第1章 位错的定义及柏氏矢量
位错理论1-位错的结构
把位错环分成几段,而每一段有它自己不
同的柏氏矢量。
48
Conservation of Burgers vector
柏氏矢量守恒性的推论3
描述:位错线不可能中断于晶体内部
中断于:dis. Ring; dis. node; surface of crystal
证明:
设位错AB的柏氏矢量为b,其中断于B点 I区——已滑移区;II区——未滑移区 所以:未涉及的III区只能是两情况之一:
Байду номын сангаас刃型位错的基本特点:
位错线(dislocation line)是多余半原子 面和滑移面的交线,但位错线不一定就是 直线
直线 折线 位错环
19
Edge Dislocation
刃型位错的基本特点:
刃位错的点阵畸变相对于多余半原子面是左右对 称的
对于正刃位错:滑移面上部位错线周围原子受压, 向外偏离平衡;滑移面下部位错线周围原子受拉, 向内偏离平衡。
20
Edge Dislocation
刃型位错的基本特点:
位错线垂直于滑移矢量
b
21
目录
位错理论之序 滑移和位错 刃型位错 螺型位错 柏氏矢量及其守恒性 混合位错
22
Screw Dislocation
螺型位错的结构
ABCD面为滑移面:在 t作用下发生滑移 EF:位错线
第1章 位错的定义及柏氏矢量
即 c
Gb G 2a 2
因为原子间的斥力的短程性,能量曲线不是正弦形的,所以上面 的估计是过高的,c的更合理值约为G/30。理论切变强度和切变 模量相差约1个数量级。但是,实验测定的切变强度比理论切变 强度低2~4个数量级。 一些金属的理论强度与实验强度的比较
晶体
Ag Al Cu Ni Fe
理论强度(G/30)GPa 实验强度/MPa
2.64 2.37 4.10 6.70 7.10 0.37 0.78 0.49 3.2~7.35 27.5
理论强度 /实验强度
~7103 ~3103 ~8103 ~2103 ~3102
Mo
Nb Cd Mg (柱面滑移)
在弹性介质产生位错的沃特拉过程的示意图。位错线平行于z轴。 (a)和(b)是刃位错,产生位错的割面位移分别平行于y轴和x轴;(c) 是螺位错,产生位错的割面位移平行于z轴
在弹性介质产生向错的沃特拉过程的示意图。向错线平行于z轴。 (a)是楔型向错,产生向错的割面位移是绕平行z轴的轴转动角; (b)是扭型向错,产生向错的割面位移是绕平行x轴的轴转动角; (c)也是扭型向错,产生向错的割面位移是绕平行y轴的轴转动角
晶体变形的宏观现象: ①形变的晶体学性(即晶体在固定的晶面和晶向滑移); ②形变的不均匀性和不连续性,即变形不是在整个晶体各处发生; ③形变滑移的传播性,形变时,观察到滑移线(带)是从无到有, 由浅到深,由短到长(即),数目由少到多; ④滑移服从临界分切应力定律(以后会介绍,对于体心立方晶体, 会发生例外) ⑤温度对临界分切应力有显著的影响,等等。 设想的这种缺陷结构及特性必需和上述观察到的宏观变形现象相 符。
设想的缺陷引入晶体必需要: ①它的晶体学要素不依赖于加力的大小,而由晶体学本 身确定。由它运动导致的变形不破坏晶体结构,只是原 子间的相对运动。所以引入的缺陷不是完全无规而是有 晶体学特性的; ②它能解释变形的不均匀性,即能说明它的结构敏感性; ③它能说明变形过程的传播性; ④引入的这种缺陷是易动的,能解释实验强度比理论强 度低的原因。但它又不能像空位那样易受热起伏的影响; ⑤它应有合理的增殖机制。 现在已经知道,这种缺陷就是这里要讨论的位错。
2.位错类型及柏氏矢量
柏振海 baizhai@
中南大学材料科学与工程学院
材料科学与工程基础
位错类型,柏氏矢量
螺型位错分类
按照螺旋面前进的方向与螺旋面旋转方向的关系分
• 左螺型位错 • 右螺型位错
• 符合右手定则(右手拇指代表螺旋面前进方向,其它四指代表螺旋面旋 转方向)的称为右螺型位错,符合左手定则的称为左螺型位错
中南大学材料科学与工程学院
材料科学与工程基础
位错类型,柏氏矢量
位错的基本类型及特征
工程材料理论切变强度与实际强度相差100~1000倍
晶体中位错的基本类型 1.刃型位错 2.螺型位错 3.混合位错
柏振海 baizhai@
中南大学材料科学与工程学院
材料科学与工程基础
位错类型,柏氏矢量
含有刃型位错的晶体结构示意图
柏振海 baizhai@
中南大学材料科学与工程学院
材料科学与工程基础
位错类型,柏氏矢量
刃型位错线周围的弹性畸变
• 位错线长度有数百个到数万个原子间距,与位错长度相比, 位错宽度非常小,所以把位错看作是线缺陷 刃位错周围原子不同程度地偏离平衡位臵,使周围点阵发生 弹性畸变
