(完整版)八年级最短路径问题归纳小结
八年级数学最短路径题型归纳
八年级数学中的最短路径问题,通常涉及到几何图形中的点、线、面等元素,需要利用一些基本的几何知识和数学原理来求解。
以下是一些常见的最短路径题型及其解题方法:1.两点之间的最短距离:题型描述:在平面上给定两点A和B,求A到B的最短距离。
解题方法:直接连接A和B,线段AB的长度即为最短距离。
2.点到直线的最短距离:题型描述:在平面上给定一点P和一条直线l,求P到l的最短距离。
解题方法:作点P到直线l的垂线,垂足为Q,则PQ的长度即为最短距离。
3.直线到直线的最短距离:题型描述:在平面上给定两条直线l1和l2,求l1到l2的最短距离。
解题方法:如果l1和l2平行,则它们之间的距离即为最短距离;如果l1和l2不平行,则作l1到l2的垂线,垂足所在的线段即为最短4.点到圆的最短距离:题型描述:在平面上给定一点P和一个圆O,求P到圆O的最短距离。
解题方法:如果点P在圆O内,则最短距离为P到圆心的距离减去圆的半径;如果点P在圆O外,则最短距离为P到圆心的距离;如果点P在圆O上,则最短距离为0。
5.圆到圆的最短距离:题型描述:在平面上给定两个圆O1和O2,求O1到O2的最短距离。
解题方法:如果两圆外离,则它们之间的最短距离为两圆的半径之和;如果两圆外切,则它们之间的最短距离为两圆的半径之差;如果两圆相交或内切,则它们之间的最短距离为0;如果两圆内含,则它们之间的最短距离为两圆的半径之差减去两圆半径之和的绝对值。
6.多边形内的最短路径:题型描述:在一个多边形内给定两个点A和B,求A到B的最短解题方法:通常需要将多边形划分为多个三角形,然后利用三角形内的最短路径(即连接两点的线段)来求解。
7.立体几何中的最短路径:题型描述:在立体图形中给定两点A和B,求A到B的最短路径。
解题方法:通常需要将立体图形展开为平面图形,然后利用平面几何中的最短路径原理来求解。
在解决最短路径问题时,需要注意以下几点:准确理解题目要求,确定需要求的是哪两点之间的最短距离。
最短路径(八年级最短路径问题归纳)
原创不容易,【关注】店铺,不迷路!2019年中考数学大结局分析——最短路径问题4:费马点费马点问题一个等边三角形是在三角形的三条边的每一条边上向外形成的。
三个等边三角形的外接圆相交于一点T,称为托里切利点,而三个等边三角形的外接圆称为托里切利圆。
在一定条件下,托里切利点与等中心和费马点相同。
托里切利点是意大利物理学家托里切利发现的。
这个问题是费马(1601-1665)向意大利物理学家托里切利(1608-1647)提出的,作为一个著名的“寻找一个点使它到三角形三个顶点的距离最小”的极值问题,托里切利解决了这个问题。
当三角形的内角都小于120时,K为期望点,所以K称为托里切利点,也称为费马点。
后来德国的施泰纳(1796-1863)独立提出并推广,所以也叫施泰纳问题。
本篇文章中介绍的问题主要是以大家熟知的费马点为背景。
平时大家一听这名字感觉很神奇,学过之后可能感觉也就那回事。
很多数学问题、数学知识都是经历几代数学家的努力之后的成果。
除了做题,有空的时候可以多了解一些数学文化、数学史,领略数学的魅力。
话不多说,直接上题。
【题1】(武汉,2019)问题背景:如图1所示,绕a点逆时针转动ABC,得到ADE,其中DE和BC在p点相交,可以推导出结论:paPC=PE。
解题:如图2,在MNG中,Mn=6,m=75,mg=42。
如果点o是MNG中的一个点,则从点o到MNG三个顶点的距离之和的最小值为。
回答之前,可以先看一下前面的文章:旋转结构的几何最大值【分析】三角形内确定一点到三个顶点的距离和最小值,就是我们前面说的问题。
上辅助线先。
怎么做,圆内任取一点并连接三个顶点,再将其中一个三角形如MOG绕点M 逆时针旋转60度得MOG,连接OO。
易得四点共线时距离和最小。
点G是定点,所以NG的长度为定值。
NMG为135,所以容易求得NG为229。
(备注:过点G作MN的垂线即可解得。
)下面是菁优网的答案。
29。
下面是陕西省的中考压轴题【题2】(2018陕西)问题提出(1)如图所示,在ABC中,a=120,ab=AC=5,那么ABC的外接圆半径r为。
八年级最短路径问题归纳
八年级最短路径问题归纳最短路径问题是图论中的一个经典问题,也是计算机科学中的重要研究领域之一。
在八年级的学习中,我们也会接触到最短路径问题,并且通过一些简单的算法来解决这个问题。
本文将对八年级最短路径问题进行归纳总结,希望能够帮助大家更好地理解和应用这个问题。
一、最短路径问题的定义最短路径问题是指在一个给定的图中,找出两个顶点之间的最短路径,即路径上的边权之和最小。
其中,图由顶点和边组成,顶点表示路径中的点,边表示路径中的通路或连接。
二、最短路径问题的应用最短路径问题在生活中有着广泛的应用,比如导航系统中的最短路径规划、货物运输中的最短路径选择等等。
通过寻找最短路径,可以帮助我们节省时间和资源,提高效率。
三、最短路径问题的解决方法1. 迪杰斯特拉算法迪杰斯特拉算法是解决最短路径问题的一种常用算法。
该算法通过不断更新起点到各个顶点的最短路径,直到找到终点的最短路径为止。
迪杰斯特拉算法的具体步骤如下:- 初始化起点到各个顶点的距离为无穷大,起点到自身的距离为0;- 选择一个未访问的顶点,更新起点到其他顶点的距离;- 重复上述步骤,直到找到终点的最短路径或所有顶点都被访问过。
2. 弗洛伊德算法弗洛伊德算法是解决最短路径问题的另一种常用算法。
该算法通过不断更新任意两个顶点之间的最短路径,直到更新完所有顶点对之间的最短路径为止。
弗洛伊德算法的具体步骤如下:- 初始化任意两个顶点之间的距离,如果两个顶点之间有直接的边,则距离为边的权值,否则距离为无穷大;- 选择一个顶点作为中转点,更新任意两个顶点之间的距离;- 重复上述步骤,直到更新完所有顶点对之间的最短路径。
四、最短路径问题的注意事项在解决最短路径问题时,需要注意以下几点:1. 图的表示方式:可以使用邻接矩阵或邻接表来表示图,根据具体的问题选择合适的表示方式。
2. 边的权值:边的权值可以表示两个顶点之间的距离、时间、花费等等,根据具体的问题选择合适的权值。
八年级上册最短路径知识点
八年级上册最短路径知识点在学习数学中,最短路径是一个重要的概念。
在八年级上册中,我们会学习到最短路径的相关知识。
本文将系统地介绍最短路径的概念、算法和应用。
1、最短路径的概念最短路径是指从一个起点到达一个目标点的路径中,使得路径上的边权值之和最小的路径。
在最短路径的计算中,边权值常常代表距离或花费等。
最短路径可以用图表示,通常被称为权重图。
在权重图中,每个节点代表一个地点,每条边代表两个地点之间的路径。
边上的权重可以是任何非负实数。
2、最短路径算法在计算最短路径时,存在多种算法可供选择。
以下是几种较常见的最短路径算法:A、Dijkstra算法:Dijkstra算法通过计算起点到其他点的最短路径,找到整个图的最短路径。
该算法适用于边权值为非负数的图。
B、Bellman-Ford算法:Bellman-Ford算法通过对边进行松弛操作,多次更新起始点到其他点的最短路。
该算法适用于边权值非负的图。
C、Floyd算法:Floyd算法通过迭代计算任意两点之间的距离来找到最短路径。
该算法适用于边权值可以是任何实数的图。
3、最短路径的应用最短路径的应用十分广泛,以下是几个实际应用场景的例子:A、导航:最短路径可用于帮助我们规划驾车或步行路线。
例如,谷歌地图利用最短路径算法帮助用户寻找最合适的路线。
