等边三角形的判定和性质习题及答案

合集下载

部编数学八年级上册专题08等边三角形的判定和性质(解析版)含答案

部编数学八年级上册专题08等边三角形的判定和性质(解析版)含答案

2022-2023学年人教版数学八年级上册压轴题专题精选汇编专题08 等边三角形的判定和性质考试时间:120分钟 试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021八上·凉山期末)如图, MNP V 中, 60P Ð=° , MN NP = , MQ PN ⊥ ,垂足为Q ,延长MN 至G ,取 NG NQ = ,若 MNP V 的周长为12,MQ m = ,则 MGQ V 周长是( )A .8+2mB .8+mC .6+2mD .6+m 【答案】C【完整解答】解:∵60P Ð=° , MN NP = ,∴△PMN 是等边三角形,∵MQ PN ⊥ ,∴QN=PQ= 12MN ,∠QMN=30°,∠QNM=60°,∵NG NQ = ,∴∠GQN=∠G=30°,QN=NG= 12MN ,∴∠QMN=∠G=30°,∴QM=QG ,∵MNP V 的周长为12, MQ m = ,∴MN=4,QN=NC=2,QM=QG=m ,∴MGQ V 周长是QM+QG+MN+NG=6+2m.故答案为:C.【思路引导】易得△PMN 是等边三角形,得QN=PQ=12MN ,∠QMN=30°,∠QNM=60°,根据等腰三角形的性质可得∠GQN=∠G=30°,QN=NG=12MN ,推出QM=QG ,根据△MNP 的周长可得MN=4,QN=NC=2,QM=QG=m ,据此求解.2.(2分)(2021八上·铁岭期末)如图,E 是等边ΔABC 中AC 边上的点,12Ð=Ð,BE CD =,则ADE ∆是( )A .等腰三角形B .等边三角形C .不等边三角形D .无法确定【答案】B【完整解答】解:∵△ABC 为等边三角形∴AB=AC ,∠BAE=60°,∵∠1=∠2,BE=CD ,∴△ABE ≌△ACD (SAS ),∴AE=AD ,∠BAE=∠CAD=60°,∴△ADE 是等边三角形.故答案为:B .【思路引导】利用等边三角形的判定与性质即可得出结论。

等边三角形的性质及推论专项练习

等边三角形的性质及推论专项练习

等边三角形的性质及推论专项练习等边三角形是指三条边的长度相等的三角形。

在几何学中,等边三角形有许多重要的性质和推论。

在本篇文章中,我们将探讨等边三角形的性质和推论,并进行一些专项练习。

一、等边三角形的性质:1. 三边相等:等边三角形的三条边长相等,即a = b = c。

2. 三个内角相等:等边三角形的三个内角均为60度,即∠A = ∠B = ∠C = 60°。

3. 具有对称性:等边三角形具有三个对称轴,分别是三条边的中垂线、三条边的角平分线以及连接顶点和中点的线段。

二、等边三角形的推论:1. 等边三角形的角平分线和边的垂直平分线重合。

证明:设在等边三角形ABC中,D和E分别是AB、AC的垂直平分线交BC的点。

由对称性可知,AD和AE也是AB和AC的垂直平分线。

由于AD和AE相交于A点,所以A点是BC的垂直平分线,即AD = AE。

又由于∠DAB = ∠EAC = 90°,所以AD与AE重合,即AD = AE = BC的垂直平分线。

2. 等边三角形的高线、中线和角平分线重合。

证明:设在等边三角形ABC中,D和E分别是BC和AC的中点。

连接DE,由于BC = AC,所以BD = CE,且∠BDC = ∠CEA。

又因为∠DBC = ∠ECA = 90°,所以△BDC与△CEA全等。

由于BD = EC,所以DC = EA,即DC与EA重合,即DC = EA。

又由DE是BC和AC的中垂线,所以DE为高线。

因此,高线DE重合于中线CD和AE,且角平分线重合于高线DE。

3. 等边三角形的外接圆的半径等于边长的一半。

证明:设等边三角形ABC的边长为a,外接圆的半径为R。

连接AB、BC、CA分别与外接圆的切点为D、E、F。

由于等边三角形的三个角均为60°,所以△ABC为等边三角形。

由于AD是正弦定理中的角的对边,所以AD = a/√3。

由于BE是正弦定理中的角的对边,所以BE = a/√3。

等边三角形的性质与判定(3种题型)-2023年新八年级数学(苏科版)(解析版)

等边三角形的性质与判定(3种题型)-2023年新八年级数学(苏科版)(解析版)

等边三角形的性质与判定(3种题型)了解等边三角形的有关概念,探索并掌握性质及判定方法。

一.等边三角形的性质(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.二.等边三角形的判定(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.说明:在证明一个三角形是等边三角形时,若已知或能求得三边相等则用定义来判定;若已知或能求得三个角相等则用判定定理1来证明;若已知等腰三角形且有一个角为60°,则用判定定理2来证明.三.等边三角形的判定与性质(1)等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.(2)等边三角形的特性如:三边相等、有三条对称轴、一边上的高可以把等边三角形分成含有30°角的直角三角形、连接三边中点可以把等边三角形分成四个全等的小等边三角形等.(3)等边三角形判定最复杂,在应用时要抓住已知条件的特点,选取恰当的判定方法,一般地,若从一般三角形出发可以通过三条边相等判定、通过三个角相等判定;若从等腰三角形出发,则想法获取一个60°的角判定.一.等边三角形的性质(共9小题)1.(2022秋•崇川区校级月考)如图,在等边△ABC中,BD平分∠ABC交AC于点D,过点D作DE⊥BC 于点E,且CE=1.5,则AB的长为()A.3B.4.5C.6D.7.5【分析】由在等边三角形ABC中,DE⊥BC,可求得∠CDE=30°,则可求得CD的长,又由BD平分∠ABC 交AC于点D,由三线合一的知识,即可求得答案.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠C=60°,AB=BC=AC,∵DE⊥BC,∴∠CDE=30°,∵EC=1.5,∴CD=2EC=3,∵BD平分∠ABC交AC于点D,∴AD=CD=3,∴AB=AC=AD+CD=6.故选:C.【点评】此题考查了等边三角形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.2.(2022秋•姜堰区月考)如图,在等边△ABC中,AB=4cm,BD平分∠ABC,点E在BC的延长线上,且∠E=30°,则CE的长是()A.1cm B.2cm C.3cm D.4cm【分析】根据等边三角形的性质解答即可.【解答】解:∵等边△ABC的边长AB=4cm,BD平分∠ABC,∴∠ACB=60°,DC=AD=2cm,∵∠E=30°,∠E+∠EDC=∠ACB,∴∠EDC=60°﹣30°=30°=∠E,∴CD=CE=2cm,故选:B.【点评】此题考查等边三角形的性质,关键是根据等边三角形的三线合一解答.3.(2022秋•常州期中)如图,△ABC是等边三角形,P为BC上一点,在AC上取一点D,使AD=AP,且∠APD=70°,则∠PAB的度数是()A.10°B.15°C.20°D.25°【分析】由已知条件AD=AP可知∠ADP=∠APD,结合∠APD=70°可得∠ADP的度数,从而得到∠P AD 的度数;根据等边三角形的性质,可以得到∠BAC=60°,结合∠PAB=∠BAC﹣∠PAD即可解答此题.【解答】解:∵AD=AP,∴∠ADP=∠APD.∵∠ADP=∠APD,∠APD=70°,∴∠ADP=70°,∠PAD=40°.∵△ABC是等边三角形,∴∠BAC=60°,∴∠PAB=60°﹣40°=20°.故选:C.【点评】本题主要考查等边三角形与等腰三角形的性质,可以结合等边三角形的性质进行解答.4.(2022秋•海门市期末)如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD,DF⊥BE,垂足为点F.(1)求证:CE=2CF;(2)若CF=2,求△ABC的周长.【分析】(1)根据等边三角形的性质可知∠ACB=60°,再由DF⊥BE可知∠DFC=90°,∠FDC=90°﹣∠C=30°,由直角三角形的性质即可得出结论;(2)由CF=2可得出CD=4,故可得出AC的长,进而可得出结论.【解答】(1)证明:∵△ABC为等边三角形,∴∠ACB=60°,∵DF⊥BE,∴∠DFC=90°,∠FDC=90°﹣∠C=30°,∴DC=2CF.∵CE=CD∴CE=2CF;(2)解:∵CF=2,由(1)知CE=2CF,∴DC=2CF=4.∵△ABC为等边三角形,BD是中线,∴AB=BC=AC=2DC=8,∴△ABC的周长=AB+AC+BC=8+8+8=24.【点评】本题考查的是等边三角形的性质,熟知边三角形的三个内角都相等,且都等于60°是解题的关键.5.(2022秋•启东市期末)如图,△ABC是等边三角形,AD是BC边上的中线,点E在AD上,且DE=BC,则∠AFE=()A.100°B.105°C.110°D.115°【分析】根据等边三角形的性质得到∠BAC=60°,∠BAD=BAC=30°,AD⊥BC,BD=CD=BC,根据等腰直角三角形的性质得到∠DEC=∠DCE=45°,根据三角形的内角和定理即可得到答案.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°,∵AD是BC边上的中线,∴∠BAD=BAC=30°,AD⊥BC,BD=CD=BC,∴∠CDE=90°,∵DE=BC,∴DE=DC,∴∠DEC=∠DCE=45°,∴∠AEF=∠DEC=45°,∴∠AFE=180°﹣∠BAD﹣∠AEF=180°﹣30°﹣45°=105°,故选:B.【点评】本题考查了等边三角形的性质,三角形的内角和定理,熟练掌握等边三角形的性质是解题的关键.6.(2022秋•大丰区期中)如图,在等边△ABC中,D为BC边上的中点,以A为圆心,AD为半径画弧,与AC边交点为E,则∠ADE的度数为()A.60°B.105°C.75°D.15°【分析】根据等边三角形三线合一的性质可求出∠DAC=30°,结合AD等于AE求出∠ADE的度数即可.【解答】解:在等边△ABC中,D为BC边上的中点,∴∠DAC=30°(三线合一),在△ADE中,AD=AE,∴∠AED=∠ADE=(180°﹣30°)=75°,故选:C.【点评】本题考查了等边三角形的性质,等腰三角形的性质,解题关键在于能够熟练掌握该知识并进行合理运用.7.(2022秋•如皋市期中)如图,在△ABC中,BC的垂直平分线分别交BC,AB于点E,F,连接CF,若△AFC是等边三角形,则∠B的度数是()A.60°B.45°C.30°D.15°【分析】根据垂直平分线的性质得到∠B=∠BCF,再利用等边三角形的性质得到∠AFC=60°,从而可得∠B的度数.【解答】解:∵EF垂直平分BC,∴BF=CF,∴∠B=∠BCF,∵△ACF为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.故选:C.【点评】本题考查了垂直平分线的性质,等边三角形的性质,三角形外角的性质,解题的关键是利用垂直平分线的性质得到∠B=∠BCF.8.(2022秋•秦淮区校级月考)如图,△ABC是等边三角形,D,E分别是AC,BC上的点,若AE=AD,∠CED=25°,则∠BAE=°.【分析】利用等边三角形的性质可得∠C=∠BAC=60°,从而利用三角形的外角性质可得∠ADE=85°,然后利用等腰三角形的性质可得∠AED=∠ADE=85°,从而利用三角形的内角和定理可得∠DAE=10°,最后利用角的和差关系进行计算即可解答.【解答】解:∵△ABC是等边三角形,∴∠C=∠BAC=60°,∵∠CED=25°,∴∠ADE=∠CED+∠C=85°,∵AE=AD,∴∠AED=∠ADE=85°,∴∠DAE=180°﹣∠AED﹣∠ADE=10°,∴∠BAE=∠BAC﹣∠DAE=60°﹣10°=50°,故答案为:50.9.(2022秋•工业园区校级月考)阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:,∴r1+r2=h(定值).(1)类比与推理如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).(2)理解与应用△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等?(填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r=.若不存在,请说明理由.【分析】(1)连接AP,BP,CP.根据三角形ABC的面积的两种计算方法进行证明;(2)根据角平分线上的点到角两边的距离相等进行求作.【解答】证明:(1)连接AP,BP,CP.则S△ABP+S△BCP+S△ACP=S△ABC,即,∵△ABC是等边三角形,∴AB=BC=AC,∴r1+r2+r3=h(定值);(2)存在.r=2.【点评】此题主要是考查了等边三角形的性质、角平分线的性质以及三角形的面积公式.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.二.等边三角形的判定(共6小题)10.(2022秋•吴江区校级月考)若一个三角形有两条边相等,且有一内角为60°,那么这个三角形一定为()A.钝角三角形B.等腰三角形C.直角三角形D.正三角形【分析】根据有一个角是60°的等腰三角形是等边三角形求解.【解答】解:根据有一个角是60°的等腰三角形是等边三角形可得到该三角形一定为正三角形.【点评】此题考查学生对有一个角是60°的等腰三角形是等边三角形的运用.11.(2022秋•梁溪区期中)如图所示,在等腰△ABC中,AB=AC,AF为BC的中线,D为AF上的一点,且BD的垂直平分线过点C并交BD于E.求证:△BCD是等边三角形.【分析】根据等腰三角形的性质得出AF⊥BC,根据线段垂直平分线性质求出BD=DC,BC=CD,推出BD =DC=BC,根据等边三角形的判定得出即可.【解答】证明:∵AB=AC,AF为BC的中线,∴AF⊥BC,∴BD=DC,∵CE是BD的垂直平分线,∴BC=CD,∴BD=DC=BC,∴△BCD是等边三角形.【点评】本题考查了等边三角形的判定,等腰三角形的性质,线段垂直平分线性质的应用,能正确运用定理进行推理是解此题的关键.12.(2021秋•淮安期末)三角形的三边长a,b,c满足(a﹣b)4+(b﹣c)2+|c﹣a|=0,那么这个三角形一定是()A.直角三角形B.等边三角形C.等腰非等边三角形D.钝角三角形【分析】利用偶次方及绝对值的非负性可得出a﹣b=0,b﹣c=0,c﹣a=0,进而可得出a=b=c,再结合a,b,c是三角形的三边长,即可得出这个三角形是等边三角形.【解答】解:∵(a﹣b)4+(b﹣c)2+|c﹣a|=0,∴a﹣b=0,b﹣c=0,c﹣a=0,又∵a,b,c是三角形的三边长,∴这个三角形是等边三角形.故选:B.【点评】本题考查了等边三角形的判定、偶次方及绝对值的非负性,牢记三条边都相等的三角形是等边三角形是解题的关键.13.(2022秋•吴江区校级月考)在边长为9的等边三角形ABC中,点Q是BC上一点,点P是AB上一动点,以每秒1个单位的速度从点A向点B移动,设运动时间为t秒.(1)如图1,若BQ=6,PQ∥AC,求t的值;(2)如图2,若点P从点A向点B运动,同时点Q以每秒2个单位的速度从点B经点C向点A运动,当t为何值时,△APQ为等边三角形?【分析】(1)由平行线的性质得∠BQP=∠C=60°,∠BPQ=∠A=60°,从而得出△BPQ是等边三角形,列方程求解即可;(2 )根据点Q所在的位置不同,分类讨论△APQ是否为等边三角形,再根据等边三角形的性质得到等量关系,列方程求解即可.【解答】解:(1)如图1,∵△ABC是等边三角形,PQ∥AC,∴∠BQP=∠C=60°,∠BPQ=∠A=60°,又∠B=60°,∴∠B=∠BQP=∠BPQ,∴△BPQ是等边三角形,∴BP=BQ,由题意可知:AP=t,则BP=9﹣t,∴9﹣t=6,解得:t=3,∴当t的值为3时,PQ∥AC;(2)如图2,①当点Q在边BC上时,此时△APQ不可能为等边三角形;②当点Q在边AC上时,若△APQ为等边三角形,则AP=AQ,由题意可知,AP=t,BC+CQ=2t,∴AQ=BC+AC﹣(BC+CQ)=9+9﹣2t=18﹣2t,即:18﹣2t=t,解得:t=6,∴当t=6时,△APQ为等边三角形.题为背景,根据等边三角形、等腰三角形以及全等三角形的性质寻找等量关系,再列方程求解,能根据题目要求进行分类讨论是解题的关键.14.(2022秋•常州期中)如图,AB=AC,∠BAC=120°,AD⊥AC,AE⊥AB.(1)求∠C的度数;(2)求证:△ADE是等边三角形.【分析】(1)因为AB=AC,根据等腰三角形的性质,等腰三角形的两个底角相等,又∠BAC=120°,根据三角形内角和,可求出∠C的度数为30°.(2)AD⊥AC,AE⊥AB,∠ADE=∠AED=60°,三个角是60°的三角形是等边三角形.【解答】(1)解:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,故答案为:30°.(2)证明:∵∠B=∠C=30°,AD⊥AC,AE⊥AB.∴∠ADC=∠AEB=60°,∴∠ADC=∠AEB=∠EAD=60°,∴△ADE是等边三角形.【点评】本题考查等腰三角形的性质,等腰三角形的底角相等,以及等边三角形的判定定理,三个角是60°的三角形,是等边三角形.15.(2022秋•江都区校级月考)等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.【分析】先证△ABP≌△ACQ得AP=AQ,再证∠P AQ=60°,从而得出△APQ是等边三角形.【解答】解:△APQ证明:∵△ABC为等边三角形,∴AB=AC.在△ABP与△ACQ中,∵,∴△ABP≌△ACQ(SAS).∴AP=AQ,∠BAP=∠CAQ.∵∠BAC=∠BAP+∠PAC=60°,∴∠PAQ=∠CAQ+∠PAC=60°,∴△APQ是等边三角形.【点评】考查了等边三角形的判定及全等三角形的判定方法.三.等边三角形的判定与性质(共9小题)16.(2022秋•梁溪区期中)一艘轮船由海平面上A地出发向南偏西40°的方向行驶100海里到达B地,再由B地向北偏西20°的方向行驶100海里到达C地,则A,C两地相距()A.100海里B.80海里C.60海里D.40海里【分析】先求得∠CBA=60°,然后可判断△ABC为等边三角形,从而可求得AC的长.【解答】解:如图所示:连接AC.∵点B在点A的南偏西40°方向,点C在点B的北偏西20°方向,∴∠ABD=40°,∠CBD=20°,∴∠CBA=∠ABD+∠CBD=60°.又∵BC=BA,∴△ABC为等边三角形.∴AC=BC=AB=100海里.故选:A.【点评】本题主要考查的是方向角、等边三角形的性质和判定,证得△ABC为等边三角形是解题的关键.17.(2022秋•玄武区期中)如图,△ABC为等边三角形,BD⊥AC交AC于点D,DE∥BC交AB于点E.(1)求证:△ADE是等边三角形.(2)求证:AE=AB.【分析】(1)根据等边三角形的性质和平行线的性质证明即可.(2)根据等边三角形的性质解答即可.【解答】证明:(1)∵△ABC为等边三角形,∴∠A=∠ABC=∠C=60°.∵DE∥BC,∴∠AED=∠ABC=60°,∠ADE=∠C=60°.∴△ADE是等边三角形.(2)∵△ABC为等边三角形,∴AB=BC=AC.∵BD平分∠ABC,∴AD=AC.∵△ADE是等边三角形,∴AE=AD.∴AE=AB.【点评】此题考查等边三角形的判定和性质,关键是根据等边三角形的性质和平行线的性质解答.18.(2022秋•姑苏区期中)如图,在四边形ABCD中,AB=AD,CB=CD,∠A=60°,点E为AD上一点,连接BD,CE交于点F,CE∥AB.(1)判断△DEF的形状,并说明理由;(2)若AD=12,CE=8,求CF的长.【分析】(1)先证明△ABD是等边三角形,可得∠ABD=∠ADB=60°,由平行线的性质可得∠CED=∠ADB=∠DFE=60°,可得结论;(2)由等边三角形的性质和平行线的性质可求AE=CE=8,即可求解.【解答】解:(1)△DEF是等边三角形,理由如下:∵AB=AD,∠A=60°,∴△ABD是等边三角形,∴∠ABD=∠ADB=60°,∵CE∥AB,∴∠CED=∠A=60°,∠DFE=∠ABD=60°,∴∠CED=∠ADB=∠DFE,∴△DEF是等边三角形;(2)连接AC交BD于点O,∵AB=AD,CB=CD,∴AC是BD的垂直平分线,即AC⊥BD,∵AB=AD,∠BAD=60°,∴∠BAC=∠DAC=30°,∵CE∥AB,∴∠BAC=∠ACE=∠CAD=30°,∴AE=CE=8,∴DE=AD﹣AE=12﹣8=4,∵△DEF是等边三角形,∴EF=DE=4,∴CF=CE﹣EF=8﹣4=4.【点评】本题考查了等边三角形的判定和性质,平行线的性质,证明AE=CE是解题的关键.19.(2022秋•南通期末)已知等边△ABC的边长为5,点D为直线BC上一点,BD=1,DE∥AB交直线AC于点E,则DE的长为.【分析】分D在线段BC上,和D在线段CB的延长线上,两种情况,讨论求解即可.【解答】解:①当D在线段BC上,如图:∵等边△ABC的边长为5,∴∠A=∠B=∠C=60°,AB=AC=BC=5,∵BD=1,∴CD=BC﹣BD=4,∵DE∥AB,∴∠EDC=∠B=60°,∠DEA=∠A=60°,∴△DEC为等边三角形,∴DE=CD=4;②当D在线段CB的延长线上,如图:同法可得:△DEC为等边三角形,∴DE=CD=BC+BD=6;综上:DE的长为:4或6;故答案为:4或6.【点评】本题考查等边三角形的判定和性质.熟练掌握,两直线平行,同位角相等,证明三角形是等边三角形,是解题的关键.注意,分类讨论.20.(2022秋•鼓楼区校级月考)如图所示,在等边△ABC中,AB=9cm,点P从点C出发沿CB边向点B 以2cm/s的速度移动,点Q从点B出发沿BA边向点A以5cm/s的速度移动.P,Q两点同时出发,它们移动的时间为ts.(1)你能用含的式子表示BP和BQ的长度吗?请你表示出来.(2)请问几秒后,△PBQ第一次为等边三角形?(3)若P,Q两点分别从C,B两点同时出发,并且按顺时针方向沿△ABC三边运动,请问经过几秒后点P与点Q第一次在△ABC的哪条边上相遇?【分析】(1)由等边三角形的性质可求得BC的长,用t可表示出BP和BQ的长;(2)由等边三角形的性质可知BQ=BP,可得到关于t的方程,可求得t的值;(3)设经过t秒后第一次相遇,由条件可得到关于t的方程,可求得t的值,可求得点P走过的路程,可确定出P点的位置.【解答】解:(1)∵△ABC为等边三角形,∴BC=AB=9cm,∵点P的运动速度为2cm/s,运动时间为ts,∴BP=BC﹣CP=(9﹣2t)cm,∵点Q的运动速度为5cm/s,运动时间为ts,∴BQ=5t(cm);(2)若△PBQ为等边三角形,则有BQ=BP,即9﹣2t=5t,解得t=,∴s时,△PBQ第一次为等边三角形;(3)设ts时,Q与P第一次相遇,根据题意得5t﹣2t=18,解得t=6,即6s时,两点第一次相遇.当t=6s时,P走过的路程为2×6=12cm,而9<12<18,即此时P在AB边上,∴经过6秒后点P与点Q在AB上第一次相遇.【点评】本题考查了等边三角形的性质和判定、方程思想等知识.该题为运动型题目,解决这类问题的关键是化“动”为“静”,即用时间和速度表示出线段的长.21.(2022秋•泰州月考)如图,已知点D、E在△ABC的边BC上,AB=AC,AD=AE.(1)求证:BD=CE;(2)若AD=BD=DE=CE,求∠BAE的度数.【分析】(1)作AF⊥BC于点F,利用等腰三角形三线合一的性质得到BF=CF,DF=EF,相减后即可得到正确的结论.(2)根据等边三角形的判定得到△ADE是等边三角形,根据等边三角形的性质、等腰三角形的性质以及角的和差关系即可求解.【解答】(1)证明:如图,过点A作AF⊥BC于F.∵AB=AC,AD=AE.∴BF=CF,DF=EF,∴BD=CE.(2)∵AD=DE=AE,∴△ADE是等边三角形,∴∠DAE=∠ADE=60°.∵AD=BD,∴∠DAB=∠DBA.∴∠DAB=∠ADE=30°.∴∠BAE=∠BAD+∠DAE=90°.【点评】本题考查了等边三角形的判定与性质,熟练运用等边三角形的判定是本题的关键.22.(2022秋•沭阳县期中)已知:如图,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN 交MC于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形.【分析】(1)由等边三角形可得其对应线段相等,对应角相等,进而可由SAS得到△ACN≌△MCB,结论得证;(2)由(1)中的全等可得∠CAN=∠CMB,进而得出∠MCF=∠ACE,由ASA得出△CAE≌△CMF,即CE=CF,又ECF=60°,所以△CEF为等边三角形.【解答】证明:(1)∵△ACM,△CBN是等边三角形,∴AC=MC,BC=NC,∠ACM=∠NCB=60°,∴∠ACM+∠MCN=∠NCB+∠MCN,即∠ACN=∠MCB,在△ACN和△MCB中,∵,∴△ACN≌△MCB(SAS),∴AN=BM.(2)∵△CAN≌△CMB,∴∠CAN=∠CMB,又∵∠MCF=180°﹣∠ACM﹣∠NCB=180°﹣60°﹣60°=60°,∴∠MCF=∠ACE,在△CAE和△CMF中,∵,∴△CAE≌△CMF(ASA),∴CE=CF,∴△CEF为等腰三角形,又∵∠ECF=60°,∴△CEF为等边三角形.【点评】本题主要考查了全等三角形的判定及性质以及等边三角形的判定问题,能够掌握并熟练运用.23.(2022秋•启东市校级月考)数学课上,张老师举了下面的例题:例1:等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2:等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编的题目如下:变式题:等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答上面的变式题.(2)请继续探索,完成下面问题:等腰三角形ABC中,∠A=60°,则∠B的度数为.(3)根据以上探索,我们发现,∠A的度数不同,得到的∠B度数的个数也可能不同.请你直接写出当∠A 满足什么条件时,∠B能得到三个不同的度数.【分析】(1)∠A是顶角,则∠B是底角,根据等腰三角形的两个底角相等即可求解;∠B是顶角,则∠A 是底角,则根据等腰三角形的两个底角相等,以及三角形的内角和定理即可求解;∠C是顶角,则∠B与∠A都是底角,根据等腰三角形的两个底角相等即可求解;(2)分两种情况:①90≤x<180;0<x<90,结合三角形内角和定理求解即可.【解答】解:(1)当∠A=80°为顶角时,∠B==50°;当∠B是顶角,则∠A是底角,则∠B=180°﹣80°﹣80°=20°;当∠C是顶角,则∠B与∠A都是底角,则∠B=∠A=80°,综上所述,∠B的度数为50°或20°或80°;(2)因为有一个角为60°的等腰三角形为等边三角形,所以∠B=60°,故答案为:60°.(3)分两种情况:设∠A=x°,①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0°<∠A<90°且x≠60°时,∠B有三个不同的度数.【点评】本题考查了等腰三角形的性质及三角形内角和定理,进行分类讨论是解题的关键.24.(2022秋•铜山区校级月考)已知:如图,△DAC、△EBC均是等边三角形,点A、C、B在同一条直线上,且AE、BD分别与CD、CE交于点M、N.求证:(1)AE=DB;(2)△CMN为等边三角形.【分析】(1)根据△DAC、△EBC均是等边三角形,求证△ACE≌△DCB(SAS)即可得出结论.(2)由(1)可知:△ACE≌△DCB,和△DAC、△EBC均是等边三角形,求证△ACM≌△DCN(ASA)即可得出结论.【解答】证明:(1)∵△DAC、△EBC均是等边三角形,∴AC=DC,EC=BC,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.在△ACE和△DCB中,∴△ACE≌△DCB(SAS).∴AE=DB.(2)由(1)可知:△ACE≌△DCB,∴∠CAE=∠CDB,即∠CAM=∠CDN.∵△DAC、△EBC均是等边三角形,∴AC=DC,∠ACM=∠BCE=60°.又点A、C、B在同一条直线上,∴∠DCE=180°﹣∠ACD﹣∠BCE=180°﹣60°﹣60°=60°,即∠DCN=60°.∴∠ACM=∠DCN.在△ACM和△DCN中,∴△ACM≌△DCN(ASA).∴CM=CN.又∠DCN=60°,∴△CMN为等边三角形.【点评】此题主要考查学生对等边三角形的性质与判定、全等三角形的判定与性质、三角形内角和定理等知识点的理解和掌握,此题难度不大,但是步骤繁琐,属于中档题.一.选择题(共5小题)1.(2022秋•梁溪区期中)下列命题不正确的是()A.等腰三角形的底角不能是钝角B.等腰三角形不能是直角三角形C.若一个三角形有三条对称轴,那么它一定是等边三角形D.两个全等的且有一个锐角为30°的直角三角形可以拼成一个等边三角形【分析】利用等腰三角形的性质和等边三角形的判定的知识,对各选项逐项分析,即可得出结果.【解答】解:本题可采用排除法;A、利用等腰三角形的性质,等腰三角形的两底角相等,若两底角均为钝角,不能构成三角形,故这种说法错误,故不选A;B、举反例:等腰直角三角形,故B不正确.即答案选B.【点评】本题主要考查了等腰三角形的性质和等边三角形的判定,要求学生在学习过程中要对所学过的知识进行总结和复习,以便灵活的运用所学的知识.2.(2022秋•鼓楼区校级月考)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直【分析】先判断出OA=OB,∠OAB=∠ABO,分两种情况判断出∠ABD=∠AOB=60°,进而判断出△AOC ≌△ABD,即可得出结论.【解答】解:∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD(SAS),∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,②当点C在OB的延长线上时,如图2,同①的方法得出OA∥BD,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD(SAS),∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选:A.【点评】此题主要考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.3.(2022秋•射阳县校级月考)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始、按顺时针方向、取与三角形外箭头方向一致的一侧序号),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,3,1),按此方法,若点C的坐标为(2,m,m﹣2),则m=()A.2B.3C.4D.6【分析】根据点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,3,1),得到经过该点的三条直线对应着等边三角形三边上的三个数,依次为左,上,下,即可解答.【解答】解:由题意得:点C的坐标为(2,4,2),∴m=4,故选:C.【点评】本题考查了等边三角形的性质,规律型:数字的变化类,找出题中的规律是解题的关键.4.(2022秋•扬州期中)在下列结论中:(1)有一个外角是120°的等腰三角形是等边三角形(2)有两个外角相等的等腰三角形是等边三角形(3)有一边上的高也是这边上的中线的等腰三角形是等边三角形(4)三个外角都相等的三角形是等边三角形其中正确的个数是()A.4个B.3个C.2个D.1个【分析】根据等边三角形的性质和定义,可得:有一个角为60°的等腰三角形是等边三角形;三个内角都相等的三角形为等边三角形;再由中线的性质和三角形内角和的定义可解答本题.【解答】解:(1):因为外角和与其对应的内角的和是180°,已知有一个外角是120°,即是有一个内角是60°,有一个内角为60°的等腰三角形是等边三角形.该结论正确.(2):两个外角相等说明该三角形中两个内角相等,而等腰三角形的两个底角是相等的,故不能确定该三角形是等边三角形.该结论错误.(3):等腰三角形的底边上的高和中线本来就是重合的,“有一边”可能是底边,故不能保证该三角形是等边三角形.该结论错误.(4):三个外角都相等的三角形是等边三角形.正确;故选:C.【点评】本题考查等边三角形的判定,解题的关键是灵活运用的等边三角形的判定方法解决问题.5.(2022秋•邗江区月考)如图,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB 于点E,交AC于点F,若∠1=140°,则∠2的度数是()A.80°B.100°C.120°D.140°【分析】先根据等边三角形的性质可得∠A=∠B=∠C=60°,由三角形外角的性质可得∠AEF的度数,由平行线的性质可得同旁内角互补,可得结论.【解答】解:∵△ABC是等边三角形,∴∠A=60°.对于△AEF,∵∠1=∠A+∠AEF=140°,∴∠AEF=140°﹣60°=80°,∴∠DEB=∠AEF=80°,∵m∥n,∴∠2+∠DEB=180°,∴∠2=180°﹣80°=100°,故选:B.【点评】本题主要考查了等边三角形的性质,平行线的性质,三角形外角的性质,题目比较基础,熟练掌握性质是解题的关键.二.填空题(共13小题)6.(2022秋•江阴市期中)已知△ABC中,AB=AC=6,∠C=60°,则BC=6.【分析】先利用等腰三角形的性质得到∠B=∠C=60°,则可判断△ABC为等边三角形,然后根据等边三角形的性质得到BC=AB.【解答】解:∵AB=AC=6,∴∠B=∠C=60°,∴△ABC为等边三角形,∴BC=AB=6.故答案为:6.【点评】本题考查了等边三角形的性质:等边三角形的三条边都相等,三个内角都相等,且都等于60°.7.(2022秋•建邺区校级月考)如图,已知△ABC是等边三角形,AD是中线,E在AC上,AE=AD,则∠EDC=.【分析】由AD是等边△ABC的中线,根据等边三角形中:三线合一的性质,即可求得AD⊥BC,∠CAD =30°,又由AD=AE,根据等边对等角与三角形内角和定理,即可求得∠ADE的度数,继而求得答案.【解答】解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED=(180°﹣∠CAD)=75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故答案为:15°.【点评】此题考查了等边三角形的性质、等腰三角形的性质以及三角形内角和定理.此题难度不大,解题的关键是注意数形结合思想的应用.8.(2022秋•崇川区校级月考)如图,已知△ABC中,∠A=60°,D为AB上一点,且AC=2AD+BD,∠B=4∠ACD,则∠DCB的度数是.。