中南大学材料科学与工程学院
材料科学与工程基础
位错类型,柏氏矢量
3.柏氏矢量特征
1)柏氏矢量与回路起点选择无关,也与柏氏回路的具体路径, 大小无关
一条位错线只有一个柏氏矢量 2)几根位错相遇于一点,其方 向朝着节点的各位错线的柏氏 矢量 b之和等于离开节点之和 如有几根位错线的方向均指 向或离开节点,这些位错 线的柏氏矢量之和值为零
中南大学材料科学与工程学院
材料科学与工程基础
位错类型,柏氏矢量
刃型位错特征
位错基本知识
Fc
f b2
; f 是空位的形成能。
产生攀移的力:①外加正应力; ②过饱和空位产生的力——渗透力(化学力)F0。
如攀移力靠外加正应力 提供,则,Fc
b
f b2
;
=
f b3
已知 f
1 5
b3,
代入上式:
=
f b3
1 。可知,刃型位错要整体向上攀移, 5
第一节 直线位错的应力场
直线位错的应力场
⑴螺型位错
柱面坐标表示:
z
z
G z
Gb
2r
rr r rz 0
直角坐标表示:
式中,G为切变模量,b为柏氏矢量,r为距位错中心的距离
螺型位错应力场的特点: (1)只有切应力分量,正应力分量全为零,这表明螺型位错不引起晶体的膨胀和收缩。 (2)螺型位错所产生的切应力分量只与r有关(成反比),且螺型位错的应力场是轴对称
②位错的应变能与b2成正比。因此,从能量的观点来看,晶体中具有最小b的 位错应该是最稳定的,而b大的位错有可能分解为b小的位错,以降低系统的能量。 由此也可理解为滑移方向总是沿着原子的密排方向的。
③螺位错的弹性应变能约为刃位错的2/3。 ④位错的能量是以单位长度的能量来定义的,故位错的能量还与位错线的形 状有关。由于两点间以直线为最短,所以直线位错的应变能小于弯曲位错的,即 更稳定,因此,位错线有尽量变直和缩短其长度的趋势。 ⑤位错的存在均会使体系的内能升高,虽然位错的存在也会引起晶体中熵值 的增加,但相对来说,熵值增加有限。可以忽略不计。因此,位错的存在使晶体 处于高能的不稳定状态,可见位错是热力学上不稳定的晶体缺陷。
的,并随着与位错距离的增大,应力值减小。
(3)这里当r→0时,τθz→∞,显然与实际情况不符,这说明上述结果不适用位错中心的
实际晶体中的位错
Frank分位错的特点: (a) 位于{111}晶面上,可以是直线、曲线和封闭环,但是无论
是什么形状,它总是刃型的。因为b=1/3<111>和{111}晶面 垂直。 (b) 由于b不是FCC的滑移方向,所以Frank分位错不能滑移, 只能攀移(只能通过扩散扩大或缩小)。不再是已滑移区和 未滑移区的边界,而且是有层错区和无层错区的边界。 注意与Shockley分位错的特点进行比较。
n
m
1、几何条件: ∑b' j = ∑bi
j =1
i =1
即,新位错的柏氏矢量 之和应等于反应前位错 的柏氏矢量之和。
∑ ∑ 2、能量条件:
n
m
b'2j < bi2
j =1
i =1
即,新位错的总能量应 小于反应前位错的总能 量。
前面讲过位错的弹性能Eel=αGb2
例如,FCC的全位错分解为Shockley分位错:b→b1+b2
αβ = αA + Aβ = 1 [1 1 1] + 1 [1 12] = 1 [1 1 0] = 1 BA
3
6
6
3
同理可得:
αγ
=
1 [0 1 1] =
1 CA
6
3
αδ = 1 [101] = 1 DA
6
3
希-希向量就是FCC中 压杆位错的柏氏矢量。
βγ = 1 [1 01] = 1 CB
6
3
FCC中的位错反应,即 位错的合成与分解也可
⎤2 ⎥⎦
=
1 2
∑n
反应后:
j =1
b'2j
=
b12
+
b22
晶体缺陷-位错概念
混合位错
位错线上任一点的滑移矢量相同,但两者方向夹角呈任意 角度。 图为混合位错的产生
位错环
位错线不能终止于晶体内部,具有封闭性
有纯的刃型位错环,无纯的螺型位错环
柏氏矢量
柏氏矢量是描述位错性质的一个重要物理量,1939年Burgers 提出,故称该矢量为“柏格斯矢量”或“柏氏矢量”,用b 表 示 柏氏矢量的确定(方法与步骤) 1)人为假定位错线方向,一般是从纸背向纸面或由上向下为位 错线正向 2)用右手螺旋法则来确定柏格斯回路的旋转方向,使位错线的 正向与右螺旋的正向一致 3)将含有位错的实际晶体和理想的完整晶体相比较 在实际晶体中作一柏氏回路,在完整晶体中按其相同的路线和 步伐作回路,自路线终点向起点的矢量,即“柏氏矢量”。
位错线运动的方向始终和位错线方向垂直,二者决定了滑移面,由食指和中指决定滑 移面,大拇指决定滑移面法向的正方向,该方向指向顺着位错的柏氏矢量方向滑移的 那部分晶体 中指指向位错运动方向
食指指向位错线的正方向
位错的运动方向由位错的本身性质决定!
