2.4框图化简及梅逊公式
梅逊公式
2.4 控制系统的方块图、信号流图与梅逊公式控制系统的方块图是系统各元件特性、系统结构和信号流向的图解表示法。
2.4.1 方块图元素(1)方块(Block Diagram ):表示输入到输出单向传输间的函数关系。
C(s)图2-14 方块图中的方块信号线方块r(t)c(t)信号线:带有箭头的直线,箭头表示信号的流向,在直线旁标记信号的时间函数或象函数。
(2)比较点(合成点、综合点)Summing Point 两个或两个以上的输入信号进行加减比较的元件。
“+”表示相加,“-”表示相减。
“+”号可省略不写。
2)2+Υ3图2-15比较点示意图注意:进行相加减的量,必须具有相同的量刚。
(3)分支点(引出点、测量点)Branch Point 表示信号测量或引出的位置图2-16分支点示意图注意:同一位置引出的信号大小和性质完全一样。
2.4.2 几个基本概念及术语R(s)N(s)打开反馈图2-17 反馈控制系统方块图(1) 前向通路传递函数 假设N(s)=0打开反馈后,输出C(s)与R(s)之比。
在图中等价于C(s)与误差E(s)之比。
)()()()()(21s G s G s G s E s C == (2) 反馈回路传递函数 Feedforward Transfer Function 假设N(s)=0 主反馈信号B(s)与输出信号C(s)之比。
)()()(s H s C s B = (3) 开环传递函数 Open-loop Transfer Function 假设N(s)=0 主反馈信号B(s)与误差信号E(s)之比。
)()()()()()()(21s H s G s H s G s G s E s B == (4) 闭环传递函数 Closed-loop Transfer Function 假设N(s)=0 输出信号C(s)与输入信号R(s)之比。
)()(1)()()(1)()()()(21s G s H s G s G s H s G s G s R s C +=+= 推导:因为)()]()()([)()()(s G s H s C s R s G s E s C -== 右边移过来整理得)()(1)()()(s G s H s G s R s C += 即开环传递函数前向通路传递函数+=+=1)()(1)()()(s G s H s G s R s C **(5) 误差传递函数 假设N(s)=0 误差信号E(s)与输入信号R(s)之比。
框图化简、梅逊公式习题
试应用梅森公式求取下图所示方框图的传递函数。
H 4(s)
R(s)
G1(s)
G 2(s) G 3(s) G 4(s)
C(s)
-
H 3(s)
-
+
H 2(s)
H 1(s)
解. 本题信号流图为 R( s ) 1 G1
G2
-H4 -H3
G3
G4
1
C (s)
-1
-H2
-H1
L3 G1G2G3G4 H1 L4 G3G4 H 4 1 ( L1 L2 L3 L4 )
R
G4 E G1 H1
G2
H1H 2
G3 C H2
梅森公式
前向通道有二,分别为: P 1 G 1G2G3 , P 2 G3G4
回路有三,分别为: G1H1 ,G3 H 2 ,G1G2G3 H1H 2 有两个不接触回路,所以:
C (s) 求 : R(s)
R
G4 E G1 H1
框图化简、梅逊公式习题
A
B C
求下列由弹簧-质量-阻尼器组成的机械系统传递函数。
m
k
f
(a)
(b)
例 绘制如图所示 RC 无源网络的结构图
解 将无源网络视为一个系 统,组成网络的元件就对应于系 统的元部件。应用复阻抗概念, 根据基尔霍夫定律写出以下方程:
RC无源网络
按照这些方程可分别绘制相 应元件的方框图如图(a) - (d)所 示。然后用信号线按信号流向 依次将各方框连接起来,便得 到无源网络的结构图,见图(e).