专题7 等边三角形的判定与性质(含答案)

专题7 等边三角形的判定与性质(含答案)

专题7 等边三角形的判定与性质知识解读等边三角形的判定方法有三种:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角是60°的等腰三角形是等边三角形.在这三种判定方法中,证明角度等于60°和证明两个角度相等比证明线段相等容易些,因此在证明一个三角形是等边三角形的时候,尽可能寻找60°的角.如果能找到两个60°的角,则就完成了三角形全等的证明.如果找到一个60°的角,则可继续证明这个三角形是等腰三角形.当一个图形中出现等边三角形时,由于等边三角形的三边相等,三个角都等于60°,这就为全等三角形提供了可能.而当一个图形中出现两个等边三角形的时候,由于图中出现了太多相等的线段和相等的角,此时一般会出现全等三角形.培优学案典例示范一、等边三角形判定方法的选择例1 如图,△ABC是等边三角形,D是BC延长线上一点,CE平分∠ACD,且CE=BD.求证:△DAE为等边三角形.【提示】由于CE=BD,AB=AC,因此可考虑证明△ABD≌△ACE,因此可证AD=AE,要说明△DAE为等边三角形,我们只需证明DE和AD,AE相等或者证明△ADE中一个角等于60°即可.【解答】EABCD【技巧点评】要证明一个三角形是等边三角形时,当已知这个三角形是等腰三角形,可设法证明第三条边和这两条边相等,或者证明这个三角形中有一个角等于60°.跟踪训练1.如图,在等边△ABC中,∠ABC和∠ACB的平分线相交于点O,BO、OC的垂直平分线分别交BC于点E 和点F ,求证:△OEF 是等边三角形.FEOCBA二、等边三角形为全等三角形提供可能例2 如图,△ABD 、△AEC 都是等边三角形,BE 、CD 相交于点O .(1)求证:BE=DC ; (2)求∠BOC 的度数. 【提示】(1)BE 和DC 可置于△ACD ,△AEB 中,通过证明△ACD ≌△AEB ,来证得BE=DC ,要证明△ACD ≌△AEB 需要的条件可从等边三角形中获得;(2)根据外角的性质可知∠BOC=∠BDO +∠DBO ,可将求∠BOC 转化为求∠BDO +∠DBO . 【解答】OEDCBA【技巧点评】等边三角形的三条边相等、三个角相等,相等的线段、相等的角是三角形全等的条件,因此当图形中出现两个等边三角形时,一般会出现全等三角形.跟踪训练2.在△AOB 和△COD 中,OA=OB ,OC=OD .(1)如图1,若∠AOB =∠COD =60°,求证:①AC=BD ;②∠APB =60°;(2)如图2,若∠AOB =∠COD=a ,则AC 与BD 间的等量关系式为 ,∠APB 的大小为 (直接写出结果,不证明)图 1 图 2PPOCAODCBA三、旋转线段,构造等腰直角三角形和等边三角形例3 已知:如图,在△ABC 中,AC=BC ,∠ACB=90°,将线段CB 绕点C 旋转60°得到CB',∠ACB 的平分线CD 交直线AB'于点D ,连接DB ,在射线DB'上截取DM=DC . (1)在图1中证明:MB'=DB ;(2)若6,分别在图1、图2中,求出AB'的长(直接写出结果).【提示】(1)本题隐含两个等边三角形,△BCB'和△CDM 都是等边三角形,连接CM 后,可得到一对全等三角形;(2)在图1中,可证明△ACB'是一个等腰三角形,其底角为15°6,要求的是底边长;图2中,图1的两个三角形仍然全等,△ACB'还是等腰三角形,其顶角是30°6,要求的是底边长,充分利用30°角构造直角三角形可解决这个问题. 【解答】图 1 图 260°60°M B'DCBAB'MDC BA【技巧点评】线段绕其一个端点旋转60°,连接另一个端点的对应点,可得一个等边三角形,线段绕其一个端点旋转90°,连接另一个端点的对应点,可得一个等腰直角三角形.跟踪训练3.(北京中考题)在△ABC 中,AB=AC ,∠BAC=a (0°<a <60°),将线段BC 绕点B 逆时针旋转60°得到线段BD .(1)如图1,直接写出∠ABD 的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE 的形状并加以证明; (3)在(2)的条件下,连接DE ,若∠DEC=45°,求a 的值.图 1 图 2EDCBA DCBA四、借助60°构造等边三角形解决问题例4 如图,△ABC 是等边三角形,延长BC 到D ,延长BA 到E ,使AE=BD ,连接CE 、DE .求证:EC=ED .【提示】要证明EC=ED ,可考虑将这两条线段置于一对全等三角形中,图中没有全等三角形,可设法构造全等三角形,由于∠B =60°,可考虑延长BD 到点F ,构造一个等边三角形. 【解答】F EDC B A跟踪训练4.已知:△ABC 为等边三角形.(1)如图1,P 为等边△ABC 外一点,且∠BPC=120°.试猜想线段BP 、PC 、AP 之间的数量关系,并证明你的猜想;(2)如图2,P 为等边△ABC 内一点,且∠APD=120°.求证:PA+PD+PC >BD .图 1 图 2PDCBAPCBA拓展延伸五、与等边三角形有关的动态问题例5 如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 运动到点C 时,P 、Q 都停止运动.(1)出发后运动2s 时,试判断△BPQ 的形状,并说明理由;那么此时PQ 和AC 的位置关系呢?请说明理由;(2)设运动时间为t ,△BPQ 的面积为S ,请用t 的表达式表示S .QP C BA【提示】(1)当出发后两秒时,AP =2×1=2,所以BP =4,BQ =2×2=4,又△ABC 是等边三角形,∠B =60°,所以△BPQ 是等边三角形,∠BPQ =∠A =60°,所以PQ //AC .(2)过Q 作QH ⊥AB ,因为∠B =60°,所以∠BQH =30°,又BQ =2t ,所以BH=t ,由勾股定理,得3t ,所以得面积S ()36t -. 跟踪训练5.如图2-7-10,在等边△ABC 中,AB =9cm ,点P 从点C 出发沿CB 边向点B 以2cm/s 的速度移动,点Q 点从B 点出发沿BA 边向A 点以5cm/s 速度移动.P ,Q 两点同时出发,它们移动的时间为t 秒钟。

等边三角形性质与判定练习题

等边三角形性质与判定练习题

等边三角形的性质和判定一.选择题1.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B. 220°C. 240°D 300°2.下列说法正确的是()A等腰三角形的两条高相等C有一个角是60°的锐角三角形是等边三角形B等腰三角形一定是锐角三角形D三角形三条角平分线的交点到三边的距离相等3在△ABC中,①若AB=BC=CA则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有()A.1个B.2个C.3个D.4个4.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°5.如图,已知D、E、F分别是等边△ABC的边AB、BC、AC上的点,且DE⊥BC、EF⊥AC、FD⊥AB,则下列结论不成立的是(A.△DEF是等边三角形B.△ADF≌△BED≌△CFE C. DE=AB D.S△ABC=3S△DEF6.如图,在△ABC中,D、E在BC上,且BD=DE=AD=AE=EC,则∠BAC的度数是(A.30°B.45°C.120°D.15°7.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm第1 题第4题第5题第7题8.已知∠AOB=30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点所构成的三角形是( )A .直角三角形B . 钝角三角形C . 等腰三角形D . 等边三角形二.填空题9.已知等腰△ABC 中,AB=AC ,∠B=60°,则∠A= _____ 度. 10.△ABC 中,∠A=∠B=60°,且AB=10cm ,则BC= ____ cm .11.在△ABC 中,∠A=∠B=∠C ,则△ABC 是 ______ 三角形.12.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD 的形状是 _________13如图M 、N 是△ABC 的边BC 上的两点且BM=MN=NC=AM=AN .则∠BAN= _________ .14.如图,用圆规以直角顶点O 为圆心,以适当半径画一条弧交两直角边于A 、B 两点,若再以A 为圆心,以OA 为半径画弧,与弧AB 交于点C ,则∠AOC 等于________15.已知:如图,△ABC 是等边三角形,BD 是中线,延长BC 到E ,使CE=CD ,不添辅助线,请你写出三个正确结论(1)______________;(2)______________;(3)______________.16.如图,将边长为6cm 的等边三角形△ABC 沿BC 方向向右平移后得△DEF ,DE 、AC 相交于点G ,若线段CF=4cm ,则△GEC 的周长是 _________ cm .EDC B A17.如图,在等边△ABC中,D、E分别是AB、AC上的点,且AD=CE,则∠BCD+∠CBE=_________度。

