空间向量知识点归纳总结归纳
(完整word版)空间向量知识点总结
空间向量知识点总结1。
直线的方向向量和平面的法向量 ⑴.直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量. ⑵.平面的法向量:若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量。
⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面α的法向量为(,,)n x y z =.③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==.④根据法向量定义建立方程组00n a n b ⎧⋅=⎪⎨⋅=⎪⎩。
⑤解方程组,取其中一组解,即得平面α的法向量.(如图)2。
用向量方法判定空间中的平行关系 ⑴线线平行设直线12,l l 的方向向量分别是a b 、,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈。
即:两直线平行或重合两直线的方向向量共线。
⑵线面平行①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a u ⊥,即0a u ⋅=。
即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外②(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可。
⑶面面平行若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=. 即:两平面平行或重合两平面的法向量共线。
3。
用向量方法判定空间的垂直关系 ⑴线线垂直设直线12,l l 的方向向量分别是a b 、,则要证明12l l ⊥,只需证明a b ⊥,即0a b ⋅=。
即:两直线垂直两直线的方向向量垂直。
⑵线面垂直①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l α⊥,只需证明a ∥u ,即a u λ=。
空间向量题知识点总结
空间向量题知识点总结一、向量的表示1. 向量的定义在三维空间中,任意两个不同点P(x1,y1,z1)与Q(x2,y2,z2)之间所确定的线段PQ,我们称之为向量。
一般用字母a、b、c等表示。
2. 向量的表示在空间直角坐标系中,向量AB可用有向线段表示,并写成AB或AB。
3. 向量的模向量AB的模记作|AB|,其计算公式为|AB| = √(x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2。
4. 向量的方向向量AB的方向是指从点A到点B的方向。
5. 向量的方向角向量AB与x轴、y轴、z轴的正方向之间的夹角分别称为向量AB的方向角α、β和γ。
二、向量的加法1. 向量的加法设有两个向量A(x1,y1,z1)和B(x2,y2,z2),定义A与B的和向量C为C(x1+x2, y1+y2,z1+z2)。
2. 向量的减法设有两个向量A(x1,y1,z1)和B(x2,y2,z2),定义A与B的差向量C为C(x1-x2, y1-y2, z1-z2)。
三、向量的数量积1. 数量积的定义两个向量A(x1,y1,z1)和B(x2,y2,z2)的数量积定义为A·B = x1*x2 + y1*y2 + z1*z2。
2. 数量积的几何意义A·B = |A|*|B|*cosθ,其中θ为A与B的夹角。
3. 计算数量积A·B = x1*x2 + y1*y2 + z1*z2。
四、向量的叉积1. 叉积的定义两个向量A(x1,y1,z1)和B(x2,y2,z2)的叉积定义为A×B = (y1*z2 - y2*z1, z1*x2 - z2*x1,x1*y2 - x2*y1)。
2. 叉积的几何意义A×B = |A|*|B|*sinθ*n,其中θ为A与B的夹角,n为A、B所张平面的法向量。
3. 计算叉积A×B = (y1*z2 - y2*z1, z1*x2 - z2*x1, x1*y2 - x2*y1)。
空间向量知识点归纳总结
空间向量知识点归纳总结空间向量是高中数学中的一个重要概念,出现在向量代数、几何问题、解析几何以及线性代数等多个数学分支中。
下面是空间向量知识点的归纳总结:1.空间向量的定义:空间向量是具有大小和方向的量,它可以用有序三元数组表示,例如(a,b,c)。
2.空间向量的运算:(1)向量加法:两个向量相加得到一个新的向量,加法满足交换律和结合律。
(2)向量数乘:一个向量与一个实数相乘得到一个新的向量,数乘满足分配律。
(3)内积:两个向量的内积是一个实数,可以用数量积的公式计算。
(4)外积:两个向量的外积是一个向量,可以用矢量积的公式计算。
3.空间向量的基本性质:(1)零向量:长度为零的向量,与任何向量的加法的结果都是原向量本身。
(2)单位向量:长度为1的向量,可以用一个非零向量除以其长度得到。
(3)向量的长度:向量的长度定义为该向量的模。
(4)向量的方向:向量的方向可以用与该向量共线的单位向量表示。
4.空间向量的共线与异面:(1)两个向量共线意味着它们的方向相同或者相反。
(2)三个向量共面意味着它们位于同一个平面上。
(3)两个向量异面意味着它们不共线,且它们所在的直线与另外一个直线垂直。
5.空间向量的投影:(1)向量在一些方向上的投影是一个标量,可以用点积的公式计算。
(2)向量在一些方向上的单位向量是该方向的基向量。
(3)向量在一些方向上的分量是该方向的基向量的数乘。
6.空间向量的表示:(1)分解:一个向量可以表示为它在不同方向上的分量的和。
(2)基底:一个空间中的向量可以表示为基底向量的线性组合。
(3)坐标:一个向量可以用它在基底向量上的投影的值表示。
7.空间向量的几何意义:(1)位移向量:两点之间的位移可以用一个向量表示。
(2)向量的数量积:两个向量的数量积等于一个向量在另一个向量的方向上的投影乘以另一个向量的长度。
(3)向量的矢量积:两个向量的矢量积的大小等于这两个向量张成的平行四边形的面积,方向垂直于这两个向量所在平面。
空间向量知识点归纳总结(经典)
空间向量知识点归纳总结(经典)空间向量与⽴体⼏何知识点归纳总结⼀.知识要点。
1.空间向量的概念:在空间,我们把具有⼤⼩和⽅向的量叫做向量。
注:(1)向量⼀般⽤有向线段表⽰+同向等长的有向线段表⽰同⼀或相等的向量(2)向量具有平移不变性2.空间向量的运算。
定义:与平⾯向量运算⼀样,空间向量的加法、减法与数乘运算如下(如图)运算律:⑴加法交换律:abba⑵加法结合律:(a b) c a (b c)⑶数乘分配律:(a b) a b运算法则:三⾓形法则、平⾏四边形法则、平⾏六⾯体法则3.共线向量。
(1)如果表⽰空间向量的有向线段所在的直线平⾏或重合,那么这些向量也叫做共线向量或平⾏向量,a平⾏于b,记作a // b。
(2)共线向量定理:空间任意两个向量a、b (b⼯0 ), a//b存在实数⼊使a = 7b (3)三点共线:A、B、C三点共线<=>AB AC-------------------- 9- 4 *<=> OC xOA yOB(其中( y 1)- a(4)与a共线的单位向量为4.共⾯向量(1)定义:⼀般地,能平移到同⼀平⾯内的向量叫做共⾯向量。
说明:空间任意的两向量都是共⾯的。
(2)共⾯向量定理:如果两个向量a,b不共线,p与向量a,b共⾯的条件是存在实数r r rx, y 使p xa yb。
