单相接地故障的电流电压分析及向量图
IT系统单相接地短路后电压和电流的变化
![IT系统单相接地短路后电压和电流的变化](https://img.taocdn.com/s3/m/31556fc733687e21af45a99e.png)
IT系统单相接地短路后电压和电流的变化从事电气工作的技术员或者工程师,经常听说,当IT系统单相接地短路后,电压又相电压变为线电压,故障电流变为正常电容电流的3倍。
这是个结论,但是如果你进一步问,为什么?很多人是答不上来的。
今天就这个问题,我详细的讨论下,有问题欢迎更正啊。
图1 IT系统图
图1为一个IT系统的接线方式。
在没有发生故障的时候:
1. A B C三相和大地之间,只有很小的电容电流,因为此时线路和大地的容抗很大,因此电容电流很小。
正常运行电容电流
Ic=Uo*WC ,(Uo为相电压,WC为容抗)。
由于三相平衡运行,电容电流的和向量为0。
2. 当一相发生接地故障时
图2 IT系统发生接地故障
当C相发生接地故障后,地上的点位就不是0V了,而是相电压Uo,因此A,B相和大地的电压就是线电压了,向量叠加后也就是
UN=sqr(3)*Uo。
,因此IT系统带故障运行的话,电缆的绝缘选择要参考线电压设计。
当C相发生接地故障后,由于电压变为线电压sqr(3)*Uo,电容阻抗为1/WC,A,B相的电流分别为sqr(3)*Uo*WC,利用向量叠加可知:接地故障电流为Iend=cos30*2*sqr(3)*Uo*WC=3 Uo*WC。
而Uo*WC 就是正常IT系统的对地电容电流。
变电站线路单相接地故障处理及典型案例分析(扫描版)
![变电站线路单相接地故障处理及典型案例分析(扫描版)](https://img.taocdn.com/s3/m/25ff073a87c24028915fc37e.png)
变电站线路单相接地故障处理及典型案例分析[摘要] 在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大比例.本文通过对某地区工典型故障案例进行分析,介绍了处理方法,并对相关的知识点进行阐述,为现场运行人员正确判断和分析事故原因提供了借鉴。
[关键词]大电流接地系统;小电流接地系统;判断;分析我国电压等级在110kV 及其以上的系统均为大电流接地系统,在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大的比例,造成单相故障的原因有很多,如雷击、瓷瓶闪落、导线断线引起接地、导线对树枝放电、山火等。
线路单相接地故障分为瞬时性故障和永久性故障两种,对于架空线路一般配有重合闸,正常情况下如果是瞬时性故障,则重合闸会启动重合成功;如果是永久性故障将会出现重合于永久性故障再次跳闸而不再重合。
为帮助运行人员正确判断和分析大电流接地系统线路单相瞬时性故障,本案例选取了某地区一典型的220kV线路单相瞬时接地故障,并对相关的知识点进行分析。
说明,此案例分析以FHS变电站为主。
本案例分析的知识点:(1)大电流接地系统与小电流接地系统的概念。
(2)单相瞬时性接地故障的判断与分析。
(3)单相瞬时性接地故障的处理方法。
(4)保护动作信号分析。
(5)单相重合闸分析。
(6)单相重合闸动作时限选择分析。
(7)录波图信息分析。
(8)微机打印报告信息分析。
一、大电流接地系统、小电流接地系统的概念在我国,电力系统中性点接地方式有三种:(1)中性点直接接地方式。
(2)中性点经消弧线圈接地方式。
(3)中性点不接地方式。
110kV及以上电网的中性点均采用中性点直接接地方式。
中性点直接接地系统(包括经小阻抗接地的系统)发生单相接地故障时,接地短路电流很大,所以这种系统称为大电流接地系统。
采用中性点不接地或经消弧线圈接地的系统,当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,所以这种系统称为小电流接地系统。
图解正序负序零序
![图解正序负序零序](https://img.taocdn.com/s3/m/13deb1ce4028915f804dc2f4.png)
正序负序与零序电力三相不平衡作图法对称分量法1:三相不平衡的的电压(或电流),可以分解为平衡的正序、负序和零序2:零序为3相电压向量相加,除以33:正序将BC相旋转120度到A相位置,这样3个向量相加会较长,3个向量相加,除以34:负序将BC相旋转120度到A相相反位置,这样3个向量相加会较短,3个向量相加,除以3个人为理解三相不平衡做的总结。
总没有理解三相不平衡,因为我没有上过电力系统的课程,实际上课本上有,所以百度上很少。
有很多东西,网上没有的原因是因为实际很简单,专家们都不好意思写。