左右螺旋位错
图为螺型位错形成模型
螺型位错
螺型位错---特征:
几何特征:位错线与原子滑移方向相平行;位错线周围原子的配置是螺旋状的。 分类:有左、右旋之分.符合左手、右手螺旋定则。 位错线的方向与滑移矢量一致:右手螺旋 位错线的方向与滑移矢量相反:左手螺旋
右手法则:
确定位错滑移 面两侧的两部 分晶体的具体 滑移方向
拇指指向顺着位错的柏氏 矢量方向滑移的那部分晶体
1)螺型位错无额外半原子面,原子错排呈轴对称 2)螺型位错与滑移矢量平行,故一定是直线 3)包含螺位错的面必然包含滑移矢量,故螺位错可以有 无穷个滑移面,但实际上滑移通常是在原子密排面上进 行,故有限 4)螺位错周围的点阵也发生了弹性畸变,但只有平行于 位错线的切应变,无正应变(在垂直于位错线的平面投 影上,看不出缺陷) 5)位错线的移动方向与晶块滑移方向互相垂直
2.位错类型及柏氏矢量
位τ
τ
受切应力作用原子面移动
7
中南大学材料科学与工程学院 材料科学与工程基础
位错类型,柏氏矢量
晶体局部滑移形成刃型位错
τ
τ
受切应力作用原子面移动
8
中南大学材料科学与工程学院 材料科学与工程基础
位错类型,柏氏矢量
晶体局部滑移形成刃型位错
τ
τ
出现多余半原子面,表面形成台阶
17
中南大学材料科学与工程学院 材料科学与工程基础
位错类型,柏氏矢量
Screw dislocation
18
中南大学材料科学与工程学院 材料科学与工程基础
螺型位错分类
位错类型,柏氏矢量
按照螺旋面前进的方向与螺旋面旋转方向的关系分
• 左螺型位错
• 右螺型位错
• 符合右手定则(右手拇指代表螺旋面前进方向,其它四指代表螺旋面旋 转方向)的称为右螺型位错,符合左手定则的称为左螺型位错
13
中南大学材料科学与工程学院 材料科学与工程基础
位错类型,柏氏矢量
螺型位错(Screw dislocation)
• 右侧晶体上下两部分发生晶格扭动 • 从俯视角度看,在滑移区上下两层原子发生了错动,晶体点阵畸变最严
重的区域内的两层原子平面变成螺旋面 • 畸变区的尺寸与长度相比小得多,在畸变区范围内称为螺型位错 • 已滑移区和未滑移区的交线BC则称之为螺型位错线
螺位错可以有无穷个滑移面 实际上滑移通常是在原子密排面上进行,故滑移面有限
4)螺位错周围的点阵也发生弹性畸变,但只有平行于位错 线的切应变,无正应变(在垂直于位错线的平面投影上, 看不出缺陷)
5)位错线的移动方向与晶块滑移方向、应力矢量互相垂直
20
hcp单位位错柏氏矢量
hcp单位位错柏氏矢量位错(Dislocation)是晶体中的一种缺陷,它是由晶体中原子或离子的位移引起的。
它可以被视为晶格错配的方式,因此会影响晶体的力学性能和变形行为。
位错对于晶体的变形起着关键的作用。
而柏氏矢量(Burgers vector)则是描述位错的重要参数之一。
本文将详细介绍位错的概念、柏氏矢量的定义,以及位错类型和位错模型等内容,旨在对读者对位错有一个全面的认识。
位错的概念位错是晶体中原子或离子的位移导致的晶体结构缺陷。
其概念最早由G. I. Taylor 在1934年引入。
当晶体中出现位错时,晶体结构就发生了错配,使得晶格的一部分位移相对于其他晶格部分。
由于位错所引起的晶格错配,晶格的形变能量也相应增加。
位错是晶体中原子运动的一种结果,它不仅影响晶体的力学行为,也影响晶体的物理、热学和电学性质等。
柏氏矢量的定义柏氏矢量是位错线的一种描述,它用来描述位错线所引起的晶格错配。
柏氏矢量通常用符号b表示,它是一个矢量,其方向平行于位错线的方向,其大小等于晶格间距乘以位错线密度。
柏氏矢量的大小与位错的类型有关,不同类型的位错具有不同的柏氏矢量。
位错类型根据位错线的性质,位错可以分为螺旋位错、边界位错和混合位错等几种类型。
1. 螺旋位错(Screw Dislocation):螺旋位错是一种具有线状结构的位错,其柏氏矢量沿位错线的方向,并且沿位错线方向是周期性的。
螺旋位错可以视为沿位错线旋转晶体结构一周所引起的错配。
2. 边界位错(Edge Dislocation):边界位错是一种具有线状结构的位错,其柏氏矢量垂直于位错线的方向,并且沿位错线方向是周期性的。
边界位错可以视为晶体结构的一部分被插入到另一部分中,导致晶体结构错位。
3. 混合位错(Mixed Dislocation):混合位错即同时具有边界位错和螺旋位错性质的位错。
混合位错的柏氏矢量既具有垂直于位错线方向的边界位错性质,也具有沿位错线方向的螺旋位错性质。
单位位错名词解释
“单位位错”名词解释
1、单位位错:也称特征位错,就是指它的柏氏矢量等于晶体中最短的点阵矢量的位错。
2、位错反应:
位错反应就是位错的合并与分解,即晶体中不同柏氏矢量的位错线合并为一条位错线或一条位错线分解成两条或多条柏氏矢量不同的位错线。