七年级(下)数学 第15讲 等边三角形 (解析版)

七年级(下)数学 第15讲 等边三角形 (解析版)

等边三角形是七年级数学下学期第三章第三节的内容,本讲主要讲解等边三角形的性质和判定定理;重点是理清性质和判定之间的区别和联系,难点是灵活运用等边三角形的性质解决综合题目,综合性更强.1、等边三角形的性质等边三角形的每个内角都等于60°.2、等边三角形的判定(1)三个内角都相等的三角形是等边三角形;(2)有一个角是60°的等腰三角形是等边三角形.等边三角形内容分析知识结构模块一:等边三角形性质与判定知识精讲2 / 24【例1】 下列说法中错误的是( )A .等边三角形是等腰三角形B .等边三角形是锐角三角形C .等边三角形的高、中线、角平分线共有3条D .含有60°角的三角形是等边三角形 【答案】D【解析】含有60°角的三角形不一定是等边三角形. 【总结】本题主要考查了等边三角形的定义和性质.【例2】 (1)等腰三角形的一个外角等于120°,则它是 三角形; (2)等边三角形是轴对称图形,它有______条对称轴,分别是_______________. 【答案】(1)等边三角形;(2)三,三边的垂直平分线.【解析】(1)当一个外角等于120︒时,与这个外角相邻的内角为60︒,因为是等腰三角形, 所以另外两个角也为60︒,则这个三角形为等边三角形;(2)等边三角形是轴对称图形,它有三条对称轴,分别是三边的垂直平分线. 【总结】本题主要考查了等边三角形的性质.【例3】 (1)已知AD 是等边△ABC 的高,BE 是AC 边的中线,AD 与BE 交于点F ,则∠AFE =_____________;(2)△ABC 是等边三角形,AD ∥BC ,CD ⊥AD ,则∠ACD = . 【答案】(1)60︒;(2)30︒. 【解析】(1)ABC ∆是等边三角形, 601303BAC AD BC CAD BAC ︒︒∴∠=∴∠=∠=,是边上的高,,90BE AC BE AC AEF ︒∴⊥∴∠=是边上的中线,,,903060AFE AEF CAD ︒︒︒∴∠=∠-∠=-=;ACDBFE 例题解析(2)ABC ∆是等边三角形,60ACB ︒∴∠=. //90AD BC CD AD BCD ︒⊥∴∠=,,,906030ACD ︒︒︒∴∠=-=.【总结】本题主要考查了等边三角形的性质.【例4】 已知三角形的一个外角等于与它不相邻的一个内角的2倍,且有一个内角为60°则这个三角形是( ) A .等边三角形 B .直角三角形 C .等腰直角三角形 D .等腰三角形【答案】A【解析】因为三角形一个外角等于与它不相邻的一个内角的2倍,且同时等于与它不相邻的 两个内角之和,所以与它不相邻的两个内角相等,因为有一个内角为60︒,所以三个内 角均为60︒,所以为等边三角形.【总结】本题主要考查三角形外角的性质及三角形内角和定理.【例5】 已知△ABC 是等边三角形,点D 在AC 上,点E 在AB 上,BD 与CE 相交于点F ,且BF=CF ,说明△ADE 是等边三角形.【解析】BF CF =,FBC FCB ∴∠=∠.60()ABC AB AC ABC ACB A ABD ACE ABD ACE ASA ︒∆∴=∠=∠∠=∴∠=∠∴∆≅∆为等边三角形,,,,AE AD ADE ∴=∴∆,是等边三角形. 【总结】本题主要考查了等边三角形的性质和判定及全等三角形的判定.A B CDEFDCBA4 / 24【例6】 如图所示,在△ABC 中,AB =AC ,△ADB 和△ACE 都是等边三角形,且∠DAE =∠DBC ,求∠BAC 的度数. 【答案】20°. 【解析】AB AC =,ABC ∴∆是等腰三角形.60ADB ACE ABD BAD CAE ︒∆∆∴∠=∠=∠=和是等边三角形,.606060DAE DBC ABC BAC ︒︒︒∠=∠∴∠+=∠++,,60ABC BAC ︒∠=∠+即.2180ABC ABC BAC ︒∆∠+∠=在中,,)260180BAC BAC ︒︒∴∠++∠=(,即2120180BAC BAC ︒︒∠++∠=,36020BAC BAC ︒︒∴∠=∴∠=,. 【总结】本题主要考查等边三角形的性质及三角形内角和定理的综合运用.【例7】 如图,ABC ∆是等边三角形,90CBD BD BC ∠==,,则1∠的度数是________. 【答案】75︒.【解析】ABC ∆是等边三角形,60ABC AB BC ︒∴∠==,.906090150CBD ABD ︒︒︒︒∠=∴∠=+=,,23BD BC BD AB =∴=∴∠=∠,,,18015021516015752︒︒︒︒︒︒-∴∠==∴∠=+=,.【总结】本题主要考查的是等边三角形的性质及等腰三角形的性质的综合运用.【例8】 如图,在等边三角形ABC 中,点D 、E 、F 分别是边AB 、BC 、CA 上的动点,且AD =BE =CF ,说明△DEF 是等边三角形的理由.【解析】60ABC A B C AB BC AC ∆∴∠=∠=∠=︒==是等边三角形,,.AD BE CF BD CE AF ==∴==,.A BCDEFAB CDE321ABCDADF BED ∆∆在和中,()AD BE A B ADF BED SAS AF BD ⎧⎪∠∠∴∆≅∆⎨⎪⎩==,= DF DE DE EF ∴==,同理可证:,DE DF EF DEF ∴==∴∆,是等边三角形.【总结】本题主要考查等边三角形的性质和判定的综合运用.【例9】 如图,在等边三角形ABC 的边BC 上任取一点D ,以CD 为边向外作等边三角形CDE ,连接AD ,BE ,试说明BE =AD 的理由.【解析】ABC ∆是等边三角形,60AC BC ACD ︒∴=∠=,.60CDE CD CE BCE ︒∆∴=∠=是等边三角形,,ACD BCE ∆∆在和中,AC BC ACD BCE ACD BCESAS CD CE =⎧⎪∠=∠∴∆≅∆⎨⎪=⎩,() BE AD ∴=.【总结】本题主要考查了等边三角形的性质和全等三角形的判定.【例10】 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M .求证:M 是BE 的中点.【解析】BD 连接601160302230ABC ACB ABC D AC DBC ABC CE CD CDE EACB CDE E E DBC E BD ED ︒︒︒︒∆∴∠=∠=∴∠=∠=⨯==∴∠=∠∠=∠+∠∴∠=∴∠=∠∴=为等边三角形,是边的中点,,,,,DM BC M BE ⊥∴,是的中点.【总结】本题主要考查了等边三角形性质和等腰三角形性质的运用.ABCDEABCDEM6 / 24【例11】 (1)如图所示,已知:△ABC 是等边三角形,M 、N 分别是边BC 、AC 的中点,AM 、BN 相交于点P ,求∠BPM 的大小;(2)如果点M 、N 分别在BC 、AC 的延长线上,且BM =CN .∠BPM 的大小会发生变 化吗?【答案】(1)60︒;(2)不会.【解析】(1)ABC ∆为等边三角形,60ABC ︒∴∠=. 90M BC AM BC PMB ︒∴⊥∴∠=是的中点,,N AC BN ABC ∴∠是的中点,平分,30MBP ︒∴∠=,180180903060BPM PMB MBP ︒︒︒︒︒∴∠=-∠-∠=--=.(2)ABC ∆是等边三角形,60BAC ACB AC BC AB ︒∴∠=∠===,, 120BAN ACM ︒∴∠=∠=,BM CN AN CM =∴=,,()ABN CAM SAS ∴∆≅∆, N M ∴∠=∠.60BPM N PAN M CAM ACB ︒∴∠=∠+∠=∠+∠=∠=,故∠BPM 的大小会不会发生变化.【总结】本题主要考查等边三角形的性质,全等三角形的判定定理和性质定理的综合运用.【例12】 如图,已知:在等边△ABC 中,D 在BC 边上,E 在△ABC 外,∠BAD =15°,∠DAE =70°,AD =AE ,求∠CAE ,∠EDC ,∠EFC 的度数.【答案】255080CAE EDC EFC ︒︒︒∠=∠=∠=;;. 【解析】ABC ∆是等边三角形,60BAC B ︒∴∠=∠=.1570BAD DAE ︒︒∠=∠=,,15706025CAE BAE BAC ︒︒︒︒∴∠=∠-∠=+-=.AD AE =,118070552ADE E ︒︒︒∴∠=∠=-=(), 255580EFC CAE E ︒︒︒∴∠=∠+∠=+=. 156075ADC BAD B ︒︒︒∠=∠+∠=+=, 755520EDC ADC ADE ︒︒︒∴∠=∠-∠=-=.【总结】本题主要考查了等边三角形的性质及三角形内角和定理的综合运用.ABCNPMABCPMN ABCDEF【例13】下列说法中正确的个数有()①有一个外角为120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有三个外角都相等的三角形是等边三角形;④有一边上的高也是这边上的中线的三角形是等边三角形;⑤△ABC中三边为a、b、c,满足()()()0a b b c c a---=,则这个三角形是等边三角形.A.1个B.2个C.3个D.4个【答案】B【解析】有一个外角为120°的等腰三角形是等边三角形,所以①正确;有两个外角相等的等腰三角形是不一定是等边三角形,所以②不正确;有三个外角都相等的三角形三个内角是相等的,是等边三角形,所以③是正确;有一边上的高也是这边上的中线的三角形是等腰三角形但不一定是等边三角形,所以④不正确;△ABC中三边为a、b、c,满足()()()0a b b c c a---=,则这个三角形是等腰三角形但不一定是等边三角形,所以⑤不正确.故选B.【总结】本题主要考查了等边三角形的判定与性质的综合运用.【例14】等边△ABC中,AD=BE=CF,D、E、F不是各边的中点,AE、BF、CD分别交于点P、M、N在每一组全等三角形中有三个三角形两两全等,那么在图中全等的三角形的组数是()A.2 B.3 C.4 D.5【答案】D【解析】CFB BEA ADC∆≅∆≅∆;CAE BCD ABF∆≅∆≅∆;CMB BPA ANC∆≅∆≅∆;CFM BEP ADN∆≅∆≅∆;CNE BMD APF∆≅∆≅∆,共5组.【总结】本题主要考查了等边三角形的判定和性质.A BCDEFMN P8 / 24【例15】 如图,在等边ABC △中,点D E ,分别在边BC AB ,上,且BD AE =,AD 与CE交于点F .(1)求证:AD CE =; (2)求DFC ∠的度数. 【答案】(1)见解析;(2)60︒. 【解析】(1)ABC ∆是等边三角形, 60BAC B AB AC ∴∠=∠=︒=,,()AE BD AEC BDA SAS =∴∆≅,,AD CE ∴=;(2)AEC BDA ∆≅∆,ACE BAD ∴∠=∠,60DFC FAC ACF FAC BAD BAC ∴∠=∠+∠=∠+∠=∠=︒.【总结】本题主要考查了等边三角形的性质和三角形外角的性质的综合运用.【例16】 已知等边△ABC 和点P ,设点P 到△ABC 三边AB 、AC 、BC 的距离分别为h 1,h 2,h 3, △ABC 的高为h .“若点P 在一边BC 上[如图(1)],此时h 3=0.可得结论: h 1+h 2+h 3=h .”请直接应用上述信息解决下列问题:当点P 在△ABC 内[如图(2)],以及点P 在△ABC 外[如图(3)]这两种情况时,上述结论是否成立?若成立,请予以证明;若不成立,h 1,h 2,h 3与h 之间又有怎样的关系,请写出你的猜想,不需要证明.【解析】(1)P ABC ∆当在内部时,结论仍成立. PA PB PC 连接、、, ABC AB PC APC B P S S S S ∆∆∆∆=++, 12311112222BC h AB h AC h BC h ∴=++.ABC ∆是等边三角形,AB BC AC ∴==,123h h h h ∴=++.(2)P ABC ∆当在外部时,不成立,123.h h h h +-=此时 【总结】本题主要考查了等边三角形的性质和三角形面积的综合应用.DA EFBCAB C DM FP ABCD E F AB CDEM P M F P图1 图2 图3【例17】 如图,△ABC 是边长为1的等边三角形,△BDC 是顶角∠BDC =1200的等腰三角形,以D 为顶点作一个600角,角的两边分别交AB 于M ,交AC 于N ,连结MN ,形成一个三角形.求证:△AMN 的周长等于2.【解析】AC P CP BM DP =延长到点,使,连接.1203060909090()60BDC BD CD BDC DBC DCB ABC ABC ACB MBD ABC DBC NCD PCD MBD PCDBM CP BDM CDP SAS MD PD MDB PDC MDN MDB NDC PDC NDC BDC MD ∆∴=∠=︒∴∠=∠=︒∆∴∠=∠=︒∴∠=∠+∠=︒∠=︒∴∠=︒∴∠=∠=∴∆≅∆∴=∠=∠∠=︒∴∠+∠=∠+∠=∠-∠是等腰三角形,,等边三角形,,,同理可得;,,,,,60,60112AMN N MDN PDN NMD NPD SAS MN PN NC CP NC BM C AM AN MN AM AN NC BM AB AC ∆=︒∴∠=∠=︒∴∆≅∆∴==+=+∴=++=+++=+=+=的周长,(),,2AMN ∴∆的周长为.【总结】本题主要考查了等边三角形的判定和性质的综合运用,注意辅助线的添加.【例18】 如图,在等腰△ABC 中,AB =AC ,∠A =200,在边AB 上取点D ,使AD =BC ,求∠BDC 的度数. 【答案】30︒.【解析】AC ABC ACE DE ∆∆以为一边在外侧作正三角形,连接2080608080()8020,40AB AC A ABC ACE AC AE CE EAC EAD AB AC AC AE CE AB AEAB AE ABC EAD ABC EAD ABC EAD SAS BC AD ACB EDA BAC AED ED AC DEC DE EC EDC =∠=︒∴∠=︒∆∴==∠=︒∴∠=︒===∴==⎧⎪∆∆∠=∠=︒∴∆≅∆⎨⎪=⎩∴∠=∠=︒∠=∠=︒=∴∠=︒=∴∠=∠,,是等边三角形,,,,,在和中,,,,,,70180180807030ECD BDC ADE EDC =︒∴∠=︒-∠-∠=︒-︒-︒=︒【总结】本题考查了等腰三角形、全等三角形和等边三角形性质的综合运用,综合性较强.BCA DEPBAC DN M10 / 24将等边三角形的性质作为一直条件,运用到解题中.【例19】 如图,已知△ABC 是等边三角形,E 是AC 延长线上一点,选择一点D ,使得△CDE是等边三角形,如果M 是线段AD 的中点,N 是线段BE 的中点,求证:△CMN 是等边三角形.【解析】ABC CDE ∆∆和是等边三角形60()(ACB ECD AC BC CD CE ACB BCD ECD BCD ACD BCE AC BCACD BCE ACD BCECD CE ACD BCE SAS AD BE CAD CBE M AD N BE AM BN AC BC AMC BNC CAD CBEAM BN AMC BNC S ∴∠=∠=︒==∴∠+∠=∠+∠∴∠=∠=⎧⎪∆∆∠=∠⎨⎪=⎩∴∆≅∆∴=∠=∠∴==⎧⎪∆∆∠=∠⎨⎪=⎩∴∆≅∆,,,在和中,,,是线段的中点,是线段的中点,在和中,)60AS CM CN ACM BCN NCM BCN BCM ACB ACM BCM NCM ACB CMN ∴=∠=∠∠=∠-∠∠=∠-∠∴∠=∠=︒∴∆,,,,是等边三角形.【总结】本题主要考查了等边三角形的判定与性质及全等三角形的判定与性质的综合运用.模块二:等边三角形综合知识精讲例题解析 AC ENMBD【例20】 如图,已知D 是等边三角形ABC 的边AB 边延长线上一点,BD 的垂直平分线HE交AC 延长线于点E ,那么CE 与AD 相等吗?试说明理由. 【答案】相等,见解析.【解析】//H HG BC AE G 过点作,交于点.60//6060,903018030,22ABC A ABC AB AC HG BC AHG ABC AHG A AHG HG AG AHHE BD AHE BH DHGHE AHE AHG GEH AHE A GHE GEH EG HG AG AHCE AE AC AG AC AH ∆∴∠=∠==∴∠=∠=︒∴∠=∠=︒∴∆∴==∴∠=︒=∴∠=∠-∠=︒∠=︒-∠-∠=︒∴∠=∠∴===∴=-=-=-是等边三角形,,,,为等边三角形,为的垂直平分线,,,,222.AC AB BH ACAB BH AB BH DH AD =+-=+=++=【总结】本题主要考查了等边三角形的判定和性质,注意辅助线的添加.【例21】 如图,已知:等边三角形ABC ,在AB 上取点D ,在AC 上取一点E ,使AD =AE ,作等边三角形PCD 、QAE 和RAB ,则P 、Q 、R 为顶点的三角形是等边三角形,请说明理由.【解析】BP 连接60()ABC PCD AC BC DC PC ACB BAC ABC DCP ACD BCP AC BCADC BPC DC PC ADC BPC SAS ACD BCP ∆∆∴==∠=∠=∠=∠=︒∴∠=∠=⎧⎪∆∆=∴∆≅∆⎨⎪∠=∠⎩和为等边三角形在和中,,,,,,6060606060180606060180.60AD BP DAC PBC RAB QAE RAB RBA R QAE RA RB AQ AERAB BAC QAE R A Q RBA ABC PBC R B P AQ AE AD BP RQ RA AQ RB BP RP R P ∴=∠=∠=︒∆∆∴∠=∠=∠=∠=︒==∠+∠+∠=︒+︒+︒=︒∴∠+∠+∠=︒+︒+︒=︒∴===∴=+=+=∠=︒∴,和为等边三角形、、三点共线、、三点共线,,,,,以,、Q R 、为顶点的三角形是等边三角形.【总结】本题主要考查了等边三角形的判定与性质的综合性运用,难度较大.GA B C DEHABCD ERP Q12 / 24【例22】 如图,已知:在等边三角形ABC 中,D 、E 分别是AB 、AC 边上的点,且BD =AE ,EB 与CD 相交于点O .EF 与CD 垂直于点F ,试说明OE =2OF .【解析】60F OFG OE G ∠=︒过点作,交于点60(..)60609030ABC A ABC AB BC AB BCABE BCD A ABC AE BD ABE BCD S A S ABE BCDADO ABC BCD ADO BOD ABE BOD ABC EOF OFG OG OF GFEF CD OFE OEF ∆∴∠=∠=︒==⎧⎪∆∆∠=∠⎨⎪=⎩∴∆≅∆∴∠=∠∠=∠+∠∠=∠+∠∴∠=∠=︒∴∠=︒∴∆∴==⊥∴∠=︒∴∠=︒∠是等边三角形,,在与中,,,又为等,,,,边三,角,形,,302.GFE OEF GFE GE GF OF OE OG GE OF =︒∴∠=∠∴==∴=+=,,,【总结】本题主要考查了等边三角形的判定与性质的综合运用,注意对方法的选择.【例23】 如图,点O 是等边△ABC 内的一点,∠AOB =110°,∠BOC =135°,试问:(1) 以OA 、OB 、OC 为边,能否构成一个三角形,若能,求出该三角形各角的度数; 若不能,说明理由;(2) 如果∠AOB 的大小保持不变,那么当∠BOC 等于多少度时,以OA 、OB 、OC 为边的三角形是一个直角三角形.【解析】(1)OC OCD AD ∆以为边作等边,连, 60OCD OC CD ∠=︒=则,.60 60 (..) 110135 115 1156055 135 1356075 ABC ACB AC BCBCO ACO ACD BCO ACD S A S OB AD ADC BOC OAD OA OB OC AOB BOC AOC AOD ADC ADO O ∆∴∠=︒=∴∠=︒-∠=∠∴∆≅∆∴=∠=∠∴∆∠=︒∠=︒∴∠=︒∴∠=︒-︒=︒∠=︒∴∠=︒-︒=︒∴∠是等边三角形,,,,,是以线段、、为边构成的三角形,,,,,180557550.505575.AD OA OB OC =︒-︒-︒=︒∴︒︒︒以线段、、为边构成的三角形的各角是、、(2)AOB AOC BOC ∠+∠+∠AOB AOC ADC =∠+∠+∠ ()()AOB AOD DOC ADO CDO =∠+∠+∠+∠+∠G ABCD EFO DABCO()()1106060 360AOD ADO =∠︒+∠+︒+∠+︒=︒,130AOD ADO ∴∠+∠=︒, 50OAD ∴∠=︒.AOD ∠当是直角时,90AOD ∴∠=︒,9060150AOC ∴∠=︒+︒=︒, 100BOC ∴∠=︒; ADO ∠当是直角时,90ADO ∴∠=︒,9060150ADC ∴∠=︒+︒=︒,150BOC ∴∠=︒,综上,当∠BOC 等于100°或150°时,以OA 、OB 、OC 为边的三角形是一个直角三角形.【总结】本题主要考查了等边三角形的判定与性质,注意利用旋转的思想去解题.【例24】 △CAB 与△CDE 是有公共顶点C 的两个等边三角形,△CDE 绕点C 顺时针旋转至以下各位置:(1) 当E 在BC 下方时,说明AD =BE ;(2) 当E 在BC 边上如图2、当E 在△ABC 内如图3、当E 在AC 边上如图4, 当 CE ∥AB 时,如图5,AD =BE 还成立吗?请一一说明理由.【解析】(1)ABC ∆是等边三角形, 60AC BC ACB ∴=∠=︒,.6060().CDE CD CE DCE BCE BCD ACD BCE ACD SAS AD BE ∆∴=∠=︒∴∠=︒-∠=∠∴∆≅∆∴=是等边三角形,,,,(2)成立.方法同(1),可证ACD BCE ∆≅∆,所以AD BE =.【总结】本题主要考查了等边三角形的性质及全等三角形的判定和性质的综合运用. 【例25】 已知A 、B 、C 三点共线,分别AC 、BC 为边,在直线AB 同侧作等边△CAN 和等边△BCM ,易得AM =BN .(1)将△CAN 绕点C 旋转一定的度数,得到图(2),试问:AM =BN 吗?ABCDE 图1ABCDE图2CDA B C DE BAECEABD图3图4 图514 / 24(2)将(1)中等边△CAN 再绕点C 旋转一定角度,得到图(3),上述AM =CN 还成 立吗?请说明理由;(3)在旋转过程中,直线AM 和直线BN 所夹的锐角的大小随着旋转角的改变而改变 吗?说说你的理由.【解析】(1)CAN ∆为等边三角形,60CA CN ACN ∴=∠=︒,.6060(..).BCM CM CB BCM ACM NCM NCBACM NCB S A S AM BN ∆∴=∠=︒∴∠=︒+∠=∠∴∆≅∆∴=为等边三角形,,,(2)成立.方法同(1).(3)不变.AM BN αβ令直线和直线所夹锐角为,所夹钝角为,606012060.ACM NCB AMC NBCNBM AMB NBM AMC BMCNBM NBC BMC CBM BMC βα∆≅∆∴∠=∠∴∠=∠+∠=∠+∠+∠=∠+∠+∠=∠+∠=︒+︒=︒∴∠=︒, 【总结】本题主要考查了等边三角形的性质及全等三角形的判定和性质的综合运用.A BC 图1N M ABC 图2MNABCN 图3MABCDA ′B ′C ′【例26】如图,△ABC 中,已知∠C =600,AC >BC ,又△ABC ′、△A ′BC 、△AB ′C 都是 △ABC 外的等边三角形,而点D 在AC 上,且BC =DC .(1)说明△C ′BD ≌△B ′DC 的理由; (2)说明△AC ′D ≌△DB ′A 的理由;(3)对△ABC 、△ABC ′、△A ′BC 、△AB ′C ,从面积大小关系上,你能得出什么结论? 直接写出来.【解析】(1)60ACB BC CD ∠=︒=,60'''6060'().BCD CBD ABC AB BC ABC ABC ABD C BD C BD ABC SAS C D ACBCA DCB DB BA C BD B DC ∴∆∴∠=︒∆∴=∠=︒∴∠=︒+∠=∴∆'≅∆∴'=∆≅∆'∴'=∴∆'≅∆'是等边三角形,是等边三角形,,,同理可证:,, (2)C D B C AB B D BC AC '='=''='='由(1)的结论知:,,().AC D DB A SAS ∴∆'≅∆' (3).AB C ABC ABC A BC S S S S ∆'∆'∆∆'>>>【总结】本题主要考查了等边三角形的性质及全等三角形的判定和性质,注意总结等边三角 形的面积与边长的关系.【习题1】 三个内角都相等的三角形是_________三角形,每个内角都等于______. 【答案】等边;60︒. 【解析】略.【总结】本题主要考查了等边三角形的定义和性质.随堂检测16 / 24【习题2】 在等腰三角形中,已知两底角之和等于顶角的2倍,则这个三角形是( )A .直角三角形B .钝角三角形C .等边三角形D .锐角三角形但不等边 【答案】C【解析】2αα设等腰三角形的顶角为,则底角和为, 218060ααα∴+=︒∴=︒,.有一个角是60°的等腰三角形是等边三角形,故选C .【总结】本题主要考查了等边三角形的判定及三角形内角和定理的运用.【习题3】 如图,△ABC 中,AB =AC ,∠A =60°,BD ⊥AC 于点D ,DG ∥AB 交BC 于点G ,E 在BC 的延长线上,CE =CD .(1)∠E =________;(2)∠BDE =_______;(3)图中的等腰三角形有________个;(4)图中的等边三角形有_______个. 【答案】(1)30︒;(2)120︒;(3)5;(4)2. 【解析】(1)60AB AC A =∠=︒,60309030120.ABC ACB BD AC ABD BDC CD CE E CDE BDE ∴∆∴∠=︒⊥∴∠=︒∠=︒=∴∠=∠=︒∴∠=︒是等边三角形,,,,,(3)等腰三角形有:ABC CDG CDE BGD BDE ∆∆∆∆∆,,,,; (4)等边三角形有:ABC CDG ∆∆,.【总结】本题主要考查了等腰三角形的性质和判定及等边三角形的性质和判定.【习题4】 下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( ) A . ①②③ B .①②④C .①③D .①②③④【答案】D【解析】①、②正确,是等边三角形的判定定理,③三个外角相等则三个内角必相等,则一 定是等边三角形,故正确;④利用等腰三角形的三线合一,可知,该三角形也是等边三 角形,正确,故选D .【总结】本题主要考查了等边三角形的判定.AB CDEG【习题5】 如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD =BE =CF ,则△DEF 的形状是( )A .等边三角形B .腰和底边不相等的等腰三角形C .直角三角形D .不等边三角形 【答案】A【解析】ABC ∆为等边三角形,60A B AB AC ∴∠=∠=︒=,.(..)..AD CF AF BD ADF BED S A S DF ED DF FE DF ED FE DEF =∴=∴∆≅∆∴==∴==∴∆,,,同理可证:,是一个等边三角形【总结】本题主要考查了等边三角形的性质和判定的综合运用.【习题6】 已知Rt △ABC 中,∠C =900,∠A =300,在直线BC 或AC 上取一点P ,使得△P AB是等腰三角形,则符合条件的P 点有( ) A . 2个 B .4个 C .6个 D .8个【答案】C【解析】1AC AB AC P PA PB =第个点在上,作线段的垂直平分线,交于点,则有; 2A AB AP AB AC P =第个点是以为圆心,以长为半径截取,交延长线上于点;34566A AB AP AB CA P B BA BP BA AC P B BA BP BA BC P A AB AP AB BC P P ====第个点是以为圆心,以长为半径截取,在上边于延长线上交于点;第个点是以为圆心,以长为半径截取,与的延长线交于点;第个点是以为圆心,以长为半径截取,与在左边交于点;第个点是以为圆心,以长为半径截取,与在右边交于点;故符合条件的点有个点.【总结】本题主要考查了等腰三角形的性质和判定,注意利用 “两圆一线”的方法确定等腰三角形.A BCDEF18 / 24【习题7】 如图,等边△ABC 中,AD =CE ,CD 于BE 相交于点P ,求∠BPC 的度数. 【答案】120︒【解析】ABC ∆是等边三角形,60(..)6060120.AC CB A ACB AD CE ACD CBE S A S ACD CBE ACD BCD ABC CBE BCD BPC ∴=∠=∠=︒=∴∆≅∆∴∠=∠∠+∠=∠=︒∴∠+∠=︒∴∠=︒,,,,,,【总结】本题主要考查等边三角形的性质和全等三角形的判定和性质.【习题8】 如图,△ABC 和△DBE 都是等边三角形,说明AB ∥CE 的理由.【解析】ABC DBE ∆∆和是等边三角形6060(..)6060//.AB BC BD BE A ABC DBE ABD CBE DBCABD CBE S A S BCE A ABC BCE AB CE ∴==∠=∠=∠=︒∴∠=∠=︒-∠∴∆≅∆∴∠=∠=︒∴∠=∠=︒∴,,,,,【总结】本题主要考查等边三角形的性质和全等三角形的判定和性质的运用.【习题9】 如图,△ABC 为等边三角形,E 是BC 延长线上一点,CD 平分∠ACE ,CD =BE ,试说明△ADE 为等边三角形的理由.【解析】ABC ∆为等边三角形,6012060(..)6060B ACB AB AC ACE CD ACE ACD B ACD AB ACABE ACD B ACDBE CD ABE ACD S A S AD AE BAE CAD BAC DAE ADE ∴∠=∠=︒=∴∠=︒∠∴∠=︒∴∠=∠=∆∆∠=∠=∴∆≅∆∴=∠=∠∠⎧⎪=︒∴∠=︒∆⎨⎪⎩∴,,平分,,在和中,,,,,为等边三角形.【总结】本题主要考查等边三角形的判定和性质及全等三角形的判定和性质的综合运用.A BC EDPABCDEAB C DE【习题10】 如图,△ABC 中,BA =BC =a ,∠B =60°,在BC 的延长线上取一点D ,使CD =b ,在BA 延长线上取一点E ,使AE =a +b ,试判断△ECD 是什么三角形,并说明理由. 【答案】等腰三角形. 【解析】//DF AC BE F 作交于60//60(..).ABC BAC B BA BC DF AC EFD CAE BFD BAC BDF DF BD BF a b AF BF BA BD BC CD bAE a b FE a AC AE BD FD EFD CAE S A S ED EC ECD ∆∴∠=∠=︒=∴∠=∠∠=∠=︒∴∆∴===+∴=-=-===+∴====∴∆≅∆∴=∴∆是等边三角形,,,,是等边三角形,,,,,,是等腰三角形【总结】本题主要考查等边三角形的性质及全等三角形的判定和性质的综合运用,注意平行 线的添加,将问题进行转化.【作业1】 已知一个三角形的任意一个角的平分线都垂直于这个角的对边,则这个三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .等边三角形.【答案】D【解析】只有在等边三角形中任意一个角的平分线是垂线并且是中线. 【总结】本题主要考查全等三角形的判定.课后作业ABCDEF20 / 24【作业2】 等边△ABC 的两条角平分线BD 和CE 交于点I ,则∠BIC 等于( )A . 60°B .90°C .120°D .150°【答案】C【解析】ABC ∆是等边三角形,60ABC ACB ∴∠=∠=︒.113030221803030120.BI ABC CI ACB IBC ABC ICB ACB BIC ∠∠∴∠=∠=︒∠=∠=︒∴∠=︒-︒-︒=︒平分,平分,,,【总结】本题主要考查了等边三角形的性质和角平分线的性质的综合运用.【作业3】 如图,E 是等边△ABC 中AC 边上的点,∠ABE =∠ACD ,BE =CD ,则△ADE 的形状是( )A . 等腰三角形B .等边三角形C .不等边三角形D .不能确定形状 【答案】B【解析】ABC ∆为等边三角形,AB AC ∴=.(..)60ABE ACD BE CD ABE ACD S A S AE AD BAE CAD ADE ∠=∠=∴∆≅∆∴=∠=∠=︒∴∆,,,,是等边三角形.【总结】本题主要考查了等边三角形的性质和判定.【作业4】 如图,△ABC 中,AB =AC ,∠B =360,D 、E 是BC 上两点,使∠ADE =∠AED =2∠BAD ,则图中等腰三角形共有( ) A .3个B .4个C . 5个D .6个【答案】D【解析】 AB AC =, ABC ∴∆是等腰三角形, 36C B ∴∠=∠=︒,180 180 36 36 108BAC B C ∴∠=︒-∠-∠=︒-︒-︒=︒.2 36 ADE BAD B BAD ABD ∠=∠∴∠=∠=︒∴∆,,是等腰三角形.ACE ∆同理可得是等腰三角形.ADE AED ADE ∠=∠∴∆,是等腰三角形.A BCDEAB CD E108 36 72CAD BAC BAD ∠=∠-∠=︒-︒=︒, ADE CAD CAD ∴∠=∠∴∆,是等腰三角形.BAE ∆同理可得是等腰三角形.6 ABC ADE ABD ACE ABE ACD ∴∆∆∆∆∆∆有个等腰三角形,分别为:、、、、、.【总结】本题主要考查了等腰三角形的判定.【作业5】 如图,已知△ABC 和△BDE 都是等边三角形,求证:BD +DC =AD .【解析】ABC ∆是等边三角形,60BA BC ABC ∴=∠=︒,.6060(),.BDE BE BD DE DBE ABE CBD CBE ABE CBD SAS AE CD BD DC DE AE AD ∆∴==∠=︒∴∠=∠=︒-∠∴∆≅∆∴=∴+=+=是等边三角形,,,,,【总结】本题主要考查了等边三角形的性质和全等三角形的判定.【作业6】 如图,已知△ABC 、△ADE 是等边三角形,点E 恰在CB 的延长线上,说明∠ABD =∠AED 的理由.【解析】ABC ADE ∆∆、为等边三角形,60AD AE AB AC DAE AED BAC C ∴==∠=∠=∠=∠=︒,,.60DAB EAC BAE ∴∠=∠=︒+∠, DAB EAC ∴∆≅∆,60ABD C AED ∴∠=∠=︒=∠.【总结】本题主要考查了等边三角形的性质和全等三角形的判定.ABCDEABCDE22 / 24【作业7】 试说明等边三角形内任意一点到三边的距离之和等于这个三角形一边上的高.【解析】a 如图,设等边三角形的边长为, 11••22ABC S BC AH a AH ∆∴==,111•••222111•••2221)2ABCSAB PD BC PE AC PF a PD a PE a PFa PD PE PF =++=++=++( PD PE PF AH ∴++=, 即得证.【总结】本题主要考查了三角形面积公式的应用及等边三角形的性质的综合运用.【作业8】 如图,D 是等边△ABC 内一点,DA =BD ,PB =AC ,且∠DBP =∠DBC ,则∠BPD的度数是 . 【答案】30︒. 【解析】CD 连接.60(..)1302,(..)30.ABC AB BC AC ACB DB DA DC DC ACD BCD S S S BCD ACD ACB PB AC PB BC DBP DBC BD BD BPD BCD S A S BPD BCD ∆∴==∠=︒==∴∆≅∆∴∠=∠=∠=︒=∴=∠=∠=∴∆≅∆∴∠=∠=︒是等边三角形,,,,,,,,,【总结】本题主要考查了等边三角形的性质及全等三角形的判定和性质的运用.【作业9】 如图,点O 是等边ABC △内一点,110AOB BOC α∠=∠=,.将BOC △绕点C按顺时针方向旋转60得ADC △,连接OD .(1)试说明COD △是等边三角形; (2)当150α=时,试判断AOD △的形状,并说明理由; (3)探究:当α为多少度时,AOD △是等腰三角形?ABCDPABCDO110α【解析】(1)60BOC C ADC ∆︒∆将绕点按顺时针方向旋转得60.CO CD OCD COD ∴=∠=︒∴∆,,是等边三角形(2)150AOD α=︒∆当时,是直角三角形,1506090BOC ADC ADC BOC COD ODC ADO ADC ODC AOD ∆≅∆∴∠=∠=︒∆∴∠=︒∴∠=∠-∠=︒∴∆,是等边三角形,,是直角三角形.(3)AO AD =①要使,AOD ADO ∠=∠需. 360110601906019060125AOD ADO αααααα∠=︒-︒-︒-=︒-∠=-︒∴︒-=-︒∴=︒,又,,;OA OD OAD ADO =∠=∠②要使,需,1801801906050OAD AOD ADO αα∠=︒-∠+∠=︒-︒-+-︒=︒()(),6050110αα∴-︒=︒∴=︒,;OD AD OAD AOD =∠=∠③要使,需,19050140αα∴︒-=︒∴=︒,.125110140AOD α︒︒︒∆综上所述:当的度数为或或时,是等腰三角形.【总结】本题综合考查了全等三角形的性质及等腰三角形的判定,注意进行角度的计算,综 合性较强,第(3)问注意要分类讨论.【作业10】 如图,△ABC 是等边三角形,延长BC 至D ,延长BA 至E ,并使AE =BD ,连接CE 、DE ,说明CE =DE 的理由.【解析】BD F DF BC EF =延长至,使,连接.6060(..).AE BD AE CFABC BA BC B BE BF BEF BE EF B F BC DF ECB EDF S A S CE DE =∴=∆∴=∠=︒∴=∴∆∴=∠=∠=︒=∴∆≅∆∴=,为等边三角形,,,为等边三角形,,,【总结】本题主要考查了等边三角形的性质与判定及全等三角形的判定,注意辅助线的添加.A BC D EF【作业11】在等边△ABC所在平面内求一点P,使△P AB、△PBC、△P AC都是等腰三角形,具有这样性质的点P有_________个.【答案】10.【解析】(1)点P在三角形内部时,点P是边AB、BC、CA的垂直平分线的交点;(2)分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的P点,每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故具有这种性质的点P共有10个.【总结】本题主要考查了等腰三角形的性质和判定,注意利用“两圆一线”去画等腰三角形.24/ 24。