------ ------------- ---- p- ------- *■(3)四点共⾯:若A、B、c、P四点共⾯<=>AP xAB yAC--------- --------------------- ----------------------- ?-------------------<=>OP xOA yOB zOC(其中x y z 1) r r r r5.空间向量基本定理:如果三个向量a,b,c不共⾯,那么对空间任⼀向量p,存r r ,r rMBgo UBAvbraMBmA uOA JmB ⼭ora rb ra在⼀个唯⼀的有序实数组x, y, z,使p xa yb zc。
空间向量知识点归纳总结
空间向量知识点归纳总结知识要点;1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量;注:1向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量;2空间的两个向量可用同一平面内的两条有向线段来表示;2. 空间向量的运算;定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下如图;OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+ ⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(3. 共线向量;1如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a//;当我们说向量a 、b 共线或a b a b a b b 0 a b a b共面向量 1定义:一般地,能平移到同一平面内的向量叫做共面向量;说明:空间任意的两向量都是共面的;2共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+;5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++;若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底;推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++;6. 空间向量的直角坐标系:1空间直角坐标系中的坐标:在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使zk yi xi OA ++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标;2若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k 表示;3空间向量的直角坐标运算律:①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈,112233a b a b a b a b ⋅=++,112233//,,()a b a b a b a b R λλλλ⇔===∈,1122330a b a b a b a b ⊥⇔++=;②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---;一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标;4模长公式:若123(,,)a a a a =,123(,,)b b b b =,则21||a a a a =⋅=+21||b b b b =⋅=+5夹角公式:21cos ||||a ba b a b a ⋅⋅==⋅+6两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2||(AB AB ==,或,A B d = 7. 空间向量的数量积;1空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤,显然有,,a b b a <>=<>;若,2a b π<>=,则称a 与b 互相垂直,记作:a b ⊥;2向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a ;3向量的数量积:已知向量,a b ,则||||cos ,a b a b ⋅⋅<>叫做,a b 的数量积,记作a b ⋅,即a b ⋅=||||cos ,a b a b ⋅⋅<>;4空间向量数量积的性质:①||cos ,a e a a e ⋅=<>;②0a b a b ⊥⇔⋅=;③2||a a a =⋅;5空间向量数量积运算律:①()()()a b a b a b λλλ⋅=⋅=⋅;②a b b a ⋅=⋅交换律;③()a b c a b a c ⋅+=⋅+⋅分配律;6:空间向量的坐标运算:1.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则1 a +b =112233(,,)a b a b a b +++;2 a -b =112233(,,)a b a b a b ---;3λa =123(,,)a a a λλλ λ∈R ; 4 a ·b =112233a b a b a b ++;2.设A 111(,,)x y z ,B 222(,,)x y z ,则AB OB OA =-= 212121(,,)x x y y z z ---.3、设111(,,)a x y z =,222(,,)b x y z =,则a b ⇔(0)a b b λ=≠; a b ⊥⇔0a b ⋅=⇔1212120x x y y z z ++=.4.夹角公式 设a =123(,,)a a a ,b =123(,,)b b b ,则112233222222123123cos ,a b a b a b a b a a ab b b++<>=++++.5.异面直线所成角cos |cos ,|a b θ==121212222222111222||||||||x x y y z z a b a b x y z x y z ++⋅=⋅++⋅++.6.平面外一点p 到平面α的距离已知AB 为平面α的一条斜线,n 为平面α的一个法向量,A 到平面α的距离为:||||AB n d n •=典型例题例1. 已知平行六面体ABCD -D C B A '''',化简下列向量表达式,标出化简结果的向量;⑴AB BC +; ⑵AB AD AA '++;⑶12AB AD CC '++; ⑷1()3AB AD AA '++;例2. 对空间任一点O 和不共线的三点,,A B C ,问满足向量式:OP xOA yOB zOC =++其中1x y z ++=的四点,,,P A B C 是否共面例 3. 已知空间四边形OABC ,其对角线,OB AC ,,M N 分别是对边,OA BC 的中点,点G 在线段MN 上,且2MG GN =,用基底向量,,OA OB OC 表示向量OG ;BAαnGMC'B'A'D'DABC例 4. 如图,在空间四边形OABC中,8OA =,6AB =,4AC =,5BC =,45OAC ∠=,60OAB ∠=,求OA 与BC 的夹角的余弦值;说明:由图形知向量的夹角易出错,如,135OA AC <>=易错写成,45OA AC <>=,切记例 5. 长方体1111ABCD A B C D -中,4AB BC ==,E 为11AC 与11B D 的交点,F 为1BC 与1B C 的交点,又AF BE ⊥,求长方体的高1BB ;空间向量与立体几何练习题一、选择题1.如图,棱长为2的正方体1111ABCD A B C D -在空间直角坐标系中,若,E F 分别是1,BC DD 中点,则EF 的坐标为A.(1,2,1)- B (1,2,1)--C.(1,2,1)--D.(1,2,1)--2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是A .1715 B .21 C .178 D .23 yxzFE C 1D 1C D(O)B 1A 1AB图OAB C3.