位错使晶体点阵发生畸变,柏氏矢量是反映位错周围点阵畸变总和的参数。
因此,位错的合并实际上是晶体中同一区域两个或多个畸变的叠加,位错的分解是晶体内某一区域具有一个较集中的畸变,松弛为两个或多个畸变。
3、位错反应发生的条件:
(1)几何条件根据柏氏矢量的守恒性,反应后诸位错的柏氏矢量之和应等于反应前诸位错的柏氏矢量之和。
(2)能量条件从能量角度要求,位错反应必须是一个伴随着能量降低的过程。
由于位错的能量正比于其柏氏矢量的平方,所以,反应后各位错的能量之和应小于反应前各位错的能量之和。
1-位错的定义及柏氏矢量
两岸的相对位移D 一般能分解为一个平移分量b 两岸的相对位移D(r)一般能分解为一个平移分量b和一个转动 分量ω=w×r,r是原点在割面上的矢径。如果D(r)只有平移分量, 是原点在割面上的矢径。如果D 则形成的位错称平移位错(Dislocation);如果D 则形成的位错称平移位错(Dislocation);如果D(r)只有旋转分量, 则形成的位错称旋转位错,简称为向错(Dislination)。 则形成的位错称旋转位错,简称为向错(Dislination)。 实在晶体并不是真正的连续介质,它存在各向异性及结构的 不连续,所以在Volterra过程中的D 不连续,所以在Volterra过程中的D(r)不是任意的,只能根据晶体 的特点取有限的值。不论平移分量或旋转分量都必须符合晶体点 阵的对称性质。例如平移只能是晶体的点阵平移矢量,旋转角必 须是晶体的基转角。在以后我们会知道,由于能量的原因,真正 位错线的平移矢量也不可能是任意的点阵平移矢量,而是其中较 短的几个矢量。 对于向错,晶体的旋转对称性最多为六次对称,也就是说, 对于向错,晶体的旋转对称性最多为六次对称,也就是说, 在晶体中产生向错最小的旋转角也要60°,它会引起很大的畸变, 60° 随着离开中心的距离加大畸变加大,所以旋错的能量很高,所以 随着离开中心的距离加大畸变加大,所以旋错的能量很高,所以 在晶体中除了个别特殊情况,一般是不会出现向错。而在液晶中 向错却是常见的线缺陷。
这个线缺陷的弹性性质显然取决于位错环C的位置以及产生位错 时割面两侧的相对位移D(r)。但是,无论割面两侧位移多大,周界 的应力是无限大的。为了避免周界这样的应力发散,一般沿周界 挖一个空心管道,这个非常小的空心管道区域就是介质中的线缺 陷。 线缺陷是晶体(有序介质)中原子(或分子)出现的严重错排 仅集中在线附近的小区域内,远离这条线只有弹性畸变,并且这 些畸变随着离开这条线的距离而急剧减小。可以把严重错排区域 用类似一个“管道”来描述,这个管道的直径通常仅有几个原子 间距,并贯穿于有序介质之中。在管道内,原子间的坐标与在完 整有序介质中很不同,而在管道之外的原子的坐标接近于完整有 序介质。这里的所谓管道“内部”和管道“外部”之间并无明确 界线,它们之间是逐渐过渡的,并且管道的截面也不一定是圆形。 管道“内部”这个定义不很精确的区域是线缺陷的核心 还要注意的是,“产生”线缺陷的沃特拉过程只是用以描述线 缺陷的奇异性本质,以及描述线缺陷的结构,而实际的线缺陷并 不是用沃特拉过程的方式产生的。
位错类型及柏氏矢量ppt课件
是晶体中较常见的一种位错
混合位错的形成
21
混合位错
AC位错线中 靠近A端的位错线段平行于滑 移矢量,属于纯螺型位错 靠近C端的位错线段垂直于滑 移矢量,属于纯刃型位错 其余部分线段与滑移矢量成任 意角度,属混合位错
每一段位错线均可分解为刃型和 螺型两个分量
1)人为假定位错线方向 一般是从纸背向纸面或由上向下为位错线正向
2)用右手螺旋法则来确定柏格斯回路的旋转方向 使位错线的正向与右螺旋的正向一致
3)将含有位错的实际晶体和理想的完整晶体相比较 在实际晶体中作柏氏回路,在完整晶体中按相同的路线和 步法作回路,路线终点指向起点的矢量,即“柏氏矢量”
25
刃型位错的柏氏回路与柏氏矢量
混合位错原子组态
22
混合位错
每一段位错线均可分解为刃型和螺型两个分量
23
2.3 柏氏矢量
柏氏矢量是描述位错性质的一个重要物理量 表示位错区原子的畸变特征,包括畸变的位置和 畸变的程度 是矢量 1939年Burgers提出,故称该矢量为“柏格斯矢 量”或“柏氏矢量”
用b 表示
24
柏氏矢量的确定方法
正刃型位错:晶面上部原子拥挤,受压应力,晶面下部原子受拉应力 • 点阵畸变是对称的,位错中心受到畸变度最大,离开位错中心畸变
程度减小 • 一般把点阵畸变程度大于正常原子间距1/4的区域宽度定义为位错宽
度,约为2~5个原子间距
3
位错形成
• 可能是在晶体形成过程(凝固或冷却)中产生的
• 晶体在塑性变形时也会产生大量的刃型位错
4
晶体局部滑移形成刃型位错
力作用在晶体右上角,使右上角的上半部晶体沿滑 移面向左ห้องสมุดไป่ตู้局部移动,使原子列移动了一个原子间 τ 距,从而形成一个刃型位错