B、运输:最短路径可用于计算货车或船只的最佳路线。
例如,国家邮政公司使用最短路径算法优化邮递路线。
C、电器布线:最短路径可帮助我们规划电气线路。
例如,一个高层建筑物中,我们需要通过最短路径算法来找到电路的最佳路径。
D、金融:最短路径可用于计算银行间的最佳借贷路线。
例如,银行可以使用最短路径算法来计算最优的借贷方案。
4、总结最短路径是一个十分有用的数学概念,可以应用于各个领域。
在八年级上册,我们学习了最短路径的定义、计算方法和应用场景。
希望本文能够帮助大家更好地理解最短路径的相关知识。
初二数学最短路径问题知识归纳+练习
初二数学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径•算法具体的形式包括:①确定起点的最短路径问题-即已知起始结点,求最短路径的问题.②确定终点的最短路径问题-与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.③确定起点终点的最短路径问题-即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题-求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”,“费马点”.【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.十二个基本问题】在直线1上求一点P,使 pA PB|的值最大.作直线AB 与直线1的交 点即为P.三角形任意两边之差小于第三边.PA PB < ABPA PB 的最大值=AB【问题11】作法图形 原理在直线1上求一点P,使 pA PB 的值最大.作B 关于1的对称点B/ 作直线A B ,,与1交点即 为P.三角形任意两边之差小于第三边.PA PB < AB\PA PB 最大值=AB^ .【问题12】“费马点”作法图形 原理△ ABC 中每一内角都小于 120 °,在厶ABC 内求一点P,使PA +PBbPC 值最小.所求点为“费马点”,即满 足/ APB=Z BPC=Z APC =120 ° .以 AB AC 为边 向外作等边△ ABE ) △ ACE 连CD BE 相交于P,点P 即为所求.两点之间线段最短.PA +PBbPC 最 小值=CD【精品练习】1如图所示,正方形 ABCD 勺面积为12,^ ABE 是等边三角形,点 P,使PDPE 的和最小,则这个最小值为( )2•如图,在边长为 2的菱形 ABCDL / ABC= 60°,若将△ ACD 绕点A 旋转,当 AC 、AD 分别与 BC CD 交 于点E 、卩,则厶CEF 的周长的最小值为( )B. 2 (3)C. 2 、3E 在正方形 ABCD^,在对角线 AC 上有一点A. 2、, 3 B . 2、6 C 3D.6A. 2D . 43.四边形ABCDK / B =Z D = 90°,/ C= 70°,在BCCD 上分别找一点 皿1\1,使厶AMN 勺周长最小时, 的度数为( )A. 120 ° B . 130 ° C . 110 ° D . 140 °动点,贝U BM +MN 勺最小值是5•如图,Rt △ ABC 中, / C = 90°,/ B= 30°, AB= 6,点E 在AB 边上,点 D 在BC 边上(不与点 且ED=AE 则线段 AE 的取值范围是 ____________________________ .6•如图,/ AOB= 30°,点 M N 分别在边 OA OB 上,且 0晦1, ON= 3,点P 、Q 分别在边 OB+ PQ^ QN 的最小值是 _________ .(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,IABC 中,/ C= 90 °,则有 AC 2 BC 2 AB 2)7•如图,三角形厶 ABC 中,/ OAB=/ AOB= 15°,点B 在x 轴的正半轴,坐标为 B ( 6 3 , 0).OC 平分/ AOB 点M 在OC 的延长线上,点 N 为边OA 上的点,贝U MAH MN 勺最小值是 _____ .8•已知A ( 2, 4)、B (4, 2). C 在y 轴上,D 在x 轴上,则四边形 ABCD 勺周长最小值为 ____________________此时C 、D 两点的坐标分别为 ___________________________ ./ AMNZ ANM4.如图,在锐角厶ABC 中, AB= 4血,/ BAC= 45°,/ BAC 的平分线交 BC 于点D, M N 分别是 AD 和 AB 上的B 、C 重合),OA 上,贝UMP IRt A9.已知A( 1,1)、B(4,2).(1) P为x轴上一动点,求PA+PB的最小值和此时P点的坐标;(2) P为x轴上一动点,求PA PB的值最大时P点的坐标;(3) CD为x轴上一条动线段,D在C点右边且CD= 1,求当AGC&DB的最小值和此时C点的坐标;10 •点C 为/ AOB内一点.(1)在0A求作点D, 0B上求作点〔,使厶CDE勺周长最小,请画岀图形;(2)在(1)的条件下,若/ AOB= 30°,OC= 10,求厶CDB周长的最小值和此时/ DCE勺度数.11. (1)如图①,△ABD^n^ ACE匀为等边三角形,BE CE交于F,连AF,求证:AF+BF+CF= CD;(2)在厶ABC中, Z ABC= 30°, AB= 6, BC= 8,Z A,/C 均小于120°,求作一点P,使PA+PB^PC的值最小,试求出最小值并说明理由.12 •荆州护城河在CC处直角转弯,河宽相等,从A处到达B处,需经过两座桥DD、EE,护城河及两桥都是东西、南北方向,桥与河岸垂直•如何确定两座桥的位置,可使A到B点路径最短?。
(完整版)八年级最短路径问题归纳小结.doc
八年级数学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:①确定起点的最短路径问题-即已知起始结点,求最短路径的问题.②确定终点的最短路径问题-与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.③确定起点终点的最短路径问题-即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题-求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址” ,“费马点”.【涉及知识】“两点之间线段最短”,“垂线段最短” ,“三角形三边关系”,“轴对称” ,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.【十二个基本问题】【问题1】作法图形原理A Al连 AB,与 l 交点即为 P.Pl两点之间线段最短.B PA+PB 最小值为 AB.B在直线 l 上求一点P,使PA+PB 值最小.【问题 2】“将军饮马”作法图形原理A AB 作 B 关于 l 的对称点 B' B 两点之间线段最短.l连 A B ',与 l 交点即为 P.l PA+PB 最小值为 A B'.P在直线 l 上求一点P,使B'PA+PB 值最小.【问题3】作法图形原理l 1 P' l1P分别作点 P 关于两直线的M两点之间线段最短.对称点 P'和 P',连 P'P',PM +MN +PN 的最小值为l2 P在直线 l1、 l 2上分别求点与两直线交点即为 M, N.N l2线段 P'P''的长.M 、 N,使△ PMN 的周长P''最小.