在四棱锥P ABCD -中,底面ABCD 是正方形,E 为PD 中点,若PA a =,PB b =,PC c =,则BE =A.111222a b c -+ B 111222a b c -- C.131222a b c -+ D.113222a b c -+ 二、填空题4.若点(1,2,3)A ,(3,2,7)B -,且0AC BC +=,则点C 的坐标为______.5.在正方体1111ABCD A B C D -中,直线AD 与平面11A BC 夹角的余弦值为_____.三、解答题1、在正四棱柱ABCD-A 1B 1C 1D 1中, AB 1与底面ABCD 所成的角为4π, 1求证11AB C BD ⊥面2求二面角1B AC B --的正切值 2.在三棱锥P ABC -中,3AB AC ==4AP =,PA ABC ⊥面,90BAC ∠=︒, D 是PA 中点,点E 在BC 上,且2BE CE =,1求证:AC BD ⊥;2求直线DE 与PC 夹角θ的余弦值;3求点A 到平面BDE 的距离d 的值.3.在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD =90°,AD ∥BC ,AB =BC =a ,AD =2a ,且PA ⊥底面ABCD ,PD 与底面成30°角. 1若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ;DACBPE图2求异面直线AE与CD所成角的余弦值.4、已知棱长为1的正方体A C1,E、F分别是B1C1、C1D的中点.1求证:E、F、D、B共面;2求点A1到平面的B DEF的距离;3求直线A1D与平面B DEF所成的角.5、已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点E 为棱AB 的中点,求: ⅠD 1E 与平面BC 1D 所成角的大小;Ⅱ二面角D -BC 1-C 的大小;模拟试题1. 已知空间四边形ABCD ,连结,AC BD ,设,M G 分别是,BC CD 的中点,化简下列各表达式,并标出化简结果向量:1AB BC CD ++; 21()2AB BD BC ++;31()2AG AB AC -+;2. 已知平行四边形ABCD ,从平面AC 外一点O 引向量;,,,OE kOA OF kOB OG kOC OH kOD ====;1求证:四点,,,E F G H 共面;2平面AC //平面EG ;3. 如图正方体1111ABCD A B C D -中,11111114B E D F A B ==, 求1BE 与1DF 所成角的余弦;4. 已知空间三点A0,2,3,B -2,1,6,C1,-1,5;⑴求以向量,AB AC 为一组邻边的平行四边形的面积S ;⑵若向量a 分别与向量,AB AC 垂直,且|a |=3,求向量a 的坐标;5.已知平行六面体ABCD A B C D ''''-中,4,3,5,90AB AD AA BAD '===∠=,60BAA DAA ''∠=∠=,求AC '的长;参考答案1. 解:如图,1AB BC CD AC CD AD++=+=;2111()222AB BD BC AB BC BD ++=++; AB BM MG AG=++=;31()2AG AB AC AG AM MG -+=-=;2. 解:1证明:∵四边形ABCD是平行四边形,∴AC AB AD=+,∵EG OG OE=-,∴,,,E F G H共面;2解:∵()EF OF OE k OB OA k AB=-=-=⋅,又∵EG k AC=⋅,∴//,//EF AB EG AC;所以,平面//AC平面EG;3.解:不妨设正方体棱长为1,建立空间直角坐标系O xyz-,则(1,1,0)B,13 (1,,1)4E,(0,0,0)D,11 (0,,1)4F,∴11(0,,1)4BE =-,11(0,,1)4DF =, ∴11174BE DF ==, 11111500()114416BE DF ⋅=⨯+-⨯+⨯=;111515cos ,17BE DF ==; 4. 分析:⑴1(2,1,3),(1,3,2),cos 2||||AB AC AB AC BAC AB AC ⋅=--=-∴∠== ∴∠BAC =60°,||||sin 6073S AB AC ∴==⑵设a =x,y,z,则230,a AB x y z ⊥⇒--+= 解得x =y =z =1或x =y =z =-1,∴a =1,1,1或a =-1,-1,-1;5. 解:22||()AC AB AD AA ''=++所以,||85AC '=。
空间向量的知识点归纳的总结
精彩文档
实用标准文案
( 5)空间向量数量积运算律:
① ( a) b (a b) a ( b) 。② a b b a (交换律)。
③ a (b c) a b a c (分配律)。
( 6):空间向量的坐标运算: 1. 向量的直角坐标运算
设 a = (a1, a2, a3 ) , b = (b1,b2, b3 ) 则 (1) a + b = (a1 b1, a2 b2, a3 b3 ) ; (2) (3) λ a = ( a1, a2 , a3 ) ( λ ∈ R); (4)
( 3)向量的数量积:已知向量 a, b ,则 | a | | b | cos a,b 叫做 a, b 的数量积,记
作 a b ,即 a b |a| |b | cos a,b 。
( 4)空间向量数量积的性质:
① a e | a | cos a, e 。② a b
a b 0 。③ | a |2 a a 。
的坐标。
( 4)模长公式:若 a (a1,a2 , a3) , b (b1,b2, b3 ) ,
则|a| a a
2
2
2
a1 a2 a3 , | b | b b
2
2
2
b1 b2 b3
( 5)夹角公式: cos a b
ab |a| |b|
a1b1 a2 b2 a3b3
2
2
2
2
2
a1 a2 a3 b1 b2
a b a1b1 a2b2 a3b3 ,
a // b a1 b1, a2 b2, a3 b3 ( R) ,
a b a1b1 a2b2 a3b3 0 。
②若 A( x1, y1, z1) , B( x2 , y2, z2 ) ,则 AB ( x2 x1, y2 y1, z2 z1) 。
高中向量空间知识点归纳总结
高中向量空间知识点归纳总结1. 向量的定义与基本性质- 向量的概念:向量是具有大小和方向的量,用箭头表示。
- 向量的表示:可以使用坐标表示,如二维向量可以表示为 (x, y)。
- 零向量:所有分量为0的向量,用0表示。
- 向量的相等:两个向量的对应分量相等。
- 向量的加法:向量的相加结果与分量的相加结果相同,即 (x1 + x2, y1 + y2)。
- 向量的数乘:向量的每个分量都乘以相同的数,即 k(x, y) = (kx, ky)。
2. 向量的数量积与向量的夹角- 向量的数量积:向量A和向量B的数量积,记作A·B或AB,定义为|A||B|cosθ,其中θ为A和B的夹角。
- 数量积的性质:A·B = B·A,A·A = |A|^2,A·(B + C) = A·B + A·C。
- 向量的夹角:两个非零向量A和B的夹角θ满足 -π ≤ θ ≤ π。
- 向量的垂直与平行:若A·B = 0,则A和B垂直;若A·B ≠ 0,则A和B平行。
3. 向量的叉积与向量的夹角- 向量的叉积:向量A和向量B的叉积,记作A×B,表示一个新的向量,其方向垂直于A和B所在的平面。
- 叉积的模长:|A×B| = |A||B|sinθ,其中θ为A和B的夹角。
- 叉积的性质:A×B = -B×A,A×(kB) = k(A×B),A×B = 0当且仅当A和B平行。