位错环的柏氏矢量
位错环的柏氏矢量
【实用版】
目录
1.位错环的概述
2.柏氏矢量的概念
3.位错环与柏氏矢量的关系
4.位错环柏氏矢量的应用
正文
1.位错环的概述
位错环是一种存在于晶体结构中的缺陷,主要是由于晶体在生长过程中出现的排列错误导致的。
位错环通常会在材料遭受外力或者在制备过程中产生,它们对材料的性能有着重要的影响。
因此,研究位错环的性质和行为对于了解材料的强度、韧性等性能至关重要。
2.柏氏矢量的概念
柏氏矢量是一种描述位错环的矢量,它可以用来衡量位错环的大小和方向。
柏氏矢量的大小等于位错环的线密度,方向则与位错环的轴线方向相同。
柏氏矢量在材料科学中具有重要的意义,它可以用来描述位错环的运动和演化,进而预测材料的性能。
3.位错环与柏氏矢量的关系
位错环与柏氏矢量之间存在着密切的关系。
位错环是由一系列原子排列错误构成的,而柏氏矢量则是用来描述这些排列错误的大小和方向。
因此,位错环的大小和方向可以通过柏氏矢量来描述。
另外,位错环的运动也会导致柏氏矢量的变化,因此,研究位错环的运动规律也可以通过研究柏氏矢量的变化来实现。
4.位错环柏氏矢量的应用
位错环柏氏矢量在材料科学中有着广泛的应用。
首先,它可以用来研究材料的强度和韧性。
通过研究位错环的大小和分布,可以了解材料的强度和韧性,从而为材料的设计和制备提供理论依据。
其次,位错环柏氏矢量还可以用来研究材料的疲劳寿命。
《材料成型金属学》教学资料:1 位错及柏氏矢量
b1
node
b3
b1
b2
b3(2)一个位错环只有来自个柏氏矢量。证明:设有一个位错环(Loop)ABCD,将它分为两部分ABCEA和AECDA, 其柏氏矢量分别为b1和b2,这表明两部分晶体变形不同,那么中间就要出现 一个柏氏矢量为b3的位错。
A
b1
E b2
B
D
b3
C
现设:CDA动,ABC不动,出现了b3,在A处b1分解为b2和b3,b3=b1-b2;同理: CDA不动,ABC动,也出现了b3,在A处b2分解为b1和b3,b3=b2-b1. 因为实际上没有AEC,只有ABCD位错环,所以b3=0,故b1=b2,即一个位错环 只有一个柏氏矢量。
混合位错的运动
位错密度
单位体积中位错的总长度:
L , cm / cm3
V 将位错线看作于垂直某一平面的直位错线
nL n ,1/ cm3
AL A
为了便于描述晶体中的位错,更确切地表
征不同类型位错的特征,1939年伯格斯提出 了采用柏氏回路(Burgers Circuit)来定义位 错,借助一个规定的矢量来揭示位错的本质。
2.柏氏矢量的表示法
柏氏矢量的大小和方向可以用它在晶轴(Crystallographic Axis)上的 分量,即用点阵矢量a、b和c来表示。
立方晶系晶体,由于a=b=c,故可用与柏氏矢量b同向的晶向指数 (Orientation Index)来表示。
例:柏氏矢量等于从体心立方的原点到体心的矢量,则b=a/2+b/2+c/2,
dislocation changes with position
柏氏矢量与位错类型的关系:
刃型位错 柏氏矢量与位错线相互垂直。(依方向关系可 分正刃和负刃型位错)
《材料成型金属学》教学资料:第一章位错理论基础
晶界特点
1) 晶界—畸变—晶界能—向低能量状态转化—晶粒长大、 晶界变直—晶界面积减小; 2) 阻碍位错运动— 流变应力↑ 细晶强化; 3) 位错、空位等缺陷多—晶界扩散速度高; 4) 晶界能量高、结构复杂—容易满足固态相变的条件— 固态相变首先发生地; 5) 化学稳定性差—晶界容易受腐蚀; 6) 微量元素、杂质富集。
1 位错理论基础
Fundamentals of dislocation theory
理想晶体 完全按照空间点阵有规则排列
实际晶体 不可能完全规则排列,存在晶格缺陷 lattice defect
1.1 晶体缺陷概述
晶体中的缺陷: 原子排列偏离完整性的区域
点缺陷-在三个方向上尺寸都很小 线缺陷-在二个方向上尺寸很小 面缺陷-在一个方向上尺寸很小
Ae-q / kT
空位迁移速度与绝对温度T和空位迁移能量q的关系 式中:A为常数,k为玻尔兹曼常数。
点缺陷对晶体性质的影响
晶格畸变:点缺陷引起晶格局部弹性变形。
空位缺陷
间隙粒子缺陷 杂质粒子缺陷
点缺陷引起的三种晶格畸变
点缺陷对材料性能的影响
点缺陷的存在会使其附近的原子稍微偏离原结点位置才能平 衡,即造成小区域的晶格畸变。
Low Angle Grain Boundary -小角晶界
(a)倾侧晶界模型;(b)扭转晶界模型
小角晶界可理解为位错墙 位向差θ<10°
亚结构
变形→位错密Leabharlann 增加→位错缠结 高位错密度区将位错密度低的区域隔开 → 晶粒内部出现“小晶粒” ,取向差不大→ 胞状亚结构
.
