学期北师大版八年级期末考试数学试卷及答案解析

2019-2020学年下学期北师大版八年级期末考试数学试卷一、选择题[本部分共12小题,每小題3分,共36分.每小题给出4个选项,其中只有一个是正确的)1.下列x的值中,能使不等式x﹣1<1成立的是()A.﹣3B.2C.3D.√52.下列图案是我国几大银行的标志,其中是中心对称图形但不是轴对称图形的是()A.B.C.D.3.要使分式2x−3有意义,x应满足的条件是()A.x>3B.x<3C.x≠﹣3D.x≠34.已知一个多边形的每一个外角都是36°,则该多边形是()A.十二边形B.十边形C.八边形D.六边形5.平面直角坐标系内,将点A(m,n)向左平移3个长度单位后得到点N,则点N的坐标是()A.(m+3,n)B.(m﹣3,n)C.(m,n+3)D.(m,n﹣3)6.下列多项式能分解因式的是()A.x2+y2B.x2y﹣xy2C.x2+xy+y2D.x2+4x﹣47.如图,等腰△ABC中,AB=AC,∠A=36°.用尺规作图作出线段BD,则下列结论错误的是()A.AD=BD B.∠DBC=36°C.S△ABD=S△BCD D.△BCD的周长=AB+BC8.已知a、b、c是△ABC的三边,且满足a3﹣ac2﹣ab2=0,则△ABC一定是()A.等腰三角形B.等边三角形C .直角三角形D .等腰直角三角形9.已知不等式mx +n >0的解集是x >﹣2,下列各图中有可能是函数y =mx +n 的图象的是( )A .B .C .D .10.下列命题是假命题的是( )A .直角三角形中,30°角所对的直角边等于斜边的一半B .三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等C .平行四边形是中心对称图形D .对角线相等的四边形是平行四边形.11.龙华区某校改造过程中,需要整修校门口一段全长2400m 的道路.为了保证开学前师生进出不受影响,实际工作效率比原计划提高了20%,结果提前8天完成任务.若设原计划每天整修道路x 米,根据题意可得方程( ) A .2400x −2400x(1+20%)=8 B .2400x(1+20%)−2400x =8C .2400x−2400x(1−20%)=8D .2400x(1−20%)−2400x=812.如图,平行四边形ABCD 中,AD =2AB ,CE ⊥AB 于点E ,CE 的垂直平分线MN 分别交AD 、BC 于M 、N ,交CE 于O ,连接CM 、EM ,下列结论:①∠AEM =∠DCM ;②AM =DM ;③∠BCD =2∠DCM ;④S 四边形BEON =S △CDM .其中正确的个数有( )A .1个B .2个C .3个D .4个。
2019-2020学年北京交大附中八年级下学期期末数学试卷含解析

2019-2020学年北京交大附中八年级第二学期期末数学试卷一、选择题1.下列式子为最简二次根式的是()A.B.C.D.2.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.3.矩形、菱形、正方形都具有的性质是()A.对角线互相平分B.对角线相等C.每一条对角线平分一组对角D.对角线互相垂直4.下列各式化简正确的是()A.=4B.=C.=D.=5.一次函数y=﹣3x+5的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.北京市6月某日10个区县的最高气温如下表:(单位:℃)区县大兴通州平谷顺义怀柔门头沟延庆昌平密云房山最高气温32 32 30 32 30 32 29 32 30 32 则这10个区县该日最高气温的中位数是()A.32 B.31 C.30 D.297.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x>﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A.0 B.1 C.2 D.38.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.二、填空题(本题共16分,每小题2分)9.二次根式中,x的取值范围是.10.在平面直角坐标系xOy中,直线y=﹣2x+4与x轴的交点坐标为,与y轴的交点坐标为.11.已知正方形的一条对角线长为8cm,则其面积是cm2.12.一组数据1、3、2、5、x的平均数是3,则方差S2=.13.写出一个一次函数的解析式,满足以下两个条件:①y随x的增大而增大;②它的图象经过坐标为(0,﹣2)的点,你写出的解析式为.14.如图,在菱形ABCD中,E、F分别是AB、AC的中点,如果菱形ABCD的周长是16,那么EF的长是.15.直线y=﹣2x+a经过(3,y1)和(﹣2,y2),则y1y2.(填写“>”,“<”或“=”)16.把图一的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为.三、解答题(本题共32分,第17-18题每小题5分,第19题12分,20-21题每小题5分)17.下面是小明设计的“在一个平行四边形内作菱形”的尺规作图过程.已知:四边形ABCD是平行四边形.求作:菱形ABEF(点E在BC上,点F在AD上).作法:①以A为圆心,AB长为半径作弧,交AD于点F;②以B为圆心,AB长为半径作弧,交BC于点E;③连接EF.所以四边形ABEF为所求作的菱形.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AF=AB,BE=AB,∴=.在▱ABCD中,AD∥BC.即AF∥BE.∴四边形ABEF为平行四边形.∵AF=AB,∴四边形ABEF为菱形()(填推理的依据).18.利用勾股定理可以在数轴上画出表示的点,请依据以下思路完成画图,并保留画图痕迹:第一步:(计算)尝试满足=,使其中a,b都为正整数,你取的正整数a =,b=;第二步:(画长为的线段)以第一步中你所取的正整数a,b为两条直角边长画Rt △OEF,使O为原点,点E落在数轴的正半轴上,∠OEF=90°,则斜边OF的长即为.请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)第三步:(画表示的点)在下面的数轴上画出表示的点M,并描述第三步的画图步骤:.19.计算:(1)+(﹣)﹣2﹣|﹣2|﹣(π﹣3.14)0;(2)12×÷(15);(3)(+)2﹣(+)(﹣).20.下面是小东设计的“作平行四边形一边中点”的尺规作图过程.已知:平行四边形ABCD.求作:点M,使点M为边AD的中点.作法:如图1,①作射线BA;②以点A为圆心,CD长为半径画弧,交BA的延长线于点E;③连接EC交AD于点M.所以点M就是所求作的点.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:21.如图,四边形ABCD中,AB=DC,AD=BC,AD⊥CD,点E在对角线CA的延长线上,连接BD,BE.(1)求证:AC=BD;(2)若BC=2,BE=6,∠ABE=30°,求EC的长.四、解答题(本题共36分,每小题6分)22.如图,直线l1的解析表达式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A、B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP是△ADC的面积的2倍,求点P 的坐标.23.(1)阅读以下内容并回答问题:问题:在平面直角坐标系xOy中,将直线y=﹣2x向上平移3个单位,求平移后直线的解析式.小雯同学在做这类问题时经常困惑和纠结,她做此题的简要过程和反思如下.在课堂交流中,小谢同学听了她的困惑后,给她提出了下面的建议:“你可以找直线上的关键点,比如点A(1,﹣2),先把它按要求平移到相应的对应点A′,再用老师教过的待定系数法求过点A′的新直线的解析式,这样就不用纠结了.”小雯用这个方法进行了尝试,点A(1,﹣2)向上平移3个单位后的对应点A′的坐标为,过点A′的直线的解析式为.(2)小雯自己又提出了一个新问题请全班同学一起解答和检验此方法,请你也试试看:将直线y=﹣2x向左平移3个单位,平移后直线的解析式为,另外直接将直线y =﹣2x向(“上”或“下”)平移个单位也能得到这条直线.(3)请你继续利用这个方法解决问题:对于平面直角坐标系xOy内的图形M,将图形M上所有点都向上平移3个单位,再向左平移3个单位,我们把这个过程称为图形M的一次“斜平移”.求将直线y=﹣2x进行两次“斜平移”后得到的直线的解析式.24.某医药研究所开发一种新的药物,据监测,如果成年人按规定的剂量服用,服药后2小时,每毫升血液中的含药量达到最大值,之后每毫升血液中的含药量逐渐衰减.若一次服药后每毫升血液中的含药量y(单位:微克)与服药后的时间t(单位:小时)之间近似满足某种函数关系,如表是y与t的几组对应值,其部分图象如图所示.t0 1 2 3 4 6 8 10 …y0 2 4 2.83 2 1 0.5 0.25 …(1)在所给平面直角坐标系中,继续描出上表中已列出数值所对应的点(t,y),并补全该函数的图象;(2)结合函数图象,解决下列问题:①某病人第一次服药后5小时,每毫升血液中的含药量约为微克;若每毫升血液中含药量不少于0.5微克时治疗疾病有效,则第一次服药后治疗该疾病有效的时间共持续约小时;②若某病人第一次服药后8小时进行第二次服药,第二次服药对血液中含药量的影响与第一次服药相同,则第二次服药后2小时,每毫升血液中的含药量约为微克.25.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2≤x<6.6 6.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.2 8.2≤x<8.6频数 2 m10 6 2 1b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为;②一分钟仰卧起坐成绩的中位数为;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代码A B C D E F G H实心球8.1 7.7 7.5 7.5 7.3 7.2 7.0 6.5 一分钟仰卧起坐* 42 47 * 47 52 * 49 其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.26.已知△ABC中,∠BAC=90°,AB=AC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点,以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,且点B 的对应点为D,点N的对应点为E.(1)当点N与点M重合,且点P不是AB的中点时.①依据题意补全图1;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,写出一个BN的值,使得EM=EA成立,并证明.27.∠MON=45°,点P在射线OM上,点A,B在射线ON上(点B与点O在点A的两侧),且AB=1,以点P为旋转中心,将线段AB逆时针旋转90°,得到线段CD(点C与点A 对应,点D与点B对应).(1)如图,若OA=1,OP=,依题意补全图形;(2)若OP=,当线段AB在射线ON上运动时,线段CD与射线OM有公共点,求OA 的取值范围.(要写过程)参考答案一、选择题(本题共16分,每小题2分)1.下列式子为最简二次根式的是()A.B.C.D.【分析】根据最简二次根式必须满足两个条件对各个选项进行判断即可.解:被开方数含分母,不是最简二次根式,A不正确;是最简二次根式,B正确;被开方数含能开得尽方的因数,不是最简二次根式,C不正确;被开方数含分母,不是最简二次根式,D不正确;故选:B.2.