对称分量法参考借用了东南大学电器工程学院的PPT的图片。
作图法用CAD的平移很方便,求3分点位置还网上查了下。
449836432@.,欢迎补充、更正、交流。
1:不过我仍没有了解三相不平衡的各种保护方法。
零序保护倒是理解,用开口三角即可。
负序保护难道采样后用算,那一个周波都过了,保护时间是否足够。
2:similink是否可以仿真故障并做相序分析3:可以方便的实现matlab编程,将不平衡的三相精确地分解为正序、负序与零序(曾经有简单估算方法)。
计算程序需要输入每相的幅值与相角。
不平衡保护设备现场计算需要采集幅值与相角作为输入参数吗?这个问题肯定很简单,但我没查到文章介绍实现方法。
4:暂态过程的不平衡一致吗5:希望理解或仿真电力系统故障导致的不平衡,并以此判定系统故障,本次仍没能实现,希望下次再突击阅读理解。
欢迎推荐文章。
一:理解1 相序在三相电力系统中,各相电压或电流依其先后顺序分别达到最大值(以正半波幅值为准)的次序,称为相序。
正相序:分别达到最大值的次序为A、B、C;负相序:分别达到最大值的次序为A、C、B。
对于理想的电力系统,只有正序分量。
以电压为例。
对称的三相系统:三相中的电压Ua 、Ub 、Uc 对称,只有一个独立变量。
如三相相序为a 、b 、c ,由Ua 得出其余两相a c ab U U U U αα== 2式中α为复数算子j120e =α2不对称运行状态的主要原因(1)外施电压不对称,三相电流也不对称。
10kV系统单相接地故障及处理探析
![10kV系统单相接地故障及处理探析](https://img.taocdn.com/s3/m/b08a750255270722192ef7a0.png)
10kV系统单相接地故障及处理探析[摘要]通常10kV系统的主要运行方式是中性点不接地方式,也就是小电流接地系统。
能够迅速准确地判断出单相接地障碍线路是保证供电平衡与安全的关键。
对10kV系统的小电流接地的选线方式以及10kV系统单相接地故障的诊断及处理方法进行了探讨,并采用了实例进行说明。
【关键词】10kV系统;单相接地;故障在电力系统中,单相接地故障是一种较常出现的故障,虽然在发生单相接地时仍然可以继续运行2小时,但是发生单相接地故障时所经流的电容量较大时就会在接地点导致电弧,形成一种间歇性的电弧过电压,这时,如果不能及时找到出现故障的原因并给予解决的话,就容易导致严重事故发生。
一、常见故障现象陕西电网10-35KV系统中,一般都采用中性点不接地的方式来运行,这里着重探讨一下在10kV系统的故障分析。
10kV也是一种中性点不接地的运行方式。
如果系统要正常运行,则三相电压要保持平衡,每个相对的地电压则是它们相应的相电压UA、UB、UC。
当系统出现相接地的故障时,如果接地状况良好,则故障的相对地电压也为零,而正常的相对的接地电压就会从原来的相电压上升到线电压,大概是从2kV升高到10kV,此时的接地电流就仅仅是很小的电容电流。
二、单相接地故障的原因及主要危害1.单相接地故障的主要原因出现单相接地故障的原因主要有以下几种:人为原因;恶劣的天气,如打雷、暴雨、大风等;线路断路断线;鸟类、小动物等的外力破坏;设备的老化、表面脏污、受潮等导致绝缘不良。
2.单相接地障碍的主要危害单相接地障碍的危害主要表现在以下几方面:出现故障的地方会产生电弧,烧坏相应的设备甚至可能会造成相间短路障碍;系统中存在的绝缘薄弱点就容易被击穿,最终造成短路;出现故障的地方产生间歇性电弧,在一定条件下就会产生谐振过电压,这对系统的绝缘危害性极大,从而影响供电性的安全;如果出现单相接地障碍,不管出现故障的线路落于地面还是悬于空中都容易对人的人生安全造成威胁。
单相接地故障的定义及单相接地故障电流的采集方法
![单相接地故障的定义及单相接地故障电流的采集方法](https://img.taocdn.com/s3/m/e0602a46fc4ffe473368ab60.png)
单相接地故障的定义及单相接地故障电流的采集方法
要回答题主的问题,首先我们要弄懂几个原理。
1.单相接地故障的定义
我们设三相电流分别为ia、ib和ic,并且有如下关系:
如果三相电流是平衡的,也即Ia=Ib=Ic,则上式中可以写成:
我们很容易利用中学的三角函数知识证明中括号内三个正弦量的和等于0。
等号右侧的量其实就是三相不平衡电流。
我们看到,中性线电流In与三相不平衡电流的大小相等方向相反。
所以,当三相平衡时,中性线N的总线上的电流为零。
提醒一下:虽然三相平衡时中性线N总线上的电流等于零,但中性线支线上的电流不等于零。
事实上,中性线支线上的电流与某相的相线电流大小相等而方向相反。
现在,我们把中性线电流和三相电流合在一起求相量和,如下:
结果会怎样呢?