透射电镜 (TEM)
大角晶界
理想晶体原子 面堆积
含有刃型位错晶 体原子面堆积
密排六方的单位位错的柏氏矢量
密排六方的单位位错的柏氏矢量密排六方晶体是一种常见的晶体结构,具有高度有序和紧密堆积的特点。
在密排六方晶体中,单位位错(Dislocation,也可称为晶体缺陷)是晶体结构中常见的一种现象。
单位位错是指晶体晶面或晶胞中原子排列发生错位的缺陷,它对晶体的物理性质和力学性能有着重要影响。
相比其他类型的位错,密排六方晶体中的单位位错具有一些独特的特点。
单位位错的柏氏矢量是描述位错类型和位错移动方向的重要参数。
在密排六方晶体中,柏氏矢量的定义因其特殊的晶体结构而有所不同。
柏氏矢量是从位错线上一个固定的点指向另一个点的矢量,并由其晶向和单位位错线的方向以及长度共同决定。
在具体计算柏氏矢量时,我们需要考虑密排六方晶体晶面的Miller指数和单位位错线的方向指数,以及晶体的晶格常数等因素。
通过精确的计算,我们可以准确定位和描述不同类型的单位位错,并进一步研究其对晶体材料性能的影响。
密排六方晶体中常见的单位位错包括螺旋位错、边界位错和错配位错等。
螺旋位错是一种沿位错线螺旋状排列的位错,其柏氏矢量沿着晶体的轴向。
边界位错是指晶体中两个晶粒的交界处发生位错,其柏氏矢量通常与位错线垂直。
错配位错是指位错线周围附近晶体晶格的畸变,其柏氏矢量通常与位错线相同。
不同类型的单位位错对晶体的物理性质和力学性能有着不同的影响。
例如,螺旋位错会导致晶体发生弯曲,边界位错则会引起晶体的弹性畸变。
通过精确地计算和控制单位位错的柏氏矢量,我们可以更好地理解晶体缺陷的形成机制,并为控制和改善晶体的性能提供指导。
在实际应用中,我们可以通过掺杂、合金化和热处理等方法来控制单位位错的柏氏矢量。
这些控制手段可以改变晶格的结构和原子的排列方式,从而优化晶体的性能和功能。
因此,深入了解单位位错的柏氏矢量对于材料科学和工程技术具有重要的指导意义。
总之,密排六方晶体中的单位位错及其柏氏矢量是晶体缺陷研究中的重要内容。
准确计算和描述单位位错的柏氏矢量可以帮助我们深入理解晶体的结构和性能,为材料科学和工程技术的发展提供有效的指导。
简述位错,位错线和柏氏矢量得概念,并论述柏氏矢量和位错得相对关系 材料科学基础
简述位错,位错线和柏氏矢量得概念,并论述柏氏矢量和位错得相对关系材料科学基础在材料科学这个奇妙的世界里,有这么几个挺有趣的概念,位错、位错线和柏氏矢量。
咱先来说说位错。
位错啊,就像是材料原子排列里的小调皮鬼。
正常情况下,材料里的原子那是整整齐齐、规规矩矩地排列着,就像训练有素的士兵方阵一样。
可是呢,位错一出现,这整齐的方阵就乱了套。
就好比是方阵里突然有几个士兵站错了位置,或者是有一块地方挤得太紧,另一块地方又松松垮垮的。
位错的存在,让材料的性质变得很不一样,它能影响材料的强度、硬度这些性能。
比如说,一块金属材料,如果里面位错比较多,那它可能就没有位错少的时候那么结实。
再讲讲位错线。
位错线呢,你可以想象成是位错在材料里的轨迹,就像小虫子在苹果里钻过留下的通道一样。
它是一条有方向的线,标志着位错在晶体里的延伸方向。
这个位错线啊,就好像是给位错这个调皮鬼画了个路线图,告诉我们它在材料里是怎么个捣乱法的。
比如说在一个晶体结构里,位错线可能沿着某个晶面弯弯绕绕的,这就表示位错在这个晶面上是这么个走势。
柏氏矢量这个概念就更有意思了。
柏氏矢量就像是位错的一个身份标识。
你可以把位错想象成一个旅行者,柏氏矢量就是这个旅行者的旅行计划。
它包含了位错的大小和方向信息。
比如说,柏氏矢量告诉我们位错从一个原子位置到另一个原子位置的变化情况。
如果说位错是在材料里搞破坏的小坏蛋,柏氏矢量就像是描述这个小坏蛋破坏力大小和方向的说明书。
那柏氏矢量和位错有啥相对关系呢?这就好比一个人和他的影子。
位错在材料里,柏氏矢量就跟着它,时刻描述着位错的特征。
柏氏矢量的大小和方向决定了位错的类型。
要是柏氏矢量比较小,可能这个位错对材料的影响就相对小一点,就像小蚂蚁在地上爬,动静不大。
要是柏氏矢量比较大呢,那这个位错就像一头大象在材料里横冲直撞,对材料的影响可就大了。
而且位错线和柏氏矢量之间也有联系,它们就像是一对配合默契的伙伴。
位错线的方向和柏氏矢量的方向有时候会遵循一定的规则,就像两个人跳舞,有一定的舞步一样。
位错交互作用系数、剪切模量、柏氏矢量
位错交互作用系数、剪切模量、柏氏矢量,这三个概念在材料力学中扮演着重要的角色。
它们之间的关系既复杂又微妙,深入理解它们可以帮助我们更好地理解材料的性能和行为。
在本文中,我将从简单到复杂,由浅入深地探讨这些概念,希望能给你带来一些新的启发和思考。
1. 位错交互作用系数位错是材料中的缺陷,它们对材料的性能和行为有着深远的影响。
位错交互作用系数描述了位错之间相互作用的程度,它可以影响材料的塑性变形和强度等机械性能。
位错交互作用系数通常用符号τ表示,它是一个描述位错相互作用强度的参数,可以帮助我们预测材料的力学性能。
2. 剪切模量剪切模量是描述材料在受到剪切应力作用时的抵抗能力的物理量。
对于单晶材料来说,剪切模量通常用G表示。
剪切模量与材料的位错结构和密度有着密切的关系,而且它还与位错交互作用系数有着复杂的耦合关系。
深入理解剪切模量对于了解材料的强度、韧性和塑性行为至关重要。
3. 柏氏矢量柏氏矢量描述了晶格中的位错线方向和位错面的平面方向,它对于位错的运动和排列有着重要的影响。