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、是中心对称图形,是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项正确;D、不是中心对称图形,是轴对称图形,故此选项错误;故选:C.3.矩形、菱形、正方形都具有的性质是()A.对角线互相平分B.对角线相等C.每一条对角线平分一组对角D.对角线互相垂直【分析】先逐一分析出矩形、菱形、正方形的对角的性质,再综合考虑矩形、菱形、正方形对角线的共同性质.解:因为矩形的对角线互相平分且相等,菱形的对角线互相平分且垂直且平分每一组对角,正方形的对角线具有矩形和菱形所有的性质,所有矩形、菱形和正方形的对角线都具有的性质是对角线互相平分.故选:A.4.下列各式化简正确的是()A.=4B.=C.=D.=【分析】各式化简得到最简结果,判断即可.解:A、原式==,不符合题意;B、原式==,不符合题意;C、原式=×=,不符合题意;D、原式=×=,符合题意.故选:D.5.一次函数y=﹣3x+5的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】一次项系数﹣3<0,则图象经过二、四象限;常数项5>0,则图象还过第一象限.解:∵﹣3<0,∴图象经过二、四象限;∵5>0,∴直线与y轴的交点在y轴的正半轴上,图象还过第一象限.所以一次函数y=﹣3x+5的图象经过一、二、四象限,不经过第三象限.故选:C.6.北京市6月某日10个区县的最高气温如下表:(单位:℃)区县大兴通州平谷顺义怀柔门头沟延庆昌平密云房山最高气温32 32 30 32 30 32 29 32 30 32 则这10个区县该日最高气温的中位数是()A.32 B.31 C.30 D.29【分析】根据中位数的求解方法,先排列顺序,再求解.解:这10个区县该日最高气温分别为:29、30、30、30、32、32、32、32、32、32,则这10个区县该日最高气温的中位数是=32,故选:A.7.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x>﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A.0 B.1 C.2 D.3【分析】根据一次函数的图象和性质可得a>0;b>0;当x>﹣2时,直线y=3x+b在直线y=ax﹣2的上方,即x>﹣2是不等式3x+b>ax﹣2的解集.解:由图象可知,a>0,故①正确;b>0,故②正确;当x>﹣2是直线y=3x+b在直线y=ax﹣2的上方,即x>﹣2是不等式3x+b>ax﹣2,故③正确.故选:D.8.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.【分析】分三段来考虑点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小,据此选择即可.解:点E沿A→B运动,△ADE的面积逐渐变大,设菱形的变形为a,∠A=β,∴AE边上的高为AB sinβ=a•sinβ,∴y=x•a•sinβ,点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.y=(3a﹣x)•sinβ,故选:D.二、填空题(本题共16分,每小题2分)9.二次根式中,x的取值范围是x≥3 .【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.解:根据题意得:x﹣3≥0,解得:x≥3.故答案是:x≥3.10.在平面直角坐标系xOy中,直线y=﹣2x+4与x轴的交点坐标为(2,0),与y 轴的交点坐标为(0,4).【分析】分别代入x=0,y=0求出与之对应的y,x的值,进而可得出直线与两坐标轴的交点坐标.解:当y=0时,﹣2x+4=0,解得:x=2,∴直线y=﹣2x+4与x轴的交点坐标为(2,0);当x=0时,y=﹣2x+4=4,∴直线y=﹣2x+4与y轴的交点坐标为(0,4).故答案为:(2,0);(0,4).11.已知正方形的一条对角线长为8cm,则其面积是32 cm2.【分析】根据正方形的对角线相等且互相垂直,正方形是特殊的菱形,菱形的面积等于对角线乘积的一半进行求解即可.解:∵正方形的一条对角线长为8cm,∴面积是×8×8=32cm2.故答案为:32.12.一组数据1、3、2、5、x的平均数是3,则方差S2= 2 .【分析】先根据平均数的定义求出x的值,再根据方差公式进行计算即可.解:∵数据1、3、2、5、x的平均数是3,∴(1+3+2+5+x)÷5=3,解得x=4,∴方差S2=[(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣3)2]=2;故答案为:2.13.写出一个一次函数的解析式,满足以下两个条件:①y随x的增大而增大;②它的图象经过坐标为(0,﹣2)的点,你写出的解析式为y=x﹣2 .【分析】由一次函数的增减性可得出k>0,取k=1,再根据一次函数图象上点的坐标特征可得出b=2,此题得解.解:设该一次函数的解析式为y=kx+b,∵y随x的增大而增大,∴k>0,取k=1.∵它的图象经过坐标为(0,﹣2)的点,∴﹣2=b.故答案为:y=x﹣214.如图,在菱形ABCD中,E、F分别是AB、AC的中点,如果菱形ABCD的周长是16,那么EF的长是 2 .【分析】根据菱形的性质以及中位线的性质即可求出答案.解:在菱形ABCD中,周长为16,∴AB=BC=CD=DA=4,∵E、F分别是AB、AC的中点,∴EF=BC=2,故答案为:215.直线y=﹣2x+a经过(3,y1)和(﹣2,y2),则y1<y2.(填写“>”,“<”或“=”)【分析】运用函数的增减性比较大小.解:∵直线y=﹣2x+a中,k=﹣2<0,y随x的增大而减小,∵3>﹣2,∴y1<y2.故答案为<.16.把图一的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为.【分析】利用折叠的性质和勾股定理可知.解:由勾股定理得,MN=5,设Rt△PMN的斜边上的高为h,由矩形的宽AB也为h,根据直角三角形的面积公式得,h=PM•PN÷MN=,由折叠的性质知,BC=PM+MN+PN=12,∴矩形的面积=AB•BC=.三、解答题(本题共32分,第17-18题每小题5分,第19题12分,20-21题每小题5分)17.下面是小明设计的“在一个平行四边形内作菱形”的尺规作图过程.已知:四边形ABCD是平行四边形.求作:菱形ABEF(点E在BC上,点F在AD上).作法:①以A为圆心,AB长为半径作弧,交AD于点F;②以B为圆心,AB长为半径作弧,交BC于点E;③连接EF.所以四边形ABEF为所求作的菱形.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AF=AB,BE=AB,∴AF=BE.在▱ABCD中,AD∥BC.即AF∥BE.∴四边形ABEF为平行四边形.∵AF=AB,∴四边形ABEF为菱形(邻边相等的平行四边形是菱形)(填推理的依据).【分析】(1)根据要求画出图形即可.(2)根据邻边相等的平行四边形是菱形即可.解:(1)四边形ABEF为所求作的菱形.(2)∵AF=AB,BE=AB,∴AF=BE,在▱ABCD中,AD∥BC.即AF∥BE.∴四边形ABEF为平行四边形.∵AF=AB,∴四边形ABEF为菱形(邻边相等的平行四边形是菱形.)故答案为:AF,BE,邻边相等的平行四边形是菱形.18.利用勾股定理可以在数轴上画出表示的点,请依据以下思路完成画图,并保留画图痕迹:第一步:(计算)尝试满足=,使其中a,b都为正整数,你取的正整数a = 4 ,b= 2 ;第二步:(画长为的线段)以第一步中你所取的正整数a,b为两条直角边长画Rt △OEF,使O为原点,点E落在数轴的正半轴上,∠OEF=90°,则斜边OF的长即为.请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)第三步:(画表示的点)在下面的数轴上画出表示的点M,并描述第三步的画图步骤:以原点为圆心,OF为半径画弧交数轴的正半轴于点M,则点M为所作.【分析】第一步:利用实数的运算可确定a和b的值;第二步:4对应的点为E点,过点E作数轴的垂线,再截取EF=2,然后连接OF,则OF=;第三步:如图,在数轴的正半轴上截取OM=OF即可.解:第一步:a=4,b=2;第二步:如图,OF为所作;第三步:如图,以原点为圆心,OF为半径画弧交数轴的正半轴于点M,则点M为所作.故答案为4,2;以原点为圆心,OF为半径画弧交数轴的正半轴于点M,则点M为所作.19.计算:(1)+(﹣)﹣2﹣|﹣2|﹣(π﹣3.14)0;(2)12×÷(15);(3)(+)2﹣(+)(﹣).【分析】根据实数的运算法则即可求出答案.解:(1)原式=2+9﹣(2﹣)﹣1=2+9﹣2+﹣1=3+6.(2)原式=24×=18÷(15)=.(3)原式=2+2+3﹣(2﹣3)=5+2+1=6+2.20.下面是小东设计的“作平行四边形一边中点”的尺规作图过程.已知:平行四边形ABCD.求作:点M,使点M为边AD的中点.作法:如图1,①作射线BA;②以点A为圆心,CD长为半径画弧,交BA的延长线于点E;③连接EC交AD于点M.所以点M就是所求作的点.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:【分析】(1)根据要求画出图形即可.(2)利用平行四边形的性质以及三角形的中位线定理解决问题即可.解:(1)如图,点M即为所求.(2)理由:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∵AE=CD,∴AE=AB,∵AM∥BC,∴EM=CM,∴AM=BC,∴AM=AD,∴AM=MD.21.如图,四边形ABCD中,AB=DC,AD=BC,AD⊥CD,点E在对角线CA的延长线上,连接BD,BE.(1)求证:AC=BD;(2)若BC=2,BE=6,∠ABE=30°,求EC的长.【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出四边形ABCD 是矩形,再根据矩形的性质得出即可;(2)过E作EF⊥BC,交CB的延长线于F,设FB=x,EF=3x,根据勾股定理求出x,求出EF和CF,根据勾股定理求出EC即可.【解答】(1)证明:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵AD⊥CD,∴∠ADC=90°,∴四边形ABCD是矩形,∴AC=BD;(2)解:过E作EF⊥BC,交CB的延长线于F,则∠F=90°,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠F=∠ABC,∴AB∥EF,∴∠ABE=∠FEB,∵∠ABE=30°,∴tan∠ABE=,∴tan∠FEB==,设FB=x,EF=3x,∵BE=6,由勾股定理得:(x)2+(3x)2=62,解得:x=(负数舍去),即BF=3,EF=3,∵BC=2,∴FC=2+3=5,在Rt△EFC中,由勾股定理得:EC==2.四、解答题(本题共36分,每小题6分)22.如图,直线l1的解析表达式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A、B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP是△ADC的面积的2倍,求点P的坐标.【分析】(1)已知l1的解析式,令y=0求出x的值即可;(2)设l2的解析式为y=kx+b,由图联立方程组求出k,b的值;(3)联立方程组,求出交点C的坐标,继而可求出S△ADC;(4)△ADP与△ADC底边都是AD,根据△ADP的面积是△ADC面积的2倍,可得点P的坐标.