我们发现,即使出现了三相不平衡,但ig的值依然为零。
即:
我们看下图中的图1,它的负载其实就是安装在三条相线上的三只阻值相同的电阻,显见三相是平衡的。
而图2中A相多了一只电阻,所以三相不平衡。
然而不管是图1还是图2,中性线电流与三相电流的相量和,却始终等于零。
注意1:图1中N线的总线上电流等于零,但N线的支线电流不等于零。
注意2:图1和图2的接地系统是TN-S。
现在我们假设A相出现了漏电ias,我们看看会怎样:
我们把ig叫做剩余电流,它的值反映了漏电流的值。
电力系统接地短路故障种类及接地保护方式直观分析
![电力系统接地短路故障种类及接地保护方式直观分析](https://img.taocdn.com/s3/m/ea3a49c5cf2f0066f5335a8102d276a200296004.png)
电力系统接地短路故障种类及接地保护方式直观分析电力系统按接地方式分类,有中性点接地系统和中性点不接地系统。
其中,两种接地系统按接地故障的方式分类,又有单相接地、两相接地、三相接地3种短路故障。
单相接地是最常见的线路故障,两相接地、三相接地出现几率小,但有明显的相间短路特征。
★中性点接地系统1.单相接地故障2.两相接地故障3.三相接地故障★中性点不接地系统1.单相接地故障2.单相接地故障3.三相接地故障☆单相接地故障特点:1.一相电流增大,一相电压降低;出现零序电流、零序电压。
2.电流增大、电压降低为同一相别。
3.零序电流相位与故障相电流同向,零序电压与故障相电压反向。
4.故障相电压超前故障相电流约80度左右(短路阻抗角,又叫线路阻抗角);零序电流超前零序电压约110度左右。
☆两相短路故障特点:1.两相电流增大,两相电压降低;没有零序电流、零序电压。
2.电流增大、电压降低为相同两个相别。
3.两个故障相电流基本反向。
4.故障相间电压超前故障相间电流约80度左右。
☆两相接地短路故障特点:1.两相电流增大,两相电压降低;出现零序电流、零序电压。
2.电流增大、电压降低为相同两个相别。
3.零序电流向量为位于故障两相电流间。
4.故障相间电压超前故障相间电流约80度左右;零序电流超前零序电压约110度左右。
☆三相短路故障特点:1.三相电流增大,三相电压降低;没有零序电流、零序电压。
2.故障相电压超前故障相电流约80度左右;故障相间电压超前故障相间电流同样约80度左右。
★电力系统工作接地(接地保护)变压器或发电机中性点通过接地装置与大地连接,称为工作接地。
工作接地分为直接接地与非直接接地(包括不接地或经消弧线圈接地)两类,工作接地的接地电阻不超过4?为合格。
☆电网中性点运行方式:大接地电流系统(110kV及以上)1.直接接地,又称为有效接地2.经低电阻接地大接地电流系统(35kV及以下)1.不接地,又称为中性点绝缘2.经消弧线圈接地3.经高阻接地煤矿电网中性点接地方式1.井下3300、1140、660V系统采用中性点不接地方式2.6、10kV主要采用中性点经消弧线圈接地方式3.35kV采用中性点不接地方式4.110kV采用中性点直接接地方式举例:中性点经消弧线圈接地和中性点直接接地★接地保护系统的型式文字代号☆第一个字母表示电力系统的对地关系:T--直接接地I--所有带电部分与地绝缘,或一点经阻抗接地。
中低压配电系统单相接地故障及其保护分析
![中低压配电系统单相接地故障及其保护分析](https://img.taocdn.com/s3/m/52537e0c7f1922791788e818.png)
中低压配电系统单相接地故障及其保护分析中低压配电系统单相接地故障及其庇护分析1 概述中低压配电系统故障分为相间短路和单相接地,相间短路又分为三相短路和两相短路。
相间短路称为金属短路或永久性短路,短路电流比较大,危害也大,继电庇护必需可靠、迅速而有选择性将故障切除。
单相接地故障的故障电流随配电系统中性点接地方式不同有很大差别。
电源中性点不接地以及经大电阻或消弧线圈接地的配电系统,发生单相接地故障后,由于没有形成回路,接地故障电流为对地电容电流一般比较小,可继续运行必定时间,但应有报警,以便及时查找故障。