柏氏矢量的方向和大小可以影响位错的相互吸引和排斥,进而影响材料的塑性变形。
在材料科学中,通过精确地控制柏氏矢量,可以实现对材料性能的调控和优化。
总结回顾通过对位错交互作用系数、剪切模量和柏氏矢量的深入探讨,我们可以看到这三者之间关系的复杂性和微妙性。
它们相互影响、相互耦合,共同决定了材料的力学性能和行为。
深入理解这些概念,可以帮助我们更好地设计新材料、改善现有材料的性能,从而推动材料科学和工程的发展。
个人观点和理解在我看来,位错交互作用系数、剪切模量和柏氏矢量代表着材料科学中的一些基本而又重要的概念。
它们的深入研究不仅有助于我们对材料性能的理解,也为我们提供了一些新的思路和方法,可以帮助我们开发出更加先进和优质的材料。
我相信随着材料科学研究的不断深入,这些概念的重要性会越来越凸显,它们也将为材料科学的发展提供更多的可能性和机遇。
在这篇文章中,我们深入探讨了位错交互作用系数、剪切模量和柏氏矢量这三个概念,也共享了一些个人观点和理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立方晶体中=90的几种假想的向错的示意图,其中图(a)是 +90楔型向错;图(b)是90楔型向错;图 (c)和(d)是90扭型 向错。
位错理论发展简史
1907年 Volterra解决了一类弹性体中的内应力不连续的弹性问题,
把它称为位错。 1934年 M.Polanyi,E.Orowan和G.1.Taylor差不多同时地独立提出有关 这类晶体缺陷(位错)的模型,特别是Taylor明确地把Volterra位 错引入晶体。 约菲用正交的尼科耳镜观察岩盐形变,看到岩盐形变时有亮线 从晶体一侧传播到另一侧,说明晶体形变滑移时局部地区有应 力集中,并说明滑移是从一侧传播到另一侧的。 Taylor注意到这种实验现象,根据设想的位错排列形状,计算了 位错运动所产生的晶体硬化曲线。 1939年 Burgers提出描述位错的一个重要特征量柏氏矢量,同时 引入了螺位错。 1940年 Peierls提出后来在1947年由Nabarro修正的位错点阵模型,它 突破了一般弹性力学范围,提出了位错宽度的概念,估算了位 错开动的应力,这一应力正是和实际晶体屈服应力的同一数量 级。
这一过程的原 子尺度的描述
理论切变强度的估算 假设能量曲线是正弦形式。 这样,要使原子面相对切开所需 要的切应力表达为
2x Csin b
在弹性变形范围,应力和应变服 从胡克定律:
G
式中G是切变模量,对于各向同 性弹性体,它等于拉梅系数, 是切应变。可以近似为x/a,a是2 个相对切动的面的面间距。上式 变成
位错的几何形态
刃型位错
刃位错的原子模型
产生刃位错的Volterra过程
半原子面在上侧,称正刃位错,“┻”;若半原子面在下侧,称负 刃位错,“┳”。
螺型位错
右螺位错的原子模型
产生右螺位错 的Volterra过程
右图的顶视投影图
柏氏回路及柏氏矢量
位错线在晶体中产生应力和应变场,从“制造”位错的Volterra 过程可知,割面的相对位移矢量b是位错的最根本特征,绕位错的 回路C的弹性位移u的线积分值应该等于b :
G x 2πx c a b
即 c
Gb G 2a 2
因为原子间的斥力的短程性,能量曲线不是正弦形的,所以上面 的估计是过高的,c的更合理值约为G/30。理论切变强度和切变 模量相差约1个数量级。但是,实验测定的切变强度比理论切变 强度低2~4个数量级。 一些金属的理论强度与实验强度的比较
两岸的相对位移D(r)一般能分解为一个平移分量b和一个转动 分量=wr,r是原点在割面上的矢径。如果D(r)只有平移分量, 则形成的位错称平移位错(Dislocation);如果D(r)只有旋转分量, 则形成的位错称旋转位错,简称为向错(Dislination)。 实在晶体并不是真正的连续介质,它存在各向异性及结构的 不连续,所以在Volterra过程中的D(r)不是任意的,只能根据晶体 的特点取有限的值。不论平移分量或旋转分量都必须符合晶体点 阵的对称性质。例如平移只能是晶体的点阵平移矢量,旋转角必 须是晶体的基转角。在以后我们会知道,由于能量的原因,真正 位错线的平移矢量也不可能是任意的点阵平移矢量,而是其中较 短的几个矢量。 对于向错,晶体的旋转对称性最多为六次对称,也就是说, 在晶体中产生向错最小的旋转角也要60,它会引起很大的畸变, 随着离开中心的距离加大畸变加大,所以旋错的能量很高,所以 在晶体中除了个别特殊情况,一般是不会出现向错。而在液晶中 向错却是常见的线缺陷。
b du
C
b称柏氏矢量。按照这样的概念,可以用简单的左图办法来定出位
错的柏氏矢量。其步骤如下∶ ①人为地规定位错线的正向,以表示位错线的切矢量; ②以位错线正向为轴环绕位错线在离开位错线附近的原子严重错 排的区域作右螺旋闭合回路,这回路称柏氏回路; ③用同样的方法在不含位错的完整晶体中作相同回路; ④比较这2个回路,绕位错线所作的回路是闭合的,而在完整晶体 中所作的相同回路是不闭合或是重叠的,从这个回路的终点向始 点连接所得的矢量,就是位错线的柏氏矢量b。
一个柏氏矢量b与位错线t夹角为的混位错,可以看成是柏氏矢量 为bsin的刃位错和柏氏矢量为bcos的螺位错的叠加。
b be bs
bs (b ) be [(b ) ]( )
其中 b
b