等边三角形的判定与性质-初中数学习题集含答案

等边三角形的判定与性质-初中数学习题集含答案
3.(2013 秋•西城区期末)如图,在 ABC 中, AB AC , A 60 , BE AC 于 E ,延长 BC 到 D ,使 CD CE , 连接 DE ,若 ABC 的周长是 24, BE a ,则 BDE 的周长是 8 3 12 .
【 分 析 】 根 据 在 ABC 中 , AB AC , A 60 , 可 得 ABC 的 形 状 , 再 根 据 ABC 的 周 长 是 24 , 可 得 AB BC AC 8 ,根据 BE AC 于 E ,可得 CE 的长, EBC 30 ,根据 CD CE ,可得 D CED ,根据 ACB 60 ,可得 D ,根据 D 与 EBC ,可得 BE 与 DE 的关系,可得答案. 【解答】解:Q 在 ABC 中, AB AC , A 60 , ABC 是等边三角形, Q ABC 的周长是 24, AB AC BC 8 ,
等边三角形的判定与性质(北京习题集)(教师版)
一.填空题(共 5 小题) 1.(2018•东城区一模)含 30 角的直角三角板与直线 l1 , l2 的位置关系如图所示,已知 l1 / /l2 , 1 60 ,以下三个
结论中正确的是 (只填序号) ① AC 2BC ;② BCD 为正三角形;③ AD BD
2.(2016 秋•海淀区期中)如图,在等边 ABC 的底边 BC 边上任取一点 D ,过点 D 作 DE / / AC 交 AB 于点 E ,作 DF / / AC 交 AC 于点 F , DE 5cm , DF 3cm ,则 ABC 的周长为 cm .
3.(2013 秋•西城区期末)如图,在 ABC 中, AB AC , A 60 , BE AC 于 E ,延长 BC 到 D ,使 CD CE , 连接 DE ,若 ABC 的周长是 24, BE a ,则 BDE 的周长是 .