【问题4】作法图形原理l 1lQ' 1Q分别作点 Q 、P 关于直线P MQ 两点之间线段最短.l 1、 l 2的对称点Q'和P'l2 P 四边形 PQMN 周长的最小连 Q'P',与两直线交点即l 2 值为线段 P'P''的长.在直线 l1、 l 2上分别求点为 M , N.NM 、 N ,使四边形PQMN P'的周长最小.【问题 5】“造桥选址”作法图形原理- 1 -AM Nmn将点 A 向下平移MN 的长度单位得A',连 A'B,交 nAA' M 两点之间线段最短.mB直线 m ∥ n ,在 m 、 n ,上分别求点 M 、N,使 MN ⊥m ,且 AM+ MN+ BN 的值最小.【问题 6】ABlM a N在直线 l 上求两点M、N(M 在左),使 MN a ,并使AM + MN+ NB 的值最小.【问题 7】l1Pl 2在l 1上求点A,在 l 2上求点 B,使 PA+ AB 值最小.于点 N,过 N 作 NM ⊥ m 于M.作法将点 A 向右平移 a 个长度单位得 A',作 A'关于l的对称点 A',连 A'B,交直线l 于点N,将N点向左平移a 个单位得 M.作法作点 P 关于l1的对称点P ',作 P'B⊥l2于 B,交l2于A.AM +MN +BN 的最小值为NnA'B+MN .B图形原理A A'B两点之间线段最短.lM N AM +MN +BN 的最小值为A'B+ MN.A''图形原理l1P'P 点到直线,垂线段最短.APA+ AB 的最小值为线段P'l 2 B的长.B【问题 8】作法l 1NAMl2 作点 A 关于l2的对称点BA ',作点B 关于l1的对称A 为l1上一定点,B 为l2上点 B',连 A'B'交l2于 M,一定点,在 l 2上求点M,交 l 1 于 N.在 l 1 上求点N ,使AM + MN+ NB 的值最小.【问题 9】作法图形原理B'l 1N两点之间线段最短.AAM +MN +NB 的最小值为M B l 2线段 A'B'的长.A'图形原理ABl在直线l 上求一点 P,使 PA PB 的值最小.连AB ,作 AB 的中垂线与直线 l 的交点即为 P.A垂直平分上的点到线段两B端点的距离相等.lP PA PB = 0.【问题 10】作法图形原理- 2 -A三角形任意两边之差小于A Bl作直线 AB ,与直线 l 的交第三边. PA PB ≤AB .B点即为 P .l在直线 l 上求一点 P ,使PPA PB 的最大值 = AB .PA PB 的值 最大 .【问题 11】作法 图形原理AAl 作 B 关于 l 的对称点 B ' B'B作直线 A B ',与 l 交点即lP为 P .B在直线 l 上求一点 P ,使PA PB 的值 最大 .三角形任意两边之差小于第三边. PA PB ≤ AB '.PA PB 最大值 = AB '.【问题 12】“费马点”作法图形原理ABC所求点为“费马点” ,即满足∠ APB =∠ BPC =∠APC = 120 °.以 AB 、 ACDAE两点之间线段最短.为边向外作等边△ ABD 、PPA+ PB+ PC 最小值 = CD .△ ABC 中每一内角都小于120°,在△ ABC 内求一点P ,使 PA+PB+PC 值最小.△ ACE ,连 CD 、 BE 相交于 P ,点 P 即为所求.BC【精品练习 】 1.如图所示,正方形ABCD 的面积为 12,△ ABE 是等边三角形,点一点 P ,使 PD +PE 的和最小,则这个最小值为( )A . 23 B . 2 6C . 3D . 62.如图,在边长为 2 的菱形 ABCD 中,∠ ABC = 60 °,若将 △ ACD交于点 E 、 F ,则 △ CEF 的周长的最小值为( )E 在正方形 ABCD 内,在对角线 AC 上有ADPEB C绕点 A 旋转,当 AC ′、 AD ′分别与 BC 、 CDA . 2B . 2 3C . 2 3D . 4- 3 -3.四边形 ABCD 中,∠ B=∠ D = 90 °,∠ C= 70 °,在 BC 、 CD 上分别找一点M、 N,使△ AMN 的周长最小时,∠ AMN + ∠ ANM 的度数为()A DA . 120°B. 130°C.110 °D. 140 °NBMC 4.如图,在锐角△ ABC 中, AB = 4 2 ,∠ BAC = 45 °,∠ BAC 的平分线交 BC 于点D , M、 N 分别是 AD 和 AB上的动点,则 BM +MN 的最小值是C.DMAN B5.如图, Rt△ ABC 中,∠ C= 90 °,∠ B= 30 °,AB= 6,点 E 在 AB 边上,点 D 在 BC 边上(不与点B、C 重合),且 ED = AE,则线段AE 的取值范围是.AEC D B 6.如图,∠AOB = 30 °,点 M、 N 分别在边OA、 OB 上,且OM = 1, ON= 3,点 P 、 Q 分别在边OB、 OA 上,则 MP + PQ+ QN 的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即 Rt△ABC 中,∠ C= 90°,则有AC 2BC 2AB2)7.如图,三角形△ ABC中,∠OAB=∠AOB=15°,点B在x轴的正半轴,坐标为B( 6 3 , 0).OC 平分∠ AOB ,点 M 在 OC 的延长线上,点N 为边 OA 上的点,则MA + MN 的最小值是 ______.- 4 -8.已知 A( 2, 4)、 B (4, 2). C 在y轴上, D 在 x 轴上,则四边形ABCD 的周长最小值为,此时 C、 D 两点的坐标分别为.yABO x 9.已知A( 1, 1)、 B (4, 2).y( 1) P 为 x 轴上一动点,求PA+PB 的最小值和此时P 点的坐标;BAO x( 2) P 为 x 轴上一动点,求PA PB 的值最大时P 点的坐标;yBAO x( 3) CD 为 x 轴上一条动线段, D 在 C 点右边且CD = 1,求当AC+ CD+ DB 的最小值和此时 C 点的坐标;yBAO C D x10 .点 C 为∠ AOB 内一点.( 1)在 OA 求作点 D , OB 上求作点 E ,使△ CDE 的周长最小,请画出图形;( 2)在( 1)的条件下,若∠AOB = 30°, OC= 10,求△ CDE 周长的最小值和此时∠DCE 的度数.ACO B- 5 -11.( 1)如图①,△ ABD 和△ ACE 均为等边三角形,BE、 CE 交于 F,连 AF,求证: AF +BF +CF = CD ;( 2)在△ ABC 中,∠ ABC = 30°, AB= 6, BC= 8,∠ A ,∠ C 均小于 120°,求作一点 P,使 PA+PB+PC 的值最小,试求出最小值并说明理由.DAAEFB C图①B C图②12 .荆州护城河在CC'处直角转弯,河宽相等,从 A 处到达 B 处,需经过两座桥DD '、 EE ',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使 A 到 B 点路径最短?- 6 -。
(完整版)八年级最短路径问题归纳小结(2),推荐文档
原理
垂直平分上的点到线段两 端点的距离相等. PA PB =0.
【问题 10】
作法
A B l
在直线 l 上求一点 P,使 PA PB 的值最大.
【问题 11】
作直线 AB,与直线 l 的 交点即为 P.