解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,∴x=1,∴D(1,0);(2)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,y=﹣,代入表达式y=kx+b得,解得,∴直线l2的解析表达式为y=x﹣6;(3)由,解得,∴C(2,﹣3),∵AD=3,∴S△ADC=×3×|﹣3|=;(4)∵△ADP与△ADC底边都是AD,△ADP的面积是△ADC面积的2倍,∴△ADC高就是点C到直线AD的距离的2倍,即C纵坐标的绝对值=6,则P到AD距离=6,∴点P纵坐标是±6,∵y=1.5x﹣6,y=6,∴1.5x﹣6=6,解得x=8,∴P1(8,6).∵y=1.5x﹣6,y=﹣6,∴1.5x﹣6=﹣6,解得x=0,∴P2(0,﹣6)综上所述,P点的坐标为(8,6)或(0,﹣6).23.(1)阅读以下内容并回答问题:问题:在平面直角坐标系xOy中,将直线y=﹣2x向上平移3个单位,求平移后直线的解析式.小雯同学在做这类问题时经常困惑和纠结,她做此题的简要过程和反思如下.在课堂交流中,小谢同学听了她的困惑后,给她提出了下面的建议:“你可以找直线上的关键点,比如点A(1,﹣2),先把它按要求平移到相应的对应点A′,再用老师教过的待定系数法求过点A′的新直线的解析式,这样就不用纠结了.”小雯用这个方法进行了尝试,点A(1,﹣2)向上平移3个单位后的对应点A′的坐标为(1,1),过点A′的直线的解析式为y=﹣2x=3 .(2)小雯自己又提出了一个新问题请全班同学一起解答和检验此方法,请你也试试看:将直线y=﹣2x向左平移3个单位,平移后直线的解析式为y=﹣2x﹣6 ,另外直接将直线y=﹣2x向下(“上”或“下”)平移 6 个单位也能得到这条直线.(3)请你继续利用这个方法解决问题:对于平面直角坐标系xOy内的图形M,将图形M上所有点都向上平移3个单位,再向左平移3个单位,我们把这个过程称为图形M的一次“斜平移”.求将直线y=﹣2x进行两次“斜平移”后得到的直线的解析式.【分析】(1)由平移的性质可求点A'坐标,利用待定系数法可求解;(2)平移后的直线的解析式的k不变,设出相应的直线解析式,可求O(0,0)向左平移3个单位后的坐标,代入设出的直线解析式,即可求得m,也就求得了所求的直线解析式.(3)平移后的直线的解析式的k不变,设出相应的直线解析式,找到点A(1,﹣2)进行两次“斜平移”后的对应点的坐标,代入设出的直线解析式,即可求得n,也就求得了所求的直线解析式.解:(1)点A(1,﹣2)向上平移3个单位后的点A′的坐标为(1,1),设平移后的直线解析式为y=﹣2x+b,代入得1=﹣2×1+b,则b=3,所以过点A′的直线的解析式为y=﹣2x+3;故答案为:(1,1),y=﹣2x=3;(2)可设新直线解析式为y=﹣2x+m,∵原直线y=﹣2x经过点O(0,0),∴点O向左平移3个单位后点O'(﹣3,0),代入新直线解析式得:0=6x+m,∴m=﹣6∴平移后直线的解析式为:y=﹣2x﹣6,由(1)可知,另外直接将直线y=﹣2x向下平移6个单位也能得到直线y=﹣2x﹣6;故答案为:y=﹣2x﹣6,下,6;(3)直线上的点A(1,﹣2),进行一次“斜平移”后的对应点的坐标为(﹣2,1),进行两次“斜平移”后的对应点的坐标为(﹣5,4),设两次斜平移后的直线的解析式为y=﹣2x+n,代入(﹣5,4)得,4=﹣2×(﹣5)+n,则n=﹣6,所以,两次斜平移后的直线的解析式为y=﹣2x﹣6,24.某医药研究所开发一种新的药物,据监测,如果成年人按规定的剂量服用,服药后2小时,每毫升血液中的含药量达到最大值,之后每毫升血液中的含药量逐渐衰减.若一次服药后每毫升血液中的含药量y(单位:微克)与服药后的时间t(单位:小时)之间近似满足某种函数关系,如表是y与t的几组对应值,其部分图象如图所示.t0 1 2 3 4 6 8 10 …y0 2 4 2.83 2 1 0.5 0.25 …(1)在所给平面直角坐标系中,继续描出上表中已列出数值所对应的点(t,y),并补全该函数的图象;(2)结合函数图象,解决下列问题:①某病人第一次服药后5小时,每毫升血液中的含药量约为 1.41 微克;若每毫升血液中含药量不少于0.5微克时治疗疾病有效,则第一次服药后治疗该疾病有效的时间共持续约7.75 小时;②若某病人第一次服药后8小时进行第二次服药,第二次服药对血液中含药量的影响与第一次服药相同,则第二次服药后2小时,每毫升血液中的含药量约为 4.25 微克.【分析】(1)利用描点法画图;(2)①第一次服药后5小时,每毫升血液中的含药量由图象可得,答案不唯一;根据含药量不少于0.5微克时治疗疾病有效,看图象得边界点的t值,相减可得结论;②两次含药量相加即可.解:(1)如图所示:(2)①由函数图象得:某病人第一次服药后5小时,每毫升血液中的含药量约为1.41微克;当y=0.5时,t =或8,8﹣=7.75,∴则第一次服药后治疗该疾病有效的时间共持续约7.75小时;故答案为:1.41,7.75;②第一次服药8小时后2小时,即10小时含药量为0.25微克,第二次服药2小时含药量为4微克,所以第二次服药后2小时,每毫升血液中的含药量约为:4+0.25=4.25微克;故答案为:4.25.25.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2≤x<6.6 6.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.2 8.2≤x<8.6频数 2 m10 6 2 1 b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为9 ;②一分钟仰卧起坐成绩的中位数为45 ;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代码A B C D E F G H实心球8.1 7.7 7.5 7.5 7.3 7.2 7.0 6.5 一分钟仰卧起坐* 42 47 * 47 52 * 49 其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.【分析】(1)①根据题意和表格中的数据可以求得m的值;②根据条形统计图中数据和中位数的定义可以得到这组数据的中位数;(2)①根据题意和表格中的数据可以求得全年级女生实心球成绩达到优秀的人数;②根据题意和表格中的数据可以解答本题.解:(1)①m=30﹣2﹣10﹣6﹣2﹣1=9,故答案为:9;②由条形统计图可得,一分钟仰卧起坐成绩的中位数为45,故答案为:45;(2)①∵实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3,∴实心球成绩在7.0≤x<7.4这一组优秀的有4人,∴全年级女生实心球成绩达到优秀的人数是:150×=65,答:全年级女生实心球成绩达到优秀的有65人;②同意,理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有A、D、F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀.26.已知△ABC中,∠BAC=90°,AB=AC,点M为BC的中点,点P为AB边上一动点,点N 为线段BM上一动点,以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,且点B 的对应点为D,点N的对应点为E.(1)当点N与点M重合,且点P不是AB的中点时.①依据题意补全图1;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,写出一个BN的值,使得EM=EA成立,并证明.【分析】(1)①按照题中叙述画出图形即可;②如图2,连接AE,AM.由题意可知△ABC 是等腰直角三角形,由旋转可知△DPE≌△BPN,通过一组对边平行且相等的四边形是平行四边形及有一个角是直角的四边形是矩形进行判断即可;(2)当BN=时,一定有EM=EA.先证明四边形FMDE是矩形再证明FE垂直平分AM,从而可得出结论.解:(1)①补全图形如图1:。
2019-2020年八年级下学期期末考试数学试卷(II)

2019-2020年八年级下学期期末考试数学试卷(II)一、选择题:(本大题共10小题,每题3分共计30分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来)1.下列四个图形中,既是轴对称图形又是中心对称图形的是().A. B. C. D.2.若方程是关于的一元二次方程,则m的取值范围是()A.m≠±l B.m≥一l且m≠1 C.m≥一l D.m>一1且m≠13.已知是关于的方程的一个根,则另一个根是( )A.1 B.-1 C.-2 D.24.对抛物线y=-x2+2x-3 而言,下列结论正确的是( )A.与x轴有两个交点 B.开口向上C.与y轴的交点坐标是(0,3) D.顶点坐标是(1,-2)5.二次函数的图象与轴有交点,则的取值范围是()A. B. C.D.6. 如图,在⊙O中,直径AB垂直于弦CD,垂足为P.若PA=2,PB=8,则CD的长为()A.8 B.6 C.4 D. 27.如图,内接于圆O,,,是圆的直径,BD交AC于点E,连结DC,则等于()A.110° B.70° C.90° D.120°(第6题) (第7题)8.如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25cm ,贴纸部分的宽BD 为15cm ,若纸扇两面贴纸,则贴纸的面积为( ). A .cm 2B .cm 2C .cm 2D .cm 29.输入一组数据,按下列程序进行计算,输出结果如下表:分析表格中的数据,估计方程的一个正数解x 的大致范围为( ). A .20.5<x <20.6 B .20.6<x <20.7C .20.7<x <20.8D .20.8<x <20.910.在同一平面直角坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只A DBE C(第8题)静心x20.5 20.6 20.7 20.8 20.9 输出 --8.04 -2.31 3.44 9.21输入x输出+8 平方-826要求填写最后结果.11.三角形两边长分别为3和6,第三边是方程x2﹣6x+8=0的解,则此三角形周长是.12.将抛物线y=(x﹣2)2+3向右平移2个单位,再向下平移3个单位后所得抛物线的解析式为13.抛物线y=x2﹣2x﹣3与x轴的交点坐标为.14.如图,△ABC是一张三角形纸片,⊙O是它的内切圆,点D是其中的两个切点,已知AD=6cm,小明准备用剪刀沿着与⊙O相切的一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长是(第14题图) (第15题图)15.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A 顺时针旋转到位置①可得到点,此时;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点,此时;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点,此时;…,按此规律继续旋转,直至得到点为止.则=________.16.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,将Rt△ABC绕点A逆时针旋转45°后得到△AB′C′,点B经过的路径为,图中阴影部分面积是17.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10cm.