- 向量的混合积:对于三个向量A、B和C,定义A·(B×C),表示一个数,用A、B、C所张成的平行六面体的有向体积。
4. 平面向量的运算与表示- 平面向量的加法:将两个向量的对应分量相加即可。
- 平面向量的减法:将两个向量的对应分量相减。
- 平面向量的数乘:将一个向量的每个分量都乘以相同的数即可。
空间向量相关知识点总结
空间向量相关知识点总结一、空间向量的定义和基本概念1. 空间向量的定义空间向量是指在三维空间中的一种特殊的向量,它可以用有向线段表示,也可以用坐标表示。
空间向量具有大小和方向,是空间中的一个几何概念。
2. 空间向量的基本概念(1)长度:空间向量的长度也称为模,它表示向量的大小,一般用|AB|表示,其中A和B分别表示向量的起点和终点。
(2)方向:空间向量的方向是指向量的指向,可以用一组坐标表示,也可以用夹角表示。
(3)共线:如果两个向量的方向相同或者相反,则它们是共线的。
(4)共面:如果三个向量在同一个平面内,则它们是共面的。
二、空间向量的运算1. 空间向量的加减法(1)几何法:向量的加法就是将两个向量的起点相接,然后将两个向量的终点相连,新的向量就是两个向量的和向量;向量的减法就是将减数的起点和被减数的终点相接,然后将减数的终点和被减数的起点相连,新的向量就是两个向量的差向量。
(2)坐标法:向量的加减法也可以用坐标表示,对应坐标相加或者相减即可。
2. 数乘向量的数乘即将向量与一个常数相乘,结果是一个新的向量,其大小是原向量的模与常数的乘积,方向与原向量的方向一致(如果是负数,则方向相反)。
3. 空间向量的数量积和向量积(1)数量积:也称为点积或内积,即将两个向量的对应坐标相乘再相加,结果是一个标量。
(2)向量积:也称为叉积或外积,即将两个向量的叉乘结果是一个新的向量,其大小是原向量所构成的平行四边形的面积,方向垂直于原向量所构成的平面。
三、空间向量的几何应用1. 向量的方向余弦(1)定义:设向量a=(x, y, z),则a的方向余弦分别为l=x/|a|,m=y/|a|,n=z/|a|,它们互为方向余弦。
(2)性质:方向余弦l、m、n满足l²+m²+n²=1。
(3)应用:方向余弦可用于求向量的夹角、判断向量的共线性等。
2. 向量的投影(1)定义:设向量a和b不共线,a在b上的投影为向量a在b方向上的分量,记为prj_b a。
空间向量几何知识点总结
空间向量几何知识点总结1. 空间向量的定义与表示空间向量是指具有大小和方向的量,通常用有向线段来表示。
在三维空间中,一个向量可以表示为\[ \mathbf{a} = (x, y, z) \],其中(x, y, z)称为向量的坐标,表示向量的末端在三维坐标系中的位置。
向量的表示还可以用分量表示法和向量的坐标表示法。
在分量表示法下,一个向量可以表示为\[ \mathbf{a} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \],其中\( \mathbf{i},\mathbf{j}, \mathbf{k} \)分别是三维空间中的单位向量。
这样,一般来说,一个向量的分量有蓝量、红量、绿量等三个分量构成。
2. 空间向量的运算空间向量有加法、数量乘法和数量除法的运算。
加法:设有两个向量\[ \mathbf{a} = (x_1, y_1, z_1) \],\[ \mathbf{b} = (x_2, y_2, z_2) \],则这两个向量的和为\[ \mathbf{a} + \mathbf{b} = (x_1 + x_2, y_1 + y_2, z_1 + z_2) \]。
数量乘法:设有一个向量\[ \mathbf{a} = (x, y, z) \]和一个实数\( k \),则数量乘积为\[ k\mathbf{a} = (kx, ky, kz) \]。
数量除法:设有一个向量\[ \mathbf{a} = (x, y, z) \]和一个实数\( k \),\( k \ne 0 \),则数量除积为\[ \frac{1}{k}\mathbf{a} = \left( \frac{x}{k}, \frac{y}{k}, \frac{z}{k} \right) \]。
3. 空间向量的性质空间向量有以下几个重要的性质:(1) 零向量:零向量的坐标为(0, 0, 0),它是唯一的。
对任意一个向量\( \mathbf{a} = (x, y, z) \)有\[ \mathbf{a} + \mathbf{0} = \mathbf{a} \]。
空间向量(知识点梳理)
-@>% )一空间向量的概念1.空间向量的有关概念及线性运算(1)空间向量的定义:在空间内具有大小和方向的量叫作空间向量.(2)空间向量的表示:空间向量可用有向线段来表示.(3)零向量:起点与终点重合的向量叫作零向量.(4)空间向量的模(或长度):表示空间向量的有向线段的长度叫作向量的模(或长度).(5)共线向量(或平行向量):基线互相平行或重合的向量叫作共线向量(或平行向量).(6)共面向量:向量所在的直线与平面平行或在平面内,称向量与平面平行,平行于同一平面的向量叫作共面向量.(7)空间向量的加法㊁减法㊁数乘向量运算的定义㊁92.空间向量的有关定理(1)共线向量定理:对空间向量aң,bң(bңʂ0ң),aңʊbң的充要条件是存在实数k,使aң=k bң.推论:①对于空间任一点O,点P在直线A B上的充要条件是存在实数t,使O Pң=(1-t)O Aң+t O Bң或O Pң=xO Aң+y O Bң(其中x+y=1).②如果l为经过已知点A且平行于已知非零向量aң的直线,那么对任一点O,点P在直线l上的充要条件是存在实数t,满足关系式O Pң=O Aң+t aң,该方程称为直线方程的向量表达式.(2)共面向量定理:如果两个向量aң,bң不共线,则向量cң与向量aң,bң共面的充要条件是存在唯一的一对实数x,y,使cң=x aң+y bң.推论:空间一点P位于平面A B C内的充要条件是:存在有序实数对x,y,使C Pң=xC Aң+y C Bң,或对空间任一定点O,有O Pң=O Cң+xC Aң+y C Bң,该式称为平面C A B的向量表示式.(3)空间向量分解定理:如果三个向量aң,bң,cң不共面,那么对于空间任意一个向量pң,存在唯一的有序实数组x,y,z,使pң=x aң+y bң+z cң.其中不共面的三个向量aң,bң,cң叫作空间的一个基底,每一个向量aң,bң,cң叫8作基向量.3.空间向量的数量积(1)两个向量的夹角:对于两个非零向量aң,bң,在空间任取一点O,作O Aң=aң,O Bң=bң,则øA O B叫作向量aң,bң的夹角,记作<aң,bң>.注意:两个向量的夹角的取值范围是:0ɤ<aң,bң>ɤπ.(2)两个向量的数量积的定义:aң㊃bң=|aң||bң|㊃c o s<aң,bң>.二空间向量的坐标运算若向量aң=(a1,a2,a3),bң=(b1,b2,b3),则有:(1)aң+bң=(a1+b1,a2+b2,a3+b3);(2)aң-bң=(a1-b1,a2-b2,a3-b3);(3)λaң=(λa1,λa2,λa3);(4)aң㊃bң=a1b1+a2b2+a3b3;(5)距离公式:|aң|=aң2=a21+a22+a23;(6)夹角公式:c o s<aң,bң>=a1b1+a2b2+a3b3a21+a22+a23㊃b21+b22+b23;9(7)aңʊbң(bңʂ0ң)⇔a1=λb1,a2=λb2,a3=λb3(λɪR)或aңʊbң(bң与三条坐标轴都不平行)⇔a1b1=a2b2=a3b3;(8)aңʅbң⇔a1b1+a2b2+a3b3=0.三利用空间向量证明空间中的位置关系1.直线的方向向量与平面的法向量(1)直线的方向向量:基线和直线平行的向量叫作这条直线的方向向量.(2)平面的法向量:基线和平面垂直的向量叫作这个平面的法向量.2.利用空间向量证明空间中的位置关系(1)证明直线与直线平行的方法是:若直线l1和l2的方向向量分别为vң1和vң2,则l1ʊl2⇔vң1ʊvң2.