系统结构图及等效变换梅森公式
第四节 控制系统的结构图及其等效变换
例 画出图所示电路的动态结构图。
R1
+
U1(s)
R2
ur
-
i1
C1
i1-i2
i2
C2
+
uc
-
解:
Ur(s) _
U1(s)
2(s) I1(s) I_ U1(s) 1 1 C1S _ R1
1 R2
I2(s)
1 C2S
UC(s)
UC(s)
第四节 控制系统的结构图及其等效变换
不是串联! 也不是串联! C1(s)=R(s)G1(s)
C(s)=C1(s)G2(s) =R(s)G(s)1G2(s) C(s) =G (s)G (s) 等效 G(s)= R 2 (s ) 1 n G(s) =ΠGi (s) n个环节串联 i=1
第四节 控制系统的结构图及其等效变换
(2) 并联
两个环节的并联等效变换:
第四节 控制系统的结构图及其等效变换
(4)综合点和引出点的移动
1) 综合点之间或引出点之间的位置交换
综合点之间交换: 不改变数学关系 引出点之间的交换: b 不改变数学关系
a
±
c b a aa b c
aa ± cb ± bc ± ± ± a a a
综合点与引出点之间不能交换!
第四节 控制系统的结构图及其等效变换
U ( s ) – U ( s ) r c 系统动态结构图由四种基本符号构成: Ur(s)=RI(s)+Uc(s) =I(s)
第四节 控制系统的结构图及其等效变换
绘制动态结构图的一般步骤:
(1)确定系统中各元件或环节的传递函数。 (2)绘出各环节的方框,方框中标出其传 递函数、输入量和输出量。 (3)根据信号在系统中的流向,依次将各 方框连接起来。
第二章 传递函数-梅逊公式
2.3 传递函数与系统动态结构图
2.3.1 传递函数的定义
设系统的标准微分方程为
an
dnc(t) dt n
a n1
dn1c(t) dt n 1
……
a1
dc(t) dt
a0c(t)
bm
dmr(t) dt m
bm1
d m 1r ( t ) dt m1
……
b1
dr(t) dt
点
上图所示的是
G(s)
(s
(s 1)(s 2) 3)(s 2 2s
2)
的零、极点分布图。
2.2 传递函数
比
比例环节(无惯性环节): c(t)=kr(t)
例
传递函数:G(S)=C(S)/R(S)=k
c(t)
环
阶跃响应:R(S)=1/S
r(t)
节
C(S)=kR(S)=k/S C(t)=k
0
方框图: R(S) k/s C(S)
3
传
递
积分调节器:
C
在A点列方程可得:
函 数
Ur(t)
R
i2
i1
A
Uc(t) i2=i1, i1=Uc(t)/R Uc(t)=1/C∫i2(t)dt=1/(RC)∫Uc(t)dt
设RC=T(积分时间常数),则有:Uc(t)=1/T∫Uc(t)dt
拉氏变换后为:Uc(S)=1/(TS)Uc(S)
5)传递函数具有正、负号(输入量和输出量的变化方向)。
6)传递函数的单位是输出量的单位与输入量的单位之比。
m
(s z j )
7)传递函数可以写成
G(s)
Kg
j1 n
控制工程(自动控制)第六课 梅逊公式及系统传递函数
梅逊公式:
P
P
k 1 k
n
k
式中:P—系统总传递函数; n —前向通路总数; Pk—第k条前向通路的传递函数(通路增 益); —流图特征式;
1 La Lb Lc Ld Le L f
L —所有不同回路的传递函数之和;
a
L L —每两个互不接触回路传递函数乘积之和; L L L —每三个互不接触回路传递函数乘积之和; k—与第k条前向通路对应的余因子式,等于流
b c
d e f
图特征式中去掉与第k条前向通路接触的所有回路 的回路增益后的余项式。
注意:
1. 结构图与信号流图的转换。 方块与增益; 信号引出点、相加点与节点; 信号线与通道。 2.信号流图的回路和前向通道。 回路支数和不接触回路 前向通道确定
3.