八年级数学上册《第十三章 等边三角形的性质与判定》练习题

八年级数学上册《第十三章 等边三角形的性质与判定》练习题

八年级数学上册《第十三章等边三角形的性质与判定》练习题(含答案解析)学校:___________姓名:___________班级:____________一、单选题1.如图所示,在菱形ABCD中,对角线AC与BD相交于点O,过点C作CE BD∥交AB的延长线于点E,下列结论不一定正确的是()A.12OB CE=B.ACE是直角三角形C.12BC AE=D.BE CE=2.已知:如图,在Δ ABC中,AB=AC,AB的垂直平分线DE,分别交AB、AC于点D、E.若AD=3,BC=5,则Δ BEC的周长为()A.8B.10C.11D.133.下列判断正确的是()(1)有两个角是60度的三角形是等边三角形(2)有一个角是60度的等腰三角形是等边三角形(3)三个内角都相等的三角形是等边三角形(4)三边都相等的三角形是等边三角形(5)腰和底边相等的等腰三角形是等边三角形.A.(1)(2)(3)(4)(5)B.(2)(3)(4)(5)C.(2)(3)(4)D.(2)(3)4.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当AB =2,∠A =120°时,AC 等于( )AB C .D .25.四边形ABCD 是菱形,60BAD ∠=︒,6AB =,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE =则CE =( )A .B .C .D .46.如图,在四边形ABCD 中,8AD =,2BC =,90B ∠=︒,30A ∠=︒,120ADC =∠︒,则CD 的长为( ).A .6B .5C .4D .37.如图,Rt △ABC 中,∠ABC =90°,∠BAC =60°,AB =1,将△ABC 绕点B 顺时针旋转得到A BC ''△,若直线A C ''经过点A ,则CC '的长为( )A .1B .2 CD .4二、填空题8.如图,在边长为6的等边∠ABC 中,D 、E 分别为边BC 、AC 上的点,AD 与BE 相交于点P ,若BD =CE =2,则∠ABP 的周长为 _____.9.等边三角形的判定:∠______的三角形是等边三角形.(定义)∠三个角都相等的三角形是等边三角形.∠有一个角是____的等腰三角形是等边三角形.10.如图,在等边ABC 中,D 为边BC 上一点,E 为边CA 延长线上的点,连接DE 交AB 边于点F ,DF EF =,若2AE AF AEF =,△的面积为2,则BDF 的面积为______________.11.如图,ABCD 中,对角线AC 、BD 相交于点O ,OE BD ⊥交AD 于点E ,连接BE ,若ABCD 的周长为28,则ABE △的周长为______.12.如图,C 为AB 上任意一点,分别以AC 、BC 为边在AB 同侧作正方形ACDE 、正方形BCFG ,设∠AFC =α,则∠BDC 为_________(用含α的代数式表示).13.如图,已知ABC ∆中,60A ∠=︒,D 为AB 上一点,且2,4AC AD BD B ACD =+∠=∠,则DCB ∠的度数是_________.14.如图,将∠ABC 沿BC 边上的中线AD 平移到∠A ′B ′C ′的位置,已知∠ABC 的面积为9,阴影部分三角形的面积为4,若中线AD =3,则A ′A 的值为___.三、解答题15.如图,有两条公路OM ,ON 相交成30°,沿公路OM 方向离O 点80米处有一所学校A ,当重型运输卡车P 沿道路ON 的方向行驶时,以P 为圆心,50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P 与学校A 的距离越近噪声影响越大,若重型运输卡车P 沿道路ON 方向行驶的速度为5米/秒.(1)求卡车P 对学校A 的噪声影响最大时,卡车P 与学校A 的距离;(2)求卡车P 沿道路ON 方向行驶一次,它给学校A 带来噪声影响的总时间.16.如图,菱形ABCD的边长为2,120∠=︒,对角线AC,BD相交于点O,又有E,F分别为AB,BCDAD的中点,连接EF.(1)求对角线AC的长;(2)求EF的长.17.如图,∠ABD∠∠EBC,AB=12,BC=5,A,B,C三点共线,则下列结论中:∠CD∠AE;∠AD∠CE;∠∠EAD=∠ECD;正确的是____.18.已知∠ABC是等边三角形,点D在射线BC上(与点B,C不重合),点D关于直线AC的对称点为点E.(1)如图1,连接AD,AE,DE,当BC=2BD时,根据边的关系,可判定∠ADE的形状是_____三角形;(2)如图2,当点D在BC延长线上时,连接AD,AE,CE,BE,延长AB到点G,使BG=CD,连接CG,交BE于点F,F为BE的中点,若AE=12,则CF的长为_____.19.如图,△ABC是等边三角形,点D在△ABC的外部,且∠ADC=30°,求证:222=+.BD CD AD参考答案:1.D【分析】由菱形的性质可知AC DB ⊥,AO OC =,由两直线平行,同位角相等可以推出90ACE AOB ∠=∠=︒,再证明Rt ACERt AOB △,得出12OB CE =,12AB AE =,由直角三角形斜边中线等于斜边一半可以得出12BC AE =.现有条件不足以证明BE CE =. 【详解】解:∠在菱形ABCD 中,对角线AC 与BD 相交于点O ,∠AC DB ⊥,AO OC =,∠90AOB ∠=︒,∠CE BD ∥,∠90ACE AOB ∠=∠=︒,∠ACE 是直角三角形,故B 选项正确;∠90ACE AOB ∠=∠=︒,CAE OAB ∠=∠,∠Rt ACERt AOB △, ∠12OB AB OA CE AE AC ===, ∠12OB CE =,12AB AE =,故A 选项正确; ∠BC 为Rt ACE 斜边上的中线, ∠12BC AE =,故C 选项正确; 现有条件不足以证明BE CE =,故D 选项错误;故选D .【点睛】本题考查菱形的性质,平行线的性质,相似三角形的判定与性质以及直角三角形斜边中线的性质,难度一般,由菱形的性质得出AC DB ⊥,AO OC =是解题的关键.2.C【分析】根据题意易得AB =AC =2AD =6,AE =BE ,进而根据线段的等量关系及三角形的周长可求解.【详解】解:∠AB =AC ,DE 垂直平分线段AB ,∠AD =BD ,AE =BE ,∠AD =3,∠AB =AC =2AD =6,∠BC =5,∠C △BEC =BC +BE +EC =BC +AE +EC =5+6=11;故选C .【点睛】本题主要考查线段垂直平分线的性质定理,熟练掌握线段垂直平分线的性质定理是解题的关键.3.A【分析】根据等边三角形的判定定理求解即可.【详解】解:三角形有两个角是60度,则第三个内角也为60度,三个内角相等,故为等边三角形,(1)正确;有一个角是60度的等腰三角形是等边三角形,故(2)正确;三个内角都相等的三角形是等边三角形,故(3)正确;三边都相等的三角形是等边三角形,故(4)正确;等腰三角形的腰和底边相等,则三条边相等,故(5)正确;故选:A .【点睛】本题考查了等边三角形的判定,熟记判定定理是解本题的关键.4.D【分析】连接AC ,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,AB =2,∠A =120°,易得△ABC 是等边三角形,继而求得答案.【详解】解:连接AC ,∵将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,∴四边形ABCD是菱形,∴AD∥BC,∵∠BAD=120°,∴∠B=60°,∴△ABC是等边三角形,∴AC=AB=2.故选:D.【点睛】此题考查了菱形的性质以及等边三角形的判定与性质.此题能证得△ABC是等边三角形是解此题的关键.5.C【分析】根据菱形的性质得出AB=AD=6,AC∠BD,OB=OD,OA=OC,结合题意得出∠ABD是等边三角形,再利用勾股定理确定OC=OA=E在AC上,可能在点O的左边或右边,结合图形求解即可.【详解】解:∠四边形ABCD是菱形,如图所示,∠.AB=AD=6,AC∠BD,OB=OD,OA=OC,∠∠BAD=60°,∠∠ABD是等边三角形,∠BD=AB=6,OB=12BD=3,∠OC=OA∠.AC=2OA=∠点E在AC上,可能在点O的左边或右边,OE∠CE=OC+OE=CE=O C-O E=故选:C.【点睛】题目主要考查菱形的性质,等边三角形的判定和性质,勾股定理解三角形等,理解题意,综合运用这些知识是解题的关键.6.C【分析】先延长AD、BC交于E,根据已知证出∠EDC是等边三角形,设CD=CE=DE=x,根据AD=8,BC=2和30度角所对的直角边等于斜边的一半,求出x的值即可.【详解】解:延长AD、BC交于E,∠∠A=30°,∠B=90°,∠∠E=60°,∠∠ADC=120°,∠∠EDC=60°,∠∠EDC是等边三角形,设CD=CE=DE=x,∠AD=8,BC=2,∠2(2+x)=x+8,解得;x=4,∠CD=4,故选:C【点睛】本题考查30度角所对的直角边等于斜边的一半,等边三角形的判定,熟练掌握含30度角的直角三角形的性质是解题关键.7.CBCC ABA是等边三角形,再利用含30°角的直角三角形的性质可得【分析】根据旋转的性质可证明,AC =2AB =2,由勾股定理得BC =,从而解决问题.【详解】解:∠将∠ABC 绕点B 顺时针旋转得到A BC ''△,∠,,BA BA BCBC BAC BA C , ∠∠BAC =60°,∠60'∠=︒A ,∠ABA '△是等边三角形,∠60ABA '∠=︒,∠60CBC ABA ,∠BCC '是等边三角形,∠CC BC '=,∠∠ABC =90°,∠BAC =60°,∠∠ACB =30°,∠AC =2AB =2,∠BC∠3CC BC ,故选:C .【点睛】本题主要考查了旋转的性质,等边三角形的判定与性质,含30°角的直角三角形的性质,勾股定理的应用等知识,证明BCC '是等边三角形是解题的关键.8.6+【分析】如图所示,过点E 作EF ∠AB 于F ,先解直角三角形求出AF ,EF ,从而求出BF ,利用勾股定理求出BE 的长,证明∠ABD ∠∠BCE 得到∠BAD =∠CBE ,AD =BE ,再证明∠BDP ∠∠ADB ,62BP PD ==,即可求出BP ,PD ,从而求出AP ,由此即可得到答案.【详解】解:如图所示,过点E 作EF ∠AB 于F ,∠∠ABC 是等边三角形,∠AB =BC ,∠ABD =∠BAC =∠BCE =60°,∠CE =BD =2,AB =AC =6,∠AE =4,∠cos 2sin AF AE EAF EF AE EAF =⋅∠==⋅∠=,,∠BF=4,∠BE又∠BD=CE,∠∠ABD∠∠BCE(SAS),∠∠BAD=∠CBE,AD=BE,又∠∠BDP=∠ADB,∠∠BDP∠∠ADB,∠BD BP DP AD AB BD==,62BP PD==,∠BP PD=∠AP AD AP=-=∠∠ABP的周长=6AB BP AP++=+故答案为:6【点睛】本题主要考查了等边三角形的性质,解直角三角形,勾股定理,相似三角形的性质与判定,全等三角形的性质与判定,正确作出辅助线是解题的关键.9.三条边都相等60°【解析】略10.6【分析】过点D作DG∠CE,交AB于点G,先证明△AEF∠∠GDF(ASA),得到AE=GD,GF=AF,然后证明△GDB为等边三角形,由三角形面积之间的关系即可求得答案.【详解】解:过点D作DG∠CE,交AB于点G,∠∠E =∠GDF ,∠C =∠GDB ,∠DF =EF ,∠EF A =∠DFG ,∠∠AEF ∠∠GDF (ASA ),∠AE =GD ,GF =AF ,2GDF AEF S S ==△△,∠∠ABC 为等边三角形,∠∠BAC =∠B =∠C =60°,∠DG ∠CE ,∠∠C =∠GDB =60°,∠BGD =∠BAC =60°,∠∠B =∠GDB =∠BGD =60°,∠∠GDB 为等边三角形,∠BG =GD =AE ,∠AE =2AF ,∠BG =2AF =2GF ,∠22GDB GDF AEF S S S ==△△△=4,,∠BDF GDF GDB S S S =+△△△=6,即△BDF 的面积为6.故答案为:6.【点睛】此题考查的是等边三角形的判定与性质、全等三角形的判定与性质、三角形的面积等知识,正确作出辅助线是解决此题的关键.11.14【分析】根据平行四边形的性质证得14AB AD +=,再证明OE 为线段BD 的垂直平分线,则BE=ED ,由ABE △的周长=+AB AD 即可求解.【详解】解:∠四边形ABCD 是平行四边形,∠OB OD =,AB CD =,AD BC =,∠平行四边形的周长为28,∠14AB AD +=,∠OE BD ⊥,∠OE 是线段BD 的垂直平分线,∠BE ED =,∠ABE △的周长14AB BE AE AB AD =++=+=.【点睛】本题考查平行四边形的性质、线段垂直平分线的判定与性质、三角形的周长,熟练掌握平行四边形的性质及中垂线的性质,证明OE 是线段BD 的垂直平分线是解答的关键.12.90°-α【分析】由“SAS”可证△ACF ∠∠DCB ,得出∠CAF =∠BDC ,再由直角三角形的性质即可求解.【详解】解:∠四边形ACDE 和四边形BCFG 是正方形,∠AC =CD ,CF =CB ,∠ACF =∠DCB =90°,∠∠CAF +∠AFC =90°,在△ACF 和△DCB 中,AC DC ACF DCB CF CB =⎧⎪∠=∠⎨⎪=⎩,∠∠ACF ∠∠DCB (SAS ),∠∠CAF =∠BDC ,∠∠AFC =α,∠∠CAF =90°-∠AFC =90°-α,∠∠BDC =90°-α,故答案为:90°-α.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质等知识;证明三角形全等是解题的关键.13.20°【分析】延长AB 至点E 使BE AD =,连接CE ,证明AEC △是等边三角形,设ACD x ∠=,则4∠=ABC x ,再证明()△△ADC EBC SAS ≅,即可得到结果.【详解】解:如图,延长AB 至点E 使BE AD =,连接CE .∠2=++=+AE AD DB BE AD BD ,∠2=+AC AD BD ,∠AE AC =.∠60A ∠=︒,∠AEC △是等边三角形,∠60∠=∠=︒E ACE ,∠4∠=∠ABC ACD ,∠设ACD x ∠=,则4∠=ABC x .在ADC 与EBC 中,∠AD BE A E AC EC =⎧⎪∠=∠⎨⎪=⎩,∠()△△ADC EBC SAS ≅,∠∠=∠=ACD ECB x .∠∠=∠+∠ABC E BCE ,∠460=︒+x x ,∠20x =︒,∠60202020∠=︒-︒-︒=︒BCD .故答案是20︒.【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,准确分析计算是解题的关键.14.1【分析】设A ′B ′,A ′C ′交BC 于点E 、F ,由S △ABC =9、S △A ′EF =4且AD 为BC 边的中线知S △A ′DE =12S △A ′EF =2,S △ABD =12S △ABC =92,根据∠DA ′E ∠∠DAB 知(A D AD ')2='A DEABD S S ,据此求解可得.【详解】解:如图,设A’ B’,A’ C’交BC 于点E 、F ,∠S △ABC =9、S △A ′EF =4,且AD 为BC 边的中线,∠S △A ′DE =12S △A ′EF =2,S △ABD =12S △ABC =92, ∠将∠ABC 沿BC 边上的中线AD 平移得到∠A 'B 'C ',∠A ′E ∠AB ,∠∠DA ′E ∠∠DAB ,则(A D AD ')2='A DEABD S S ,即(3'A D )2=49, 解得A ′D =2(负值舍去),321AA AD A D ''∴=-=-=故答案为:1.【点睛】本题主要平移的性质,三角形中线的性质,以及相似三角形的判定与性质,解题的关键是熟练掌握三角形中线的性质、相似三角形的判定与性质等知识点.15.(1)40米(2)12秒【分析】(1)过点A 作AD ∠ON 于D ,利用含30°角的直角三角形的性质求出AD 可得答案;(2)在ON 上取点B ,点C ,使50AB AC ==,则卡车在BC 段对学校A 有影响,利用勾股定理求出BD 和CD 的长,从而求出时间.(1)解:过A 作AD ON⊥,垂足为D ,由垂线段最短可知AD 为所求,∠30MON ∠=︒,80OA =米, ∠12AD OA =40=米, 答:噪声影响最大时,卡车P 与学校A 的距离为40米;(2)在ON 上取点B ,点C ,使50AB AC ==,由题意,卡车P 到达B 点时开始对学校产生噪声影响,到达C 点时结束噪声影响,由(1)知AD =40米,∠30BD =米,同理可得:30CD =米,∠60BC =米,∠卡车的行驶速度为5米/秒,∠给学校A 带来噪声影响的总时间为60512÷=(秒).【点睛】本题主要考查了勾股定理的实际应用,含30°角的直角三角形的性质,垂线段最短等知识,根据题意构造出直角三角形是解题的关键.16.(1)2【分析】(1)由菱形的性质得AB =BC =2,∠BCA =∠DCA =12∠BCD =60°,再证∠ABC 是等边三角形即可; (2)由三角形中位线定理得EF =12BD ,再由菱形的性质得AO =12AC =1,BO =DO ,AC ∠BD ,最后运用勾股定理解答即可.(1)解: 四边形ABCD 是菱形,∠AB BC =,BCA DCA ∠=∠,∠120BCD ∠=︒,∠60BCA ∠=︒ABC 是等边三角形∠2AC AB ==.(2)解:∠E ,F 分别为AB ,AD 的中点,∠EF 是中位线,∠12EF BD =.又∠四边形ABCD 是菱形,∠112AO AC ==,AC BD ⊥,∠90AOB ∠=︒,∠在Rt AOB 中,由勾股定理得,222BO AB AO =-,∠22221BO =-,∠BO =∠2BD BO ==12EF BD =【点睛】本题主要考查了菱形的性质、等边三角形的判定与性质、三角形中位线定理以及勾股定理等知识点,灵活运用相关性质定理是解答本题的关键.17.∠∠∠【分析】首先延长AD 交EC 于点N ,延长CD 交AE 于点M ,根据全等三角形的性质,得出∠ABD =∠EBC ,AB =EB ,BD =BC ,∠DAB =∠CEB ,再根据等边对等角,得出∠BAE =∠BEA ,∠BDC =∠BCD , 又因为∠ABD +∠EBC =180°,进而得出∠ABD =∠EBC =90°,再利用三角形的内角和等于180︒,得出∠BAE =∠BEA =45°,∠BDC =∠BCD =45°,即可证明∠正确;再根据直角三角形两锐角互余,得出∠CEB +∠ECB =90°,再根据全等三角形的性质,得出∠BAD =∠BEC ,进而得出∠BAD +∠ECB =90°,即可证明∠正确;再根据三角形的一个外角等于与它不相邻的两个内角的和,得出∠ADB =∠EAD +∠AED =∠EAD +45°,再根据∠ECB =∠ECD +∠BCD =∠ECD +45°,又因为∠ADB =∠ECB ,得出∠EAD =∠ECD ,即可证明∠正确.【详解】解:延长AD 交EC 于点N ,延长CD 交AE 于点M ,∠∠ABD ∠∠EBC ,∠∠ABD =∠EBC ,AB =EB ,BD =BC ,∠DAB =∠CEB ,∠∠ABD +∠EBC =180°,∠BAE =∠BEA ,∠BDC =∠BCD ,∠∠ABD =∠EBC =90°,∠∠BAE =∠BEA =45°,∠BDC =∠BCD =45°,∠∠BAE +∠BCD =90°,∠∠AMC =90°,∠CD ∠AE ,故∠正确;∠∠CEB +∠ECB =90°,∠BAD =∠BEC ,∠∠BAD +∠ECB =90°,∠∠ANC =90°,∠AD ∠CE ,故∠正确;∠∠ADB =∠EAD +∠AED =∠EAD +45°,∠ECB=∠ECD+∠BCD=∠ECD+45°,∠ADB=∠ECB,∠∠EAD=∠ECD,故∠正确;故答案为:∠∠∠.【点睛】本题考查了全等三角形的性质、等边对等角、三角形的内角和定理、直角三角形两锐角互余、三角形的外角定理等知识点,解本题的关键在熟练掌握相关的性质、定理.18.等边6【分析】(1)由等边三角形的性质得出AD=AE,∠DAC=∠EAC=30°,证出∠DAE=60°,由等边三角形的判定可得出结论;(2)证明∠ACE∠∠CBG(S A S),由全等三角形的性质得出AE=CG,证∠CEF∠∠GBF(AA S),由全等三角形的性质得出CF=GF,则可得出答案.【详解】解:(1)∠BC=2BD,∠BD=CD,∠∠ABC是等边三角形,∠∠BAD=∠DAC=30°,∠点D关于直线AC的对称点为点E,∠AD=AE,∠DAC=∠EAC=30°,∠∠DAE=60°,∠∠ADE是等边三角形.故答案为:等边;(2)∠点D关于直线AC的对称点为点E.∠∠ACD∠∠ACE,∠CE=CD,∠ACD=∠ACE,∠BG=CD,∠CE=BG,∠∠ABC是等边三角形,∠∠ABC=∠ACB=60°,AC=CB,∠∠ACD=∠GBC=120°,∠∠ACE=∠GBC=120°,∠∠ACE∠∠CBG(S A S),∠AE=CG,∠∠BCE=∠ACE﹣∠ACB=60°,∠∠BCE+∠BGC=180°,∠BG∠CE,∠∠G=∠FCE,∠F为BE的中点,∠BF=EF,∠∠BFG=∠CFE,∠∠CEF∠∠GBF(AA S),∠CF=GF,∠CF=12CG=12AE=6.故答案为:6.【点睛】本题考查了等边三角形的判定与性质,轴对称的性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质是解题的关键.19.证明见解析【分析】将△BCD绕点B逆时针旋转60°得到△BAE,由旋转的性质可得△BCD∠∠BAE,∠DBE=60°,由全等三角形的性质可得BE=BD,AE=CD,∠BDC=∠BEA,由三角形内角和定理求出∠EAD=90°,结合勾股定理可得结论.【详解】解:如图,将△BCD绕点B逆时针旋转60°得到△BAE,连接DE,∠∠BCD∠∠BAE,∠DBE=60°,∠BE=BD,AE=CD,∠BDC=∠BEA,∠∠BED是等边三角形,∠DE=BD,在△BDE中,∠EBD+∠BED+∠BDE=180°,∠60°+∠BEA+∠AED+∠ADE+∠BDA=180°,∠∠AED+∠ADE+∠BDC+∠ADB=120°,∠∠AED+∠ADE=120°﹣∠ADC=90°,∠∠EAD=90°,∠222=+,DE AE AD∠222BD CD AD=+.【点睛】本题考查了旋转的性质,全等三角形的性质,等边三角形的判定和性质,三角形内角和定理,勾股定理等知识,证明∠EAD=90°是本题的关键.。