(2)证明直线与平面平行的方法有两种:若直线l 的方向向量为vң,平面α内的两个不共线向量是vң1和vң2,平面α的法向量为nң,则有:①lʊα⇔存在实数x,y,使vң=x vң1+y vң2;②lʊα⇔vңʅnң.(3)证明平面与平面平行的方法是将其转化为直线与直线平行或直线与平面平行,然后利用向量方法证明.也可以用如下方法:若平面α和β的法向量分别为nң1和0010 n ң2,则αʊβ⇔n ң1ʊn ң2.(4)证明直线与直线垂直的方法是:若直线l 1和l 2的方向向量分别为v ң1和v ң2,则l 1ʅl 2⇔v ң1ʅv ң2.(5)证明直线与平面垂直的方法是:若直线l 的方向向量为v ң,平面α的法向量为n ң,则l ʅα⇔v ңʊn ң.(6)证明平面与平面垂直的方法是:若平面α和β的法向量分别为n ң1和n ң2,则αʅβ⇔n ң1ʅn ң2.四利用空间向量求空间角1.有关角的概念(1)空间角主要包括两条异面直线所成的角㊁直线与平面所成的角㊁二面角.(2)斜线与平面所成的角:平面的一条斜线和它在这个平面内的射影的夹角叫作斜线和平面所成的角.规定:若一条直线与一个平面平行或在平面内,则这条直线和平面所成的角为0;若一条直线与一个平面垂直,则这条直线和平面所成的角为π2.因此,斜线和平面所成的角的范围是0,π2();直线和平面所成的角的范围是0,π2[].(3)二面角的定义:从一条直线出发的两个半平面二面角的平面角:在二面角α-l-β的棱l上任取一点O,在两个半平面内分别作射线O Aʅl,O Bʅl,则øA O B叫作二面角α-l-β的平面角.直二面角:平面角是直角的二面角叫作直二面角,互相垂直的两个平面相交所形成的二面角就是直二面角.二面角的取值范围是[0,π].(4)最小角原理:斜线和平面所成的角,是斜线和这个平面所有直线所成角中的最小的角.(5)从角的顶点出发的一条直线,如果它和这个角的两条边所成的角相等,那么它在这个角所在平面内的射影是这个角的平分线.这个结论常用于确定一条直线在一个平面内的射影.(6)利用射影面积公式:S'=S㊃c o sθ,也可以求一些二面角的大小.2.利用空间向量求空间角的方法(1)若异面直线l1和l2的方向向量分别为vң1和vң2,它们所成的角为θ,则c o sθ=|c o s<vң1,vң2>|.(2)利用空间向量求直线与平面所成的角,可以有两种办法:一是分别求出直线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补02(3)利用空间向量方法求二面角,也有两种办法:一是分别在二面角的两个面内找到一个与棱垂直且从垂足出发的两个向量,则这两个向量的夹角的大小就是二面角的平面角的大小;二是通过平面的法向量来求:设二面角的两个面的法向量分别为nң1和nң2,则二面角的大小等于<nң1,nң2>(或π-<nң1,nң2>).五利用空间向量求点到平面的距离1.定义一个点到它在一个平面内的正射影的距离叫作这个点到平面的距离.2.求法一是根据定义,按照作(或找) 证 求的步骤求解;二是利用空间向量,首先求出平面的单位法向量nң0,再任意找一个从该点出发的平面的斜线段对应的向量vң,则点到平面的距离为d=|nң0㊃vң|.10。
空间向量知识点归纳总结
空间向量知识点归纳总结空间向量是代数矢量的一种推广,它在三维空间中表示具有大小和方向的物理量。
在学习空间向量时,需要了解以下几个方面的内容:一、空间向量的表示1.平行四边形法则和三角形法则:空间向量可以用平行四边形法则或者三角形法则进行表示。
2.分解和合成:空间向量可以通过分解成两个或多个分量向量,或者合成两个或多个向量得到。
二、空间向量的基本运算1.加法:两个空间向量相加的结果是一个新的空间向量。
向量相加满足交换律和结合律。
2.减法:可以将减法转化为加法来处理。
即将减法转化为加上一个相反向量。
3.数乘:空间向量与一个实数相乘,结果是一个新的空间向量。
三、空间向量的数学性质1.零向量:长度为0的向量称为零向量。
零向量与其他向量的加法运算结果均为其本身。
2.负向量:与一个向量大小相等,方向相反的向量称为其负向量。
3.平行向量和共线向量:如果两个向量的方向相同或者相反,则称这两个向量平行。
如果两个向量共线,则它们是平行的特殊情况。
4.零向量的唯一性:零向量是唯一的,任何两个非零向量的和不可能是零向量。
5.向量共点的充分必要条件:三个向量共点的充分必要条件是其中两个向量的线性组合等于第三个向量。
四、空间向量的数量乘积1.内积(点积):两个向量的点积是一个实数,定义为两个向量的模的乘积与其夹角的余弦的乘积。
2.内积的性质:内积具有交换律、结合律、分配律等性质。
3.向量的模与内积之间的关系:向量的模可以通过内积来计算,即向量的模的平方等于它与自身的内积。
4.直角和斜角的判别定理:两个非零向量正交(垂直)的充分必要条件是它们的内积为零。
五、空间向量的向量乘积1.外积(叉积):两个向量的叉积是一个新的向量,其大小等于两个向量构成的平行四边形的面积,方向垂直于这个平行四边形。
2.外积的性质:外积具有反交换律和结合律,但不满足交换律和分配律。
3.向量乘积的模与夹角之间的关系:向量的模可以通过外积和向量夹角的正弦来计算。
立体几何空间向量公式知识点归纳总结
立体几何空间向量公式知识点归纳总结 1、空间向量的概念: (1)在空间,具有大小和方向的量称为空间向量.(2)向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.(3)向量的大小称为向量的模(或长度),记作.(4)模(或长度)为的向量称为零向量;模为的向量称为单位向量.(5)与向量长度相等且方向相反的向量称为的相反向量,记作.(6)方向相同且模相等的向量称为相等向量.2、空间向量的加法和减法:(1)平行四边形法则.(2)三角形法则.3、实数与空间向量的乘积是一个向量,称为向量的数乘运算.当时,与方向相同;当时,与方向相反;当时,为零向量,记为.的长度是的长度的倍.4、分配律:;结合律:.5、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.6、向量共线的充要条件:对于空间任意两个向量,,的充要条件是存在实数,使.7、平行于同一个平面的向量称为共面向量.8、向量共面定理:空间一点位于平面内的充要条件是存在有序实数对,,使;或对空间任一定点,有;或若四点,,,共面,则.AB AB 01a a a -λa a λ0λ>a λa 0λ<a λa 0λ=a λ0a λa λ()a b a b λλλ+=+()()a a λμλμ=a ()0b b ≠//a b λa b λ=P C AB x y x y C AP =AB +A O x y C OP =OA +AB +A P A B C ()1x y z C x y z OP =OA+OB+O ++=9、已知两个非零向量和,在空间任取一点,作,,则称为向量,的夹角,记作.两个向量夹角的取值范围是:.10、对于两个非零向量和,若,则向量,互相垂直,记作. 11、已知两个非零向量和,则称为,的数量积,记作.即.零向量与任何向量的数量积为.12、等于的长度与在的方向上的投影的乘积. 13、若,为非零向量,为单位向量,则有;; ,,; ; . 14、量数乘积的运算律: ; ; .15、空间向量基本定理:若三个向量,,不共面,则对空间任一向量,存在实数组,使得.16、三个向量,,不共面,则所有空间向量组成的集合是.