信号流图的节点的合并
五、 闭环系统的传递函数
(1)时域测定法:施加阶跃信号,绘制输出量的响 应曲线; (2)频域测定法:施加不同频率的正弦波,测出输 入信号和输出信号之间的幅值比和相位差; (3)统计相关法:施加某种随机信号,根据被控对 象各参数的变化,采用统计相关法确定动态特性。
要求:
掌握控制系统数学模型――传递函数的表示方法
习题:
简明教程 2-14 (第73页 2-20 )
名词术语:
(1)源节点(输入节点):只有输出没有输入,一 般代表系统的输入变量。 (2)阱节点(输出节点):只有输入没有输出,一 般代表系统的输出变量。
(3)混合节点:既有输入又有输出的节点。 (4)前向通路:信号从输入节点到输出节点的传递 中,每个节点只通过一次的通路。 前向通路总增益:前向通路上各支路增益的乘 积,一般用pk表示。 (5)回路:起点与终点在同一节点,且信号通过每 一节点不多于一次的闭合通路。 回路增益:回路中所有支路增益的乘积,用La 表示。 (6)不接触回路:回路之间没有公共节点。
梅逊公式简单讲解
• 前向通路—从输入节点到输出节点的通路。前向通路中通过任何节点 不多于一次。
• 开通路—如果通路与任一节点相遇不多于一次,则称为开通路。
• 闭通路(回路或环)—如果通路的终点就是通路的起点,而且与其余 节点相遇不多于一次,则称为闭通路、回路、环路或简称为环。
• La —所有不同回路的增益之和
• Lb Lc —所有两两互不接触回路的增益乘积之和
• Ld Le Lf —所有三个都互不接触回路的增益乘积之和
• k —在Δ中,将与第k条前向通路相接触的回路所在项去掉后 余下的部分
术语解释
• 节点—表示系统中的变量或信号的点称为节点。 • 支路—连接两节点间的有向线段称为支路。支路增益就是两节点间的增益。 • 输入节点(源点)—仅有输出支路的节点称为输入节点,一般为系统的输入。 • 输出节点(阱点)—仅有输入支路的节点称为输出节点,一般为系统的输出。 • 混合节点—既有输入支路又有输出支路的节点称为混合节点。
• Ld Le Lf 所有三个都互不接触回路的增益乘积之和
• k —在Δ中,将与第k条前向通路相接触的回路所在项去掉后
余下的部分 • 通路—从任一节点出发沿着支路箭头方向连续地穿过各相连支
路到达另一节点的路径称为通路
例2 求Cce
Make Presentation much more fun
• 不接触环路—环路之间没有公共节点。
• 前向通路—从输入节点到输出节点的通路。前向通路中通过任 何节点不多于一次。
• Gk —从输入节点到输出节点的第k条前向通路增益
• Δ —特征式 且 1 La Lb Lc Ld LeL f
梅逊公式及其应用
P2 kgi 2 1 cd
• 将以上结果代入式公式,可得总传输
P
P P
11
22
1L L L L L L
a
bc
de f
1
2
3
acegi kgi(1 cd )
1 (ab cd ef gh ij kfdb) (abef abgh abij cdgh cdij efij kfdbij) abefij
=每两个互不接触回路增益乘积之和
2
L LL de f
=每三个互不接触回路增益乘积之和
3
Δk=信号流图中除去与第k条前向通道Pk相接触的支路和节点后余下的信 号流图的特征式,称为Pk的余因式。
例2-4 将图所示的系统方块图化为信号流程图并
将其简化。求系统传递函数
C(s)
R(s)
H2
R
+- ++
G1
+-
x7 C(s) 图2-13 信号流程图
解:• 此系统有六个回环,即ab、cd、ef、ij和kfdb,因此 L ab cd ef gh ij kfdb
a 1
• 两个互不接触的回环有七种组合,即abef、abgh、 abij、cdgh、cdij、efij及kfdbij,所以
L L abef abgh abij cdgh cdij efij kfdbij bc 2
G2
C G3
H1
图2-11 多回路系统
解:• 首先将图2-11方块图化为图2-12的信号流程图
-H2
1 R( s)
1
Байду номын сангаасG1
G2
G3
H1 -1
1
C( s)
(第04讲) 第二章 方框图与梅逊公式
3
(3)引出点(分支点、测量点)Branch Point 表示信号测量或引出的位置