2021年九年级数学中考复习分类专题:等边三角形的判定与性质(一)

2021年九年级数学中考复习分类专题:等边三角形的判定与性质(一)

2021年九年级数学中考复习分类专题:等边三角形的判定与性质(一)一.选择题1.关于等边三角形,下列说法中错误的是()A.等边三角形中,各边都相等B.等腰三角形是特殊的等边三角形C.两个角都等于60°的三角形是等边三角形D.有一个角为60°的等腰三角形是等边三角形2.如图,四边形ABCD为菱形,AB=2,∠DAB=60°,点E、F分别在边DC、BC上,且CE=CD,CF=CB,则S△CEF=()A.B.C.D.3.如图,半径为1的半圆O上有两个动点A,B,CD为直径,若AB=1,则四边形ABCD 的面积的最大值为()A.B.4C.D.4.如图,△ABC是等边三角形,P是三角形内任意一点,D、E、F分别是AC、AB、BC 边上的三点,且PF∥AB,PD∥BC,PE∥AC.若PF+PD+PE=a,则△ABC的边长为()A.a B.a C.a D.a5.如图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ周长是()A.8+2a B.8+a C.6+a D.6+2a6.如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.∠ADC=30°,AD=3,BD=5,则CD的长为()A.B.4 C.D.4.57.如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④8.如图,AB=AC,AE=EC=CD,∠A=60°,若EF=2,则DF=()A.3 B.4 C.5 D.69.如图,在边长为2的等边三角形ABC中,D为边BC上一点,且BD=CD.点E,F 分别在边AB,AC上,且∠EDF=90°,M为边EF的中点,连接CM交DF于点N.若DF∥AB,则CM的长为()A.B.C.D.10.如图,在平面直角坐标系中xOy中,已知点A的坐标是(0,1),以OA为边在右侧作等边三角形OAA1,过点A1作x轴的垂线,垂足为点O1,以O1A1为边在右侧作等边三角形O1A1A2,再过点A2作x轴的垂线,垂足为点O2,以O2A2为边在右侧作等边三角形O2A2A3,…,按此规律继续作下去,得到等边三角形O2018A2018A2019,则点A2019的纵坐标为()A.()2016B.()2017C.()2018D.()2019二.填空题11.已知半径为2的⊙O中,弦AC=2,弦AD=,则∠AOD=,∠COD =.12.如图,某景区湖中有一段“九曲桥”连接湖岸A,B两点,“九曲桥”的每一段与AC 平行或BD平行,若AB=100m,∠A=∠B=60°,则此“九曲桥”的总长度为.13.如图,在一个池塘两旁有一条笔直小路(B,C为小路端点)和一棵小树(A为小树位置).测得的相关数据为:∠ABC=60°,∠ACB=60°,BC=48米,则AC=米.14.如图,在△ABC中,AB=1.8,BC=3.9,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为.15.如图,在矩形ABCD中,AB=3,∠ACB=60°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠FDE=60°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是.三.解答题16.如图,△ABC是等边三角形,DF⊥AB,DE⊥CB,EF⊥AC,求证:△DEF是等边三角形.17.在等边△ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP =AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②求证:PA=PM.18.如图1,图2,△ABC是等边三角形,D、E分别是AB、BC边上的两个动点(与点A、B、C不重合),始终保持BD=CE.(1)当点D、E运动到如图1所示的位置时,求证:CD=AE.(2)把图1中的△ACE绕着A点顺时针旋转60°到△ABF的位置(如图2),分别连接DF、EF.①找出图中所有的等边三角形(△ABC除外),并对其中一个给予证明;②试判断四边形CDFE的形状,并说明理由.19.如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC =α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.20.已知在平面直角坐标系内A(4,0)、B(2,0),点P是y轴正半轴上一个动点,联结AP.过点O作OD⊥PA,垂足为D.联结BD并延长交y轴于点F.(1)如果OD=2,求PF的长;(2)如果PD=PF,求OP的长.21.如图所示,已知一个面积为S的等边三角形,现将其各边n等分(n为大于2的整数),并以相邻等分点为顶点向外作小等边三角形.(1)当n=5时,共向外作出了个小等边三角形,每个小等边三角形的面积为,这些小等边三角形的面积和为;(用含S的式子表示)(2)当n=k时,共向外作出了个小等边三角形,每个小等边三角形的面积为,这些小等边三角形的面积和为;(用含k和S的式子表示)(3)若大等边三角形的面积为100,则当n=10时,共向外作出了多少个小等边三角形?这些小等边三角形的面积和为多少?参考答案一.选择题1.解:A、等边三角形中,各边都相等,此选项正确;B、等边三角形是特殊的等腰三角形,此选项错误;C、两个角都等于60°的三角形是等边三角形,此选项正确;D、有一个角为60°的等腰三角形是等边三角形,此选项正确;故选:B.2.解:∵四边形ABCD为菱形,AB=2,∠DAB=60°∴AB=BC=CD=2,∠DCB=60°∵CE=CD,CF=CB∴CE=CF=∴△CEF为等边三角形∴S△CEF==故选:D.3.解:过点O作OH⊥AB于点H,连接OA,OB,分别过点A、H、B作AE⊥CD、HF ⊥CD,BG⊥CD于点E、F、G,∵AB=1,⊙O的半径=1,∴OH=,∵垂线段最短,∴HF<OH,∴HF=(AE+BG),∴S四边形ABCD=S△AOC+S△AOB+S△BOD=×=,=,,故选:C.4.解:延长EP交BC于点G,延长FP交AC于点H,如图所示:∵PF∥AB,PD∥BC,PE∥AC,∴四边形AEPH、四边形PDCG均为平行四边形,∴PE=AH,PG=CD.又∵△ABC为等边三角形,∴△FGP和△HPD也是等边三角形,∴PF=PG=CD,PD=DH,∴PE+PD+PF=AH+DH+CD=AC,∴AC=a;故选:D.5.解:∵△MNP中,∠P=60°,MN=NP∴△MNP是等边三角形.又∵MQ⊥PN,垂足为Q,∴PM=PN=MN=4,NQ=NG=2,MQ=a,∠QMN=30°,∠PNM=60°,∵NG=NQ,∴∠G=∠QMN,∴QG=MQ=a,∵△MNP的周长为12,∴MN=4,NG=2,∴△MGQ周长是6+2a.故选:D.6.解:如图,以CD为边作等边△CDE,连接AE.∵∠BCD=∠BCA+∠ACD=∠DCE+∠ACD=∠ACE,∴在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE.又∵∠ADC=30°,∴∠ADE=90°.在Rt△ADE中,AE=5,AD=3,于是DE=,∴CD=DE=4.故选:B.7.解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=CD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.8.解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.9.解:∵等边三角形边长为2,BD=CD,∴BD=,CD=,∵等边三角形ABC中,DF∥AB,∴∠FDC=∠B=60°,∵∠EDF=90°,∴∠BDE=30°,∴DE⊥BE,∴BE=BD=,DE=,如图,连接DM,则Rt△DEF中,DM=EF=FM,∵∠FDC=∠FCD=60°,∴△CDF是等边三角形,∴CD=CF=,∴CM垂直平分DF,∴∠DCN=30°,DN=FN,∴Rt△CDN中,DN=,CN=,∵M为EF的中点,∴MN=DE=,∴CM=CN+MN=+=,故选:C.10.解:∵三角形OAA1是等边三角形,∴OA1=OA=1,∠AOA1=60°,∴∠O1OA1=30°.在直角△O1OA1中,∵∠OO1A1=90°,∠O1OA1=30°,∴O1A1=OA1=,即点A1的纵坐标为;同理,O2A2=O1A2=()2,O3A3=O2A3=()3,即点A2的纵坐标为()2,点A3的纵坐标为()3,…∴点A2019的纵坐标为()2019.故选:D.二.填空题(共5小题)11.解:如图,在△AOD中,∵OA2+OD2=22+22=8,AD2=(2)2=8,∴OA2+OD2=AD2,∴∠AOD=90°;连接OC,∵OA=OC=AC=2,∴△AOC是等边三角形,∴∠AOC=60°.∴∠COD=∠AOC+∠AOD=60°+90°=150°或∠COD=∠AOD﹣∠AOC=90°﹣60°=30°.故答案为:90°;150°或30°.12.解:如图,延长AC、BD交于点E,延长HK交AE于F,延长NJ交FH于M.由题意可知,四边形EDHF,四边形MNCF,四边形MKGJ是平行四边形,∵∠A=∠B=60°,△ABC是等边三角形,∴ED=FM+MK+KH=CN+JG+HK,EC=EF+FC=JN+KG+DH,∴“九曲桥”的总长度是AE+EB=2AB=200m.故答案为:200m.13.解:∵∠ABC=60°,∠ACB=60°,∴∠BAC=60°,∴△ABC是等边三角形,∵BC=48米,∴AC=48米.故答案为:48.14.解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=1.8,BC=3.9,∴CD=BC﹣BD=3.9﹣1.8=2.1.故答案为:2.1.15.解:E的运动路径是线段EE'的长;∵AB=3,∠ACB=60°,∴BC=,当F与A点重合时,在Rt△ADE'中,AD=,∠ADE'=60°,∴DE'=AD=,∠CDE'=30°,当F与C重合时,∠EDC=60°,∴∠EDE'=90°,∠DEE'=30°,在Rt△DEE'中,EE'===;故答案为.三.解答题(共6小题)16.证明:∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠CAB=60°,∵DF⊥AB,DE⊥CB,EF⊥AC,∴∠DAB=∠ACF=∠CBE=90°,∴∠FAC=∠BCE=∠DBA=30°,∴∠D=∠E=∠F=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形.17.解:(1)∵△ABC为等边三角形∴∠B=60°∴∠APC=∠BAP+∠B=80°∵AP=AQ∴∠AQB=∠APC=80°,(2)①补全图形如图所示,②证明:过点A作AH⊥BC于点H,如图.由△ABC为等边三角形,AP=AQ,可得∠PAB=∠QAC,∵点Q,M关于直线AC对称,∴∠QAC=∠MAC,AQ=AM∴∠MAC+∠PAC=∠PAB+∠PAC=60°,∵AP=AM,∴△APM为等边三角形∴PA=PM.18.证明:(1)∵△ABC是正三角形,∴BC=CA,∠B=∠ECA=60°,又∵BD=CE,∴△BCD≌△CAE,∴CD=AE.(2)①图中有2个正三角形,分别是△BDF,△AFE.由题设,有△ACE≌△ABF,∴CE=BF,∠ECA=∠ABF=60°,又∵BD=CE,∴BD=CE=BF,∴△BDF是正三角形,∵AF=AE,∠FAE=60°,∴△AFE是正三角形.②四边形CDFE是平行四边形.∵∠FDB=∠ABC=60°,∴FD∥EC,又∵FD=FB=EC,∴四边形CDFE是平行四边形.19.解:(1)∵△BOC≌△ADC,∴OC=DC,∵∠OCD=60°,∴△OCD是等边三角形.(2)△AOD是直角三角形.理由如下:∵△OCD是等边三角形,∴∠ODC=60°,∵△BOC≌△ADC,α=150°,∴∠ADC=∠BOC=α=150°,∴∠ADO=∠ADC﹣∠ODC=150°﹣60°=90°,∴△AOD是直角三角形.(3)∵△OCD是等边三角形,∴∠COD=∠ODC=60°.∵∠AOB=110°,∠ADC=∠BOC=α,∴∠AOD=360°﹣∠AOB﹣∠BOC﹣∠COD=360°﹣110°﹣α﹣60°=190°﹣α,∠ADO=∠ADC﹣∠ODC=α﹣60°,∴∠OAD=180°﹣∠AOD﹣∠ADO=180°﹣(190°﹣α)﹣(α﹣60°)=50°.①当∠AOD=∠ADO时,190°﹣α=α﹣60°,∴α=125°.②当∠AOD=∠OAD时,190°﹣α=50°,∴α=140°.③当∠ADO=∠OAD时,α﹣60°=50°,∴α=110°.综上所述:当α=110°或125°或140°时,△AOD是等腰三角形.20.解:(1)∵OD⊥PA,∴∠ADO=90°,∵OD=2,OA=4,∴OD=OA,∴∠OAP=30°,∴∠AOD=60°,∵OB=2,∴OD=OB,∴△ODB是等边三角形,∴∠OBF=60°,∴OF=OB=2,∵OP=OA=,∴PF=OF﹣OP=;(2)∵PF=PD,∴∠PFD=∠PDF,∵OB=2,OA=4,∴OB=AB,∵OD⊥AP,∴BD=AB,∴∠ADB∠BAD,∵∠PDE=∠ADB,∴∠PFD=∠PDF=∠ADB=∠BAD,∵∠POD+∠AOD=AOD+∠OAD=90°,∴∠POD=∠OAD,∴∠POD=∠OFD,∴OD=DF,∴OD=BD=2,∴OD=OA,∴∠OAD=30°,∴OP=OA=.21.解:(1)当n=5时,共有3×(5﹣2)=9个小等边三角形,∴每个小三角形与大三角形边长的比=,∵大三角形的面积是S,∴每个小三角形的面积为S,这些小等边三角形的面积和为S;(2)由(1)可知,当n=k时,共有3×(k﹣2)=3(k﹣2),每个小等边三角形的面积为S,每个小三角形的面积和为S.故答案为:(1)9,S,S;(2)3(k﹣2),S,S;(3)当S=100,n=10时,3(n﹣2)=3×(10﹣2)=24(个),S =×100=24.即共向外作出了24个小等边三角形,这些小等边三角形的面积和为24.21 / 21。

等边三角形的性质和判定

等边三角形的性质和判定

等边三角形的性质和判定等边三角形是指三条边相等的三角形。

它具有一些独特的性质和判定方法,本文将详细介绍等边三角形的性质以及如何判定一个三角形是否为等边三角形。

一、等边三角形的性质1. 边长相等:等边三角形的三条边长度相等,记为a=a=a。

2. 角度相等:等边三角形的三个内角相等,每个角为60度。

3. 高度、中线、角平分线:等边三角形的高度、中线以及角平分线均相等。

4. 对称性:等边三角形具有对称性,即以任意边为轴进行折叠,三角形的各部分完全重合。

二、等边三角形的判定1. 三边相等判定法:如果一个三角形的三边长度相等,那么它就是等边三角形。

2. 角度相等判定法:如果一个三角形的三个角度均为60度,那么它就是等边三角形。

3. 边长和角度判定法:如果一个三角形的两边边长相等且夹角为60度,那么它就是等边三角形。

三、等边三角形的应用等边三角形作为一种特殊的三角形,在几何学和实际生活中有着广泛的应用。

1. 建筑设计:等边三角形的稳定性和对称性使其成为建筑设计中常用的形状。

例如,蜂窝状的建筑结构常使用等边三角形。

2. 制作模型:等边三角形可以用于制作模型,特别是多面体模型。

例如,立方体的六个面均为等边三角形。

3. 计算几何:等边三角形的性质可用于计算几何中的推导和证明。

例如,通过等边三角形,我们可以推导出正六边形的面积和边长与半径的关系。

四、等边三角形的例题例题1:已知△ABC中,AB=BC=AC,且∠ABC=60度,求证△ABC为等边三角形。

证明:根据等边三角形的判定法,我们需要证明△ABC的三边相等。

已知AB=BC,再根据已知∠ABC=60度,可得到∠BAC=∠BCA=60度。

由此可知,△ABC的三个角度均为60度,即满足等边三角形的定义。

因此,可以得出结论,△ABC为等边三角形。

例题2:已知△PQR是等边三角形,且PR=6cm,求PQ的长度。

解析:由于△PQR是等边三角形,则QR=PR=6cm。

根据等边三角形的定义,三条边的长度均相等。

等边三角形的性质与判定(人教版)(含答案)

等边三角形的性质与判定(人教版)(含答案)

等边三角形的性质与判定(人教版)试卷简介:本套试卷主要考查等边三角形的判定及性质,同学们需要首先清楚等边三角形的判定及性质具体包括哪些内容,然后按照做几何题的思路解题。

训练做几何题目时观察、标注、整合信息的能力.一、单选题(共1道,每道10分)1.已知下列命题:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有一边上的高也是这边上的中线的等腰三角形是等边三角形;④外角都相等的三角形是等边三角形.其中正确的有( )A.4个B.3个C.2个D.1个答案:C解题思路:①因为外角与其对应的内角的和是180°,已知有一个外角是120°,即是有一个内角是60°,有一个内角为60°的等腰三角形是等边三角形.该结论正确.②两个外角相等说明该三角形中两个内角相等,而等腰三角形的两个底角是相等的,故不能确定该三角形是等边三角形.该结论错误.③等腰三角形的底边上的高和中线本来就是重合的,“有一边”可能是底边,故不能保证该三角形是等边三角形.该结论错误.④三角形的外角都相等,所以三个内角也相等,即均为60°,是等边三角形.该结论正确.故选C试题难度:三颗星知识点:等边三角形的判定二、填空题(共9道,每道10分)2.如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,则∠ABC等于____度.答案:30解题思路:∵PQ=AP=AQ,∴△APQ是等边三角形,∴∠APQ=60°,又∵AP=BP,∴∠ABC=∠BAP,∴∠ABC=30°.故填30.试题难度:知识点:等边三角形的判定及性质3.如图,△ABC为等边三角形,点D,E,F分别在边BC,CA,AB上,且AE=CD=BF,则△DEF 为____三角形.答案:等边解题思路:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=AC=BC.∵AE=BF,∴AF=CE,又∵AE=CD,∴△AEF≌△CDE(SAS).∴EF=DE,同理可证△AEF≌△BFD(SAS).∴EF=DF,∴EF=DE=DF,∴△DEF是等边三角形,故填“等边”.试题难度:知识点:等边三角形的判定4.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,则∠1等于____度.答案:75解题思路:∵△ABC是等边三角形,∴AB=CB,∠ABC=60°,∵BD=BC,∠CBD=90°,∴BA=BD,∠ABD=150°,∴∠BAD=∠BDA=15°∴∠1=75°.故填75试题难度:知识点:等边三角形的性质5.如图,把一个边长为6cm的正三角形剪成一个最大的正六边形,则这个正六边形的周长为____cm.答案:12解题思路:如图所示,∵△ADP为等边三角形,∴∠A=∠D=∠P=60°.在正六边形BEFHGC中,BC=BE,∠CBE=∠BEF=∠CGH=120°,∴∠ABC=∠DEF=∠HGP=60°.∴△ABC,△DEF,△HGP均为等边三角形.∴AB=BC,EF=DE,HG=HP,∴AB=BE=ED,∴∵AD=6,∴BE=2.∴6BE=12即这个正六边形的周长为12cm.试题难度:知识点:等边三角形的性质6.如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是a,则六边形的周长是____.答案:30a解题思路:如图,图中三角形均为等边三角形,设①的边长为x,则②,③的边长为x,④,⑤的边长为x+a,⑥,⑦的边长为x+2a,⑧的边长为x+3a,所以六边形周长是,2x+2(x+a)+2(x+2a)+(x+3a)=7x+9a,而⑧的边长等于①边长的2倍,即x+3a=2x,故x=3a.所以周长为7x+9a=30a.试题难度:知识点:等边三角形的性质7.如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2013次,点P依次落在点,,,…,的位置上,则点的横坐标为____.答案:2012.5解题思路:观察图形结合翻转的方法可以得出,的横坐标是1,的横坐标是2.5,,的横坐标是4,的横坐标是5.5,…依此类推下去,,的横坐标就是2011,的横坐标为2012.5.故答案为2012.5.试题难度:知识点:等边三角形的性质8.如图,点C在线段AB上,在AB的同侧作等边三角形ACM和等边三角形BCN,连接AN,BM.若∠MBN=38°,则∠ANB等于____度.答案:82解题思路:∵△ACM和△BCN是等边三角形,∴AC=MC,CB=CN,∠ACM=∠BCN∴∠ACN=∠MCB.∴△ACN≌△MCB(SAS).∴∠ANC=∠MBA.∵∠MBN=38°∴∠MBA=22°,∴∠ANC=22°.∴∠ANB=82°.故答案为82试题难度:知识点:等边三角形的性质9.已知△ABC是等边三角形,∠ADC=120°,AD=2,BD=5,则边CD的长为____.答案:3解题思路:如图,延长AD到点E,使DE=CD,连接CE.∵∠ADC=120°,∴∠CDE=60°,∴△CDE是等边三角形.∴∠DCE=60°,CD=CE,∵∠ACB=60°,∴∠BCD=∠ACE,∵BC=AC,∴△BCD≌△ACE(SAS).∴BD=AE,∵BD=5,AD=2,∴DE=3,∴CD=3.故答案为3.试题难度:知识点:等边三角形的判定及性质10.如图,点E是等边△ABC内一点,且EA=EB,△ABC外一点D满足BD=AC,且BE平分∠DBC,则∠BDE等于____度.答案:30解题思路:如图,连接CE.在等边△ABC中,AC=BC,∠ACB=60°,∵BE平分∠DBC,∴∠DBE=∠CBE.∵BD=AC,∴BD=BC,又∵BE=BE,∴△DBE≌△CBE(SAS).∴∠BDE=∠BCE.∵EA=EB,AC=BC,CE=CE,∴△ACE≌△BCE(SSS).∴∠BCE=∠ACE,∴∠BCE=30°,即∠BDE=30°.试题难度:知识点:等边三角形的性质。