母线OE(OF)长为10cm.在母线OF上的点A处有一块爆米花残渣,且FA=2cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离为____________cm.(第16题图) (第17题图) (第18题图) 18.如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴是直线x=2,与x轴的一个交点是(﹣1,0),有下列结论:①abc<0,②4a+b=0,③抛物线与x轴的另一个交点是(5,0),④若点(﹣2,y1),(5,y2)都在抛物线上,则有y1<y2,请将正确选项的序号都填在横线上.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分8分) 解方程:(1)(x﹣5)2=2(x﹣5)(2)2x(x﹣1)=3x+1.20. (本题满分8分)已知二次函数y=x2+bx+c的图象经过点(0,2)和(1,﹣1),求图象的顶点坐标和对称轴.21. (本题满分7分)如图,水平放置的圆柱形排水管的截面为⊙O,有水部分弓形的高为2,弦AB=4,求⊙O的半径.22.(本题满分11分)电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?23. (本题满分6分)已知△ABC在平面直角坐标系中的位置如图所示.(1) 分别写出图中点A和点C的坐标;(2) 画出△ABC绕点A按逆时针方向旋转90°后的△AB'C';(3) 在(2)的条件下,求点C旋转到点C'所经过的路线长(结果保留π).234567yAB24、(本题满分9分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BA C=30°,DE=2,求AD的长.25.(本题满分13分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?-----如有帮助请下载使用,万分感谢。
2019-2020学年北京大学附中八年级下学期期末数学试卷 (解析版)

2019-2020学年北京大学附中八年级第二学期期末数学试卷一、选择题1.函数y=中自变量x的取值范围是()A.x>3B.x≠3C.x≥3D.x≥02.下列各式中,化简后能与合并的是()A.B.C.D.3.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.5,12,13C.2,3,4D.1,,3 4.下列各点在函数y=2x﹣1的图象上的是()A.(1,3)B.(﹣2,4)C.(3,5)D.(﹣1,0)5.在数学活动课上,老师要求同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的四位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量四边形其中的三个角是否都为直角6.如图,▱ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为()A.1B.2C.3D.47.在平面直角坐标系中,一次函数y1=k1x+b1与y2=k2x+b2的图象互相平行,如果这两个函数的部分自变量和对应的函数值如下表:x m02y1﹣30ty21n7那么m的值是()A.﹣1B.﹣2C.3D.48.如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是()A.(0,﹣5)B.(0,﹣6)C.(0,﹣7)D.(0,﹣8)9.甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为甲,乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.甲=乙,s甲2>s乙2B.甲=乙,s甲2<s乙2C.甲>乙,s甲2>s乙2D.甲<乙,s甲2<s乙210.如图,点E为平行四边形ABCD边上的一个动点,并沿A→B→C→D的路径移动到点D停止,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x 的函数关系的是()A.B.C.D.二、填空题(本题共24分,每小题3分)11.已知,一次函数y=kx+b(k≠0)的图象经过点(0,2),且y随x的增大而减小,请你写出一个符合上述条件的函数关系式:.12.已知=0,那么y x的值是.13.如图,在▱ABCD中,CH⊥AD于点H,CH与BD的交点为E,如果∠1=70°,∠ABC =3∠2,那么∠ADC=°.14.把直线y=﹣5x+2向上平移a个单位后,与直线y=2x+4的交点在第一象限,则a的取值范围是.15.已知a=+1,则代数式a2﹣2a+7的值为.16.如图,每个小正方形的边长为1,在△ABC中,点A,B,C均在格点上,点D为AB 的中点,则线段CD的长为.17.如图,已知正比例函数y1=ax与一次函数y2=﹣x+b的图象交于点P下面有四个结论:①a>0;②b<0;③当x<0时,y1<0;④当x>2时,y1<y2.其中正确的序号是18.已知:线段AB,BC.求作:平行四边形ABCD.以下是甲、乙两同学的作业.甲:①以点C为圆心,AB长为半径作弧;②以点A为圆心,BC长为半径作弧;③两弧在BC上方交于点D,连接AD,CD.四边形ABCD即为所求平行四边形.(如图1)乙:①连接AC,作线段AC的垂直平分线,交AC于点M;②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD.四边形ABCD即为所求平行四边形.(如图2)老师说甲、乙同学的作图都正确,你更喜欢的作法,他的作图依据是:.三、解答题(本大题共46分)19.计算:(4﹣3)×+|1﹣|.20.已知:如图,在▱ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:△ABE≌△FCE;(2)若AF=AD,求证:四边形ABFC是矩形.21.已知一次函数y=ax﹣2(a≠0)的图象过点A(3,1).(1)求实数a的值;(2)设一次函数y=ax﹣2(a≠0)的图象与y轴交于点B.若点C在y轴上且S△ABC=2S△AOB,求点C的坐标.22.某学校七、八年级各有学生300人,为了普及冬奥知识,学校在七、八年级举行了一次冬奥知识竞赛,为了解这两个年级学生的冬奥知识竞赛成绩(百分制),分别从两个年级各随机抽取了20名学生的成绩,进行整理、描述和分析.下面给出了部分信息.a.七、八年级成绩分布如下:成绩x年级0≤x≤910≤x≤1920≤x≤2930≤x≤3940≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七0000437420八1100046521(说明:成绩在50分以下为不合格,在50~69分为合格,70分及以上为优秀)b.七年级成绩在60~69一组的是:61,62,63,65,66,68,69c.七、八年级成绩的平均数中位数优秀率合格率如下:年级平均数中位数优秀率合格率七64.7m30%80%八63.367n90%根据以上信息,回答下列问题:(1)写出表中m,n的值;(2)小军的成绩在此次抽样之中,与他所在年级的抽样相比,小军的成绩高于平均数,却排在了后十名,则小军是年级的学生(填“七”或“八”);(3)可以推断出年级的竞赛成绩更好,理由是(至少从两个不同的角度说明).23.数学活动课上,老师提出问题:如图,有一张长4dm,宽3dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.下面是探究过程,请补充完整:(1)设小正方形的边长为xdm,体积为ydm3,根据长方体的体积公式得到y和x的关系式:;(2)确定自变量x的取值范围是;(3)列出y与x的几组对应值.x/dm…1…y/dm3… 1.3 2.2 2.7m 3.0 2.8 2.5n 1.50.9…(4)在下面的平面直角坐标系xOY中,描出补全后的表中各对对应值为坐标的点,并画出该函数的图象如下图;结合画出的函数图象,解决问题:当小正方形的边长约为dm时,(保留1位小数),盒子的体积最大,最大值约为dm3.(保留1位小数)24.在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2,BE=2,求四边形ADPE的面积.25.对于点P(x,y),规定x+y=m,那么就把m叫点P的“和合数”.例如:若P(2,3),则2+3=5,那么5叫P的“和合数”.(1)在平面直角坐标系中,已知,点A(﹣2,6)①B(2,2),C(1,3),D(3,2),与点A的“和合数”相等的点;②若点N在直线y=x+5上,且与点A的“和合数”相同,则点N的坐标是;(2)点P是矩形EFGH边上的任意点,点E(﹣4,3),F(﹣4,﹣3),G(4,﹣3),H(4,3),点Q是直线y=﹣x+b上的任意点,若存在两点P、Q的“和合数”相同,求b的取值范围.参考答案一.选择题(本题共30分,每小题3分)1.函数y=中自变量x的取值范围是()A.x>3B.x≠3C.x≥3D.x≥0【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.解:函数y=中x﹣3≥0,所以x≥3,故选:C.2.下列各式中,化简后能与合并的是()A.B.C.D.【分析】先化成最简二次根式,再根据同类二次根式的定义判断即可.解:A、=2,不能与合并;B、=2,能与合并;C、=,不能与合并;D、=,不能与合并;故选:B.3.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.5,12,13C.2,3,4D.1,,3【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.解:A、∵42+52≠62,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;B、∵52+122=132,∴该三角形符合勾股定理的逆定理,故可以构成直角三角形;C、∵22+32≠42,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;D、∵12+()2≠32,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形.故选:B.4.下列各点在函数y=2x﹣1的图象上的是()A.(1,3)B.(﹣2,4)C.(3,5)D.(﹣1,0)【分析】利用一次函数图象上点的坐标特征,逐一验证四个选项中的点是否在一次函数的图象上,此题得解.解:A、当x=1时,y=2x﹣1=1,∴点(1,3)不在函数y=2x﹣1的图象上;B、当x=﹣2时,y=2x﹣1=﹣5,∴点(﹣2,4)不在函数y=2x﹣1的图象上;C、当x=3时,y=2x﹣1=5,∴点(3,5)在函数y=2x﹣1的图象上;D、当x=﹣1时,y=2x﹣1=﹣3,∴点(﹣1,0)不在函数y=2x﹣1的图象上.故选:C.5.在数学活动课上,老师要求同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的四位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量四边形其中的三个角是否都为直角【分析】矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.解:A、对角线是否相互平分,能判定平行四边形;B、两组对边是否分别相等,能判定平行四边形;C、测量一组对角是否都为直角,不能判定形状;D、其中四边形中三个角都为直角,能判定矩形.故选:D.6.