这个集合可看作是由向量,,生成的,称为空间的一个基底,,,称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.17、设,,为有公共起点的三个两两垂直的单位向量(称它们为单位正交基底),以,,的公共起点为原点,分别以,,的方向为轴,轴,轴的正方a b O a OA =b OB =∠AOB a b ,a b 〈〉[],0,a b π〈〉∈a b ,2a b π〈〉=a b a b ⊥a b cos ,a b a b 〈〉a b a b ⋅cos ,a b a b a b ⋅=〈〉0a b ⋅a a b a cos ,b a b 〈〉a b e ()1cos ,e a a e a a e ⋅=⋅=〈〉()20a b a b ⊥⇔⋅=()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向2a a a ⋅=a a a =⋅()4cos ,a ba b a b ⋅〈〉=()5a b a b ⋅≤()1a b b a ⋅=⋅()2()()()a b a b a b λλλ⋅=⋅=⋅()3()a b c a c b c +⋅=⋅+⋅a b c p {},,x y z p xa yb zc =++a b c {},,,p p xa yb zc x y z R =++∈a b c {},,a b c a b c 1e 2e 3e O 1e 2e 3e O 1e 2e 3e x y z向建立空间直角坐标系.则对于空间任意一个向量,存在有序实数组,使得.把,,称作向量在单位正交基底,,下的坐标,记作.此时,向量的坐标是点在空间直角坐标系中的坐标.18、设,,则(1).(2).(3).(4).(5)若、为非零向量,则.(6)若,则.(7)(8)(9),,则19、空间中任意一条直线的位置可以由上一个定点以及一个定方向确定.点是直线上一点,向量表示直线的方向向量,则对于直线上的任意一点,有.20、空间中平面的位置可以由内的两条相交直线来确定.设这两条相交直线相交于点,它们的方向向量分别为,.为平面上任意一点,存在有序实数对,使得,这样点与向量,就确定了平面的位置.21、直线垂直平面,取直线的方向向量,则向量称为平面的法向量.22、若空间不重合两条直线,的方向向量分别为,,则,.23、若直线的方向向量为,平面的法向量为,且, xyz O p {},,x y z 123p xe ye ze =++x y z p 1e 2e 3e (),,p x y z =p P xyz O (),,x y z ()111,,a x y z =()222,,b x y z =()121212,,a b x x y y z z +=+++()121212,,a b x x y y z z -=---()111,,a x y z λλλλ=121212a b x x y y z z ⋅=++a b 12121200a b a b x x y y z z ⊥⇔⋅=⇔++=0b ≠121212//,,a b a b x x y y z z λλλλ⇔=⇔===21a a a x =⋅=+21cos ,x a b a b a b x ⋅〈〉==+()111,,x y z A ()222,,x y z B =(d x AB =AB =l l A A l a l l P ta AP =ααO a b P α(),x y xa yb OP =+O a b αl αl a a αa b a b ////a b a b ⇔⇔()a b R λλ=∈0a b a b a b ⊥⇔⊥⇔⋅=a a αn a α⊄则,.24、若空间不重合的两个平面,的法向量分别为,,则,.25、设异面直线,的夹角为,方向向量为,,其夹角为,则有.26、设直线的方向向量为,平面的法向量为,与所成的角为,与的夹角为,则有.27、设,是二面角的两个面,的法向量,则向量,的夹角(或其补角)就是二面角的平面角的大小.若二面角的平面角为,则.28、在直线上找一点,过定点且垂直于直线的向量为,则定点到直线的距离为.29、点是平面外一点,是平面内的一定点,为平面的一个法向量,则点到平面的距离为.////a a αα⇔0a n a n ⇔⊥⇔⋅=//a a a n a n ααλ⊥⇔⊥⇔⇔=αβa b ////a b αβ⇔⇔a b λ=0a b a b αβ⊥⇔⊥⇔⋅=a b θa b ϕcos cos a b a bθϕ⋅==l l αn l αθl n ϕsin cos l n l nθϕ⋅==1n 2n l αβ--αβ1n 2n l αβ--θ1212cos n n n n θ⋅=l P A l n A l cos ,nd n n PA⋅=PA 〈PA 〉=P αA αn αP αcos ,n d n n PA⋅=PA 〈PA 〉=。
(完整版)空间向量知识点归纳总结(经典)
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r运算律:⑴加法交换律:a b b a ϖϖϖρ+=+⑵加法结合律:)()(c b a c b a ϖϖϖϖρϖ++=++⑶数乘分配律:b a b a ϖϖϖϖλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a ρ平行于b ρ,记作b a ρϖ//。
(2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ=λb ρ。
(3)三点共线:A 、B 、C 三点共线<=>λ=<=>)1(=++=y x OB y OA x OC 其中(4)与a 共线的单位向量为a ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b r r 不共线,p r与向量,a b r r 共面的条件是存在实数,x y 使p xa yb =+r r r。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP +=<=>)1(=++++=z y x OC z OB y OA x OP其中5. 空间向量基本定理:如果三个向量,,a b c r r r不共面,那么对空间任一向量p r ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r。
空间向量高考知识点总结
空间向量高考知识点总结一、空间向量的定义与性质1. 空间向量的定义:空间中的向量是指有大小和方向的线段,可以用有向线段来表示,通常用小写字母表示。
2. 空间向量的性质:空间中的向量满足向量的相等、相反、共线和共面的性质。
3. 空间向量的运算:空间向量的加法、数量乘法、内积和叉乘等运算。
二、空间向量的坐标表示1. 空间向量的坐标表示:空间中的向量可以用坐标表示,一般用三元组表示。
2. 空间向量的坐标运算:空间向量的坐标运算包括向量相加、数量乘法和点积等运算。
三、空间向量的数量积1. 空间向量的数量积定义:两个向量的数量积又称内积,记作a·b,表示为|a||b|cosθ,其中θ为a、b之间的夹角。
2. 空间向量的数量积的性质:数量积具有对称性、分配律和数量乘法结合律等性质。
3. 空间向量的数量积的几何意义:数量积可以用来计算向量的夹角、向量的投影以及向量的长度等。
4. 空间向量的数量积的应用:数量积可以用来解决空间中的几何问题,如判断两个向量的方向、判断点的位置、计算三角形的面积等。
四、空间向量的叉积1. 空间向量的叉积定义:两个向量的叉积,记作a×b,是另一个向量c,其大小等于以a、b为邻边的平行四边形的面积,方向垂直于a和b所在的平面。
2. 空间向量的叉积的性质:叉积具有反对称性、分配律和数量乘法结合律等性质。
3. 空间向量的叉积的几何意义:叉积可以用来计算平行四边形的面积、判断向量的方向以及判断向量的共线性等。
4. 空间向量的叉积的应用:叉积可以用来计算平行四边形和平行六面体的体积、判断三角形的面积、判断四边形的面积等。
五、空间向量的应用1. 空间向量在几何中的应用:空间向量可以用来解决空间中的共线、共面、投影、距离、面积、体积等几何问题。