电源中性点直接接地的配电系统发生单相接地故障后,接地相经过大地与电源中性点形成回路,故障电流为短路电流就比较大,继电庇护应可靠、迅速而有选择性将故障切除。
电源中性点不接地以及经大电阻或消弧线圈接地的配电系统,接地故障[Earth fault]是指相线和电气装置的外露导电部分,以及大地间的短路,它属于单相对地故障,它和相线与中性线的单相短路无论在危害后果与庇护办法上都十分不同。
绝缘损坏或损伤是较常见的接地故障,此时为非金属性短路,短路电流随绝缘损坏程度不同差别比较大,故障电流相差也比较大。
这就给继电庇护选择与整定造成较大困难。
绝缘损坏往往会带来人身电击损害和火灾,因此必需采取必定办法限制故障电压升高和其作用时间,防范人体与危险电压的接触,并且要求电器装置的接地要合理可靠,并应有接地故障庇护。
2 电源中性点不直接接地配电系统的单相接地故障与庇护2.1电源中性点不直接接地配电系统单相接地故障分析我国日前6~10kV与35kV配电系统为小电流接地系统,其电源中性点有不接地、经大电阻或消弧线圈接地三种方式。
正常运行时三相对地电容电流大小相等,相位各落后于相电压90度,电容电流分布与相量图。
见图1。
图1中性点不接地系统单相接地电容电流分布与相量图当发生单相接地故障时,电源中性点对地电位升高为相电压,故障相电位接近或等于地电位,其它两相对地为升高为线电压,其值为相电压的√3 倍。
对称分量法(正序、负序、零序)
![对称分量法(正序、负序、零序)](https://img.taocdn.com/s3/m/7f01f644be1e650e52ea990d.png)
对称分量法正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。
负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。
零序:ABC三相相位相同,哪一相也不领先,也不落后。
三相短路故障和正常运行时,系统里面是正序。
单相接地故障时候,系统有正序、负序和零序分量。
两相短路故障时候,系统有正序和负序分量。
两相短路接地故障时,系统有正序、负序和零序分量称分量法基本概念和简单计算正常运行的电力系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个角度(Φ),如图1。
图1:正常运行的电力系统电压电流矢量图对称分量法是分析电力系统三相不平衡的有效方法,其基本思想是把三相不平衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样就可把电力系统不平衡的问题转化成平衡问题进行处理。
在三相电路中,对于任意一组不对称的三相相量(电压或电流),可以分解为3组三相对称的分量。
图2:正序相量、负序相量和零序相量(以电流为例)当选择A相作为基准相时,三相相量与其对称分量之间的关系(如电流)为:IA=Ia1+Ia2+Ia0――――――――――――――――――――――――――○1IB=Ib1+Ib2+Ib0=α2Ia1+αIa2 + Ia0――――――――――○2IC=Ic1+Ic2+Ic0=α Ia1+α2Ia2+Ia0―――――――――――○3对于正序分量:Ib1=α2 Ia1 ,Ic1=αIa1对于负序分量:Ib2=αIa2 ,Ic2=α2Ia2对于零序分量:Ia0= Ib0 = Ic0式中,α为运算子,α=1∠120°有α2=1∠240°, α3=1, α+α2+1=0由各相电流求电流序分量:I1=Ia1= 1/3(IA +αIB +α2 IC)I2=Ia2= 1/3(IA +α2IB +αIC)I0=Ia0= 1/3(IA +IB +IC)以上3个等式可以通过代数方法或物理意义(方法)求解。
故障分析-电压向量图
![故障分析-电压向量图](https://img.taocdn.com/s3/m/d8842f32fab069dc512201b7.png)
电力系统基础理论知识部分
故障分析-电压向量分析
讲解主要内容
短路故障序网边界条件如何列写? 短路故障正、负和零序网络之间如何连接? 短路故障故障相与非故障相电压变化? 非全相故障如何分析? 复故障如何分析? 有过渡电阻对电压变化的影响?
