2018年广州二模理科数学试题及详解
2017-2018年广州市普通高中毕业班综合测试(二)理科数学试卷及答案
试卷类型:A 2017-2018年广州市普通高中毕业班综合测试(二)数学(理科)4 本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:锥体的体积公式是13V Sh =,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若复数z 满足 i 2z =,其中i 为虚数单位,则z 的虚部为A .2-B .2C .2-iD .2i2.若函数()y f x =是函数3x y =的反函数,则12f ⎛⎫⎪⎝⎭的值为A .2log 3-B .3log 2-C .19D 3.命题“对任意x ∈R ,都有32x x >”的否定是A .存在0x ∈R ,使得3200x x >B .不存在0x ∈R ,使得3200x x >C .存在0x ∈R ,使得3200x x ≤ D .对任意x ∈R ,都有32x x ≤4. 将函数()2cos 2(f x x x x =+∈R )的图象向左平移6π个单位长度后得到函数()y g x =,则函数()y g x =A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数,也不是偶函数5.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是A .16B .13C .12D .38图1俯视图侧视图正视图6.设12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF的中点在y 轴上,若1230PF F ︒∠=,则椭圆C A .16 B .13C7.一个几何体的三视图如图1,则该几何体 的体积为A .6π4+B .12π4+C .6π12+D .12π12+ 8.将正偶数2,4,6,8, 按表1的方式进行排列,记ij a 表示第i 行第j 列的数,若2014ij a =,则i j +的值为A .257 B .256C .254D .253表1 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式2210x x --<的解集为 .10.已知312nx x ⎛⎫- ⎪⎝⎭的展开式的常数项是第7项,则正整数n 的值为 .11.已知四边形ABCD 是边长为a 的正方形,若2,2DE EC CF FB == ,则AE AF ⋅的值为 .12.设,x y 满足约束条件 220,840,0,0.x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩若目标函数()0,0z ax by a b =+>>的最大值为8,则ab 的最大值为 .13.已知[]x 表示不超过x 的最大整数,例如[][]1.52,1.51-=-=.设函数()[]f x x x ⎡⎤=⎣⎦,当[)0,(x n n ∈∈N *)时,函数()f x 的值域为集合A ,则A 中的元素个数为 .(二)选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线,(x a t t y t =-⎧⎨=⎩为参数)与 圆1cos ,(sin x y θθθ=+⎧⎨=⎩为参数)相切,切点在第一象限,则实数a 的值为 .DCBA15.(几何证明选讲选做题)在平行四边形ABCD 中,点E 在线段AB 上,且12AE EB =,连接,DE AC ,AC 与DE 相交于点F ,若△AEF 的面积为1 cm 2,则△AFD 的面积为 cm 2.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)如图2,在△ABC 中,D 是边AC 的中点, 且1AB AD ==,3BD =. (1) 求cos A 的值; (2)求sin C 的值.图217.(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为(]5,15,(]15,25,(]25,35,(]35,45,由此得到样本的重量频率分布直方图,如图3. (1)求a 的值;(2)根据样本数据,试估计盒子中小球重量的平均值;CBa 图3重量/克0.0320.02452515O (注:设样本数据第i 组的频率为i p ,第i 组区间的中点值为i x ()1,2,3,,i n = ,则样本数据的平均值为112233X x p x p x p =+++ (3)从盒子中随机抽取3个小球,其中重量在的小球个数为ξ,求ξ18.(本小题满分14分)如图4,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥平面ABCD ,1EF =,,90FB FC BFC ︒=∠=,AE =(1)求证:AB ⊥平面BCF ;(2)求直线AE 与平面BDE 所成角的正切值.图419.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,且10a =,对任意n ∈N *,都有()11n n na S n n +=++.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22log log n n a n b +=,求数列{}n b 的前n 项和n T .20.