2. 空间向量在物理中的应用:空间向量可以用来描述力的合成、速度的方向、加速度的方向、质心的位置等物理问题。
3. 空间向量在工程中的应用:空间向量可以用来解决工程中的坐标系、平面构图、体积计算、力矩计算等问题。
空间向量知识点总结及典型题
空间向量知识点总结及典型题一、空间向量知识点总结。
(一)空间向量的概念。
1. 定义。
- 在空间中,具有大小和方向的量叫做空间向量。
2. 表示方法。
- 用有向线段表示,如→AB,其中A为起点,B为终点;也可以用字母→a,→b,→c·s表示。
3. 向量的模。
- 向量的大小叫做向量的模,对于向量→AB,其模记为|→AB|;对于向量→a,其模记为|→a|。
(二)空间向量的运算。
1. 加法。
- 三角形法则:→AB+→BC=→AC;平行四边形法则:对于不共线的向量→a 和→b,以→a和→b为邻边作平行四边形,则这两个向量之和为平行四边形的对角线所对应的向量。
- 运算律:→a+→b=→b+→a(交换律);(→a+→b)+→c=→a+(→b+→c)(结合律)。
2. 减法。
- →a-→b=→a+(-→b),其中-→b是→b的相反向量。
3. 数乘向量。
- 实数λ与向量→a的乘积λ→a仍是一个向量。
- 当λ> 0时,λ→a与→a方向相同;当λ<0时,λ→a与→a方向相反;当λ = 0时,λ→a=→0。
- 运算律:λ(μ→a)=(λμ)→a;(λ+μ)→a=λ→a+μ→a;λ(→a+→b)=λ→a+λ→b。
(三)空间向量的坐标表示。
1. 坐标定义。
- 在空间直角坐标系O - xyz中,设→i,→j,→k分别是x,y,z轴正方向上的单位向量。
对于空间向量→a,若→a=x→i+y→j+z→k,则(x,y,z)叫做向量→a的坐标,记为→a=(x,y,z)。
2. 坐标运算。
- 设→a=(x_1,y_1,z_1),→b=(x_2,y_2,z_2),则→a+→b=(x_1+x_2,y_1+y_2,z_1+z_2);→a-→b=(x_1-x_2,y_1-y_2,z_1-z_2);λ→a=(λx_1,λ y_1,λ z_1)。
- 向量的模|→a|=√(x^2)+y^{2+z^2}。
- 设A(x_1,y_1,z_1),B(x_2,y_2,z_2),则→AB=(x_2-x_1,y_2-y_1,z_2-z_1)。
高二空间向量知识点归纳总结
一.知识要点1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算:定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
A +=+=;-=-=;)(R ∈=λλ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 运算法则:三角形法则、平行四边形法则3. 共线向量: (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a //。
(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a =λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ= <=>OB y OA x OC +=,其中1=+y x (4)与a 共线的单位向量为±4. 共面向量 :(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使。
b y a x p += (3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>OC z OB y OA x OP ++=,其中1=++z y x5. 空间向量基本定理:如果三个向量,,不共面,那么对空间任一向量p ,存在一个唯一的有序实数组z y x ,,,使c z b y a x p ++=。
若三向量c b a ,,不共面,我们{}c b a ,,把叫做空间的一个基底,c b a ,,叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
高二空间向量知识点归纳总结
一.知识要点1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性 2. 空间向量的运算:定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
b a B A OA OB +=+=;b a OB OA BA -=-=;)(R a OP ∈=λλ运算律:⑴加法交换律:+=+ ⑵加法结合律:)((b ++=++⑶数乘分配律:b a b a λλλ+=+)( 运算法则:三角形法则、平行四边形法则3. 共线向量:(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a ρ平行于b ρ,记作b a //。
(2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρb ρa ρb ρAC AB λ=y x +=1=+y x ±共面向量 :(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b r r 不共线,p r与向量,a br r 共面的条件是存在实数,x y 使。
b y a x p +=(3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP += <=>z y x ++=,其中1=++z y x5. 空间向量基本定理:如果三个向量,,不共面,那么对空间任一向量,存在一个唯一的有序实数组z y x ,,,使c z b y a x p ++=。
若三向量c b a ,,不共面,我们{}c b a ,,把叫做空间的一个基底,c b a ,,叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设,,,O A B C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数,,x y z,使OC z OB y OA x OP ++=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量知识点归纳总结知识要点。
1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)空间的两个向量可用同一平面内的两条有向线段来表示。
2.空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r运算律:⑴加法交换律:a b b a ϖϖϖρ+=+⑵加法结合律:)()(c b a c b a ϖϖϖϖρϖ++=++⑶数乘分配律:b a b a ϖϖϖϖλλλ+=+)( 3.共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a ρ平行于b ρ,记作b a ρϖ//。
当我们说向量a ρ、b ρ共线(或a ρ//b ρ)时,表示a ρ、b ρ的有向线段所在的直线可能是同一直线,也可能是平行直线。
(2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ=λb ρ。
4.共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b r r 不共线,p r与向量,a b r r 共面的条件是存在实数,x y 使p xa yb =+r r r。
5.空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r。