精品
2
对称分量法求解基本方法
I(1.1) k
Ib
Ic
3
1(XX 00 X X22)2Ia1II
a a
2 0
E 1
j( X 1 X 2
X 0
X 2 X 0
X 2
X 2 X 0
// X I a 1
I a 1
0
)
精品
35
两相短路接地故障电压相量图
U a1
Ua2
Ua0
j
X2 X0 X2 X0
Ia1
非 故 障 相 电 压 、 故 障电相流 :
精品
42
解:1. 计算各元件电抗标幺值,绘出各序等值网络。
取基准功率Sd=120MVA, Ud=Uav。 1) 正序网络
X1
0.9 120 120
0.9
X2
0.105 120 60
0.21
1
120
X3 2 ( 0.4105 1152 ) 0.19
2) 负序网络
X1
0.45
120 120
0.45
(a2 a)Ua1 Ua1 12Ua
精品
28
两相短路故障短路点电流电压相量图
精品
29
两相接地故障部分序分量的3个接口方程
一般假定bc相短路接地,a相仍然为特殊相。 故障端口有以下3个方程:
对称分量法(正序、负序、零序)
![对称分量法(正序、负序、零序)](https://img.taocdn.com/s3/m/85a1f27304a1b0717fd5ddde.png)
对称分量法正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。
负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。
零序:ABC三相相位相同,哪一相也不领先,也不落后。
三相短路故障和正常运行时,系统里面是正序。
单相接地故障时候,系统有正序、负序和零序分量。
两相短路故障时候,系统有正序和负序分量。
两相短路接地故障时,系统有正序、负序和零序分量称分量法基本概念和简单计算正常运行的电力系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个角度(Φ),如图1。
图1:正常运行的电力系统电压电流矢量图对称分量法是分析电力系统三相不平衡的有效方法,其基本思想是把三相不平衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样就可把电力系统不平衡的问题转化成平衡问题进行处理。
在三相电路中,对于任意一组不对称的三相相量(电压或电流),可以分解为3组三相对称的分量。
图2:正序相量、负序相量和零序相量(以电流为例)当选择A相作为基准相时,三相相量与其对称分量之间的关系(如电流)为:IA=Ia1+Ia2+Ia0――――――――――――――――――――――――――○1IB=Ib1+Ib2+Ib0=α2Ia1+αIa2 + Ia0――――――――――○2IC=Ic1+Ic2+Ic0=α Ia1+α2Ia2+Ia0―――――――――――○3对于正序分量:Ib1=α2 Ia1 ,Ic1=αIa1对于负序分量:Ib2=αIa2 ,Ic2=α2Ia2对于零序分量:Ia0= Ib0 = Ic0式中,α为运算子,α=1∠120°有α2=1∠240°, α3=1, α+α2+1=0由各相电流求电流序分量:I1=Ia1= 1/3(IA +αIB +α2 IC)I2=Ia2= 1/3(IA +α2IB +αIC)I0=Ia0= 1/3(IA +IB +IC)以上3个等式可以通过代数方法或物理意义(方法)求解。
单相接地时零序电流电压分析知识讲解
![单相接地时零序电流电压分析知识讲解](https://img.taocdn.com/s3/m/c2e5c849fc4ffe473368abe0.png)
单相接地时零序电流电压分析下面对系统单相接地时,零序电流与电压之间的关系做简单的分析:将某用电系统简化为上图:(将所有正常回路简化为第一条回路,假定第二条回路出现接地故障,零序CT安装位置如图中1、2)下面就分别对存在或不存在接地故障情况下,电压及对地电容电流进行分析。
对该系统电压情况分析如下:一、在正常情况下一次电压,二次电压(测量、开口三角)关系如图:UA(向量)与Ua(向量)、Ua0(向量);UB(向量)与Ub(向量)、Ub0(向量);UC(向量)与Uc(向量)、Uc0(向量);方向分别相同在测量线圈中变比为:即一二次侧电压比为60,即如果系统线电压为6000V,则在每一测量PT的二次线圈中电压为V,两相之间的电压为100V在开口三角线圈中变比为:即一二次侧电压比为,即如果系统线电压为6000V,则在每只PT的开口三角二次线圈中电压为V,UL0(向量)=Ua(向量)+ Ub(向量) +Uc(向量)====0用向量图的形式表示如下,由上图也可以看出系统正常时开口三角UL0(向量)为0二、如果C相保险熔断,那么UC(向量)=0,有UL0(向量)= Ua0(向量)+ Ub0(向量)======-Uc0(向量)用向量图的形式表示如下,可以看出此时开口三角电压与C相电压大小相等,方向相反。
即有:一相保险熔断(无论高压侧低压侧)开口三角电压约为33.3V,同理可知:如果一相保险熔断(无论高压侧低压侧),开口三角电压与该相二次电压大小相等,方向相反。