(本小题满分14分)已知定点()0,1F 和直线:1l y =-,过点F 且与直线l 相切的动圆圆心为点M ,记点M 的轨迹为曲线E . (1) 求曲线E 的方程;(2) 若点A 的坐标为()2,1, 直线1:1(l y kx k =+∈R ,且0)k ≠与曲线E 相交于,B C 两点,直线,AB AC 分别交直线l 于点,S T . 试判断以线段ST 为直径的圆是否恒过两个定点? 若是,求这两个定点的坐标;若不是,说明理由.21.(本小题满分14分)已知函数()ln (,f x a x bx a b =+∈R )在点()()1,1f 处的切线方程为220x y --=.(1)求,a b 的值;(2)当1x >时,()0kf x x+<恒成立,求实数k 的取值范围;(3)证明:当n ∈N *,且2n ≥时,22111322ln 23ln 3ln 22n n n n n n--+++>+ .2017-2018年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,12⎛⎫- ⎪⎝⎭10.8 11.2a 12.4 13.222n n -+141 15.3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(1)解:在△ABD 中,1AB AD ==,BD =, ∴222cos 2AB AD BD A AB AD+-=⋅⋅2221112113+-⎝⎭==⨯⨯. ……………4分(2)解:由(1)知,1cos 3A =,且0A <<π,∴sin 3A ==. ……………6分∵D 是边AC 的中点,∴22AC AD ==. 在△ABC中,222222121cos 22123AB AC BC BC A AB AC +-+-===⋅⋅⨯⨯,………8分解得BC =……………10分 由正弦定理得,sin sin BC ABA C=, ……………11分∴1sin sin AB AC BC⋅===. ……………12分17.(本小题满分12分) (1)解:由题意,得()0.020.0320.018101x +++⨯=, ……………1分解得0.03x =. ……………2分(2)解:50个样本小球重量的平均值为0.2100.32200.3300.184024.6X =⨯+⨯+⨯+⨯=(克). ……………3分由样本估计总体,可估计盒子中小球重量的平均值约为24.6克. ……………4分(3)解:利用样本估计总体,该盒子中小球重量在(]5,15内的概率为0.2,则13,5B ξ⎛⎫⎪⎝⎭.……………5分 ξ的取值为0,1,2,3,……………6分 ()30346405125P C ξ⎛⎫=== ⎪⎝⎭,()2131448155125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭, ()2231412255125P C ξ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭,()3331135125P C ξ⎛⎫===⎪⎝⎭. ……………10分 为:∴ξ的分布列……………11分 ∴6448121301231251251251255E ξ=⨯+⨯+⨯+⨯=. ……………12分(或者13355E ξ=⨯=) 18.(本小题满分14分)(1)证明:取AB的中点M,连接EM,则1==,AM MB∵EF∥平面ABCD,EF⊂平面ABFE,平面ABCD 平面=,ABFE AB∴EF∥AB,即EF∥MB. ……………1分∵EF=MB1=∴四边形EMBF是平行四边形. ……………2分∴EM∥FB,EM FB=.在Rt△BFC中,2224=,得FB=+==,又FB FCFB FC BC∴EM=……………3分在△AME中,AE=1AM=,EM=∴222+==,3AM EM AE∴⊥. AM EM……………4分∴AM FB⊥.⊥,即AB FB∵四边形ABCD是正方形,∴⊥. AB BCMO HFEDCB……………5分∵FB BC B = ,FB ⊂平面BCF ,BC ⊂平面BCF , ∴AB ⊥平面BCF . ……………6分(2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =,∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形. ∴EO∥FH,且1EO FH == .……………7分由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥. ……………8分∵FH BC ⊥,,AB BC B AB =⊂ 平面ABCD ,BC ⊂平面ABCD , ∴FH ⊥平面ABCD . (9)分∴EO ⊥平面ABCD .∵AO⊂平面ABCD,∴EO⊥AO. ……………10分∵AO BD⊥,,EO BD O EO=⊂平面EBD,BD⊂平面EBD,∴AO⊥平面EBD. (11)分∴AEO∠是直线AE与平面BDE所成的角. ……………12分在Rt△AOE中,tanAOAEOEO∠==……………13分∴直线AE与平面BDE所成角的正切值为……………14分证法2:连接AC,AC与BD相交于点O取BC的中点H,连接,OH EO,则OH∥AB,112OH AB==.由(1)知EF∥AB,且12EF AB=∴EF∥OH,且EF OH=.∴四边形EOHF是平行四边形.