如图,▱ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为()A.1B.2C.3D.4【分析】由平行四边形的性质得出BC=AD=5,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.解:∵四边形ABCD是平行四边形,∴AD=BC=5,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=3,∴CE=BC﹣BE=5﹣3=2,故选:B.7.在平面直角坐标系中,一次函数y1=k1x+b1与y2=k2x+b2的图象互相平行,如果这两个函数的部分自变量和对应的函数值如下表:x m02y1﹣30ty21n7那么m的值是()A.﹣1B.﹣2C.3D.4【分析】由一次函数y1=k1x+b1与y2=k2x+b2的图象互相平行,得出k1=k2,设k1=k2=a,将(m,﹣2)、(0,0)代入y1=ax+b1,得到am=﹣2;将(m,1)、(0,n)、(2,7)代入y2=ax+b2,解方程组即可求出m的值.解:∵一次函数y1=k1x+b1与y2=k2x+b2的图象互相平行,∴k1=k2,设k1=k2=a,则y1=ax+b1,y2=ax+b2.将(m,﹣3)、(0,0)代入y1=ax+b1,得am=﹣3①;将(m,1)、(0,n)、(2,7)代入y2=ax+b2,得am+n=1②,2a+n=7③,①代入②,得n=4,把n=4代入③,得a=,把a=代入①,得m=﹣2.故选:B.8.如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是()A.(0,﹣5)B.(0,﹣6)C.(0,﹣7)D.(0,﹣8)【分析】在Rt△ODC中,利用勾股定理求出OC即可解决问题;解:∵A(12,13),∴OD=12,AD=13,∵四边形ABCD是菱形,∴CD=AD=13,在Rt△ODC中,OC===5,∴C(0,﹣5).故选:A.9.甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为甲,乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.甲=乙,s甲2>s乙2B.甲=乙,s甲2<s乙2C.甲>乙,s甲2>s乙2D.甲<乙,s甲2<s乙2【分析】分别计算平均数和方差后比较即可得到答案.解:(1)甲=(8×4+9×2+10×4)=9;=(8×3+9×4+10×3)=9;乙s甲2=[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8;s乙2=[3×(8﹣9)2+4×(9﹣9)2+3×(10﹣9)2]=0.7;∴甲=乙,s甲2>s乙2,故选:A.10.如图,点E为平行四边形ABCD边上的一个动点,并沿A→B→C→D的路径移动到点D停止,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x 的函数关系的是()A.B.C.D.【分析】分三段来考虑点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小,据此选择即可.解:点E沿A→B运动,△ADE的面积逐渐变大,设菱形的变形为a,∠A=β,∴AE边上的高为AB sinβ=a•sinβ,∴y=x•a•sinβ,点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.y=(3a﹣x)•sinβ,故选:C.二、填空题(本题共24分,每小题3分)11.已知,一次函数y=kx+b(k≠0)的图象经过点(0,2),且y随x的增大而减小,请你写出一个符合上述条件的函数关系式:答案不唯一如:y=﹣x+2.【分析】根据题意可知k<0,这时可任设一个满足条件的k,则得到含x、y、b三求知数的函数式,将(0,2)代入函数式,求得b,那么符合条件的函数式也就求出.解:∵y随x的增大而减小∴k<0∴可选取﹣1,那么一次函数的解析式可表示为:y=﹣x+b把点(0,2)代入得:b=2∴要求的函数解析式为:y=﹣x+2.12.已知=0,那么y x的值是1.【分析】依据非负数的性质可求得x、y的值,然后利用有理数的乘方法则计算即可.解:∵=0,∴2﹣x=0,y+1=0,解得:x=2,y=﹣1.∴y x=(﹣1)2=1.故答案为:1.13.如图,在▱ABCD中,CH⊥AD于点H,CH与BD的交点为E,如果∠1=70°,∠ABC =3∠2,那么∠ADC=60°.【分析】由平行四边形的性质得出∠ADC=∠ABC,证出CH⊥BC,得出∠BCE=90°,求出∠2=90°﹣70°=20°,即可得出∠ADC=∠ABC=3∠2.解:∵四边形ABCD是平行四边形,∴∠ADC=∠ABC,AD∥BC,∵CH⊥AD,∴CH⊥BC,∴∠BCE=90°,∵∠1=70°,∴∠2=90°﹣70°=20°,∴∠ADC=∠ABC=3∠2=60°,故答案为:60.14.把直线y=﹣5x+2向上平移a个单位后,与直线y=2x+4的交点在第一象限,则a的取值范围是a>2.【分析】直线y=﹣5x+2向上平移a个单位后可得:y=﹣5x+2+a,求出直线y=﹣5x+3+a 与直线y=2x+4的交点,再由此点在第一象限可得出a的取值范围.解:直线y=﹣5x+2向上平移a个单位后可得:y=﹣5x+2+a,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第一象限,∴,解得:a>2.故答案为a>2.15.已知a=+1,则代数式a2﹣2a+7的值为11.【分析】首先利用完全完全平方把式子进行变形,然后再代入a的值进行计算即可.解:a2﹣2a+7=a2﹣2a+1+6=(a﹣1)2+6,当a=+1时,原式=5+6=11,故答案为:11.16.如图,每个小正方形的边长为1,在△ABC中,点A,B,C均在格点上,点D为AB 的中点,则线段CD的长为.【分析】利用勾股定理的逆定理证明∠ACB=90°,再利用直角三角形斜边中线的性质即可解决问题.解:∵AC=2,BC=3,AB=,∴AC2+BC2=AB2,∴∠ACB=90°,∵AD=DB,∴CD=AB=,故答案为.17.如图,已知正比例函数y1=ax与一次函数y2=﹣x+b的图象交于点P下面有四个结论:①a>0;②b<0;③当x<0时,y1<0;④当x>2时,y1<y2.其中正确的序号是①③【分析】根据函数的图象直接判断后即可确定正确的答案.解:①∵正比例函数y1=ax经过一三象限,∴a>0正确;②∵一次函数y2=﹣x+b的图象交y轴的正半轴,∴b>0,∴b<0错误;③∵当x<0时y1=ax的图象位于x轴的下方,、∴y1<0正确;④观察图象得当x>2时y1>y2,∴y1<y2错误,故答案为:①③.18.已知:线段AB,BC.求作:平行四边形ABCD.以下是甲、乙两同学的作业.甲:①以点C为圆心,AB长为半径作弧;②以点A为圆心,BC长为半径作弧;③两弧在BC上方交于点D,连接AD,CD.四边形ABCD即为所求平行四边形.(如图1)乙:①连接AC,作线段AC的垂直平分线,交AC于点M;②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD.四边形ABCD即为所求平行四边形.(如图2)老师说甲、乙同学的作图都正确,你更喜欢甲或乙的作法,他的作图依据是:两组对边分别相等的四边形是平行四边形或对角线互相平分的四边形是平行四边形.【分析】根据平行四边形的判定方法即可解决问题.解:①甲,两组对边分别相等的四边形是平行四边形;②乙,对角线互相平分的四边形是平行四边形.故答案为:甲或乙,两组对边分别相等的四边形是平行四边形或对角线互相平分的四边形是平行四边形.三、解答题(本大题共46分)19.计算:(4﹣3)×+|1﹣|.【分析】根据二次根式的运算法则即可求出答案.解:原式=4×﹣3×+﹣1=16﹣3+﹣1=16﹣12+﹣1=15﹣1120.已知:如图,在▱ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:△ABE≌△FCE;(2)若AF=AD,求证:四边形ABFC是矩形.【分析】(1)根据平行四边形性质得出AB∥DC,推出∠1=∠2,根据AAS证两三角形全等即可;(2)根据全等得出AB=CF,根据AB∥CF得出平行四边形ABFC,推出BC=AF,根据矩形的判定推出即可.【解答】证明:(1)如图.∵四边形ABCD是平行四边形,∴AB∥DC即AB∥DF,∴∠1=∠2,∵点E是BC的中点,∴BE=CE.在△ABE和△FCE中,,∴△ABE≌△FCE(AAS).(2)∵△ABE≌△FCE,∴AB=FC,∵AB∥FC,∴四边形ABFC是平行四边形,∴AD=BC,∵AF=AD,∴AF=BC,∴四边形ABFC是矩形.21.已知一次函数y=ax﹣2(a≠0)的图象过点A(3,1).(1)求实数a的值;(2)设一次函数y=ax﹣2(a≠0)的图象与y轴交于点B.若点C在y轴上且S△ABC=2S△AOB,求点C的坐标.【分析】(1)将A(3,1)代入可得.(2)根据题意可求B(0,﹣2),由S△ABC=2S△AOB,可得BC=2OB,且B(0,﹣2),可求点C的坐标.解:(1)根据题意得:1=3a﹣2∴a=1∴解析式y=x﹣2(2)∵一次函数y=x﹣2的图象与y轴交于点B∴当x=0,y=﹣2,∴B(0,﹣2)即OB=2∵S△ABC=2S△AOB,∴BC=2OB=4∴C(0,2)或(0,﹣6)22.某学校七、八年级各有学生300人,为了普及冬奥知识,学校在七、八年级举行了一次冬奥知识竞赛,为了解这两个年级学生的冬奥知识竞赛成绩(百分制),分别从两个年级各随机抽取了20名学生的成绩,进行整理、描述和分析.下面给出了部分信息.a.七、八年级成绩分布如下:成绩x年级0≤x≤910≤x≤1920≤x≤2930≤x≤3940≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七0000437420八1100046521(说明:成绩在50分以下为不合格,在50~69分为合格,70分及以上为优秀)b.七年级成绩在60~69一组的是:61,62,63,65,66,68,69c.七、八年级成绩的平均数中位数优秀率合格率如下:年级平均数中位数优秀率合格率七64.7m30%80%八63.367n90%根据以上信息,回答下列问题:(1)写出表中m,n的值;(2)小军的成绩在此次抽样之中,与他所在年级的抽样相比,小军的成绩高于平均数,却排在了后十名,则小军是八年级的学生(填“七”或“八”);(3)可以推断出八年级的竞赛成绩更好,理由是从中位数、及格率、优秀率上看,八年级均较高,因此成绩总体较好(至少从两个不同的角度说明).【分析】(1)七年级的中位数,把七年级学生的成绩排序后找第10、11位的数据的平均数即为中位数,通过所给的表格数据和在60~69一组的成绩,可以得出第10、11位的数据,进而求出中位数,通过表格中可以计算出八年级优秀人数,再求出优秀率即可.解:(1)m=(63+65)÷2=64,n=(5+2+1)÷20=40%,答:m=64,n=40%.(2)因为平均数会受到极端值的影响,八年级有两个学生的成绩较差,使平均分较低,小军虽然高于平均成绩,仍可能排在后面,可以估计他是八年级学生,故答案为:八(3)八年级学生成绩较好,从中位数、及格率、优秀率上看,八年级均较高,因此成绩总体较好.23.数学活动课上,老师提出问题:如图,有一张长4dm,宽3dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.下面是探究过程,请补充完整:(1)设小正方形的边长为xdm,体积为ydm3,根据长方体的体积公式得到y和x的关系式:y=4x3﹣14x2+12x;(2)确定自变量x的取值范围是0<x<;(3)列出y与x的几组对应值.x/dm…1…y/dm3… 1.3 2.2 2.7m 3.0 2.8 2.5n 1.50.9…(4)在下面的平面直角坐标系xOY中,描出补全后的表中各对对应值为坐标的点,并画出该函数的图象如下图;结合画出的函数图象,解决问题:当小正方形的边长约为0.55dm时,(保留1位小数),盒子的体积最大,最大值约为 3.03dm3.