作法
图形
A B l P
图形
原理 三角形任意两边之差小于
第三 边. PA PB ≤AB.
PA PB 的最大值
原理
A B l
在直线 l 上求一点 P,使 PA+PB 值最小.
【问题 3】
作 B 关于 l 的对称点 B' 连 A B',与 l 交点即为
P.
作法
l1
P l2
在直线 l1 、 l2 上分别求点
分别作点 P 关于两直线的 对称点 P'和 P'',连 P'P'',与两直线交点即 为 M,N.
M、N,使△PMN 的周长 最小.
八年级数学最短路径问题
【问题概述】最短路径问题是图论研究中的一个经典算法问题, 旨在寻找图(由结点和路径组成的)中两结
点之间的最短路径.算法具体的形式包括:
①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题.
②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.
图形
l1
P'
P
A
B
原理
点到直线,垂线段最短. l2 PA+AB 的最小值为线段
P'B的长.
【问题 8】
N A
M
l1
l2 B
作法 作点 A 关于 l2 的对称点
A 为 l1 上一定点,B 为 l2 上一定点,在 l2 上求点 M,在 l1 上求点 N,使
最新八年级最短路径问题归纳小结
八年级数学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题.②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题 - 求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”,“费马点”.【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.【问题10】 作法图形 原理在直线l 上求一点P ,使PB PA -的值最大.作直线AB ,与直线l 的交点即为P .三角形任意两边之差小于第三边.PB PA -≤AB .PB PA -的最大值=AB .【问题11】 作法图形 原理在直线l 上求一点P ,使PB PA -的值最大.作B 关于l 的对称点B '作直线A B ',与l 交点即为P .三角形任意两边之差小于第三边.PB PA -≤AB '. PB PA -最大值=AB '.【问题12】“费马点” 作法图形 原理△ABC 中每一内角都小于120°,在△ABC 内求一点P ,使P A +PB +PC 值最小.所求点为“费马点”,即满足∠APB =∠BPC =∠APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P ,点P 即为所求.两点之间线段最短. P A +PB +PC 最小值=CD .【精品练习】1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( )A .3B .26C .3D 62.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2B .32C .32+D .4lBAlPABl ABlBPAB'ABCPEDCBAADEPB C3.四边形ABCD 中,∠B =∠D =90°,∠C =70°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小时,∠AMN +∠ANM 的度数为( )A .120°B .130°C .110°D .140°4.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 .5.如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点E 在AB 边上,点D 在BC 边上(不与点B 、C 重合), 且ED =AE ,则线段AE 的取值范围是 .6.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =1,ON =3,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即Rt △ABC 中,∠C =90°,则有222AB BC AC =+)7.如图,三角形△ABC 中,∠OAB =∠AOB =15°,点B 在x 轴的正半轴,坐标为B (36,0).OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值是______. DEABCD CMABMN8.已知A (2,4)、B (4,2).C 在y 轴上,D 在x 轴上,则四边形ABCD 的周长最小值为 ,此时 C 、D 两点的坐标分别为 .9.已知A (1,1)、B (4,2).(1)P 为x 轴上一动点,求PA +PB 的最小值和此时P 点的坐标;(2)P 为x 轴上一动点,求PB PA 的值最大时P 点的坐标;(3)CD 为x 轴上一条动线段,D 在C 点右边且CD =1,求当AC +CD +DB 的最小值和此时C 点的坐标;10.点C 为∠AOB 内一点.(1)在OA 求作点D ,OB 上求作点E ,使△CDE 的周长最小,请画出图形;(2)在(1)的条件下,若∠AOB =30°,OC =10,求△CDE 周长的最小值和此时∠DCE 的度数.图①12.荆州护城河在CC'处直角转弯,河宽相等,从A处到达B处,需经过两座桥DD'、EE',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使A到B点路径最短?什么是主语、谓语、宾语、宾补、状语、定语?主语是一个句子中所要表达,描述的人或物,是句子叙述的主体。
八年级最短路径问题归纳小结
八年级数学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题, 点之间的最短路径.算法具体的形式包括:①确定起点的最短路径问题②确定终点的最短路径问题③确定起点终点的最短路径问题④全局最短路径问题【问题原型】【涉及知识】【出题背景】【解题思路】旨在寻找图(由结点和路径组成的)中两结即已知起始结点,求最短路径的问题.与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.-即已知起点和终点,求两结点之间的最短路径.求图中所有的最短路径.“将军饮马”,“造桥选址”,“费马点”.“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.找对称点实现“折”转“直”,近两年岀现“三折线”转“直”等变式问题考查.【十二个基本问题】【问题1】作法图形原理-------------- I•B在直线I上求一点P,使PA+PB值最小.【问题2】“将军饮马”连AB,与l交点即为P.AP在直线I上求一点P, PA+PB值最小.【问题3】I1两点之间线段最短.FA + PB最小值为AB.作法图形原理作B关于I的对称点B /连A B /,与I交点即为P . P七IB'两点之间线段最短.FA+PB最小值为A B/.作法图形原理•Pl2在直线I l、I2上分别求点M、^使^ PMN的周长最小.【问题4】分别作点P关于两直线的对称点P/和P〃,连P' P 〃,与两直线交点即为M , N .两点之间线段最短.l lI2PM+MN + PN的最小值为线段P P,的长.P"作法图形原理・Q•PI2在直线I i、I2上分别求点M、N,使四边形PQMN 的周长最小.【问题5】“造桥选址”分别作点Q、P关于直线l i、I2的对称点Q,和P/ 连QP,与两直线交点即为M ,N.作法I1QPN*P'Q.图形l2两点之间线段最短. 四边形PQMN周长的最小值为线段PP,的长.原理在11上求点A,在12上求点B,使PA+AB值最小.作点P关于I i的对称点P/,作PBI I2 于B,交I2于A.点到直线,垂线段最短.PA+AB的最小值为线段PB的长.A为I i上一定点,B为12上一定点,在I2上求点M, 在I i上求点N ,使AM + MN + NB的值最小.作点A关于12的对称点A/,作点B关于I i的对称点B,连A,B,交12于M, 交I i于N .AnM m•B直线m II n,在m、n , 上分别求点M、N,使MN 丄m , 且AM + MN + BN 的值最小.