∴EO∥FH,且1EO FH==. ……………7分由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,AB BC B AB =⊂ 平面ABCD ,BC ⊂平面ABCD , ∴FH ⊥平面ABCD . ∴EO ⊥平面ABCD . (8)分以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴,建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -.∴()1,1,1AE =-,()2,2,0BD =--,()1,1,1BE =--. ……………9分设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅= ,n 0BE ⋅=,得220x y --=,0x y z --+=,得0,z x y ==-. 令1x =,则平面BDE的一个法向量为=n ()1,1,0-. ……………10分设直线AE 与平面BDE 所成角为θ, 则sin θ=cos , n AE ⋅=n AE n AE3=. ……………11分∴cos 3θ==,sintan cos θθθ==……………13分 ∴直线AE 与平面BDE 所成角的正切值为……………14分19.(本小题满分14分)(1)解法1:当2n ≥时,()11n n na S n n +=++,()()111n n n a S n n --=+-,……1分 两式相减得()()()11111n n n n na n a S S n n n n +---=-++--, ……………3分即()112n n n na n a a n+--=+,得12n n a a +-=. ……………5分当1n =时,21112a S ⨯=+⨯,即212a a -=. ……………6分∴数列{}n a 是以10a =为首项,公差为2的等差数列. ∴()2122n a n n =-=-. ……………7分 解法2:由()11n n na S n n +=++,得()()11n n n n S S S n n +-=++, ……………1分整理得,()()111n n nS n S n n +=+++, ……………2分两边同除以()1n n +得,111n nS S n n+-=+. ……………3分 ∴数列n S n ⎧⎫⎨⎬⎩⎭是以101S =为首项,公差为1的等差数列. ∴011nS n n n=+-=-. ∴()1n S n n =-. ……………4分 当2n ≥时,()()()111222n n n a S S n n n n n -=-=----=-. ……………5分又10a =适合上式, ……………6分 ∴数列{}n a 的通项公式为22n a n =-. ……………7分(2)解法1:∵22log log n n a n b +=, ∴221224n a n n n b n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++ ()0122142434144n n n n --=+⨯+⨯++-⋅+⋅ ,①()1231442434144n nn T n n -=+⨯+⨯++-⋅+⋅ ,② ……………11分①-②得0121344444n nn T n --=++++-⋅ 14414n nn -=-⋅-()13413n n -⋅-=. ……………13分 ∴()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分解法2:∵22log log n n a n b +=, ∴221224n a n n n b n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++ ()0122142434144n n n n --=+⨯+⨯++-⋅+⋅ . 由()12311n nx x x x x x x x+-++++=≠- , ……………11分 两边对x取导数得,12123n x x x nx-++++=()()12111n n nx n x x +-++-. ………12分令4x =,得()()0122114243414431419n n nn n n --⎡⎤+⨯+⨯++-⋅+⋅=-⋅+⎣⎦ .……………13分 ∴()131419n n T n ⎡⎤=-⋅+⎣⎦. ……………14分20.(本小题满分14分)(1)解法1:由题意, 点M 到点F 的距离等于它到直线l 的距离,故点M 的轨迹是以点F 为焦点, l 为准线的抛物线. ……………1分 ∴曲线E的方程为24x y =. ……………2分解法2:设点M 的坐标为(),x y ,依题意, 得1MF y =+, 即1y =+, ……………1分化简得24x y =. ∴曲线E的方程为24x y =. ……………2分(2) 解法1: 设点,B C 的坐标分别为()()1122,,,x y x y ,依题意得,2211224,4x y x y ==.由21,4,y kx x y =+⎧⎨=⎩消去y 得2440x kx --=,解得1,22x k ==±.