(保留1位小数)【分析】根据题意,列出y与x的函数关系式,根据盒子长宽高值为正数,求出自变量取值范围;利用图象求出盒子最大体积.解:(1)由已知,y=x(4﹣2x)(3﹣2x)=4x3﹣14x2+12x故答案为:y=4x3﹣14x2+12x;(2)由已知:,解得:0<x<.故答案为:0<x<;(3)m=,n=4×13﹣14×12+12×1=2;(4)根据图象,当x=0.55dm时,盒子的体积最大,最大值约为3.03dm3故答案为:0.55,3.0324.在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是BP =CE,CE与AD的位置关系是AD⊥CE;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2,BE=2,求四边形ADPE的面积.【分析】(1)如图1中,结论:PB=EC,CE⊥AD.连接AC,想办法证明△BAP≌△CAE即可解决问题;(2)结论仍然成立.证明方法类似;(3)首先证明△BAP≌△CAE,解直角三角形求出AP,DP,OA即可解决问题;解:(1)如图1中,结论:PB=EC,CE⊥AD.理由:连接AC.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°,∴AB=AC,∠BAC=60°,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∵∠BAC=∠PAE,∴∠BAP=∠CAE,,∴△BAP≌△CAE,∴BP=CE,∠ABP=∠ACE=30°,延长CE交AD于H,∵∠CAH=60°,∴∠CAH+∠ACH=90°,∴∠AHC=90°,即CE⊥AD.故答案为PB=EC,CE⊥AD.(2)结论仍然成立.理由:选图2,连接AC交BD于O,设CE交AD于H.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°,∴AB=AC,∠BAC=60°,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE.,∴△BAP≌△CAE,∴BP=CE,∠PBA=∠ACE=30°,∵∠CAH=60°,∴∠CAH+∠ACH=90°,∴∠AHC=90°,即CE⊥AD.选图3,连接AC交BD于O,设CE交AD于H.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°,∴AB=AC,∠BAC=60°,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE.,∴△BAP≌△CAE,∴BP=CE,∠ABP=∠ACE=30°,∵∠CAH=60°,∴∠CAH+∠ACH=90°,∴∠AHC=90°,即CE⊥AD.(3)△BAP≌△CAE,由(2)可知EC⊥AD,CE=BP,在菱形ABCD中,AD∥BC,∴EC⊥BC,∵BC=AB=2,BE=2,在Rt△BCE中,EC==8,∴BP=CE=8,∵AC与BD是菱形的对角线,∴∠ABD=∠ABC=30°,AC⊥BD,∴BD=2BO=2AB•cos30°=6,∴OA=AB=,DP=BP﹣BD=8﹣6=2,∴OP=OD+DP=5,在Rt△AOP中,AP==2,∴S四边形ADPE=S△ADP+S△AEP=×2×+×(2)2=8.25.对于点P(x,y),规定x+y=m,那么就把m叫点P的“和合数”.例如:若P(2,3),则2+3=5,那么5叫P的“和合数”.(1)在平面直角坐标系中,已知,点A(﹣2,6)①B(2,2),C(1,3),D(3,2),与点A的“和合数”相等的点B,C;②若点N在直线y=x+5上,且与点A的“和合数”相同,则点N的坐标是(﹣,);(2)点P是矩形EFGH边上的任意点,点E(﹣4,3),F(﹣4,﹣3),G(4,﹣3),H(4,3),点Q是直线y=﹣x+b上的任意点,若存在两点P、Q的“和合数”相同,求b的取值范围.【分析】(1)①分别求出各点的“和合数”,即可求解;②设点N(x,x+5),由“和合数”的定义列出方程可求解;(2)由“和合数”的定义可得点P在直线y=﹣x+b上,结合图形可求解.解:(1)①∵点A(﹣2,6)的“和合数”=﹣2+6=4,点B(2,2)的“和合数”=2+2=4,点C(1,3)的“和合数”=1+3=4,点D(3,2)的“和合数”=2+3=5,∴与点A的“和合数”相等的点为点B,点C,故答案为:B,C;②设点N(x,x+5),由题意可得:x+x+5=4,∴x=﹣,∴点N(﹣,),(2)如图,设点P(x,y),∵P、Q的“和合数”相同,∴x+y=b,∴y=﹣x+b,∴点P在直线y=﹣x+b上,∴点P是直线y=﹣x+b与矩形EFGH的交点,当点H在直线y=﹣x+b上时,3=﹣4+b,∴b=7,当点F在直线y=﹣x+b上时,﹣3=4+b,∴b=﹣7,∴当﹣7≤b≤7时,存在两点P、Q的“和合数”相同,。
精品解析:北京大学附属中学2019-2020学年八年级下学期期末数学试题(解析版)

x
m
0
2
y1
﹣3
0
t
y2
1
n
7
那么 m 的值是( )
A. ﹣1
B. ﹣2
C. 3
D. 4
【答案】B
【解析】 【分析】 由一次函数 y1=k1x+b1 与 y2=k2x+b2 的图象互相平行,得出 k1=k2,设 k1=k2=a,将(m,-2)、(0,0)代入 y1=ax+b1, 得到 am=-2;将(m,1)、(0,n)、(2,7)代入 y2=ax+b2,解方程组即可求出 m 的值. 【详解】解:∵一次函数 y1=k1x+b1 与 y2=k2x+b2 的图象互相平行, ∴k1=k2, 设 k1=k2=a,则 y1=ax+b1,y2=ax+b2. 将(m,﹣3)、(0,0)代入 y1=ax+b1,得 am=﹣3①; 将(m,1)、(0,n)、(2,7)代入 y2=ax+b2, 得 am+n=1②,2a+n=7③, ①代入②,得 n=4,
故选 B 【点睛】本题考核知识点:同类二次根式.解题关键点:理解同类二次根式的定义. 3. 下列四组线段中,可以构成直角三角形的是( )
A. 4, 5, 6
B. 5, 12, 13
C. 2, 3, 4
D. 1, 2 ,3
【答案】B
【解析】 【分析】 根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判 定即可. 【详解】解:A、∵42+52≠62,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形; B、∵52+122=132,∴该三角形符合勾股定理的逆定理,故可以构成直角三角形; C、∵22+32≠42,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年北京交大附中八年级第二学期期末数学试卷班级姓名座号温馨提示:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B铅笔填涂相应位置。
2.选择题用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试题卷上。
3.解答题用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
一、选择题1.下列式子为最简二次根式的是()A.B.C.D.2.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.3.矩形、菱形、正方形都具有的性质是()A.对角线互相平分B.对角线相等C.每一条对角线平分一组对角D.对角线互相垂直4.下列各式化简正确的是()A.=4B.=C.=D.=5.一次函数y=﹣3x+5的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.北京市6月某日10个区县的最高气温如下表:(单位:℃)区县大兴通州平谷顺义怀柔门头沟延庆昌平密云房山最高气温32 32 30 32 30 32 29 32 30 32 则这10个区县该日最高气温的中位数是()A.32 B.31 C.30 D.297.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x>﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A.0 B.1 C.2 D.38.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.二、填空题(本题共16分,每小题2分)9.二次根式中,x的取值范围是.10.在平面直角坐标系xOy中,直线y=﹣2x+4与x轴的交点坐标为,与y轴的交点坐标为.11.已知正方形的一条对角线长为8cm,则其面积是cm2.12.一组数据1、3、2、5、x的平均数是3,则方差S2=.13.写出一个一次函数的解析式,满足以下两个条件:①y随x的增大而增大;②它的图象经过坐标为(0,﹣2)的点,你写出的解析式为.14.如图,在菱形ABCD中,E、F分别是AB、AC的中点,如果菱形ABCD的周长是16,那么EF的长是.15.直线y=﹣2x+a经过(3,y1)和(﹣2,y2),则y1y2.(填写“>”,“<”或“=”)16.把图一的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为.三、解答题(本题共32分,第17-18题每小题5分,第19题12分,20-21题每小题5分)17.下面是小明设计的“在一个平行四边形内作菱形”的尺规作图过程.已知:四边形ABCD是平行四边形.求作:菱形ABEF(点E在BC上,点F在AD上).作法:①以A为圆心,AB长为半径作弧,交AD于点F;②以B为圆心,AB长为半径作弧,交BC于点E;③连接EF.所以四边形ABEF为所求作的菱形.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AF=AB,BE=AB,∴=.在▱ABCD中,AD∥BC.即AF∥BE.∴四边形ABEF为平行四边形.∵AF=AB,∴四边形ABEF为菱形()(填推理的依据).18.利用勾股定理可以在数轴上画出表示的点,请依据以下思路完成画图,并保留画图痕迹:第一步:(计算)尝试满足=,使其中a,b都为正整数,你取的正整数a =,b=;第二步:(画长为的线段)以第一步中你所取的正整数a,b为两条直角边长画Rt△OEF,使O为原点,点E落在数轴的正半轴上,∠OEF=90°,则斜边OF的长即为.请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)第三步:(画表示的点)在下面的数轴上画出表示的点M,并描述第三步的画图步骤:.19.计算:(1)+(﹣)﹣2﹣|﹣2|﹣(π﹣3.14)0;(2)12×÷(15);(3)(+)2﹣(+)(﹣).20.下面是小东设计的“作平行四边形一边中点”的尺规作图过程.已知:平行四边形ABCD.求作:点M,使点M为边AD的中点.作法:如图1,①作射线BA;②以点A为圆心,CD长为半径画弧,交BA的延长线于点E;③连接EC交AD于点M.所以点M就是所求作的点.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:21.如图,四边形ABCD中,AB=DC,AD=BC,AD⊥CD,点E在对角线CA的延长线上,连接BD,BE.(1)求证:AC=BD;(2)若BC=2,BE=6,∠ABE=30°,求EC的长.四、解答题(本题共36分,每小题6分)22.