R(s)
G1 (s)
P(s) G2 (s)
C(s)
P(s)
图2-20 引出点示意图
注意:同一位置引出的信号 大小和性质完全一样。
06-7-20
控制系统系统的动态数学模型
4
2.5.2 方块图的简化——等效变换
为了由系统的方块图方便地写出它的传递函数,通常需要 对方块图进行等效变换。方块图的等效变换必须遵守一个原则, 即变换前后各变量之间的传递函数保持不变。在控制系统中, 任何复杂系统主要由各个环节的方块经串联、并联和反馈三种 基本形式连接而成。三种基本形式的等效法则一定要掌握。 (1)串联连接
06-7-20 控制系统系统的动态数学模型 9
B( s ) H ( s ) X o ( s ) E ( s ) X i ( s ) B( s ) X i ( s ) H ( s ) X o ( s ) X o (s) G(s) E (s) G(s) [ X i (s) H (s) X o (s)]
X o ( s) G( s) X i (s) 1 G( s) H ( s)
对于具有负反馈环节的闭环系统的传递函数,分子是 前向通道的传递函数,分母是1加上前向通道的传递函数与 反馈通道的传递函数的乘积。 同理,对于具有正反馈环节的闭环系统的传递函数,分 子是前向通道的传递函数,分母是1减前向通道的传递函数 与反馈通道的传递函数的乘积。
17
R1 Ur (s)
1
C2 s
1 R2 1 C2 s
2
-
1 R1
1 C1s
Uc (s)
简化提示: •引出点A后移
自动控制原理 第六课 动态结构图 梅逊公式
§2-4 传递函数定义控制系统的传递函数为 在零初始条件下 ,输出信号的拉氏变换与输入 信号的拉氏变换之比。
表示为Y ( s ) bm s m + bm -1 s m -1 + ... + b1 s + b0 G( s) = = n , n ³ m (2-95) n -1 U (s) s + a n -1 s + ... + a1 s + a0系统的输出可表示为传递函数与控制输入的乘积Y ( s) = G ( s) × U ( s)(2-96)U(s)G(s)Y(s)回章首回节首12-4-3 控制系统的传递函数 1.复数阻抗U R (s) Z R ( s) = =R I R (s)(2-100)ZC ( s) =UC (s) 1 = I C ( s ) Cs(2-101)U L ( s) Z L ( s) = = Ls I L (s)回章首 回节首(2-102)22.典型环节 (1) 比例环节G(s) = Uo (s) =K Ui (s)(2) 积分环节G( s) = Uo ( s) 1 = Ui ( s) Ts(3) 微分环节U o (s) G (s) = = ts U i (s)3(4) 一阶惯性环节U o ( s) 1 G( s ) = = U i ( s) Ts + 1(5) 二阶振荡环节G( s) = U o ( s) 1 = 2 2 U i ( s ) T s + 2xTs + 1(6) 延迟环节G( s) = U o (s) = e -ts U i ( s)4画结构图时,所依据的原则是信号流通关系。
下面以实例来说明。
[例2-25] 已知两级RC网络如图2-33所示,作出该系 统的结构图。
解 设一个中间变量为电容C1 的电压Ux, 采 用复 数阻抗法顺序写出各 算子代数方程和方块图如下:回章首回节首5(1) U i ( s ) - U x ( s ) = U R1 ( s )(2) U R1 ( s ) × 1 = I ( s) R1(3) I ( s ) - I 2 ( s ) = I1 ( s )( 4) I 1 ( s ) × 1 = U x ( s ) C1 s(5) U x ( s ) - U o ( s ) = U R2 ( s )回章首回节首6(6) U R2 ( s ) × 1 = I 2 ( s ) R2 (7 ) I 2 ( s ) × 1 = U o ( s ) C2 s将各基本环节的方块按照信号流通方向连接起来 就可以得到如图2-33所示的系统方块图。
控制工程基础第二章方框图和梅逊公式第五讲
3、消去H1(s) 反馈回路
4、消去H3(s) 反馈回路
信号流程图和梅逊公式 信号流图及其术语