∴12124,4x x k x x +==-. ……………3分直线AB 的斜率2111111124224AB x y x k x x --+===--, 故直线AB的方程为()12124x y x +-=-. ……………4分 令1y =-,得1822x x =-+, ∴点S的坐标为182,12x ⎛⎫-- ⎪+⎝⎭. ……………5分 同理可得点T的坐标为282,12x ⎛⎫-- ⎪+⎝⎭. ……………6分 ∴()()()121212888222222x x ST x x x x -⎛⎫=---= ⎪++++⎝⎭()()()121212121288248x x x x x x x x x x k k---===+++. ……………7分∴2ST =()()()2221212122221614k x x x x x x k k k +-+-==. ……………8分设线段ST 的中点坐标为()0,1x -,则()()()12012124418822222222x x x x x x x ++⎛⎫=-+-=-⎪++++⎝⎭()()()1212444444222248k k x x x x k k++=-=-=-+++. ……………9分∴以线段ST 为直径的圆的方程为()2222114x y ST k ⎛⎫+++= ⎪⎝⎭()2241k k +=. ……………10分 展开得()()22222414414k x x y k k k++++=-=. ……………11分 令x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分解法2:由(1)得抛物线E 的方程为24x y =.设直线AB 的方程为()112y k x -=-,点B 的坐标为()11,x y ,由()112,1,y k x y ⎧-=-⎨=-⎩解得122,1.x k y ⎧=-⎪⎨⎪=-⎩∴点S 的坐标为122,1k ⎛⎫-- ⎪⎝⎭. …………3分 由()1212,4,y k x x y ⎧-=-⎨=⎩消去y ,得2114840x k x k -+-=, 即()()12420x x k --+=,解得2x =或142x k =-. ……………4分∴1142x k =-,22111114414y x k k ==-+. ∴点B的坐标为()211142,441kk k --+. ……………5分同理,设直线AC 的方程为()212y k x -=-,则点T 的坐标为222,1k⎛⎫-- ⎪⎝⎭,点C 的坐标为()222242,441kk k --+. …………6分∵点,B C 在直线1:1l y kx =+上,∴()()()()()()22222211212121214414414242k k k k k k k k k k k k k -+--+---==----121k k =+-.∴121k k k +=+. ……………7分又()211144142k k k k -+=-1+,得()21111214442412k k kk k k k k k -=-=+--, 化简得122kk k =. ……………8分设点(),P x y 是以线段ST 为直径的圆上任意一点,则0SP TP ⋅=, ……………9分得()()122222110x x y y k k ⎛⎫⎛⎫-+-++++= ⎪⎪⎝⎭⎝⎭, ……………10分 整理得,()224410x x y k+-++=. ……………11分 令x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分21.(本小题满分14分)(1)解:∵()ln f x a x bx =+, ∴()a f x b x'=+. ∵直线220x y --=的斜率为12,且过点11,2⎛⎫- ⎪⎝⎭, ……………1分 ∴()()11,211,2f f ⎧=-⎪⎪⎨⎪'=⎪⎩即1,21,2b a b ⎧=-⎪⎪⎨⎪+=⎪⎩解得11,2a b ==-. ……………3分(2)解法1:由(1)得()ln 2xf x x =-.当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<,等价于2ln 2x k x x <-.……………4分令()2ln 2x g x x x=-,则()()ln 11ln g x x x x x '=-+=--. ……………5分令()1ln h x x x =--,则()111x h x x x-'=-=. 当1x >时,()0h x '>,函数()h x 在()1,+∞上单调递增,故()()10h x h >=.……………6分从而,当1x >时,()0g x '>,即函数()g x 在()1,+∞上单调递增, 故()()112g x g >=. ……………7分因此,当1x >时,2ln 2x k x x <-恒成立,则12k ≤. ……………8分 ∴所求k的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分 解法2:由(1)得()ln 2xf x x =-.当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<恒成立. ……………4分令()ln 2x k g x x x =-+,则()222112222k x x kg x x x x -+'=--=-.方程2220x x k -+=(﹡)的判别式48k ∆=-.(ⅰ)当0∆<,即12k >时,则1x >时,2220x x k -+>,得()0g x '<, 故函数()g x 在()1,+∞上单调递减.