等边三角形的判定与性质难题

等边三角形的判定与性质难题

等边三角形的判定与性质难题一、选择题(共1小题)1.(2006•曲靖)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°二、填空题(共1小题)(除非特别说明,请填准确值)2.一个六边形的六个内角都是120度,连续四边的长为1,3,4,2,则该六边形的周长是_________.三、解答题(共6小题)(选答题,不自动判卷)3.如图,P是等边△ABC内部一点,PC=3,PA=4,PB=5.求AC2.4.如图(1),△ABC是等边三角形,DE是中位线,F是线段BC延长线上一点,且CF=AE,连接BE,EF.(1)求证:BE=EF;(2)若将DE从中位线的位置向上平移,使点D,E分别在线段AB,AC上(点E与点A不重合),其他条件不变,如图(2),则(1)题中的结论是否成立?若成立,请证明;若不成立,请说明理由.5.(2008•朝阳区二模)已知:在等边△ABC中,点D、E、F分别为边AB、BC、AC的中点,点G为直线BC上一动点,当点G在CB延长线上时,有结论“在直线EF上存在一点H,使得△DGH是等边三角形”成立(如图①),且当点G与点B、E、C重合时,该结论也一定成立.问题:当点G在直线BC的其它位置时,该结论是否仍然成立?请你在下面的备用图②③④中,画出相应图形并证明相关结论.6.如图,P是等边三角形ABC内的一点,连接PA、PB、PC,以BP为边作等边三角形BPM,连接CM.(1)观察并猜想AP与CM之间的大小关系,并说明你的结论;(2)若PA=PB=PC,则△PMC是_________三角形;(3)若PA:PB:PC=1::,试判断△PMC的形状,并说明理由.7.(2006•徐州)如图1,△ABC为等边三角形,面积为S.D1、E1、F1分别是△ABC三边上的点,且AD1=BE1=CF1=AB,连接D1E1、E1F1、F1D1,可得△D1E1F1是等边三角形,此时△AD1F1的面积S1=S,△D1E1F1的面积S1=S.(1)当D2、E2、F2分别是等边△ABC三边上的点,且AD2=BE2=CF2=AB时如图2,①求证:△D2E2F2是等边三角形;②若用S表示△AD2F2的面积S2,则S2=_________;若用S表示△D2E2F2的面积S2′,则S2′=_________.(2)按照上述思路探索下去,并填空:当D n、E n、F n分别是等边△ABC三边上的点,AD n=BE n=CF n=AB时,(n为正整数)△D n E n F n是_________三角形;若用S表示△AD n F n的面积S n,则S n=_________;若用S表示△D n E n F n的面积S n′,则S′n=_________.8.(2009•莆田)已知:等边△ABC的边长为a.探究(1):如图1,过等边△ABC的顶点A、B、C依次作AB、BC、CA的垂线围成△MNG,求证:△MNG是等边三角形且MN=a;探究(2):在等边△ABC内取一点O,过点O分别作OD⊥AB、OE⊥BC、OF⊥CA,垂足分别为点D、E、F.①如图2,若点O是△ABC的重心,我们可利用三角形面积公式及等边三角形性质得到两个正确结论(不必证明):结论1.OD+OE+OF=a;结论2.AD+BE+CF=a;②如图3,若点O是等边△ABC内任意一点,则上述结论1,2是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.【考点训练】等边三角形的判定与性质-1参考答案与试题解析一、选择题(共1小题)1.(2006•曲靖)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°考点:等边三角形的判定与性质.分析:先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE=BE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.解答:解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选:B.点评:考查直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力.二、填空题(共1小题)(除非特别说明,请填准确值)2.一个六边形的六个内角都是120度,连续四边的长为1,3,4,2,则该六边形的周长是17.考点:等边三角形的判定与性质;多边形内角与外角.专题:计算题.分析:先延长其中三边构造等边三角形,利用等边三角形的性质解题即可.解答:解:如图所示,∵六个内角都是120°,∴三角形的每个内角都是60°,即△CDE,△BFG,△AHI,△ABC都为等边三角形,∴CE=2,BF=3,∴BC=2+4+3=9,∴AH=AB﹣GH﹣BG=9﹣1﹣3=5,∴DI=AC﹣AI﹣CD=9﹣5﹣2=2,HI=AH=5,∴该六边形的周长是:1+3+4+2+2+5=17.故答案为17.点评:主要考查了正多边形的相关性质.边相等,角相等.三、解答题(共6小题)(选答题,不自动判卷)3.如图,P是等边△ABC内部一点,PC=3,PA=4,PB=5.求AC2.考点:等边三角形的判定与性质;勾股定理的逆定理.分析:首先将△BCP绕点C顺时针旋转60°得△ACQ,连接PQ.再过A作CP的延长线的垂线AD,垂足为D,易证得△PCQ是等边三角形,△APQ是直角三角形,则可求得∠APC的度数,然后可求得∠APD的度数,在Rt△APD中,即可求得AD与CD的长,继而求得AC2.解答:解:将△BCP绕点C顺时针旋转60°得△ACQ,连接PQ.再过A作CP的延长线的垂线AD,垂足为D,∴AQ=PB=5,CQ=PC,∠PCQ=60°,∴△PCQ是等边三角形,∴PQ=PC=3,∠QPC=60°,在△PAQ中,∵PA=4,AQ=5,PQ=3,∴AQ2=PA2+PQ2,∴∠APQ=90°,∴∠APC=∠APQ+∠QPC=150°,∴∠APD=30°,在Rt△APD中,AD=PA=2,PD=AP•cos30°=2,则CD=PC+PD=3+2,在Rt△ACD中,AC2=AD2+CD2=4+(3+2)2=25+12.点评:此题考查了等边三角形的判定与性质、勾股定理的逆定理以及直角三角形的性质.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.4.如图(1),△ABC是等边三角形,DE是中位线,F是线段BC延长线上一点,且CF=AE,连接BE,EF.(1)求证:BE=EF;(2)若将DE从中位线的位置向上平移,使点D,E分别在线段AB,AC上(点E与点A不重合),其他条件不变,如图(2),则(1)题中的结论是否成立?若成立,请证明;若不成立,请说明理由.考点:等边三角形的判定与性质;全等三角形的判定与性质;三角形中位线定理.分析:(1)利用等边三角形的性质以及三线合一证明得出结论;(2)由中位线的性质、平行线的性质,等边三角形的性质以及三角形全等的判定与性质证明.解答:(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=BC=CA,∵DE是中位线,∴E是AC的中点,∴BE平分∠ABC,AE=EC,∴∠EBC=∠ABC=30°∵AE=CF,∴CE=CF,∴∠CEF=∠F.∵∠CEF+∠F=∠ACB=60°,∴∠F=30°,∴∠EBC=∠F∴BE=EF;(2)结论任然成立.∵DE是由中位线平移所得,∴DE∥BC,∴∠ADE=∠ABC=60°,∠AED=∠ACB=60°.∴△ADE是等边三角形.∴DE=AD=AE,∵AB=AC,∴BD=CE,∵AE=CF,∴DE=DF,∵∠BDE=180°﹣∠ADE=120°,∠FCE=180﹣∠ACB=120°,∴∠FCE=∠EDB,∴△BDE≌△ECF,∴BE=EF.点评:此题考查等边三角形以及三角形全等的判定与性质等知识点.5.(2008•朝阳区二模)已知:在等边△ABC中,点D、E、F分别为边AB、BC、AC的中点,点G为直线BC上一动点,当点G在CB延长线上时,有结论“在直线EF上存在一点H,使得△DGH是等边三角形”成立(如图①),且当点G与点B、E、C重合时,该结论也一定成立.问题:当点G在直线BC的其它位置时,该结论是否仍然成立?请你在下面的备用图②③④中,画出相应图形并证明相关结论.考点:等边三角形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:连接DE、EF、DF.(1)当点G在线段BE上时,如图①,在EF上截取EH使EH=BG.由D、E、F是等边△ABC三边中点,可得△DEF、△DBE也是等边三角形且DE=AB=BD,可证明△DBG≌△DEH,然后即可证明;(2)当点G在射线EC上时,如图②,在EF上截取EH使EH=BG.由(1)可证△DBG≌△DEH.可得DG=DH,∠BDG=∠EDH.由∠BDE=∠BDG﹣∠EDG=60°,可得∠GDH=∠EDH﹣∠EDG=60°,即可证明.(3)当点G在BC延长线上时,如图③,与(2)同理可证,结论成立.解答:证明:连接DE、EF、DF.(1)当点G在线段BE上时,如图①,在EF上截取EH使EH=BG.∵D、E、F是等边△ABC三边中点,∴△DEF、△DBE也是等边三角形且DE=AB=BD.在△DBG和△DEH中,,∴△DBG≌△DEH(SAS),∴DG=DH.∴∠BDG=∠EDH.∵∠BDE=∠GDE+∠BDG=60°,∴∠GDH=∠GDE+∠EDH=60°∴在直线EF上存在点H使得△DGH是等边三角形.(2)当点G在射线EC上时,如图②,在EF上截取EH使EH=BG.由(1)可证△DBG≌△DEH.∴DG=DH,∠BDG=∠EDH.∵∠BDE=∠BDG﹣∠EDG=60°,∴∠GDH=∠EDH﹣∠EDG=60°.∴在直线EF上存在点H使得△DGH是等边三角形.(3)当点G在BC延长线上时,如图③,与(2)同理可证,结论成立.综上所述,点G在直线BC上的任意位置时,该结论成立.点评:本题考查了等边三角形的判定与性质及全等三角形的判定与性质,难度较大,关键是巧妙地作出辅助线进行解题.6.如图,P是等边三角形ABC内的一点,连接PA、PB、PC,以BP为边作等边三角形BPM,连接CM.(1)观察并猜想AP与CM之间的大小关系,并说明你的结论;(2)若PA=PB=PC,则△PMC是等边三角形;(3)若PA:PB:PC=1::,试判断△PMC的形状,并说明理由.考点:等边三角形的判定与性质;全等三角形的判定与性质;勾股定理的逆定理.专题:探究型.分析:(1)通过观察应该是相等关系,可通过证三角形APB和BMC全等来实现,这两个三角形中已知的条件有:AB=BC,BP=BM,只要再得出这两组对应边的夹角相等即可得出全等的结论,我们发现∠ABP和∠MBC 都是60°﹣∠PBC,因此这两个角相等,也就凑成了三角形全等的所有条件.因此可得两三角形全等,也就证明了AP=CM;(2)根据(1)的结论AP=CM,又有三角形BPM是等边三角形,因此PA=PB=PC可写成PM=PC=CM,也就是说三角形PMC是等边三角形.(3)根据AP=CM,BP=PM,我们可将题中给出的比例关系式写成CM:PM:PC=1::.我们发现这三边正好符合勾股定理的要求.因此三角形PMC是直角三角形.解答:解:(1)AP=CM.∵△ABC、△BPM都是等边三角形,∴AB=BC,BP=BM,∠ABC=∠PBM=60°.∴∠ABP+∠PBC=∠CBM+∠PBC=60°.∴∠ABP=∠CBM.∴△ABP≌△CBM.∴AP=CM.(2)等边三角形.(3)△PMC是直角三角形.∵AP=CM,BP=PM,PA:PB:PC=1::,∴CM:PM:PC=1::.设CM=k,则PM=k,PC=k,∴CM2+PM2=PC2∴△PMC是直角三角形,∠PMC=90°.点评:本题主要考查了全等三角形的判定,等边三角形的判定以及直角三角形的判定.通过全等三角形得出线段相等是本题的解题关键.7.(2006•徐州)如图1,△ABC为等边三角形,面积为S.D1、E1、F1分别是△ABC三边上的点,且AD1=BE1=CF1=AB,连接D1E1、E1F1、F1D1,可得△D1E1F1是等边三角形,此时△AD1F1的面积S1=S,△D1E1F1的面积S1=S.(1)当D2、E2、F2分别是等边△ABC三边上的点,且AD2=BE2=CF2=AB时如图2,①求证:△D2E2F2是等边三角形;②若用S表示△AD2F2的面积S2,则S2=S;若用S表示△D2E2F2的面积S2′,则S2′=S.(2)按照上述思路探索下去,并填空:当D n、E n、F n分别是等边△ABC三边上的点,AD n=BE n=CF n=AB时,(n为正整数)△D n E n F n是等边三角形;若用S表示△AD n F n的面积S n,则S n=;若用S表示△D n E n F n的面积S n′,则S′n=.考点:等边三角形的判定与性质;全等三角形的判定与性质.专题:探究型.分析:(1)由等边三角形的性质和已知条件可证△AD2F2≌△BE2D2≌△CF2E2,得D2E2=E2F2=F2D2所以△D2E2F2为等边三角形.(2)(3)由等边三角形的性质和面积公式可求.解答:解:(1)①∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠B=60°,(1分)由已知得AD2=AB,BE2=BC,∴AF2=AC,BD2=AB∴AD2=BE2,AF2=BD2(2分)△AD2F2≌△BE2D2(3分)∴D2E2=F2D2同理可证△AD2F2≌△CF2E2F2D2=E2F2(4分)∴D2E2=E2F2=F2D2∴△D2E2F2为等边三角形;(5分)②;(6分)S′2=S﹣S×3=S(7分)(2)由(1)可知:△D n E n F n等边三角形;(8分)由(1)的方法可知:,S3=S,…;(9分)S2′=S,S3′=….(10分)点评:本题考查了等边三角形等性质,和等边三角形等判断,以及内接等边三角形的面积规律.8.(2009•莆田)已知:等边△ABC的边长为a.探究(1):如图1,过等边△ABC的顶点A、B、C依次作AB、BC、CA的垂线围成△MNG,求证:△MNG是等边三角形且MN=a;探究(2):在等边△ABC内取一点O,过点O分别作OD⊥AB、OE⊥BC、OF⊥CA,垂足分别为点D、E、F.①如图2,若点O是△ABC的重心,我们可利用三角形面积公式及等边三角形性质得到两个正确结论(不必证明):结论1.OD+OE+OF=a;结论2.AD+BE+CF=a;②如图3,若点O是等边△ABC内任意一点,则上述结论1,2是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.考点:等边三角形的判定与性质;解直角三角形.专题:综合题;压轴题.分析:(1)本题中△ABC为等边三角形,AB=BC=a,∠ABC=60°,求出∠N,∠G的值,在直角△AMB、△CNB 中,可以先用a表示出MB,NB然后再表示出MN,这样就能证得MN=a;(2)判定①是否成立可通过构建直角三角形,把所求的线段都转化到直角三角形中进行求解;判断②是否成立,也要通过构建直角三角形,可根据勾股定理,把所求的线段都表示出来,然后经过化简得出结论②是否正确.解答:(1)证明:如图1,∵△ABC为等边三角形,∴∠ABC=60°.∵BC⊥MN,BA⊥MG,∴∠CBM=∠BAM=90°.∴∠ABM=90°﹣∠ABC=30°.∴∠M=90°﹣∠ABM=60°.同理:∠N=∠G=60°.∴△MNG为等边三角形.在Rt△ABM中,BM=a,在Rt△BCN中,BN=a,∴MN=BM+BN=a.(2)②:结论1成立.证明:如图3,过点O作GH∥BC,分别交AB、AC于点G、H,过点H作HM⊥BC于点M,∴∠DGO=∠B=60°,∠OHF=∠C=60°,∴△AGH是等边三角形,∴GH=AH.∵OE⊥BC,∴OE∥HM,∴四边形OEMH是矩形,∴HM=OE.在Rt△ODG中,OD=OG•sin∠DGO=OG•sin60°=OG,在Rt△OFH中,OF=OH•sin∠OHF=OH•sin60°=OH,在Rt△HMC中,HM=HC•sinC=HC•sin60°=HC,∴OD+OE+OF=OD+HM+OF=OG+HC+OH=(GH+HC)=AC=a.(2)②:结论2成立.证明:如图4,连接OA、OB、OC,根据勾股定理得:BE2+OE2=OB2=BD2+OD2①,CF2+OF2=OC2=CE2+OE2②,AD2+OD2=AO2=AF2+OF2③,①+②+③得:BE2+CF2+AD2=BD2+CE2+AF2,∴BE2+CF2+AD2=(a﹣AD)2+(a﹣BE)2+(a﹣CF)2=a2﹣2AD•a+AD2+a2﹣2BE•a+BE2+a2﹣2CF•a+CF2整理得:2a(AD+BE+CF)=3a2∴AD+BE+CF=a.点评:本题中综合考查了等边三角形的判定和性质,解直角三角形等知识点,由于知识点比较多,本题的难度比较大.(注:可编辑下载,若有不当之处,请指正,谢谢!)。

专题05等边三角形的性质和判定综合题(原卷版)

专题05等边三角形的性质和判定综合题(原卷版)

专题05 等边三角形的性质和判定(综合题)知识互联网易错点拨知识点1:等边三角形等边三角形定义:叫等边三角形.细节剖析:由定义可知,等边三角形是一种特殊的.也就是说等腰三角形包括.知识点2:等边三角形的性质等边三角形的性质:等边三角形三个内角都相等,并且每一个内角都等于.知识点3:等边三角形的判定等边三角形的判定:(1)的三角形是等边三角形;(2)的三角形是等边三角形;(3)是等边三角形.易错题专训一.选择题1.(2021秋•准格尔旗期末)已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N,则下列五个结论:①AD=BE;②∠BMC =∠ANC;③∠APM=60°;④AN=BM;⑤△CMN是等边三角形.其中,正确的有()A.2个B.3个C.4个D.5个2.(2021•商河县二模)一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13B.14C.15D.163.(2020秋•天心区期中)下列说法错误的是()A.有一个角是60°的等腰三角形是等边三角形B.如果一个三角形有两个角相等,那么这两个角所对的边相等C.等腰三角形的角平分线,中线,高相互重合D.三个角都相等的三角形是等边三角形.4.(2021秋•新昌县期末)如图,M,A,N是直线l上的三点,AM=3,AN=5,P是直线l外一点,且∠P AN=60°,AP=1,若动点Q从点M出发,向点N移动,移动到点N停止,在△APQ形状的变化过程中,依次出现的特殊三角形是()A.直角三角形一等边三角形一直角三角形一等腰三角形B.直角三角形一等腰三角形一直角三角形一等边三角形C.等腰三角形一直角三角形一等腰三角形一直角三角形D.等腰三角形一直角三角形一等边三角形一直角三角形5.(2021秋•平阳县校级月考)如图所示,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°.若BE=6,DE=2,则BC的长为()A.2B.4C.6D.86.(2020秋•九龙坡区期末)如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC 于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④二.填空题7.(2022春•保定期末)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿BC所在直线向右平移得到△A′B′C′,连接A′C,若BB′=2,则线段A′C的长为.8.(2020秋•玉州区期末)如图,六边形ABCDEF的六个内角都等于120°,若AB=BC=CD=6cm,DE=4cm,则这个六边形的周长等于cm.9.(2020秋•海淀区校级期中)如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.若BE∥AC,则∠C=.10.(2021秋•海曙区期末)一艘轮船从海平面上A地出发,向北偏东50°的方向行驶60海里到达B地,再由B地向南偏东10°的方向行驶60海里到达C地,则A,C两地相距海里.11.(2019秋•潮南区期中)两块完全一样的含30°角的直角三角板,将它们重叠在一起并绕其较长直角边的中点M转动,使上面一块三角板的斜边刚好过下面一块三角板的直角顶点C,如图所示.已知AC=6,则这两块直角三角板顶点A、A′之间的距离等于.12.(2017秋•巢湖市期末)已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形ADCP;其中正确的有(填上所有正确结论的序号)13.(2021秋•华容县期末)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC 和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③OP=OQ;④△CPQ为等边三角形;⑤∠AOB=60°.其中正确的有.(注:把你认为正确的答案序号都写上)三.解答题14.(2021秋•涡阳县期末)“中国海监50”在南海海域B处巡逻,观测到灯塔A在其北偏东80°的方向上,现该船以每小时10海里的速度沿南偏东40°的方向航行2小时后到达C处,此时测得灯塔A在其北偏东20°的方向上,求货轮到达C处时与灯塔A的距离AC.15.(2020秋•曾都区期末)学习几何时,要善于对课本例习题中的典型图形进行变式研究.在△ABC中,AB=BC,∠ABC=60°,BD是AC边上的高,点E为直线BC上点,且CE=AD.(1)如图1,当点E在边BC上时,求证:△CDE为等边三角形;(2)如图2,当点E在BC的延长线上时,求证:△BDE为等腰三角形.16.(2021春•城关区校级期中)如图1,已知等边△ABC中,D、E分别是AB、AC上的点,连接DE.(1)若DE∥BC,求证:△ADE是等边三角形;(2)如图2,若D、E分别为AB、AC中点,连接CD、BE,CD与BE相交于点F,请直接写出图中所有等腰三角形.(△ADE与△ABC除外)17.(2021秋•孝南区期末)在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF =60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.18.(2022春•通川区期末)已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED =EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE DB (填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).19.(2021秋•台州期中)如图,△ABC是边长为12cm的等边三角形,动点M、N同时从A、B两点出发,分别沿AB、BC方向匀速移动.(1)若点M的运动速度是2cm/s,点N的运动速度是4cm/s,当N到达点C时,M、N两点都停止运动,设运动时间为t(s),当t=2时,判断△BMN的形状,并说明理由;(2)当它们的速度都是2cm/s,且当点M到达点B时,M、N两点停止运动,设点M的运动时间为t(s),则当t为何值时,△MBN是直角三角形?20.(2021秋•香洲区期中)如图,在等边△ABC中,AB=9cm,点P从点C出发沿CB边向B点以2cm/s 的速度移动,点Q从B点出发沿BA边向A点以5cm/s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)你能用t表示BP和BQ的长度吗?请你表示出来.(2)请问几秒钟后,△PBQ为等边三角形?(3)若P、Q两点分别从C、B两点同时出发,并且都按顺时针方向沿△ABC三边运动,请问经过几秒钟后点P与点Q第一次在△ABC的哪条边上相遇?。