【问题6】在直线I上求两点M、(M 在左),使MN =a,并使AM + MN + NB的值最小.【问题7】将点A向下平移MN的长度单位得A,,连A/B,交n 于点N,过N作NM丄m于M .作法将点A向右平移a个长度单位得对称点A ,作A /关于I的A〃,连A〃B,交直线N,将N点向左平I于点移a个单位得M .作法AA'V\M去n>B图形I图形两点之间线段最短.AM +MN + BN的最小值为A B+MN.原理两点之间线段最短.AM +MN + BN的最小值为A〃B+MN .原理【问题8】作法图形原理【问题9】作法图形原理A.*B 1在直线I上求一点P, |PA —P B|的值最小.【问题10】连AB,作AB的中垂线与直线I的交点即为P. I垂直平分上的点到线段两端点的距离相等.PA —PBI =0 .作法图形原理I2两点之间线段最短.AM +MN + NB 的最小值为线段A,B,的长.BA|PA -PB |的值最大.【精品练习】1•如图所示,正方形 ABCD 的面积为12,^ ABE 是等边三角形,点 E 在正方形ABCD 内,在对角线 AC 上有 一点P ,使PD+ PE的和最小,则这个最小值为()A . 2 亦B . 2 恵C . 3D . 762•如图,在边长为 2的菱形 ABCD 中,/ ABC = 60 °,若将△ ACD 绕点A 旋转,当 交于点E 、F ,则△ CEF 的周长的最小值为( )在直线丨上求一点P ,使 作直线AB , 与直线I 的交点即为P .|PA —PB |的值最大. 【问题11】 作法 ---- I*B 在直线I 上求一点P ,作B 关于I 的对称点B / 作直线A B/,与I 交点即为P .图形 I三角形任意两边之差小于第三边.|PA- PB < AB .|PA -PB 的最大值 =AB .原理三角形任意两边之差小于第三边.PA-PB <AB /.PA —PB 最大值=AB /.【问题12】“费马点”作法图形 原理△ ABC 中每一内角都小于120 °,在^ ABC 内求一点 P ,使FA+PB + PC 值最小.所求点为“费马点”,即满 足/ APB = / BPC = /APC = 120 ° .以 AB 、AC为边向外作等边^ ABD 、△ ACE ,连 CD 、BE 相交 于P ,点P 即为所求.两点之间线段最短.PA+PB+PC 最小值=CD .AD '分别与BC 、CDAC'DD = 90 °, / C = 70 °,在BC 、CD 上分别找一点 M 、^使^ AMN 的周长最小时, ) C . 110 °AB = 4 42,/ BAC = 45 °, / BAC 的平分线交 BC 于点D ,M 、N 分别是 AD 和AB上的动点,贝y BM+MN 的最小值是5. 且 如图,Rt △ ABC 中,/ C = 90 °, / B = 30 °, AB = 6,点 E 在 AB 边上,点 D 在 BC 边上 ED = AE ,则线段AE 的取值范围是 (不与点 B 、C 重合), 如图,/ AOB = 30。
(完整版)初二数学最短路径问题知识归纳+练习
初二数学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题.②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题 - 求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”,“费马点”.【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.在直线l 上求一点P ,使PB PA -的值最大.作直线AB ,与直线l 的交点即为P .三角形任意两边之差小于第三边.PB PA -≤AB .PB PA -的最大值=AB .【问题11】 作法图形 原理在直线l 上求一点P ,使PB PA -的值最大.作B 关于l 的对称点B '作直线A B ',与l 交点即为P .三角形任意两边之差小于第三边.PB PA -≤AB '. PB PA -最大值=AB '.【问题12】“费马点” 作法图形 原理△ABC 中每一内角都小于120°,在△ABC 内求一点P ,使P A +PB +PC 值最小.所求点为“费马点”,即满足∠APB =∠BPC =∠APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P ,点P 即为所求.两点之间线段最短. P A +PB +PC 最小值=CD .【精品练习】1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( )A .3B .26C .3D 62.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2B .32C .32+D .4lBAlPABl ABlBPAB'ABCPEDCBAADEPB C3.四边形ABCD 中,∠B =∠D =90°,∠C =70°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小时,∠AMN +∠ANM 的度数为( )A .120°B .130°C .110°D .140°4.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 .5.如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点E 在AB 边上,点D 在BC 边上(不与点B 、C 重合), 且ED =AE ,则线段AE 的取值范围是 .6.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =1,ON =3,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即Rt △ABC 中,∠C =90°,则有222AB BC AC =+)7.如图,三角形△ABC 中,∠OAB =∠AOB =15°,点B 在x 轴的正半轴,坐标为B (36,0).OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值是______. DEABCD MABMN8.已知A (2,4)、B (4,2).C 在y 轴上,D 在x 轴上,则四边形ABCD 的周长最小值为 ,此时 C 、D 两点的坐标分别为 .9.已知A (1,1)、B (4,2).(1)P 为x 轴上一动点,求PA +PB 的最小值和此时P 点的坐标;(2)P 为x 轴上一动点,求PB PA 的值最大时P 点的坐标;(3)CD 为x 轴上一条动线段,D 在C 点右边且CD =1,求当AC +CD +DB 的最小值和此时C 点的坐标;10.点C 为∠AOB 内一点.(1)在OA 求作点D ,OB 上求作点E ,使△CDE 的周长最小,请画出图形;(2)在(1)的条件下,若∠AOB =30°,OC =10,求△CDE 周长的最小值和此时∠DCE 的度数.图①12.荆州护城河在CC'处直角转弯,河宽相等,从A处到达B处,需经过两座桥DD'、EE',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使A到B点路径最短?。
最短路径(将军饮马)问题(知识梳理与考点分类讲解)(人教版)(教师版) 24-25学年八年级数学上册
专题13.10最短路径(将军饮马)问题(知识梳理与考点分类讲解)第一部分【知识点归纳】【模型一:两定交点型】如图1,直线l和l的异侧两点A.B,在直线l上求作一点P,使PA+PB 最小;图1【模型二:两定一动型】如图2,直线l和l的同侧两点A.B,在直线l上求作一点P,使PA+PB 最小(同侧转化为异侧);图2【模型三:一定两动型】如图3,点P是∠MON内的一点,分别在OM,ON上作点A,B。
使△PAB的周长最小。
图3【模型四:两定两动型】如图4,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。
使四边形PAQB的周长最小。
图4【模型五:一定两动(垂线段最短)型】如图5,点A是∠MON外的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小。
图5【模型六:一定两动,找(作)对称点转化型】如图6,点A是∠MON内的一点,在射线ON 上作点P,使PA与点P到射线OM的距离之和最小。