信号流图起源于梅逊(SS. JJ. MASON)利用图示 法来描述一个和一组线性代数方程,是由节点和支路组 成的一种信号传递网络。
例: x 2 = x1 + ex 3
x3 = ax 2 + fx 4
输出节点(阱点、汇点) 只有输入的节点,代表系统的输出变量。
混合节点 既有输入又有输出的节点。若从混合节点引出一条 具有单位增益的支路,可将混合节点变为输出节点。
通路 沿支路箭头方向穿过各相连支路的路径。
前向通路 从输入节点到输出节点通路上通过任何节点不 多于一次的通路。前向通路上各支路增益之乘 积,称前向通路总增益,一般用pk表示。
无源rc电路网络方框图的简化方框图的运算法则串联方框图变换法则求和点后移求和点前移求和点的移动引出点的移动引出点前移引出点后移由方框图求系统传递函数
六、方框图和信号流程图
方框图 系统方框图是控制系统的动态数学模型的图解形式。
可以形象直观地描述系统中各环节间的相互关系及其功 能以及信号在系统中的传递、变换过程。 注意:即使描述系统的数学关系式相同,其方框图也不 一定相同。
系统的总输出 根据线性系统的叠加原理,系统在输入xi(t)及
扰动n(t)共同作用下的总输出为:
上式表明,采用反馈控制的系统,适当选择元部件的 结构参数,可以增强系统抑制干扰的能力。
方框图的结构要素
信号线 带有箭头的直线,箭头表示信号的传递方向,
直线旁标记变量,即信号的时间函数或象函数。
信号引出点(线) 表示信号引出或测量的位置和传递方向。 同一信号线上引出的信号,其性质、大小完全一样。
传递函数梅逊公式ppt课件
将得到的系统 微分方程组进行拉 氏变换。
按照各元部件的输 入、输出,对各方程进 行一定的变换,并据此 绘出各元部件的动态结 构图。
按照系统中各变量传递顺 序,依次连接3)中得到的结 构图,系统的输入量放在左端, 输出量放在右端,即可得到系 统的动态结构图。
14
2.3 动态结构图与梅森公式
RC无源网络
进行拉氏变换得到 U (s) Kt s(s)
那么该元件的传递函数为
G(s)
U (s) (s)
Kts
7
Байду номын сангаас
微
分 环
一阶微分环节: c(t)= Tdr(t)/dt + r(t) 传递函数:G(S)=C(S)/R(S)= TS+1 方框图:
节 的
R(S)
TS+1 C(S)
5
传 比例微分调节器:
递 函 数
3)表示了特定的输出量与输入量之间的关系。
4)传递函数是复变量S的有理分式,且分子、分母多项式的各项系数 均为实数,分母多项式的次数n大于等于分子多项式的次数m。
5)传递函数具有正、负号(输入量和输出量的变化方向)。
6)传递函数的单位是输出量的单位与输入量的单位之比。
m
(s z j )
7)传递函数可以写成
环
传递函数:G(S)=C(S)/R(S)= KS T越小微分作用越强,当T0 而KT保持有限值时,方
节
方框图:
Kt
R(S)
C(S)
程变为纯微分环节了。
的
KS
传
4
递
测速发电机:
函 ω
数
表示电机单位角速度的输出电压。则测速发电 机输出电压与输入角速度之间的关系为
2-4-2信号流图及梅逊公式
果关
2.信号流图的性质
l信号流图适用于线性系统。
l支路表示一个信号对另一个信号的函数关系,信号只能沿支路上的箭头指向传递。
l在节点上可以把所有输入支路的信号叠加,并把相加后的信号送到所有的输出支路。
l具有输入和输出节点的混合节点,通过增加一个具有单位增益的支路把它作为输出节点来处理。
l对于一个给定的系统,信号流图不是唯一的,由于描述同一个系统的方程可以表示为不同的形式。
的方
一节点,
节点
小圆圈
条
=
1
4条
:系统有单个路条,两两互不接路7
求:
2.4.6 闭环系统的传递函数。
梅逊公式教学文稿
梅逊公式2.4 控制系统的方块图、信号流图与梅逊公式控制系统的方块图是系统各元件特性、系统结构和信号流向的图解表示法。
2.4.1 方块图元素(1)方块(Block Diagram ):表示输入到输出单向传输间的函数关系。
C(s)图2-14 方块图中的方块信号线方块r(t)c(t)信号线:带有箭头的直线,箭头表示信号的流向,在直线旁标记信号的时间函数或象函数。
(2)比较点(合成点、综合点)Summing Point 两个或两个以上的输入信号进行加减比较的元件。
“+”表示相加,“-”表示相减。