第一章第02讲 等边三角形的性质与判定 (4类热点题型讲练)(解析版)

第一章第02讲 等边三角形的性质与判定 (4类热点题型讲练)(解析版)
ìBEF = CFD ∵ ïíEBF = FCD ,
ïîEF = FD
∴ VBEF≌VCFD AAS ,
故答案为:是.
题型 02 等边三角形的判定
【例题】(2023 上·甘肃庆阳·八年级统考期中)如图,在 VABC 中, A = 40° ,点 E 在边 AC 上,连接 BE, C = CBE .若 ABE = 20° ,求证: VBCE 是等边三角形.
(3)等边三角形的判定方法 3:(从边、角看)有一个内角等于 60° 的等腰三角形是等边三角形.
题型 01 等边三角形的性质
【例题】(2023 上·内蒙古呼和浩特·八年级呼市四中校考期中)如图, AD 是等边三角形 ABC 的中线, AE = AD ,则 EDB 的度数为 .
【答案】15° /15 度
【分析】本题主要考查了等边三角形的性质,等腰三角形的性质,三角形内角和定理;根据等边三角形的
性质可得 BAD = 1 BAC = 30°, AD ^ BC ,再由 AE = AD ,可得 ADE = 1 180° - CAD = 75° ,即可求
2
2
解.
【详解】解:∵ VABC 是等边三角形,
∴ BAC = 60° ,
【答案】详见解析 【分析】本题考查了等边三角形的判定,根据有一角是 60° 的等腰三角形是等边三角形即可求证. 【详解】证明:QC = CBE , \△BCE 为等腰三角形, 又QA = 40°, ABE = 20° , \BEC = A + ABE = 40° + 20° = 60° , \△BCE 是等边三角形. 【变式训练】 1.(2023 上·湖南长沙·八年级校联考期中)如图,点 E 在 VABC 的外部,点 D 在边 BC 上, DE 交 AC 于点 F ,若 1 = 2 , AE = AC , B = ADE .

等边三角形性质与判定练习题

等边三角形性质与判定练习题

第 1课时等边三角形的性质和判定(课堂训练)一.选择题(共 8 小题)1.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠ β的度数是()A . 180°B. 220°C. 240° D . 300°2.下列说法正确的是()A .等腰三角形的两条高相等C.有一个角是 60 °的锐角三角形是等边三角形B .等腰三角形一定是锐角三角形 D .三角形三条角平分线的交点到三边的距离相等3.在△ABC 中,① 若 AB=BC=CA ,则△ ABC 为等边三角形;②若∠ A= ∠ B=∠ C,则△ABC为等边三角形;③有两个角都是 60°的三角形是等边三角形;④一个角为 60°的等腰三角形是等边三角形.上述结论中正确的有()A.1个B.2个C.3个D.4个4.如图, CD 是 Rt△ABC 斜边 AB 上的高,将△ BCD 沿 CD 折叠, B 点恰好落在AB 的中点 E 处,则∠ A 等于()A.25°B. 30°C.45°D. 60°5.如图,已知D、 E、 F 分别是等边△ABC的边AB、BC、A C上的点,且 DE⊥ BC 、 EF⊥ AC 、FD ⊥AB ,则下列结论不成立的是()A .△ DEF是等边三角形B.△ ADF ≌△ BED ≌△ CFEC.DE=ABD .S△ABC=3S △ DEF6.如图,在△ ABC 中,D、E 在 BC 上,且 BD=DE=AD=AE=EC,则∠ BAC的度数是()A. 30°B. 45°C. 120°D. 15°7.如图,在△ ABC 中, AB=AC ,∠ A=120 °, BC=6cm ,AB 的垂直平分线交BC 于点 M ,交 AB 于点 E , AC 的垂直平分线交BC 于点 N ,交 AC 于点 F,则 MN 的长为()A . 4cmB. 3cmC. 2cmD. 1cm第 1 题第 4 题第 5 题第 7 题8.已知∠ AOB=30 °,点 P 在∠ AOB 内部, P1与 P 关于 OB 对称, P2与 P 关于 OA 对称,则 P1, O, P2三点所构成的三角形是()A .直角三角形B .钝角三角形C.等腰三角形D.等边三角形二.填空题(共10 小题)9.已知等腰△ ABC 中, AB=AC ,∠ B=60 °,则∠A= _____ ____ 度.10.△ ABC 中,∠ A= ∠B=6 0°,且 AB=10cm ,则BC= _________ cm.11.在△ ABC 中,∠ A= ∠ B= ∠ C,则△ABC是_________ 三角形.12.如图,将两个完全相同的含有 30°角的三角板拼接在一起,则拼接后的△ ABD 的形状是_________13.如图, M 、 N 是△ ABC 的边 BC 上的两点,且BM=MN=NC=AM=AN.则∠ BAN=_________...14.如图,用圆规以直角顶点O 为圆心,以适当半径画一条弧交两直角边于A、 B 两点,若再以 A 为圆心,以OA 为半径画弧,与弧AB 交于点 C,则∠ AOC 等于多少?15.已知:如图,△ ABC是等边三角形, BD是中线,延长 BC到 E,使 CE=CD,不添辅助线,请你写出三个正确结论(1)_______ _______;(2)______________ ;(3)______________.ADBCE16.如图,将边长为6cm 的等边三角形△ABC沿BC方向向右平移后得△DEF,DE、AC相交于点 G,若线段CF=4cm ,则△ GEC 的周长是_________cm.17.如图,在等边△ABC 中,D、E 分别是 AB 、AC 上的点,且 AD=CE ,则∠ BCD+ ∠CBE=_________度...课后作业1.2.等边三角形是轴对称图形,它有_________条对称轴。

等边三角形的性质与判定(分层作业)(原卷版)

等边三角形的性质与判定(分层作业)(原卷版)

13.3.3等边三角形的性质与判定夯实基础篇一、单选题:1.下列说法错误的是()A .有两边相等的三角形是等腰三角形B .直角三角形不可能是等腰三角形C .有两个角为60°的三角形是等边三角形D .有一个角为60°的等腰三角形是等边三角形2.如图,AD 是等边三角形ABC 的中线,AE =AD ,则∠EDC =()度.A .30B .20C .25D .153.一艘轮船由海平面上A 地出发向南偏西40°的方向行驶40海里到达B 地,再由B 地向北偏西20°的方向行驶40海里到达C 地,则A 、C 两地相距()A .30海里B .40海里C .50海里D .60海里4.如图,ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE CD =,则下列结论错误..的是()A .30CED ∠=︒B .120BDE ∠=︒C .DE BD =D .DE AB =5.如图,AB AC =,AE EC CD ==,60A ∠=︒,若2EF =,则DF =()A .3B .4C .5D .66.如图:等边三角形AB C 中,BD =CE ,AD 与BE 相交于点P ,则∠APE 的度数是()A .45°B .55°C .60°D .75°二、填空题:7.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG =CD ,DF =DE ,则∠E =度.8.如图,△ABC 与△DEF 为等边三角形,其边长分别为a ,b ,则△AEF 的周长为.9.如图,将边长为5cm 的等边ABC 向右平移1cm ,得到'''A B C ,此时阴影部分的周长为cm .10.如图,点E 是等边△ABC 内一点,且EA =EB ,△ABC 外一点D 满足BD =AC ,且BE 平分∠DBC ,则∠D =.11.已知:如图,点E 、F 分别在等边三角形ABC 的边CB 、AC 的延长线上,BE =CF ,FB 的延长线交AE 于点G 则∠AGB =.三、解答题:12.如图,△ABC 是等边三角形,DF ⊥AB ,DE ⊥CB ,EF ⊥AC ,求证:△DEF 是等边三角形.13.如图:已知等边△AB C 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE =CD ,DM ⊥BC ,垂足为M ,求证:M 是BE 的中点.14.如图,已知等边ABC D E ∆,,分别在BC AC 、上,且BD CE =,连接BE AD 、交F 点.求证:60AFE ︒∠=15.如图所示:ABC 是等边三角形,D 、E 分别是AB 及AC 延长线上的一点,且BD CE =,连接DE 交BC 于点M .求证:MD ME =能力提升篇一、单选题:1.如图,点P 在边长为1的等边△ABC 的边AB 上,过点P 作PE ⊥AC 于点E .Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为()A .B .C .D .不能确定2.如图,点P 是∠AOB 内任意一点,OP =6cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,若△PMN 周长的最小值是6cm ,则∠AOB 的度数是()A .15B .30C .45D .603.如图,已知:30MON ∠=︒,点1A 、2A 、3A -⋯⋯在射线ON 上,点1B 、2B 、3B ⋯⋯在射线OM 上,112A B A 、223A B A 、334A B A ⋯⋯ 均为等边三角形,若11OA =,则201820182019A B A 的边长为()A.2017B.2018C.201722D.2018 4.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC 和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,O C.以下五个结论:①△ACD≌△BCE;②△AOC≌△BQC;③△APC≌△BOC;④△DPC≌△EQC;⑤∠AOB=60°.其中正确的是()A.①②③④⑤B.①④⑤C.①④D.①③④二、填空题:5.如图,等边△ABC边长为10,P在AB上,Q在BC延长线,CQ=P A,过点P作PE ⊥AC点E,过点P作PF∥BQ,交AC边于点F,连接PQ交AC于点D,则DE的长为.6.如图,等边△ABC的周长为18cm,BD为AC边上的中线,动点P,Q分别在线段BC,BD上运动,连接CQ,PQ,当BP长为cm时,线段CQ+PQ的和为最小.7.如图△AB C中,∠BAC=78°,AB=AC,P为△ABC内一点,连BP,CP,使∠PBC=9°,∠PCB=30°,连PA,则∠BAP的度数为.三、解答题:8.如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE。

第2讲 等边三角形的性质与判定(培优)

第2讲 等边三角形的性质与判定(培优)

1.如图1,在等边ABC ∆中,5AB =,点D 在AB 上,且1BD =,点E 、F 分别是BC 、AC 上的点,连接DE ,EF ,如果60DEF ∠=︒,DE EF =,那么BE 的长是()A .3B .3.5C .4D .4.52..有一角为30︒的等腰三角形ABC ,以ABC ∆的底BC 为边在同侧作一个等边三角形DBC ,则DBA ∠的度数为()A .30︒B .15︒C .45︒或60︒D .15︒或30︒3.如图2,在ABC ∆中,D 是AC 边上的中点,连接BD ,把BDC ∆沿BD 翻折,得到BDC ∆',DC '与AB 交于点E ,连接AC ',若2AD AC ='=,3BD =,则BC 的长为()A .5B .6C .7D .34.已知点P 是等边ABC ∆的边BC 上的一点,若104APC ∠=︒,则在以线段AP ,BP ,CP 为边的三角形中,最小内角的大小为()A .14︒B .16︒C .24︒D .26︒5.如图3,等边ABC ∆中,点E 在BA 的延长线上,//EF AC ,交BC 的延长线于点F ,点D 在BC 边上,且DE CE =.如果4AB =,2AE =,那么BD 等于()A .2B .3C .2D .36.如图4,已知120ABC ∠=︒,BD 平分ABC ∠,60DAC ∠=︒,若2AB =,3BC =,则BD 的长是()A .5B .7C .8D .97.已知a 、b 、c 是ABC ∆的三边的长,且满足22222()0a b c b a c ++-+=,则此三角形的形状为.8.如图5,ABC ∆与BDE ∆均为等边三角形,点D 在AC 边上,若32CDE ∠=︒,则CBD ∠的度数为.9.已知等边ABC ∆的边长为5,点D 为直线BC 上一点,1BD =,//DE AB 交直线AC 于点E ,则DE 的长为.10.在ABC ∆中,AB AC =,AD 平分BAC ∠,一个等边三角形ECG 如图6摆放,EG 交AD 于点F .若7BC =,2EF =,则等边三角形ECG 的边长为.11.如图7所示,过等边ABC ∆的顶点A ,B ,C 依次作AB ,BC ,CA 的垂线MG ,MN ,NG ,三条垂线围成MNG ∆,已知4CG cm =,则MNG ∆的周长是cm .12.如图8,过边长为4的等边ABC ∆的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连PQ 交AC 边于D ,则DE 的长为.13.在△ABC 中,AB =AC ,∠BAC =120°,AD ⊥BC ,垂足为G ,且AD =AB .∠EDF =60°,其两边分别交边AB ,AC 于点E ,F .(1)求证:△ABD 是等边三角形;(2)求证:BE =AF .14.图,点D 、E 、F 分别是等边ABC △各边上的点,且2BD CE ==,DEB EFC ∠=∠.(1)求证:DEF △是等边三角形.(2)若150DEC ∠=︒,求等边ABC △的周长.15.在△ABC中,AB=AC,在△ABC的外部作等边三角形△ACD,E为AC的中点,连接DE并延长交BC于点F,连接BD.(1)如图1,若∠BAC=100°,求∠BDF的度数;(2)如图2,∠ACB的平分线交AB于点M,交EF于点N,连接BN.①补全图2;②若BN=DN,求证:MB=MN.16.如图①,△ABC和△DCE都是等边三角形.(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,(2)若B,C,E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.(3)若B,C,E在一条直线上(如图②),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长.17.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF=;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.18.如图,等边△ABC的边长为4,BD为AC边上的中线,E为BC边上一点(不与B、C重合).(1)如图1,若DE⊥BC,连接AE,求AE的长;(2)如图2,若DE平分∠BDC,求BE的长;(3)如图3,连接AE,交BD于点M.以AM为边作等边△AMN,连接BN.请猜想∠CAE、∠CBD、∠BMN之间的数量关系,并证明你的结论.。

等边三角形的性质与判定经典练习题

等边三角形的性质与判定经典练习题

EDAH F【知识要点】等边三角形的性质与判定(1)性质:等边三角形的三个角都相等,并且每一个角都等于60°. (2)判定:①三个角都相等的 是等边三角形. ②有一个角是60°的 是等边三角形. 【题型4】等边三角形的性质如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE 都是等边三角形.BE 交AC 于F , AD 交CE 于H ,(1)求证:BE=AD ;(2)求证:CF=CH ;(3)判断△CFH 的形状并说明理由.【变式训练】1.已知AD 是等边△ABC 的高,BE 是AC 边的中线,AD 与BE 交于点F ,则∠AFE= .2.已知BD 为等边△ABC 的边AC 上的中线,E 为BC 延长线上一点,且DB=DE ,若AB=6cm ,则CE= cm .3.如图,等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE=CD ,DM ⊥BC ,垂足为M.求证:M 是BE 的中点.4.如图,在等边△ABC 中,D 是AC 的中点,E 是BC 延长线上一点,且CE=CD.求证:DB=DE .5.如图,E是四边形ABCD的边AD上一点,且△ABC和△CDE都是等边三角形.求证:BE=AD.6.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.【题型5】等边三角形的判定如图,在△ABC中,AB=AC,∠BAC=120°,AE=BE,D为EC中点.(1)求∠CAE的度数;(2)求证:△ADE是等边三角形.【变式训练】1.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有 .2.如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD=BE=CF. 求证:△DEF 是等边三角形.3.如图,在等边△ABC 中,∠ABC 与∠ACB 的平分线相交于点O ,且OD ∥AB ,OE ∥AC . (1)求证:△ODE 是等边三角形.(2)线段BD 、DE 、EC 三者有什么数量关系?4.如图,△ABC 是边长为6 cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 匀速运动,其中点P 运动的速度是1 cm/s ,点Q 运动的速度是2 cm/s ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t(s),当t =2时,判断△BPQ 的形状,说明理由.5.如图1,点C 为线段AB 上一点,△ACM,△CBN 都是等边三角形,AN 交MC 于点E ,BM 交CN 于点F .(1)求证:AN=BM ; (2)求证:△CEF 为等边三角形;(3)将△ACM 绕点C 按逆时针方向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).D AF6.如图,点O是等边△ABC内一点,∠AOB=110,∠BOC=α.将△BOC绕点C按顺时针方向旋转60得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150 时,判断△AOD的形状,并说明理由;(3)当α为多少度时,△AOD是等腰三角形?AB CDO110α。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等边三角形的判定和性质
(参考用时:30分钟)
1.下列三角形,①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③一腰上的中线也是这条腰上的高的等腰三角形.其中能判定是等边三角形的个数是( A )
(A)3个(B)2个(C)1个(D)0个
2.如图,在 Rt△ABC 中,CM平分∠ACB交AB于点M,过点M作MN∥BC 交AC于点N,且MN平分∠AMC.若AN=1,则BC的长为( B )
(A)4 (B)6 (C)4(D)8
第2题图
3.如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD= 30°.
第3题图
4.如图,已知∠AOB=30°,点P在边OA上,点M,N在边OB上,且
PM=PN=10,MN=12,则OP= 16 .
第4题图
5.如图,等腰直角三角形BDC的顶点D在等边三角形ABC的内部,∠BDC=90°,连接AD,过点D作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是120,150 度.
第5题图
6. 如图,等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=DC,求证:AD=BE.
证明:在等边△ABC中,∠BAC=∠ACB=60°,
AB=AC,
所以∠BAE=∠ACD=120°.
因为AE=CD,
所以△ABE≌△CAD.
所以AD=BE.
7. 已知:如图,点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,FE=FD.求证:AD=CE.
证明: 过点D作DM∥BE交AC于点M,则有∠MDF=∠E.
在△MDF与△CEF中,
因为∠MFD=∠CFE,
FD=FE,∠MDF=∠E,
所以△MDF≌△CEF,
所以DM=CE.
因为△ABC为等边三角形,
所以∠A=∠B=60°.
因为DM∥BE,
所以∠ADM=∠B=60°,∠ADM=∠A=60°,
所以△ADM为等边三角形,
所以DM=AD,
所以AD=CE.
8. 如图所示,已知a∥b,c∥b,试用反证法证明:a∥c.
证明:假设a与c不平行,即a与c相交,不妨设交点为P,由于a∥b,c ∥b,于是可得经过P点有两条直线a,c与直线b平行,这与“经过直
线外一点有且只有一条直线与这条直线平行”相矛盾,故假设不成立.所以a∥c.
9. 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=3,AD是△ABC的角平分线,DE⊥AB于点E,连接CE,求CE的长.
解:因为AD是△ABC的角平分线,所以∠EAD=∠CAD.
因为∠ACB=90°,DE⊥AB,
所以∠ACD=∠AED.
在△ACD与△AED中,∠ACD=∠AED=90°,
∠EAD=∠CAD,AD=AD,
所以△ACD≌△AED,所以AE=AC.
因为∠B=30°,所以∠BAC=60°,
所以△ACE是等边三角形,
所以CE=AC=3.
10. (核心素养—逻辑推理)(2018荆门)如图,在Rt△ABC中,∠
ACB=90°,∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.
(1)求证:△ADE≌△CDB;
(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.
(1)证明:在Rt△ABC中,∠BCA=90°,∠BAC=30°,
所以BC=AB,E为AB边的中点,
所以BE=AB,所以BC=EA,∠ABC=60°.
因为△DEB是等边三角形,
所以DB=DE,∠DEB=∠DBE=60°.
所以∠DEA=∠DBC=120°,
所以△ADE≌△CDB.
(2)解:作点B关于AC的对称点B′,连接EB′交AC于点H,则点H
即为所求.连接CE,则△CBE是等边三角形.所以CE=CB=CB′.
所以∠BEB′=90°.
所以BH+EH的最小值为
EB′==3.。

相关文档
最新文档