若三向量,,a b c r r r不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r。
6.空间向量的直角坐标系:(1)空间直角坐标系中的坐标:在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。
(2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k r r r 表示。
(3)空间向量的直角坐标运算律:①若123(,,)a a a a =r ,123(,,)b b b b =r ,则112233(,,)a b a b a b a b +=+++r r,112233(,,)a b a b a b a b -=---r r ,123(,,)()a a a a R λλλλλ=∈r, 112233a b a b a b a b ⋅=++r r, 112233//,,()a b a b a b a b R λλλλ⇔===∈r r, 1122330a b a b a b a b ⊥⇔++=r r。
②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---u u u r。
一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
(4)模长公式:若123(,,)a a a a =r ,123(,,)b b b b =r,则||a ==r||b ==r (5)夹角公式:cos ||||a ba b a b ⋅⋅==⋅r rr r r r (6)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则||AB ==u u u r或,A B d =7.空间向量的数量积。
(1)空间向量的夹角及其表示:已知两非零向量,a b rr ,在空间任取一点O ,作,OA a OB b ==u u u r u u u r r r ,则AOB ∠叫做向量a r与b r 的夹角,记作,a b <>r r ;且规定0,a b π≤<>≤r r ,显然有,,a b b a <>=<>r r r r ;若,2a b π<>=r r ,则称a r与b r 互相垂直,记作:a b ⊥r r 。
(2)向量的模:设OA a =u u u r r ,则有向线段OA u u u r 的长度叫做向量a r的长度或模,记作:||a r。
(3)向量的数量积:已知向量,a b r r ,则||||cos ,a b a b ⋅⋅<>r r r r 叫做,a b rr 的数量积,记作a b ⋅r r ,即a b ⋅=r r ||||cos ,a b a b ⋅⋅<>r rr r 。
(4)空间向量数量积的性质:①||cos ,a e a a e ⋅=<>r r r r r。
②0a b a b ⊥⇔⋅=r r r r 。
③2||a a a =⋅r r r 。
(5)空间向量数量积运算律:①()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r 。
②a b b a ⋅=⋅r r r r(交换律)。
③()a b c a b a c ⋅+=⋅+⋅r r r r r r r(分配律)。
【典型例题】例1.已知平行六面体ABCD -D C B A '''',化简下列向量表达式,标出化简结果的向量。
⑴AB BC +u u u r u u u r ;⑵AB AD AA '++u u u r u u u r u u u r ;⑶12AB AD CC '++u u u r u u u r u u u u r ;⑷1()3AB AD AA '++u u ur u u u r u u u r 。
例2.对空间任一点O 和不共线的三点,,A B C ,问满足向量式: OP xOA yOB zOC =++u u u r u u u r u u u r u u u r(其中1x y z ++=)的四点,,,P A B C 是否共面?例3.已知空间四边形OABC ,其对角线,OB AC ,,M N 分别是对边,OA BC 的中点,点G 在线段MN 上,且2MG GN =,用基底向量,,OA OB OC u u u r u u u r u u u r表示向量OG u u u r 。
例4.如图,在空间四边形OABC 中,8OA =,6AB =,4AC =,5BC =,45OAC ∠=o ,60OAB ∠=o ,求OA 与BC 的夹角的余弦值。
说明:由图形知向量的夹角易出错,如,135OA AC <>=ou u u r u u u r 易错写成,45OA AC <>=o u u u r u u u r ,切记!例5.长方体1111ABCD A B C D -中,4AB BC ==,E 为11AC 与11B D 的交点,F 为1BC 与1B C 的交点,又AF BE ⊥,求长方体的高1BB 。
【模拟试题】1.已知空间四边形ABCD ,连结,AC BD ,设,M G 分别是,BC CD 的中点,化简下列各表达式,并标出化简结果向量:(1)AB BC CD ++u u u r u u u r u u u r;(2)1()2AB BD BC ++u u u r u u u r u u u r ;(3)1()2AG AB AC -+u u u r u u u r u u u r。
2.已知平行四边形ABCD ,从平面AC 外一点O 引向量。
,,,OE kOA OF kOB OG kOC OH kOD ====u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r。
(1)求证:四点,,,E F G H 共面; (2)平面AC //平面EG 。
3.如图正方体1111ABCD A B C D -中,11111114B E D F A B ==,求1BE 与1DF 所成角的余弦。
4.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5)。
⑴求以向量,AB AC u u u r u u u r为一组邻边的平行四边形的面积S ;⑵若向量a r 分别与向量,AB AC u u u r u u u r 垂直,且|a r |=3,求向量a r的坐标。
5.已知平行六面体ABCD A B C D ''''-中, 4,3,5,90AB AD AA BAD '===∠=o , 60BAA DAA ''∠=∠=o ,求AC '的长。
[参考答案]1.解:如图,(1)AB BC CD AC CD AD ++=+=u u u r u u u r u u u r u u u r u u u r u u u r;(2)111()222AB BD BC AB BC BD ++=++u u u r u u u r u u u r u u u r u u u r u u u r。
AB BM MG AG =++=u u u r u u u u r u u u u r u u u r;(3)1()2AG AB AC AG AM MG -+=-=u u u r u u u r u u u r u u u r u u u u r u u u u r。
2.解:(1)证明:∵四边形ABCD 是平行四边形,∴AC AB AD =+u u u r u u u r u u u r,∵EG OG OE =-u u u r u u u r u u u r,∴,,,E F G H 共面;(2)解:∵()EF OF OE k OB OA k AB =-=-=⋅u u u r u u u r u u u r u u u r u u u r u u u r,又∵EG k AC =⋅u u u r u u u r , ∴//,//EF AB EG AC 。
所以,平面//AC 平面EG 。