“+”号可省略不写。
2)2+Υ3图2-15比较点示意图注意:进行相加减的量,必须具有相同的量刚。
(3)分支点(引出点、测量点)Branch Point 表示信号测量或引出的位置图2-16分支点示意图注意:同一位置引出的信号大小和性质完全一样。
2.4.2 几个基本概念及术语R(s)N(s)打开反馈图2-17 反馈控制系统方块图(1) 前向通路传递函数 假设N(s)=0打开反馈后,输出C(s)与R(s)之比。
在图中等价于C(s)与误差E(s)之比。
)()()()()(21s G s G s G s E s C == (2) 反馈回路传递函数 Feedforward Transfer Function 假设N(s)=0 主反馈信号B(s)与输出信号C(s)之比。
)()()(s H s C s B = (3) 开环传递函数 Open-loop Transfer Function 假设N(s)=0 主反馈信号B(s)与误差信号E(s)之比。
)()()()()()()(21s H s G s H s G s G s E s B == (4) 闭环传递函数 Closed-loop Transfer Function 假设N(s)=0 输出信号C(s)与输入信号R(s)之比。
)()(1)()()(1)()()()(21s G s H s G s G s H s G s G s R s C +=+= 推导:因为)()]()()([)()()(s G s H s C s R s G s E s C -== 右边移过来整理得)()(1)()()(s G s H s G s R s C += 即开环传递函数前向通路传递函数+=+=1)()(1)()()(s G s H s G s R s C **(5) 误差传递函数 假设N(s)=0 误差信号E(s)与输入信号R(s)之比。
梅逊公式
根据结构图等效化简原则,将结构图化成简单方块,可以求得系统 的传递函数。但是化简步骤仍然需要一步一步地进行。 采用梅逊公式 (Mason)化简结构图求取系统的传递函数,只需要作 少量的计算,就可以将传递函数一次写出。所以是一种简捷方便的方 法。 梅逊公式是基于信号流图理论得出的计算公式,用于计算线图的总 传输。
回章首
回节首
3
通路:沿支路箭头方向而穿过相 连支路的途径。 如 图 中 x1x2x3x5 , x4x2x4 等。
前向通路:如果从源点到阱点的 通路上,通过任何节点不多于一次, 则该通路称为~。 如图中 x1x2x3x5x5,x1x2x4x5 x5 。
回章首
回节首
4
回路:通路的终点就是通路的起点, 并且与任何其它节点相交不多于一次 叫 ~。 如图中的x4x2x4 ,节点x5上的自回 路。 不接触回路:若一些回路没有任何 公共节点,叫~。 如图中的x4x2x4 ,节点x5上的自回 路。 自回路:回路的一种特殊情况,即 从某一节点出发只经一条支路而又终 止于同一节点所构成的回路。 如图中节点x5上的自回路。
回章首
回节首
7
3) 节点可以把所有输入支路的信 号相加(注意:是相加而不是相减), 并把总的信号传递到所有输出支 路。 如图中节点 x2=ax1+fx4 如果此反馈为负反馈,则将“-” 号表示在传输 f 上,即信号流图上 f变为-f,此时x2=ax1+(-f)x4
回章首
回节首
8
4) 对混合节点通过增加一个单位传 输(即传输等于1)的支路,可以把它 变为阱点来处理。如图中x5 。 注意:
回章首
回节首
5
前向通路传输:在前向通路中 , 各支路传输的乘积。 如图中abc和ade。 回路传输:回路中各支路传输的 乘积。 如图中的df和g。
自动控制原理03信号流图,梅逊公式
G2
R(s)
G1 H
G3 G4
C(s)
系统有:3条前向通道,2个闭合回路,0组两两互不接触回路
P1 G 1 G 3
P2 G 2 G 3
P3 G 1 G 4
1 G1H G 2 H
1
2
C (s) R (s)
G 1G 3 G 2 G 3 G 1G 4 1 G1H G 2 H
L a --所有回路的回路增益之和 L b L c --两两互不接触回路的回
路增益乘积之和
L d L e L f --三三互不接触……
Pk --第k条前向通路的总增益
k -- 第k 条前向通道的余因子式,在特征式中,将与第k条前向