柏氏回路任意扩大、移动,只要在扩大和移动过程不和原位错 线或其它位错线相遇,由它确定的柏氏矢量也不会改变,这就是 柏氏矢量的守恒性。从这一点引伸,可以得到如下的重要概念: ①一根不分岔的位错线不论它的形状如何变化,它只有一个恒定 的柏氏矢量。 ②一根位错线不能终止在晶体内部,只能终止于晶体表面或晶界; 若它终止在晶体中部,它必和其他位错线相连接,相交于一个接 点,或者自成封闭的位错环。 ③汇聚在一点的各位错线,如果从汇聚点向外的方向定为正向, 则它们的柏氏矢量总和为零。
晶体
Ag Al Cu Ni Fe
理论强度(G/30)GPa 实验强度/MPa
2.64 2.37 4.10 6.70 7.10 0.37 0.78 0.49 3.2~7.35 27.5
理论强度 /实验强度
~7103 ~3103 ~8103 ~2103 ~3102
Mo
Nb Cd Mg (柱面滑移)
位错与向错的定义
单晶体滑移
滑移是指在外力作用下晶体沿某些特定的晶面和晶向相对滑 开的形变方式。
用扫描电镜观察到形变 钴单晶的表面形貌
用光学显微镜观察经7%形变的铝的 表面图象140
在变形时,如果晶体在滑移面两侧相对滑过,则在滑移面上所 有的键都要破断来产生永久的位移 。据此,可以估算滑移所需要的 临界分切应力。 这一过程的宏 观描述
bi
ui u u u d xk ( i d x1 i d x2 i d x3 ) xk x1 x2 x3 L L
如果以回路L为界作一曲面S,它把把位错终点P包含在曲面S内侧, 根据Stokes定理,对L的线积分可换成对S的面积分
早在知道有序介质材料中存在线缺陷之前,在20世纪初数学 家沃特拉(V.Volterra)就提出了线缺陷的概念和模型,他是研究 连续弹性介质中的一个半割面两侧变形后从新粘合后的数学奇异 性问题。“制造”沃特拉线缺陷的过程的步骤如下:
①在弹性体内割开一个以C为界的割面S。
②使割面两岸相对位移D(r)。在相对移动过程中两岸不发生歪曲 变形。 ③割面两侧位移后,如果产生空隙,在空隙中填满相同的物质; 如果产生重叠,把多余的物质去掉。 ④把割面的两岸重新粘合,并去 除操作过程所加的外力。 经这样的操作后就产生内应力场, 其内应力沿C环是不连续奇异性的, C环称为沃特拉线缺陷。
这个线缺陷的弹性性质显然取决于位错环C的位置以及产生位错 时割面两侧的相对位移D(r)。但是,无论割面两侧位移多大,周界 的应力是无限大的。为了避免周界这样的应力发散,一般沿周界 挖一个空心管道,这个非常小的空心管道区域就是介质中的线缺 陷。 线缺陷是晶体(有序介质)中原子(或分子)出现的严重错排 仅集中在线附近的小区域内,远离这条线只有弹性畸变,并且这 些畸变随着离开这条线的距离而急剧减小。可以把严重错排区域 用类似一个“管道”来描述,这个管道的直径通常仅有几个原子 间距,并贯穿于有序介质之中。在管道内,原子间的坐标与在完 整有序介质中很不同,而在管道之外的原子的坐标接近于完整有 序介质。这里的所谓管道“内部”和管道“外部”之间并无明确 界线,它们之间是逐渐过渡的,并且管道的截面也不一定是圆形。 管道“内部”这个定义不很精确的区域是线缺陷的核心 还要注意的是,“产生”线缺陷的沃特拉过程只是用以描述线 缺陷的奇异性本质,以及描述线缺陷的结构,而实际的线缺陷并 不是用沃特拉过程的方式产生的。
在弹性介质产生位错的沃特拉过程的示意图。位错线平行于z轴。 (a)和(b)是刃位错,产生位错的割面位移分别平行于y轴和x轴;(c) 是螺位错,产生位错的割面位移平行于z轴
在弹性介质产生向错的沃特拉过程的示意图。向错线平行于z轴。 (a)是楔型向错,产生向错的割面位移是绕平行z轴的轴转动角; (b)是扭型向错,产生向错的割面位移是绕平行x轴的轴转动角; (c)也是扭型向错,产生向错的割面位移是绕平行y轴的轴转动角
1947年 Cottrell阐明溶质原子和位错的交互作用并用以解释低碳纲的
屈服现象,第一次成功地利用位错理论解决金属机械性能的具体 问题。 同年 Shockley描绘了面心立方形成扩展位错的过程。 1950年 Frank和Read共同提出了位错的增殖机制。 上面所列出的是早期位错理论的发展的重要过程,到那时,对于 单个位错的运动规律,位错的交互作用等理论基本已经解决。 1953年Nye和1954年Bilby以及以后的krö 提出的无限小位错连续分 ner 布模型,为研究更复杂位错组态提供方法。 在解决任意形状的位错线的性质方面,由Burgers在1939年提出 的位移公式、Peach和krö 在1950年提出的应力场公式和位错受力 ner 公式及Blin在1955年提出的交互作用能公式等基本上能得到解决。 1956年 Menter直接在电镜观察了铂钛花青晶体中位错的存在,同年, Hirsch等应用相衬法在电镜观察到位错的运动,位错理论就在更坚 实的基础上发展了。 近几十年,随着实验设备和计算机的发展,研究位错核心的 组态以及在复杂结构中的位错方面取得很多很有成效的结果。
设想的缺陷引入晶体必需要: ①它的晶体学要素不依赖于加力的大小,而由晶体学本 身确定。由它运动导致的变形不破坏晶体结构,只是原 子间的相对运动。所以引入的缺陷不是完全无规而是有 晶体学特性的; ②它能解释变形的不均匀性,即能说明它的结构敏感性; ③它能说明变形过程的传播性; ④引入的这种缺陷是易动的,能解释实验强度比理论强 度低的原因。但它又不能像空位那样易受热起伏的影响; ⑤它应有合理的增殖机制。 现在已经知道,这种缺陷就是这里要讨论的位错。