电压约为33.3V如果两相保险熔断(无论高压侧低压侧),开口三角电压与正常相二次电压大小相等,方向相同。
电压约为33.3V三、如果存在一相金属性接地(假设为C相金属性接地)则有:UA’(向量)=UAC(向量)=UA(向量)-UC(向量) UA(向量)+Un(向量)UB’(向量)=UBC(向量)=UB(向量)-UC(向量)中性点N对地的电位为零UA’(向量)=UAC(向量)=UA(向量)-UC(向量) ======UB’(向量)=UBC(向量)=UB(向量)-UC(向量) ====用向量图的形式表示如下,由三角函数的推导过程及向量图均可以看出,此时A相、B相相电压增大为原来的倍,即升高到了线电压,而A相电压方向变为滞后原来的相电压,B相电压方向变为超前了原来的B相电压300,此时PT二次侧A相、B相电压也相应增大为原来的倍,且其方向分别与U’A(向量),U’B(向量)相同。
故障录波图讲义讲解学习
![故障录波图讲义讲解学习](https://img.taocdn.com/s3/m/9ae202398e9951e79b8927e5.png)
故障录波图讲义幻灯片1故障录波图分析幻灯片2在我们的日常生产中经常需要通过录波图来分析电力系统到底发生了什么样的故障?保护装置的动作行为是否正确?二次回路接线是否正确?CT、PT极性是否正确等等问题。
接下来我就先讲一下分析录波图的基本方法:1、当我们拿到一张录波图后,首先要通过前面所学的知识大致判断系统发生了什么故障,故障持续了多长时间。
2、以某一相电压或电流的过零点为相位基准,查看故障前电流电压相位关系是否正确,是否为正相序?负荷角为多少度?3、以故障相电压或电流的过零点为相位基准,确定故障态各相电流电压的相位关系。
(注意选取相位基准时应躲开故障初始及故障结束部分,因为这两个区间一是非周期分量较大,二是电压电流夹角由负荷角转换为线路阻抗角跳跃较大,容易造成错误分析)4、绘制向量图,进行分析。
幻灯片3第一节单相接地短路故障录波图分析幻灯片4分析单相接地故障录波图要点:1、一相电流增大,一相电压降低;出现零序电流、零序电压。
2、电流增大、电压降低为同一相别。
3、零序电流相位与故障相电流同向,零序电压与故障相电压反向。
4、故障相电压超前故障相电流约80度左右;零序电流超前零序电压约110度左右。
当我们看到符合第1条的一张录波图时,基本上可以确定系统发生了单相接地短路故障;若符合第2条可以确定电压、电流相别没有接错;符合第3条、第4条可以确定保护装置、二次回路整体均没有问题幻灯片5(不考虑电压、电流同时接错的问题,对于同时接错的问题需要综合考虑,比如说你可以收集同一系统上下级变电所的录波图,对于同一个系统故障各个变电所录波图反映的情况应该是相同的,那么与其他站反映的故障相别不同的变电站就需要进行现场测试)。
若单相接地短路故障出现不符合上述条件情况,那么需要仔细分析,查找二次回路是否存在问题。
这里需要特别说明一下南瑞公司的900系列线路保护装置,该系列保护在计算零序保护时加入了一个78度的补偿阻抗,其录波图上反映的是零序电流超前零序电压180度左右。
浅析故障录波器波图分析方法_赵大伟
![浅析故障录波器波图分析方法_赵大伟](https://img.taocdn.com/s3/m/42cc4f16f12d2af90242e64e.png)
0.前言“经济要发展、电力需先行”,电力成为经济发展的根本保证,及时分析处理电力故障,减少停电时间,就显得尤为重要,微机故障录波器就成为变电站一种分析电网故障不可缺少的工具,为运行人员分析、处理电力系统故障提供了科学依据。
运行人员对故障录波器有充分的认识了解,才能及时解决处理电力系统故障。
1.分析录波图的基本方法在我们的日常生产中经常需要通过录波图来分析电力系统到底发生了什么样的故障?保护装置的动作行为是否正确?二次回路接线是否正确?CT、PT极性是否正确等等问题。
接下来我就先讲一下分析录波图的基本方法:1)当我们拿到一张录波图后,首先要通过前面所学的知识大致判断系统发生了什么故障,故障持续了多长时间。
2)以某一相电压或电流的过零点为相位基准,查看故障前电流电压相位关系是否正确,是否为正相序?负荷角为多少度?3)以故障相电压或电流的过零点为相位基准,确定故障态各相电流电压的相位关系。
(注意选取相位基准时应躲开故障初始及故障结束部分,因为这两个区间一是非周期分量较大,二是电压电流夹角由负荷角转换为线路阻抗角跳跃较大,容易造成错误分析)4)绘制向量图,进行分析。
1.1单相接地短路故障录波图分析,见图1图1分析单相接地故障录波图要点:1)一相电流增大,一相电压降低;出现零序电流、零序电压。
2)电流增大、电压降低为同一相别。
3)零序电流相位与故障相电流同向,零序电压与故障相电压反向。
4)故障相电压超前故障相电流约80度左右;零序电流超前零序电压约110度左右。
当我们看到符合第1条的一张录波图时,基本上可以确定系统发生了单相接地短路故障;若符合第2条可以确定电压、电流相别没有接错;符合第3条、第4条可以确定保护装置、二次回路整体均没有问题(不考虑电压、电流同时接错的问题,对于同时接错的问题需要综合考虑,比如说你可以收集同一系统上下级变电所的录波图,对于同一个系统故障各个变电所录波图反映的情况应该是相同的,那么与其他站反映的故障相别不同的变电站就需要进行现场测试)。