通道相接触的回路除去后所剩下的部分。
2.4.2 梅逊增益公式
1 1
2 1 d
C (s) R (s)
P1 1 P2 2
abcdefg
abhfg (1 d )
1 b d f bd df bf bdf
2.4.2 梅逊增益公式
例题2:已知系统的动态结构图,求系统的传递函数
C (s) R (s)
。
解:首先进行分析
242梅逊增益公式?nkkkpsgp11?????????fedcballllll124信号流图与梅森公式?al所有回路的回路增益之和cbll?两两互不接触回路的回路增益乘积之和两两互不接触回路的回路增益乘积之和fedlll?三三互不接触??第k条前向通路的总增益kp特征式k第k条前向通道的余因子式在特征式中将与第k条前向通道相接触的回路除去后所剩下的部分
例题1:已知系统的信号流图,求系统的传递函数
梅逊公式的应用
系统信号流图及梅逊公式
②
-
1/G2(s) G2(s) H1(s)
①
H2(s) Y0 G4(s)
+
Xi(s)
+
G1(s)
+
X0(s)
-
-
-
G3(s)
③ ④
第二步、消去反馈回路①,另相加点(比较点)③前移
1/G2 H2
Xi(s)
+
G1
②
+
③
G3(1+G2H1)/G2G4
X0(s)
G2G4 /(1+G2 H1 )
P1=G1G2G3 G4G5; ; P2=G1G4G5G6; P3=G1G2G7
有4个反馈回路,其传递函数分别为:L1=−G4H1; L2=−G2G7H2; L3=−G4G5G6H2; L4=−G2G3G4G5H2; 有1个互不接触的反馈回路,即: L b L c G 4 H 1G 2 G 7 H 2
k
由梅逊公式求得系统的传递函数为:
G (s) G 1 G 2 G 3 G 4 G 5 G 1 G 4 G 5 G 6 G 1 G 2 G 7 (1 G 4 H 1 ) 1 G 4 H 1 G 2 G 7 H 2 G 4 G 5 G 6 H 2 G 2 G 3 G 4 G 5 H 2 G 4 H 1G 2 G 7 H 2
-
④
2.6
第三步、消去并联回路③和反馈回路②
系统信号流图及梅逊公式
Xi(s)
+
G1
G2G4-(1+G2H1)/G2G4
G2G4 /(1+G2 H1 + G2G4)
X0(s)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C(s)
有1组三个互不接触回路: L3 abefij
不存在四个互不接触回路: L4 0
1 L1 L2 L3
k 第k个前向通道的余子式;其值为 中除去与第k个前
向通道接触的回路后的剩余部分;
1 1 L1 L2 L3 ... 1
R(S ) E (S )
G1 G2
C (S )
R(S ) 1 E (S ) G1 C (S ) 1 C (S )
G2
信号流图是由定向线段(支路)将一些节点(变量)连接起来 组成的。支路上的传递函数称为支路增益
[几个术语]:
输入节点(源点):只有输出支路的 节点。如: R,N。
R
1
N 1 E P G Q G1 2
补充例题1
g
h b
R(s ) 1
a
c
d
1
2
3
i
4
5
l
e j6
7f
k
1 C (s )
8
9
m
Байду номын сангаас
补充例题2
R(s )
G1
1 1
G2
C (s )
3) 反馈联接:
R(s ) E (s)
G (s )
C (s )
H (s )
称为闭环传递函数
C ( s) G( s) ( s ) R( s ) 1 G ( s ) H ( s )
H (s)G2 (s)
①
R(s)
G1 ( s)
G2 ( s)
-
G3 ( s)
H ( s)G2 ( s)
C (s )
②
R(s)
G1 ( s)G2 ( s) G4 ( s)
G3 ( s ) 1 G2 ( s )G3 ( s ) H ( s )
C (s )
G3 ( s )(G1 ( s )G2 ( s ) G4 ( s )) G( s ) 1 G2 ( s )G3 ( s ) H ( s )
[例2-15]系统结构图如下,求传递函数 G ( s)
C (s) 。 R( s)
G5
R(s )
G1
G2
G3 G6 G7
G4
C (s )
补充例题
R (s )
G1
G2
Y (s )