由于()()110,2ln 21022k g k g =-+>=-+>,则当()1,2x ∈时,()0g x >,即ln 02x k x x-+>,与题设矛盾. …………5分(ⅱ)当0∆=,即12k =时,则1x >时,()()2222121022x x x g x x x --+'=-=-<. 故函数()g x 在()1,+∞上单调递减,则()()10g x g <=,符合题意. ………6分(ⅲ) 当0∆>,即12k <时,方程(﹡)的两根为1211,11x x =<=>,则()21,x x ∈时,()0g x '>,()2,x x ∈+∞时,()0g x '<. 故函数()g x 在()21,x 上单调递增,在()2,x +∞上单调递减, 从而,函数()g x 在()1,+∞上的最大值为()2222ln 2x kg x x x =-+. ………7分 而()2222ln 2x k g x x x =-+2221ln 22x x x <-+, 由(ⅱ)知,当1x >时,1ln 022xx x-+<, 得2221ln 022x x x -+<,从而()20g x <. 故当1x >时,()()20g x g x ≤<,符合题意. ……………8分 综上所述,k的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分(3)证明:由(2)得,当1x >时,1ln 022x x x -+<,可化为21ln 2x x x -<, …10分又ln 0x x >, 从而,21211ln 111x x x x x >=---+. ……………11分 把2,3,4,,x n = 分别代入上面不等式,并相加得,11111111111112ln 23ln 3ln 32435211n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++>-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭……………12分111121n n =+--+ ……………13分223222n n n n--=+. ……………14分。
2018年广东省高考数学二模试卷(理科)
2018年广东省高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知x,y∈R,集合A={2, log3x},集合B={x, y},若A∩B={0},则x+y=()A.13B.0C.1D.32. 若复数z1=1+i,z2=1−i,则下列结论错误的是()A.z1⋅z2是实数B.z1z2是纯虚数C.|z14|=2|z2|2D.z12+z22=4i3.已知a→=(−1, 3),b→=(m, m−4),c→=(2m, 3),若a→ // b→,则b→⋅c→=( )A.−7B.−2C.5D.84. 如图,AD^是以正方形的边AD为直径的半圆,向正方形内随机投入一点,则该点落在阴影区域内的概率为()A.π16B.316C.π4D.145. 已知等比数列{a n}的首项为1,公比q≠−1,且a5+a4=3(a3+a2),则√a1a2a3⋯a99=()A.−9B.9C.−81D.816. 已知双曲线C:x2a2−y2b2=1(a>0, b>0)的一个焦点坐标为(4, 0),且双曲线的两条渐近线互相垂直,则该双曲线的方程为()A.x28−y28=1B.x2 16−y216=1C.y28−x28=1D.x28−y28=1或y28−x28=17. 已知某几何体的三视图如图所示,则该几何体的表面积为( )A.8π+6B.6π+6C.8π+12D.6π+128. 设x ,y 满足约束条件{xy ≥0|x +y|≤2,则z =2x +y 的取值范围是( )A.[−2, 2]B.[−4, 4]C.[0, 4]D.[0, 2]9. 在印度有一个古老的传说:舍罕王打算奖赏国际象棋的发明人–宰相宰相西萨•班•达依尔.国王问他想要什么,他对国王说:“陛下,请您在这张棋盘的第1个小格里,赏给我1粒麦子,在第2个小格里给2粒,第3小格给4粒,以后每一小格都比前一小格加一倍.请您把这样摆满棋盘上所有的64格的麦粒,都赏给您的仆人吧!”国王觉得这要求太容易满足了,就命令给他这些麦粒.当人们把一袋一袋的麦子搬来开始计数时,国王才发现:就是把全印度甚至全世界的麦粒全拿来,也满足不了那位宰相的要求.那么,宰相要求得到的麦粒到底有多少粒?下面是四位同学为了计算上面这个问题而设计的程序框图,其中正确的是( ) A. B.C. D.10. 已知数列{a n }前n 项和为S n ,a 1=15,且满足(2n −5)a n+1=(2n −3)a n +4n 2−16n+15,已知n,m∈N+,n>m,则S n−S m的最小值为()A.−494B.−498C.−14D.−2811. 已知菱形ABCD的边长为2√3,∠BAD=60∘,沿对角线BD将菱形ABCD折起,使得二面角A−BD−C的余弦值为−13,则该四面体ABCD外接球的体积为()A.28√73π B.8√6π C.20√53π D.36π12. 已知函数f(x)=e x−ln(x+3),则下面对函数f(x)的描述正确的是()A.∀x∈(−3, +∞),f(x)≥13B.∀x∈(−3, +∞),f(x)>−12C.∃x0∈(−3, +∞),f(x0)=−1D.f(x)min∈(0, 1)二、填空题(每题5分,满分20分,将答案填在答题纸上)将函数f(x)=2sin(2x+φ)(φ<0)的图象向左平移π3个单位长度,得到偶函数g(x)的图象,则φ的最大值是________.