对称分量法(正序、负序、零序)
![对称分量法(正序、负序、零序)](https://img.taocdn.com/s3/m/54c8166ca58da0116d174998.png)
对称分量法正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。
负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。
零序:ABC三相相位相同,哪一相也不领先,也不落后。
三相短路故障和正常运行时,系统里面是正序。
单相接地故障时候,系统有正序、负序和零序分量。
两相短路故障时候,系统有正序和负序分量。
两相短路接地故障时,系统有正序、负序和零序分量称分量法基本概念和简单计算正常运行的电力系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个角度(Φ),如图1。
图1:正常运行的电力系统电压电流矢量图对称分量法是分析电力系统三相不平衡的有效方法,其基本思想是把三相不平衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样就可把电力系统不平衡的问题转化成平衡问题进行处理。
在三相电路中,对于任意一组不对称的三相相量(电压或电流),可以分解为3组三相对称的分量。
图2:正序相量、负序相量和零序相量(以电流为例)当选择A相作为基准相时,三相相量与其对称分量之间的关系(如电流)为:IA=Ia1+Ia2+Ia0――――――――――――――――――――――――――○1IB=Ib1+Ib2+Ib0=α2 Ia1+αIa2 + Ia0――――――――――○2IC=Ic1+Ic2+Ic0=α Ia1+α2 Ia2+Ia0―――――――――――○3对于正序分量:Ib1=α2 Ia1 ,Ic1=αIa1对于负序分量:Ib2=αIa2 ,Ic2=α2Ia2对于零序分量:Ia0= Ib0 = Ic0式中,α为运算子,α=1∠120°有α2=1∠240°, α3=1, α+α2+1=0由各相电流求电流序分量:I1=Ia1= 1/3(IA +αIB +α 2 IC)I2=Ia2= 1/3(IA +α2 IB +αIC)I0=Ia0= 1/3(IA +IB +IC)以上3个等式可以通过代数方法或物理意义(方法)求解。
10kV系统单相接地故障分析及处理
![10kV系统单相接地故障分析及处理](https://img.taocdn.com/s3/m/a09745c8fad6195f302ba630.png)
10kV系统单相接地故障分析及处理发表时间:2019-06-13T08:57:40.257Z 来源:《电力设备》2019年第1期作者:奉仰江[导读] 摘要:现如今,我国的电网发展十分迅速,10kV系统在运行的过程中主要采用了两种方式,一种是中性点不接地,一种是中性点经由小电阻接地。
(广西电网有限责任公司北海供电局广西北海市 536000)摘要:现如今,我国的电网发展十分迅速,10kV系统在运行的过程中主要采用了两种方式,一种是中性点不接地,一种是中性点经由小电阻接地。
在配网保护的过程中,最为重要的一个问题就是及时的判断出单相接地故障线路的位置,只有这样,才能更好的根据故障的实际情况采取有效的措施对其进行及时的处理,从而也就保证了系统的运行质量和运行水平。
关键词:单相接地故障;危害;处理;注意事项引言近些年,随着我国能源全球化发展,配电网的建设与安全运行也越来越受到人们的关注,尤其是在10kV电力供电或配电系统中,发生单相接地故障的概率较高,且当中性点发生单相接地故障时,相电压升高,可能引起线路绝缘破坏甚至被击穿,出现短路故障;如果故障点产生间歇性电弧,会引起谐振过电压,损坏或者烧毁电力系统设备,严重危及设备和人身安全,给配电网的安全经济运行带来重大影响。
因此,电力系统工作或运行维护人员,必须掌握10kV电力系统单相接地故障分析与处理方法,系统出现单相接地故障时需及时准确的找到故障点并予以切除,从而保证和维护电力系统安全经济运行和生产。
一般地,单相接地故障可能出现的原因主要有:①线路或设备绝缘发生破坏,引起绝缘击穿接地,如配电变压器绕组绝缘破损、接地等;②线路遭外力破坏导致断线,如大风、覆冰舞动灾害天气;③恶劣复杂的外界自然环境,如雷击、鸟害、漂浮物、动物搭接、树枝等;④工作人员误操作。
因此,针对不同的引起单相接地故障的原因需要采取相对应的措施,才能及时恢复系统的供电。
1概述电力系统在进行分类时常分大电流接地系统和小电流接地系统。
单相接地故障的电流电压分析及向量图
![单相接地故障的电流电压分析及向量图](https://img.taocdn.com/s3/m/719a26c1da38376bae1fae0d.png)
单相接地故障的电流电压分析及向量图
中性点不接地系统发生单相接地时,中性点电压、各相对地电压、相间电压有何变化?