G3
G4
G5
补充例题2
R(s )
G1
1 1
G2
C (s )
五 信号流图及梅逊公式
1 信号流图
本次课程作业
2-28(c)、(d) 2-31(b) 2-33
3 框图变换法则(化简) (等效原则)
1) 比较点交换
A B
A B
D
C
A
C
A C
D
B
2) 比较点分解
C
A B
3) 串联环节位置交换
D
A B
A B
D
C
A
G1
G2
B
A
G2
G1
B
4) 比较点前移 A
G
C
A
B
G
G G G G
G
E ( s) 1 称为误差传递函数 G E ( s ) R( s ) 1 G ( s ) H ( s )
对于给定的系统,梅逊公式中的特征式 是确定不变 的
补充题:P43 2-27
Y (s ) N (s )
R(s ) E (s )
B(s )
C (s )
G1 ( s)
H (s )
G2 ( s)
2 1 L1 L2 L3 ... 1 cd
1 2 P1 1 P2 2 acegi kgi (1 cd ) T Pk k k 1 1 L1 L2 L3 1 L1 L2 L3
A
G1
B
G2
C
A
G1
B
G2
C
B
C (s) G( s) 。 R( s)
B
[例]系统结构图如下,求传递函数
G4 (s)
R(s)
G1 ( s)
-
G2 (s)
G3 ( s)
C (s )
H (s)
比较点移动
[解]:结构图等效变换如下:
G4 (s)
R(s)
G1 ( s ) G4 ( s)
G2 (s)
-
C (s ) G3 (s)
求:GYR ( s ) Y ( s ) 和 GYN ( s ) Y ( s )
R( s )
N ( s)
补充例题
G4
R(s )
A
G1 H1
G2
G3
H2
C (s )
例2-17: R(s ) 1
a
x1
b
c e
d
g
i
1
x0
x2
x3
f
x4
h
x5
j
x6
C(s) x7
式中: 从输入节点至输出节点的总传输(即总传递函数); T
n 从输入节点到输出节点的前向通路总数; n 2
Pk 第k个前向通路的总传输;
P1 acegi
P2 kgi
1 n T Pk k k 1 R(s ) 1
H
1
C
输出节点(阱点):只有输入支路的 节点。如: C
传 输:两个节点之间的增益叫传输
混合节点:既有输入支路又有输
R 出支路的节点。如:E,P,Q 。 1
N 1 E P G Q G1 2
H
1
C
通路:沿支路箭头方向穿过 各个相连支路的路径
前向通路:从输入节点到输出节点的通路上,每个节点只通 过一次的通路称为前向通路,R->E->P->Q->C。 回 路:起点与终点重合且与任何节点相交不多于一次的通路。 如 E->P->Q->E。
回路增益:回路中各支路传递 函数的乘积,称为回路传递函 R(s) 2 数,也称为回路增益(传输) 1 1
e
a
3
g
4
b
互不接触回路:指相互间没有公共节点的回路。
f
c h
5
C(s) d
6
2 梅逊公式
用梅逊公式可不必简化信号流图而直接求得从输入节点到输出节 点之间的总传输。(即总传递函数)
1 n 其表达式为: T Pk k k 1 k
k
a
x1
b
c e
d
g
i
1
x0
x2
x3
f
x4
h
x5
j
x6
x7
C(s)
流图特征式;其计算公式为:
1 L1 L2 L3 ... (正负号间隔)
式中: L1 所有单独回路的传输之和; 有6个单独回路: L1 ab cd ef gh ij kfdb
L
2
所有两两互不接触回路传输乘积之和
有7组两两互不接触回路:
L2 abef abgh abij cdgh cdij efij kfdbij
k
三个互不接触回 路传输乘积之和
L
3
任何
R(s ) 1 x0 x1
a
b
c e
d
g
i
1
x2
x3
f
x4
h
x5
j
x6
x7
C
B
1/ G
C
A B
5) 比较点后移 A
C
B A 6) 引出点前移
C
B
G
C
B
A
7) 引出点后移
A
G
C
B
A
G
C
1/ G
B
8) 引出点前移越过比较点
B A
A
C
B
D
C
D
9) 化为单位并联
B
A
G1
C
A
G2
1 / G2
G1
C
G2
10) 化为单位反馈
A
G1 G2
C
A
1 / G2
G2
G1
C
11) 引出点交换