图6【考点1】两定一动型;【考点2】一定两动(两点之间线段最短)型;【考点3】一定两动(垂线段最短)型;【考点4】两定两动型;【考点5】一定两动(等线段)转化型;.第二部分【题型展示与方法点拨】【考点1】两定一动型;【例1】(23-24八年级上·全国·课后作业)如图,在ABC ∆中,3,4AB AC ==,EF 垂直平分BC ,交AC 于点D ,则ABP 周长的最小值是()A .12B .6C .7D .8【答案】C 【分析】本题主要考查了,轴对称﹣最短路线问题的应用,解此题的关键是找出P 的位置.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,根据题意知点B 关于直线EF 的对称点为点C ,故当点P 与点D 重合时,AP BP +的值最小,即可得到ABP 周长最小.解:∵EF 垂直平分BC ,∴点B ,C 关于EF 对称.∴当点P 和点D 重合时,AP BP +的值最小.此时AP BP AC +=,∵3,4AB AC ==,ABP ∴ 周长的最小值是347AP BP AB AB AC ++=+=+=,故选:C .【变式】(23-24八年级上·广东广州·期中)如图,在ABC V 中,1216AB AC ==,,20BC =.将ABC V 沿射线BM 折叠,使点A 与BC 边上的点D 重合,E 为射线BM 上的一个动点,则CDE 周长的最小值.【答案】24【详解】设BM 与AC 的交点为点F ,连接AE ,DF 先根据折叠的性质可得12BD AB ==,DF AF =,DE AE =,BDF BAF ∠=∠,再根据两点之间线段最短可得当点E 与点F 重合时,CDE 周长最小,进而求解即可.解:如图,设BM 与AC 的交点为点F ,连接AE ,DF ,由折叠的性质得:12BD AB ==,DF AF =,DE AE =,BDF BAF ∠=∠,20128CD BC BD ∴=-=-=,CDE ∴ 周长8CD DE CE AE CE =++=++,要使CDE 周长最小,只需AE CE +最小,由两点之间线段最短可知,当点E 与点F 重合时,最小值为AC ,∴CDE 周长为:681624AC +=+=.故答案为:24.【点拨】本题考查了折叠的性质等知识点,熟练掌握折叠的性质是解题关键.【考点2】一定两动(两点之间线段最短)型;【例2】(23-24八年级上·湖北省直辖县级单位·期末)如图,45MON ∠=︒,P 为MON ∠内一点,A 为OM 上一点,B 为ON 上一点,当PAB 的周长取最小值时,APB ∠的度数为()A .45︒B .90︒C .100︒D .135︒【答案】B 【分析】本题主要考查了最短路线问题、四边形的内角和定理、轴对称的性质等知识点,掌握两点之间线段最短的知识画出图形是解题的关键.如图:作P 点关于OM ON 、的对称点A B ''、,连接A B '',此时PAB 的周长最小为A B '',求出A B ''即可.解:如图:作P 点关于OM ON 、的对称点A B ''、,然后连接A B '',∵点A '与点P 关于直线OM 对称,点B '与点P 关于ON 对称,∴A P OM B P ON A A AP B B BP ''''⊥⊥==,,,,∴A APA B BPB ''''∠=∠∠=∠,,∵A P OM B P ON ''⊥⊥,,∴180MON A PB ''∠+∠=︒,∴18045135A PB ''∠=︒-︒=︒,在A B P ''△中,由三角形的内角和定理可知:18013545A B ''∠+∠=︒-︒=︒,∴45A PA BPB ''∠+∠=︒,∴1354590APB ∠=︒-︒=︒.故选:B .【变式】(23-24八年级上·江苏无锡·期中)如图,45AOB ∠=︒,点M N 、分别在射线OA OB 、上,5MN =,15OMN S = ,点P 是直线MN 上的一个动点,点P 关于OA 的对称点为1P ,点P 关于OB 的对称点为2P ,连接1OP 、2OP 、12PP ,当点P 在直线MN 上运动时,则12OPP 面积的最小值是.【考点3】一定两动型(垂线段最短);【例3】(22-23八年级上·湖北武汉·期末)如图,在ABC V 中,3AB =,4BC =,5AC =,AB BC ⊥,点P 、Q 分别是边BC 、AC 上的动点,则AP PQ +的最小值等于()A .4B .245C .5D .275【答案】B 【分析】作A 过于BC 的对称点A ',过点A '作A Q AC '⊥,交AC 于点Q ,交BC 于点P ,根据对称可得:AP PQ A P PQ A Q ''+=+≥,得到当,,A P Q '三点共线时,AP PQ +最小,再根据垂线段最短,得到A Q AC '⊥时,A Q '最小,进行求解即可.解:作A 过于BC 的对称点A ',过点A '作A Q AC '⊥,交AC 于点Q ,交BC 于点P ,【变式】(23-24七年级下·陕西西安·阶段练习)如图,在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,5AB =,AD 是ABC V 的角平分线,若P Q 、分别是AD 和AC 边上的动点,则PC PQ +的最小值是.AD 是BAC ∠的平分线,1QAD Q AD∴∠=∠在AQD 与1AQ D 中【考点4】两定两动型;【例4】如图,已知24AOB ∠=︒,OP 平分AOB ∠,1OP =,C 在OA 上,D 在OB 上,E 在OP 上.当CP CD DE ++取最小值时,此时PCD ∠的度数为()A .36︒B .48︒C .60︒D .72︒【答案】D 【分析】作点P 关于OA 的对称点P',作点E 关于OB 的对称点'E ,连接'OP 、'PP 、'OE 、'EE 、''P E ,则由轴对称知识可知=''CP CD DE CP CD DE ++++,所以依据垂线段最短知:当''P C D E 、、、在一条直线上,且'''P E OE ⊥时,CP CD DE ++取最小值,根据直角三角形的两锐角互余及三角形外角的性质可以'P C PC =,'E D ED =,'1OP OP ==,=''CP CD DE CP CD DE ++++,'P OE ∠''P C D E 、、、在一条直线上,且''P E ''=9048=42OP E ∠︒-︒︒,'='''=7842CP P OP P OP E ∠∠-∠︒-︒=【答案】44βα-=︒【分析】本题考查轴对称—最短问题、三角形的内角和定理.三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题.OQM OQM NQP '∴∠=∠=∠,OPQ ∠∴1(180)2PQN AOB α∠=︒-=∠+∠44βα∴-=︒,故答案为:44βα-=︒.【考点5】一定两动(等线段)转化型;【例5】(20-21八年级上·湖北鄂州·期中)如图,AD 为等腰△ABC 的高,其中∠ACB =50°,AC =BC ,E ,F 分别为线段AD ,AC 上的动点,且AE =CF ,当BF +CE 取最小值时,∠AFB 的度数为()A .75°B .90°C .95°D .105°【答案】C 【分析】先构造△CFH 全等于△AEC ,得到△BCH 是等腰直角三角形且FH=CE ,当FH+BF 最小时,即是BF+CE 最小时,此时求出∠AFB 的度数即可.解:如图,作CH ⊥BC ,且CH=BC ,连接HB ,交AC 于F ,此时△BCH 是等腰直角三角形且FH+BF 最小,∵AC=BC ,∴CH=AC ,∵∠HCB=90°,AD ⊥BC ,∴AD//CH ,∵∠ACB=50°,∴∠ACH=∠CAE=40°,∴△CFH ≌△AEC ,∴FH=CE ,∴FH+BF=CE+BF 最小,此时∠AFB=∠ACB+∠HBC=50°+45°=95°.故选:C .【点拨】本题考查全等三角形的性质和判定、等腰三角形的性质、最短路径问题,关键是作出辅助线,有一定难度.【变式】(23-24七年级下·四川宜宾·期末)在ABC V 中,80CAB ∠=︒,2AB =,3AC =,点E 是边AB 的中点,CAB ∠的角平分线交BC 于点D .作直线AD ,在直线AD 上有一点P ,连结PC 、PE ,则PC PE -的最大值是.∵CAB ∠的角平分线交∴FAP ∠∠=∵AP AP =,∴APF APE ≌∴PF PE =,第三部分【中考链接与拓展延伸】1、直通中考【例1】(2020·湖北·中考真题)如图,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值的差为.