各相对地电容电流及接地点电容电流如何变化?
故障相电压为零,中性点电压不再为零,上升为相电压非故障相电压上升为线电压,即相电压的根号3倍。
系统三相的线电压仍然保持对称且大小不变,对接于线电压的用电设备的工作并无影响。
非故障相对地电容电流增大根号3倍,分别超前相应对地电压90°故障相对地对地电容电流为零,接地点对地电容电流等于正常运行时一相对地电容电流的3倍。
变电站线路单相接地故障处理及典型案例分析(扫描版)
![变电站线路单相接地故障处理及典型案例分析(扫描版)](https://img.taocdn.com/s3/m/25ff073a87c24028915fc37e.png)
变电站线路单相接地故障处理及典型案例分析[摘要] 在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大比例.本文通过对某地区工典型故障案例进行分析,介绍了处理方法,并对相关的知识点进行阐述,为现场运行人员正确判断和分析事故原因提供了借鉴。
[关键词]大电流接地系统;小电流接地系统;判断;分析我国电压等级在110kV 及其以上的系统均为大电流接地系统,在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大的比例,造成单相故障的原因有很多,如雷击、瓷瓶闪落、导线断线引起接地、导线对树枝放电、山火等。
线路单相接地故障分为瞬时性故障和永久性故障两种,对于架空线路一般配有重合闸,正常情况下如果是瞬时性故障,则重合闸会启动重合成功;如果是永久性故障将会出现重合于永久性故障再次跳闸而不再重合。
为帮助运行人员正确判断和分析大电流接地系统线路单相瞬时性故障,本案例选取了某地区一典型的220kV线路单相瞬时接地故障,并对相关的知识点进行分析。
说明,此案例分析以FHS变电站为主。
本案例分析的知识点:(1)大电流接地系统与小电流接地系统的概念。
(2)单相瞬时性接地故障的判断与分析。
(3)单相瞬时性接地故障的处理方法。
(4)保护动作信号分析。
(5)单相重合闸分析。
(6)单相重合闸动作时限选择分析。
(7)录波图信息分析。
(8)微机打印报告信息分析。
一、大电流接地系统、小电流接地系统的概念在我国,电力系统中性点接地方式有三种:(1)中性点直接接地方式。
(2)中性点经消弧线圈接地方式。
(3)中性点不接地方式。
110kV及以上电网的中性点均采用中性点直接接地方式。
中性点直接接地系统(包括经小阻抗接地的系统)发生单相接地故障时,接地短路电流很大,所以这种系统称为大电流接地系统。
采用中性点不接地或经消弧线圈接地的系统,当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,所以这种系统称为小电流接地系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单相接地故障的电流电压分析及向量图
中性点不接地系统发生单相接地时,中性点电压、各相对地电压、相间电压有何变化?
各相对地电容电流及接地点电容电流如何变化?
故障相电压为零,中性点电压不再为零,上升为相电压非故障相电压上升为线电压,即相电压的根号3倍。
系统三相的线电压仍然保持对称且大小不变,对接于线电压的用电设备的工作并无影响。
非故障相对地电容电流增大根号3倍,分别超前相应对地电压90°故障相对地对地电容电流为零,接地点对地电容电流等于正常运行时一相对地电容电流的3倍。