如图,直线l1的解析表达式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A、B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP是△ADC的面积的2倍,求点P 的坐标.23.(1)阅读以下内容并回答问题:问题:在平面直角坐标系xOy中,将直线y=﹣2x向上平移3个单位,求平移后直线的解析式.小雯同学在做这类问题时经常困惑和纠结,她做此题的简要过程和反思如下.在课堂交流中,小谢同学听了她的困惑后,给她提出了下面的建议:“你可以找直线上的关键点,比如点A(1,﹣2),先把它按要求平移到相应的对应点A′,再用老师教过的待定系数法求过点A′的新直线的解析式,这样就不用纠结了.”小雯用这个方法进行了尝试,点A(1,﹣2)向上平移3个单位后的对应点A′的坐标为,过点A′的直线的解析式为.(2)小雯自己又提出了一个新问题请全班同学一起解答和检验此方法,请你也试试看:将直线y=﹣2x向左平移3个单位,平移后直线的解析式为,另外直接将直线y =﹣2x向(“上”或“下”)平移个单位也能得到这条直线.(3)请你继续利用这个方法解决问题:对于平面直角坐标系xOy内的图形M,将图形M上所有点都向上平移3个单位,再向左平移3个单位,我们把这个过程称为图形M的一次“斜平移”.求将直线y=﹣2x进行两次“斜平移”后得到的直线的解析式.24.某医药研究所开发一种新的药物,据监测,如果成年人按规定的剂量服用,服药后2小时,每毫升血液中的含药量达到最大值,之后每毫升血液中的含药量逐渐衰减.若一次服药后每毫升血液中的含药量y(单位:微克)与服药后的时间t(单位:小时)之间近似满足某种函数关系,如表是y与t的几组对应值,其部分图象如图所示.t0 1 2 3 4 6 8 10 …y0 2 4 2.83 2 1 0.5 0.25 …(1)在所给平面直角坐标系中,继续描出上表中已列出数值所对应的点(t,y),并补全该函数的图象;(2)结合函数图象,解决下列问题:①某病人第一次服药后5小时,每毫升血液中的含药量约为微克;若每毫升血液中含药量不少于0.5微克时治疗疾病有效,则第一次服药后治疗该疾病有效的时间共持续约小时;②若某病人第一次服药后8小时进行第二次服药,第二次服药对血液中含药量的影响与第一次服药相同,则第二次服药后2小时,每毫升血液中的含药量约为微克.25.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a .实心球成绩的频数分布如表所示:分组 6.2≤x <6.66.6≤x <7.07.0≤x <7.4 7.4≤x <7.8 7.8≤x <8.2 8.2≤x <8.6频数2m10621b .实心球成绩在7.0≤x <7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c .一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题: (1)①表中m 的值为 ;②一分钟仰卧起坐成绩的中位数为 ;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀. ①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代码 ABCDEFGH实心球 8.1 7.7 7.5 7.5 7.3 7.2 7.0 6.5 一分钟仰卧起坐*4247*4752*49其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E 的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.26.已知△ABC 中,∠BAC =90°,AB =AC ,点M 为BC 的中点,点P 为AB 边上一动点,点N为线段BM上一动点,以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,且点B 的对应点为D,点N的对应点为E.(1)当点N与点M重合,且点P不是AB的中点时.①依据题意补全图1;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,写出一个BN的值,使得EM=EA成立,并证明.27.∠MON=45°,点P在射线OM上,点A,B在射线ON上(点B与点O在点A的两侧),且AB=1,以点P为旋转中心,将线段AB逆时针旋转90°,得到线段CD(点C与点A对应,点D与点B对应).(1)如图,若OA=1,OP=,依题意补全图形;(2)若OP=,当线段AB在射线ON上运动时,线段CD与射线OM有公共点,求OA的取值范围.(要写过程)参考答案一、选择题(本题共16分,每小题2分)1.下列式子为最简二次根式的是()A.B.C.D.【分析】根据最简二次根式必须满足两个条件对各个选项进行判断即可.解:被开方数含分母,不是最简二次根式,A不正确;是最简二次根式,B正确;被开方数含能开得尽方的因数,不是最简二次根式,C不正确;被开方数含分母,不是最简二次根式,D不正确;故选:B.2.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、是中心对称图形,是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项正确;D、不是中心对称图形,是轴对称图形,故此选项错误;故选:C.3.矩形、菱形、正方形都具有的性质是()A.对角线互相平分B.对角线相等C.每一条对角线平分一组对角D.对角线互相垂直【分析】先逐一分析出矩形、菱形、正方形的对角的性质,再综合考虑矩形、菱形、正方形对角线的共同性质.解:因为矩形的对角线互相平分且相等,菱形的对角线互相平分且垂直且平分每一组对角,正方形的对角线具有矩形和菱形所有的性质,所有矩形、菱形和正方形的对角线都具有的性质是对角线互相平分.故选:A.4.下列各式化简正确的是()A.=4B.=C.=D.=【分析】各式化简得到最简结果,判断即可.解:A、原式==,不符合题意;B、原式==,不符合题意;C、原式=×=,不符合题意;D、原式=×=,符合题意.故选:D.5.一次函数y=﹣3x+5的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】一次项系数﹣3<0,则图象经过二、四象限;常数项5>0,则图象还过第一象限.解:∵﹣3<0,∴图象经过二、四象限;∵5>0,∴直线与y轴的交点在y轴的正半轴上,图象还过第一象限.所以一次函数y=﹣3x+5的图象经过一、二、四象限,不经过第三象限.故选:C.6.北京市6月某日10个区县的最高气温如下表:(单位:℃)区县大兴通州平谷顺义怀柔门头沟延庆昌平密云房山最高气温32 32 30 32 30 32 29 32 30 32 则这10个区县该日最高气温的中位数是()A.32 B.31 C.30 D.29【分析】根据中位数的求解方法,先排列顺序,再求解.解:这10个区县该日最高气温分别为:29、30、30、30、32、32、32、32、32、32,则这10个区县该日最高气温的中位数是=32,故选:A.7.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x>﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A.0 B.1 C.2 D.3【分析】根据一次函数的图象和性质可得a>0;b>0;当x>﹣2时,直线y=3x+b在直线y=ax﹣2的上方,即x>﹣2是不等式3x+b>ax﹣2的解集.解:由图象可知,a>0,故①正确;b>0,故②正确;当x>﹣2是直线y=3x+b在直线y=ax﹣2的上方,即x>﹣2是不等式3x+b>ax﹣2,故③正确.故选:D.8.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.【分析】分三段来考虑点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小,据此选择即可.解:点E沿A→B运动,△ADE的面积逐渐变大,设菱形的变形为a,∠A=β,∴AE边上的高为AB sinβ=a•sinβ,∴y=x•a•sinβ,点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.y=(3a﹣x)•sinβ,故选:D.二、填空题(本题共16分,每小题2分)9.二次根式中,x的取值范围是x≥3 .【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.解:根据题意得:x﹣3≥0,解得:x≥3.故答案是:x≥3.10.在平面直角坐标系xOy中,直线y=﹣2x+4与x轴的交点坐标为(2,0),与y轴的交点坐标为(0,4).【分析】分别代入x=0,y=0求出与之对应的y,x的值,进而可得出直线与两坐标轴的交点坐标.解:当y=0时,﹣2x+4=0,解得:x=2,∴直线y=﹣2x+4与x轴的交点坐标为(2,0);当x=0时,y=﹣2x+4=4,∴直线y=﹣2x+4与y轴的交点坐标为(0,4).故答案为:(2,0);(0,4).11.已知正方形的一条对角线长为8cm,则其面积是32 cm2.【分析】根据正方形的对角线相等且互相垂直,正方形是特殊的菱形,菱形的面积等于对角线乘积的一半进行求解即可.解:∵正方形的一条对角线长为8cm,∴面积是×8×8=32cm2.故答案为:32.12.一组数据1、3、2、5、x的平均数是3,则方差S2= 2 .【分析】先根据平均数的定义求出x的值,再根据方差公式进行计算即可.解:∵数据1、3、2、5、x的平均数是3,∴(1+3+2+5+x)÷5=3,解得x=4,∴方差S2=[(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣3)2]=2;故答案为:2.13.写出一个一次函数的解析式,满足以下两个条件:①y随x的增大而增大;②它的图象经过坐标为(0,﹣2)的点,你写出的解析式为y=x﹣2 .【分析】由一次函数的增减性可得出k>0,取k=1,再根据一次函数图象上点的坐标特征可得出b=2,此题得解.解:设该一次函数的解析式为y=kx+b,∵y随x的增大而增大,∴k>0,取k=1.∵它的图象经过坐标为(0,﹣2)的点,∴﹣2=b.故答案为:y=x﹣214.如图,在菱形ABCD中,E、F分别是AB、AC的中点,如果菱形ABCD的周长是16,那么EF的长是 2 .【分析】根据菱形的性质以及中位线的性质即可求出答案.解:在菱形ABCD中,周长为16,∴AB=BC=CD=DA=4,∵E、F分别是AB、AC的中点,∴EF=BC=2,故答案为:215.直线y=﹣2x+a经过(3,y1)和(﹣2,y2),则y1<y2.(填写“>”,“<”或“=”)【分析】运用函数的增减性比较大小.解:∵直线y=﹣2x+a中,k=﹣2<0,y随x的增大而减小,∵3>﹣2,∴y1<y2.故答案为<.16.把图一的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为.【分析】利用折叠的性质和勾股定理可知.解:由勾股定理得,MN=5,设Rt△PMN的斜边上的高为h,由矩形的宽AB也为h,根据直角三角形的面积公式得,h=PM•PN÷MN=,由折叠的性质知,BC=PM+MN+PN=12,∴矩形的面积=AB•BC=.三、解答题(本题共32分,第17-18题每小题5分,第19题12分,20-21题每小题5分)17.下面是小明设计的“在一个平行四边形内作菱形”的尺规作图过程.已知:四边形ABCD是平行四边形.求作:菱形ABEF(点E在BC上,点F在AD上).作法:①以A为圆心,AB长为半径作弧,交AD于点F;②以B为圆心,AB长为半径作弧,交BC于点E;③连接EF.