【答案】12【分析】以CD 为边向外作等边三角形CDE ,连接BE ,可证得△ECB ≌△DCA 从而得到BE=AD ,再根据三角形的三边关系即可得出结论.解:如图1,以CD 为边向外作等边三角形CDE ,连接BE ,∵CE=CD ,CB=CA ,∠ECD=∠BCA=60°,∴∠ECB=∠DCA ,∴△ECB ≌△DCA (SAS ),∴BE=AD ,∵DE=CD=6,BD=8,∴8-6<BE<8+6,∴2<BE<14,∴2<AD<14.∴则AD 的最大值与最小值的差为12.故答案为:12【点拨】本题考查三角形全等与三角形的三边关系,解题关键在于添加辅助线构建全等三角形把AD 转化为BE 从而求解,是一道较好的中考题.【例2】(2020·新疆·中考真题)如图,在ABC V 中,90,60,4A B AB ∠=∠=︒=︒,若D 是BC 边上的动点,则2AD DC +的最小值为.在Rt DFC △中,30DCF ∠=︒,12DF DC ∴=,122()2AD DC AD DC +=+2()AD DF =+,∴当A ,D ,F 在同一直线上,即此时,60B ADB ∠=∠=︒,2、拓展延伸【例1】(23-24八年级上·江苏镇江·阶段练习)如图,AC 、BD 在AB 的同侧,点M 为线段AB 中点,2AC =,8BD =,8AB =,若120CMD ∠=︒,则CD 的最大值为()A .18B .16C .14D .12【答案】C 【分析】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题.如图,作点A 关于CM 的对称点A ',点B 关于DM 的对称点B ',证明'' A MB 为等边三角形,即可解决问题.解:如图,作点A 关于CM 的对称点A ',点B 关于DM 的对称点B ',∵120CMD ∠=︒,∴60∠+∠=︒AMC DMB ,∴60''∠+∠=︒CMA DMB ,∴60''∠=︒A MB ,∵MA MB MA MB ''===,∴'' A MB 为等边三角形∵14CD CA A B B D CA AM BD ''''<++=++=,∴CD 的最大值为14,故选:C .【例2】(22-23八年级上·湖北武汉·期末)如图,锐角ABC V 中,302A BC ∠=︒=,,ABC V 的面积是6,D 、E 、F 分别是三边上的动点,则DEF 周长的最小值是()A .3B .4C .6D .7∴AM AE AN ==,MF =∵BAC BAD DAC ∠=∠+∠∴MAN MAB BAD ∠=∠+∠∴(2MAN BAE EAC ∠=∠+∠。
八年级数学最短路径问题知识点
八年级数学最短路径问题知识点教学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最瀛路径.算法具体的形式包括:E确定起点的最短路径问题■即已知起始结点,求最短路径的问题.②确定终点的最短路径问题•与确定包点的问题相反,该问题是已知终结结点,求最短路径的问题,③确定起点终点的最短路径问题-即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题-求图中所有的最理路径.【问题原型】“将军饮马北"造桥选址)〃费马点【涉及知识「俩点之间线段最短”「,垂线段最短1 “三角形三边关系,"轴对称,“平移二【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等,【解题思路】我对称点实现“折”转"直北近两年出现三折线”转“直”等变式问题考查.【例题及解析】例1 如图1,在直角梯形ABCD 中,ZABC=90°, AD〃BC, AD=4, AB=5, BC=6, 点P是AB上一个动点,当PC+PD的和最小时,PB的长为()(A)l (B)2 (C)2.5 (D)3分析此题首先要确定P点的位看可以延长CB (或DA)的一倍,即CB=BM,再连接MD交AB于点P(大家可以思考一下P点的正确性与合理性一可运用两点之间,线段最短这一性质).我们可以通过AMPBS/WPA,从而求出PB的长,故选D.例2如图2, AABC礼AB=AC=13, BC=10, AD是BC边上的中线,F为AD上的动点,E 为AC边上的动点,则CE+EF的最小值为分析显然,本题需要确定两个动点E和F,那么,怎样确定这两个点呢?我们可以过点B 作BE1AC交AD于点F,从而确定了E和F点(大家可以用从直线外一点与直线上所有点的连线中,垂线段最短来加以说明).此时,CF + EF = BE.用与囱=;殖・比^;班”。
,构造■方程,求出BE =号,即CE + EF的最小值为号.例3如图3,已知平面直角坐标系中,A (2, -3), B(4, -1).(1)若点P(x, 0)是x 轴上的一个动点,当APAB 的周长最短时,求x 的值; (2)若C D 是x 轴上的两个动点,且D(a, 0), CD=3,当四边形ABCD 的周长最短时,求a 的值;(3)设M, N 分别为x 轴、y 轴上的动点,问:是否存在这样的点M(m, 0)和N(0, n),使得四边形ABMN 的周长最短?若存在,求出叫n 的值.若不存在,请说明理由.⑴如图3,找出A (或B)关于x 轴的对称点A1,连结AiB 交x 轴 于点P.设直线AB 的解析式为y=kix+bi.将AQ 3)、B (4, -1)代入,得产 +" =3,1% + 4 = . I,解之叶…16, = 7.故 y =-2彳+7,⑵如图4,过A 点作x 轴的平行线,并截取A%=3.画点A1关于x 轴的对称点生,连结A?B 交x 轴于点C,再在x 轴上截取CD=3,可得周长最短的四边形ABCD (大家也可以利 用两点之间,线段最短,来证明最短周长的正确性).由题意,可知4(5,3).设4B 的直线悬 析式为)=&七+ b 2. 将代人,得 产 + % = 3, i 倏 +% =-1,故y = 4*-17, 当,=0时/ = y -3 = 44 4如图5,我们可以先分别找出A 、B 关于y 轴和x 轴的对称点Ai 和&,再连结ABi,分别交x 轴和y 轴干点M 与N,此时,四边形ABMN 的周长是最短的(同样, 可以用两点之间,线段最短来加以证明).设AB 的直线解析式为y=k3x+b.将4(-2, 一)”©「)代入,得产 + 4 : 1,分析与解 解之得h =4,6) = -17(3)I - 24, + 65 ; . 3, u .1 解之得A 56「.亨故厂参-{■.当x =0 时,=-Y,■ 当)• =0时,Z =京.所以…的值分别为右等例4如图6,四边形ABCD是正方形,M是对角线BD上的任意一点.⑴当点M在何处时,AM+CM的值最小?⑵当点M在何处时,AM+BM+CM的值最小?并说明理由.图6 困7分析(1)(如图6,显然,连结AC与BD的交点即为M点(可利用两点之间,线段最短来证明).(2)如图7,以AB为边在正方形外画等边三角形ABE,连结EC交BD于点M.此时,MA+MB+MC=EC(其中,ABMN 为等边三焦形,且YEBNgACBM,所以MA+MB=EM). 若在BD上(除M点之外)任取一点M,,过点Mi作MiNi〃MN交BN 或延长线于点Ni, 连结ENi.可利用两点之间线段最短,证明MiA+M】B+MiOEC,从而得出MA+.MB+ MC最短.。
初中数学八年级上册最短路径基本问题整理汇总(共12个-考试必考)
八年级数学上册最短路径基本问题汇总
经典例子解析
例一、在解决最短路径问题时, 我们通常利用_____、_____等变换把已知问题转化为容易解决的问题,从而作出最短路径的选择。
例二、已知,如图,在直线l的同侧有两点A、 B
例三图例四图
(1)在图1的直线上找一点P使PA+PB最短;(2)在图2的直线上找一点P,使PA-PB最长
例三、如上图所示,P为∠AOB内一点,P1,P2分别是P关于OA,OB 的对称点,P1P2交OA于M,交OB于N,若P1P2=8 cm,则△PMN的周长是( )
A.7 cm
B.5 cm
C.8 cm
D.10 cm
例四、如图,在等腰Rt△ABC中,D是BC边的中点,E是AB边上一动点,要使EC+ED最小,请找点E的位置例五、如图,村庄A,B位于一条小河的两侧,若河岸a,b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近?
参考答案
例一:轴对称平移
例二:(1)作点B关于直线l的对称点C,连接AC交直线l于点P,连接BP;点P即为所求(2)连接AB并延长,交直线l于点P
例三:C
例四:作点C关于AB的对称点C′,连接C′D与AB的交点为E点
例五:①过点A作AP⊥a,并在AP上向下截取AA′,使AA′=河的宽度;②连接A′B交b于点D;③过点D 作DE∥AA′交a于点C;④连接AC.则CD即为桥的位置。
八年级物理最短路径问题
八年级物理最短路径问题
最短路径问题是物理中的一个重要概念,也是许多实际应用中常遇到的问题。
在八年级物理课程中,我们将探讨最短路径问题以及与之相关的概念和算法。
什么是最短路径问题?
最短路径问题指的是在一个图中寻找两个节点之间的最短路径的问题。
在物理中,这个概念很常见,在实际生活中我们常常需要寻找最短路径,比如寻找最短路线去学校或商店。
如何解决最短路径问题?
解决最短路径问题有多种算法,其中最常用且简单的算法是迪杰斯特拉算法(Dijkstra's algorithm)。
该算法通过逐步扩展当前已找到的最短路径集合,最终找到两个节点之间的最短路径。
迪杰斯特拉算法的基本思想是从起始节点开始,逐步扩展已找到的最短路径集合。
每次选择一个距离起始节点最近的节点,并计
算从起始节点到该节点的距离。
然后再从这个节点出发,继续选择距离最近的节点,并计算新的最短路径。
重复执行这个过程直到找到目标节点或无法再找到新的最短路径为止。
实际应用
最短路径问题在实际应用中有许多应用场景。
例如,交通规划中的最短路径问题可以帮助我们找到最短的路线从一个地点到另一个地点。
另外,最短路径问题也可以应用于网络路由、物流运输等领域,帮助优化资源利用和减少成本。
总结
最短路径问题是物理中的一个重要概念,通过算法可以找到两个节点之间的最短路径。
在实际应用中,最短路径问题有广泛的应用场景,为我们的生活提供了方便和效率。
如果您对八年级物理最短路径问题还有其他问题或者需要进一步了解,请随时与我联系。
八年级上册最短路径难题讲解
八年级上册最短路径难题讲解
八年级上册最短路径问题是一个重要的数学问题,涉及到图论和几何知识。
以下是几个经典的最短路径问题及相应的解题思路:
1. 将军饮马问题:两个将军分别在河的两岸,他们想要到河的对面饮马。
河水流速很快,不能逆流而上。
他们应该选择怎样的路径才能使其中一位将军到河对岸的总时间最短?
解题思路:在这种情况下,两个将军都可以选择直接过河,但是这样会花费较长的时间。
为了使总时间最短,他们可以选择在河岸的某一位置相遇,然后一起走到河对岸。
这样,他们可以节省掉单独过河的时间。
2. 造桥选址问题:有两个人分别在河的两岸,他们想要通过建造一座桥来互相通行。
为了使造桥的成本最低,他们应该选择怎样的桥址?
解题思路:在这种情况下,最短的路径就是直接在两岸之间建造一座桥。
因此,他们应该选择在河的中心建造桥,这样可以使得桥的长度最短,同时也可以节省造桥的成本。
3. 费马点问题:在三角形中,任意选取三个点,要求找到一个点到其他三个点的距离之和最短的位置。
解题思路:首先,我们可以将这个问题转化为求三角形三个顶点的中点。
然后,我们可以利用三角形的性质来证明这个结论。
具体来说,我们可以证明任意一个点到其他三个点的距离之和都大于等于三角形三个顶点的中点到其他三个点的距离之和,当且仅当这个点是三角形三个顶点的中点时取等号。
因此,三角形的费马点就是其三个顶点的中点。
以上是最短路径问题的几个经典例子及相应的解题思路。
通过这些例子,我们可以了解到最短路径问题的基本概念和方法,以及如何利用几何和图论的知识来解决这些问题。
八年级最短路径问题
八年级数学最短路径问题
【问题概述】最短路径问题是图论研究中的一个经典算法问题, 旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:
①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题.
②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.
③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径.
④全局最短路径问题 - 求图中所有的最短路径.
【问题原型】“将军饮马”,“造桥选址”,“费马点”.
【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.
【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.
【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.
-3 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学最短路径问题
【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:
①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题.
②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.
③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径.
④全局最短路径问题 - 求图中所有的最短路径.
【问题原型】“将军饮马”,“造桥选址”,“费马点”.
【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.
【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.
【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.
在直线l 上求一点P ,使PB PA -的值最大.
作直线AB ,与直线l 的交
点即为P .
三角形任意两边之差小于
第三边.PB PA -≤AB .
PB PA -的最大值=AB .
【问题11】 作法
图形 原理
在直线l 上求一点P ,使PB PA -的值最大.
作B 关于l 的对称点B '作直线A B ',与l 交点即
为P .
三角形任意两边之差小于
第三边.PB PA -≤AB '. PB PA -最大值=AB '.
【问题12】“费马点” 作法
图形 原理
△ABC 中每一内角都小于120°,在△ABC 内求一点P ,使P A +PB +PC 值最小.
所求点为“费马点”,即满足∠APB =∠BPC =∠
APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P ,点P 即为所求.
两点之间线段最短. P A +PB +PC 最小值=CD .
【精品练习】
1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有
一点P ,使PD +PE 的和最小,则这个最小值为( )
A .3
B .26
C .3
D 6
2.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2
B .32
C .32+
D .4
l
B
A
l
P
A
B
l A
B
l
B
P
A
B'
A
B
C
P
E
D
C
B
A
A
D
E
P
B C
3.四边形ABCD 中,∠B =∠D =90°,∠C =70°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小时,∠AMN +∠ANM 的度数为( )
A .120°
B .130°
C .110°
D .140°
4.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 .
5.如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点E 在AB 边上,点D 在BC 边上(不与点B 、C 重合), 且ED =AE ,则线段AE 的取值范围是 .
6.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =1,ON =3,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即Rt △ABC 中,∠C =90°,则有222AB BC AC =+)
7.如图,三角形△ABC 中,∠OAB =∠AOB =15°,点B 在x 轴的正半轴,坐标为B (36,0).
OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值是______. D
E
A
B
C
D M
A
B
M
N
8.已知A (2,4)、B (4,
2).C 在y 轴上,D 在x 轴上,则四边形ABCD 的周长最小值为 ,
此时 C 、D 两点的坐标分别为 .
9.已知A (1,1)、B (4,2).
(1)P 为x 轴上一动点,求PA +PB 的最小值和此时P 点的坐标;
(2)P 为x 轴上一动点,求PB PA 的值最大时P 点的坐标;
(3)CD 为x 轴上一条动线段,D 在C 点右边且CD =1,求当AC +CD +DB 的最小值和此时C 点的坐标;
10.点C 为∠AOB 内一点.
(1)在OA 求作点D ,OB 上求作点E ,使△CDE 的周长最小,请画出图形;
(2)在(1)的条件下,若∠AOB =30°,OC =10,求△CDE 周长的最小值和此时∠DCE 的度数.
图①
12.荆州护城河在CC'处直角转弯,河宽相等,从A处到达B处,需经过两座桥DD'、EE',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使A到B点路径最短?。