所以四边形ABEF为所求作的菱形.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AF=AB,BE=AB,∴AF=BE.在▱ABCD中,AD∥BC.即AF∥BE.∴四边形ABEF为平行四边形.∵AF=AB,∴四边形ABEF为菱形(邻边相等的平行四边形是菱形)(填推理的依据).【分析】(1)根据要求画出图形即可.(2)根据邻边相等的平行四边形是菱形即可.解:(1)四边形ABEF为所求作的菱形.(2)∵AF=AB,BE=AB,∴AF=BE,在▱ABCD中,AD∥BC.即AF∥BE.∴四边形ABEF为平行四边形.∵AF=AB,∴四边形ABEF为菱形(邻边相等的平行四边形是菱形.)故答案为:AF,BE,邻边相等的平行四边形是菱形.18.利用勾股定理可以在数轴上画出表示的点,请依据以下思路完成画图,并保留画图痕迹:第一步:(计算)尝试满足=,使其中a,b都为正整数,你取的正整数a = 4 ,b= 2 ;第二步:(画长为的线段)以第一步中你所取的正整数a,b为两条直角边长画Rt△OEF,使O为原点,点E落在数轴的正半轴上,∠OEF=90°,则斜边OF的长即为.请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)第三步:(画表示的点)在下面的数轴上画出表示的点M,并描述第三步的画图步骤:以原点为圆心,OF为半径画弧交数轴的正半轴于点M,则点M为所作.【分析】第一步:利用实数的运算可确定a和b的值;第二步:4对应的点为E点,过点E作数轴的垂线,再截取EF=2,然后连接OF,则OF=;第三步:如图,在数轴的正半轴上截取OM=OF即可.解:第一步:a=4,b=2;第二步:如图,OF为所作;第三步:如图,以原点为圆心,OF为半径画弧交数轴的正半轴于点M,则点M为所作.故答案为4,2;以原点为圆心,OF为半径画弧交数轴的正半轴于点M,则点M为所作.19.计算:(1)+(﹣)﹣2﹣|﹣2|﹣(π﹣3.14)0;(2)12×÷(15);(3)(+)2﹣(+)(﹣).【分析】根据实数的运算法则即可求出答案.解:(1)原式=2+9﹣(2﹣)﹣1=2+9﹣2+﹣1=3+6.(2)原式=24×=18÷(15)=.(3)原式=2+2+3﹣(2﹣3)=5+2+1=6+2.20.下面是小东设计的“作平行四边形一边中点”的尺规作图过程.已知:平行四边形ABCD.求作:点M,使点M为边AD的中点.作法:如图1,①作射线BA;②以点A为圆心,CD长为半径画弧,交BA的延长线于点E;③连接EC交AD于点M.所以点M就是所求作的点.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:【分析】(1)根据要求画出图形即可.(2)利用平行四边形的性质以及三角形的中位线定理解决问题即可.解:(1)如图,点M即为所求.(2)理由:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∵AE=CD,∴AE=AB,∵AM∥BC,∴EM=CM,∴AM=BC,∴AM=AD,∴AM=MD.21.如图,四边形ABCD中,AB=DC,AD=BC,AD⊥CD,点E在对角线CA的延长线上,连接BD,BE.(1)求证:AC=BD;(2)若BC=2,BE=6,∠ABE=30°,求EC的长.【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出四边形ABCD 是矩形,再根据矩形的性质得出即可;(2)过E作EF⊥BC,交CB的延长线于F,设FB=x,EF=3x,根据勾股定理求出x,求出EF和CF,根据勾股定理求出EC即可.【解答】(1)证明:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵AD⊥CD,∴∠ADC=90°,∴四边形ABCD是矩形,∴AC=BD;(2)解:过E作EF⊥BC,交CB的延长线于F,则∠F=90°,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠F=∠ABC,∴AB∥EF,∴∠ABE=∠FEB,∵∠ABE=30°,∴tan∠ABE=,∴tan∠FEB==,设FB=x,EF=3x,∵BE=6,由勾股定理得:(x)2+(3x)2=62,解得:x=(负数舍去),即BF=3,EF=3,∵BC=2,∴FC=2+3=5,在Rt△EFC中,由勾股定理得:EC==2.四、解答题(本题共36分,每小题6分)22.如图,直线l1的解析表达式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A、B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP是△ADC的面积的2倍,求点P的坐标.【分析】(1)已知l1的解析式,令y=0求出x的值即可;(2)设l2的解析式为y=kx+b,由图联立方程组求出k,b的值;(3)联立方程组,求出交点C的坐标,继而可求出S△ADC;(4)△ADP与△ADC底边都是AD,根据△ADP的面积是△ADC面积的2倍,可得点P的坐标.解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,∴x=1,∴D(1,0);(2)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,y=﹣,代入表达式y=kx+b得,解得,∴直线l2的解析表达式为y=x﹣6;(3)由,解得,∴C(2,﹣3),∵AD=3,∴S△ADC=×3×|﹣3|=;(4)∵△ADP与△ADC底边都是AD,△ADP的面积是△ADC面积的2倍,∴△ADC高就是点C到直线AD的距离的2倍,即C纵坐标的绝对值=6,则P到AD距离=6,∴点P纵坐标是±6,∵y=1.5x﹣6,y=6,∴1.5x﹣6=6,解得x=8,∴P1(8,6).∵y=1.5x﹣6,y=﹣6,∴1.5x﹣6=﹣6,解得x=0,∴P2(0,﹣6)综上所述,P点的坐标为(8,6)或(0,﹣6).23.(1)阅读以下内容并回答问题:问题:在平面直角坐标系xOy中,将直线y=﹣2x向上平移3个单位,求平移后直线的解析式.小雯同学在做这类问题时经常困惑和纠结,她做此题的简要过程和反思如下.在课堂交流中,小谢同学听了她的困惑后,给她提出了下面的建议:“你可以找直线上的关键点,比如点A(1,﹣2),先把它按要求平移到相应的对应点A′,再用老师教过的待定系数法求过点A′的新直线的解析式,这样就不用纠结了.”小雯用这个方法进行了尝试,点A(1,﹣2)向上平移3个单位后的对应点A′的坐标为(1,1),过点A′的直线的解析式为y=﹣2x=3 .(2)小雯自己又提出了一个新问题请全班同学一起解答和检验此方法,请你也试试看:将直线y=﹣2x向左平移3个单位,平移后直线的解析式为y=﹣2x﹣6 ,另外直接将直线y=﹣2x向下(“上”或“下”)平移 6 个单位也能得到这条直线.(3)请你继续利用这个方法解决问题:对于平面直角坐标系xOy内的图形M,将图形M上所有点都向上平移3个单位,再向左平移3个单位,我们把这个过程称为图形M的一次“斜平移”.求将直线y=﹣2x进行两次“斜平移”后得到的直线的解析式.【分析】(1)由平移的性质可求点A'坐标,利用待定系数法可求解;(2)平移后的直线的解析式的k不变,设出相应的直线解析式,可求O(0,0)向左平移3个单位后的坐标,代入设出的直线解析式,即可求得m,也就求得了所求的直线解析式.(3)平移后的直线的解析式的k不变,设出相应的直线解析式,找到点A(1,﹣2)进行两次“斜平移”后的对应点的坐标,代入设出的直线解析式,即可求得n,也就求得了所求的直线解析式.解:(1)点A(1,﹣2)向上平移3个单位后的点A′的坐标为(1,1),设平移后的直线解析式为y=﹣2x+b,代入得1=﹣2×1+b,则b=3,所以过点A′的直线的解析式为y=﹣2x+3;故答案为:(1,1),y=﹣2x=3;(2)可设新直线解析式为y=﹣2x+m,∵原直线y=﹣2x经过点O(0,0),∴点O向左平移3个单位后点O'(﹣3,0),代入新直线解析式得:0=6x+m,∴m=﹣6∴平移后直线的解析式为:y=﹣2x﹣6,由(1)可知,另外直接将直线y=﹣2x向下平移6个单位也能得到直线y=﹣2x﹣6;故答案为:y=﹣2x﹣6,下,6;(3)直线上的点A(1,﹣2),进行一次“斜平移”后的对应点的坐标为(﹣2,1),进行两次“斜平移”后的对应点的坐标为(﹣5,4),设两次斜平移后的直线的解析式为y=﹣2x+n,代入(﹣5,4)得,4=﹣2×(﹣5)+n,则n=﹣6,所以,两次斜平移后的直线的解析式为y=﹣2x﹣6,24.某医药研究所开发一种新的药物,据监测,如果成年人按规定的剂量服用,服药后2小时,每毫升血液中的含药量达到最大值,之后每毫升血液中的含药量逐渐衰减.若一次服药后每毫升血液中的含药量y(单位:微克)与服药后的时间t(单位:小时)之间近似满足某种函数关系,如表是y与t的几组对应值,其部分图象如图所示.t0 1 2 3 4 6 8 10 …y0 2 4 2.83 2 1 0.5 0.25 …(1)在所给平面直角坐标系中,继续描出上表中已列出数值所对应的点(t,y),并补全该函数的图象;(2)结合函数图象,解决下列问题:①某病人第一次服药后5小时,每毫升血液中的含药量约为 1.41 微克;若每毫升血液中含药量不少于0.5微克时治疗疾病有效,则第一次服药后治疗该疾病有效的时间共持续约7.75 小时;②若某病人第一次服药后8小时进行第二次服药,第二次服药对血液中含药量的影响与第一次服药相同,则第二次服药后2小时,每毫升血液中的含药量约为 4.25 微克.【分析】(1)利用描点法画图;(2)①第一次服药后5小时,每毫升血液中的含药量由图象可得,答案不唯一; 根据含药量不少于0.5微克时治疗疾病有效,看图象得边界点的t 值,相减可得结论; ②两次含药量相加即可. 解:(1)如图所示:(2)①由函数图象得:某病人第一次服药后5小时,每毫升血液中的含药量约为1.41微克;当y =0.5时,t =或8, 8﹣=7.75,∴则第一次服药后治疗该疾病有效的时间共持续约7.75小时; 故答案为:1.41,7.75;②第一次服药8小时后2小时,即10小时含药量为0.25微克,第二次服药2小时含药量为4微克,所以第二次服药后2小时,每毫升血液中的含药量约为:4+0.25=4.25微克;故答案为:4.25.25.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a .实心球成绩的频数分布如表所示:分组 6.2≤x <6.66.6≤x <7.07.0≤x <7.4 7.4≤x <7.8 7.8≤x <8.2 8.2≤x <8.6频数2m10621b .实心球成绩在7.0≤x <7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为9 ;②一分钟仰卧起坐成绩的中位数为45 ;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代码A B C D E F G H实心球8.1 7.7 7.5 7.5 7.3 7.2 7.0 6.5 一分钟仰卧起坐* 42 47 * 47 52 * 49 其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.【分析】(1)①根据题意和表格中的数据可以求得m的值;②根据条形统计图中数据和中位数的定义可以得到这组数据的中位数;(2)①根据题意和表格中的数据可以求得全年级女生实心球成绩达到优秀的人数;②根据题意和表格中的数据可以解答本题.解:(1)①m=30﹣2﹣10﹣6﹣2﹣1=9,故答案为:9;②由条形统计图可得,一分钟仰卧起坐成绩的中位数为45,。