已知a>0,b>0,(ax+bx )6展开式的常数项为52,则a+2b的最小值为________.已知函数f(x)=log2(4x+1)+mx,当m>0时,关于x的不等式f(log3x)<1的解集为________.设过抛物线y2=2px(p>0)上任意一点P(异于原点O)的直线与抛物线y2=8px(p>0)交于A,B两点,直线OP与抛物线y2=8px(p>0)的另一个交点为Q,则S△ABQS△ABO=________.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知B=60∘,c=8.(1)若点M,N是线段BC的两个三等分点,BM=13BC,ANBM=2√3,求AM的值;(2)若b=12,求△ABC的面积.如图,在五面体ABCDEF中,四边形EDCF是正方形,AD=DE,∠ADE=90∘,∠ADC=∠DCB=120∘.(1)证明:平面ABCD⊥平面EDCF;(2)求直线AF与平面BDF所成角的最正弦值.经销商第一年购买某工厂商品的单价为a (单位:元),在下一年购买时,购买单价与其上年度销售额(单位:万元)相联系,销售额越多,得到的优惠力度越大,具体情况如下表:为了研究该商品购买单价的情况,调查并整理了50个经销商一年的销售额,得到下面的柱状图.已知某经销商下一年购买该商品的单价为x (单位:元),且以经销商在各段销售额的频率作为概率.(1)求x 的平均估计值.(2)该工厂针对此次的调查制定了如下奖励方案:经销商购买单价不高于平均估计单价的获得两次抽奖活动,高于平均估计单价的获得一次抽奖活动.每次获奖的金额和对应的概率为已知椭圆C 1:x 28+y 2b 2=1(b >0)的左、右焦点分别为F 1,F 2,点F 2也为抛物线C 2:y 2=8x的焦点.(1)若M,N为椭圆C1上两点,且线段MN的中点为(1, 1),求直线MN的斜率;(2)若过椭圆C1的右焦点F2作两条互相垂直的直线分别交椭圆于A,B和C,D,设线段AB,CD的长分别为m,n,证明1m +1n是定值.已知f′(x)为函数f(x)的导函数,f(x)=e2x+2f(0)e x−f′(0)x.(1)求f(x)的单调区间;(2)当x>0时,af(x)<e x−x恒成立,求a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]在直角坐标系xOy中,直线l的参数方程为{x=34+√3ty=a+√3t(t为参数),圆C的标准方程为(x−3)2+(y−3)2=4.以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(1)求直线l和圆C的极坐标方程;(2)若射线θ=π3与l的交点为M,与圆C的交点为A,B,且点M恰好为线段AB的中点,求a的值.[选修4-5:不等式选讲]已知f(x)=|mx+3|−|2x+n|.(1)当m=2,n=−1时,求不等式f(x)<2的解集;(2)当m=1,n<0时,f(x)的图象与x轴围成的三角形面积大于24,求n的取值范围.参考答案与试题解析2018年广东省高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】C【考点】交集及其运算【解析】根据A∩B={0}即可得出0∈A,0∈B,这样即可求出x,y的值,从而求出x+y的值.【解答】A∩B={0};∴0∈A,0∈B;∴log3x=0;∴x=1,y=0;∴x+y=1.2.【答案】D【考点】复数的运算【解析】直接利用复数代数形式的乘除运算及复数模的求法逐一判断得答案.【解答】∵z1=1+i,z2=1−i,∴z1⋅z2=1−i2=2,故A正确;z1 z2=1+i1−i=(1+i)2(1−i)(1+i)=−i,故B正确;|z14|=|z1|4=4,2|z2|2=4,故C正确;z12+z22=(1+i)2+(1−i)2=0,故D错误.3.【答案】A【考点】平行向量的性质【解析】根据平面向量的坐标运算与共线定理、数量积运算法则,计算即可.【解答】解:a→=(−1, 3),b→=(m, m−4),c→=(2m, 3),若a→ // b→,则−1×(m−4)−3×m=0,解得m =1, ∴ b →=(1, −3)c →=(2, 3),b →⋅c →=1×2+(−3)×3=−7.故选A . 4.【答案】 D【考点】几何概型计算(与长度、角度、面积、体积有关的几何概型) 【解析】根据图象的关系,求出阴影部分的面积,结合几何概型的概率公式进行求解即可. 【解答】连结AE ,结合图象可知弓形①与弓形②面积相等,将弓形①移动到②的位置,则阴影部分将构成一个直角三角形,则阴影部分的面积为正方形面积的14,则向正方形内随机投入一点,则该点落在阴影区域内的概率P =14, 5.【答案】 B【考点】等比数列的性质 【解析】等比数列{a n }的首项为1,公比q ≠−1,且a 5+a 4=3(a 3+a 2),可得a 2q 3+a 2q 2=3(a 2q +a 2),化为:q 2=3.由等比数列的性质可得:a 1a 2……a 9=q 1+2+⋯…+8=q 4×9,代入√a 1a 2a 3⋯a 99=q 4.即可得出. 【解答】等比数列{a n }的首项为1,公比q ≠−1,且a 5+a 4=3(a 3+a 2), ∴ a 2q 3+a 2q 2=3(a 2q +a 2), 化为:q 2=3.由等比数列的性质可得:a 1a 2……a 9=q 1+2+⋯…+8=q8×(8+1)2=q 4×9则√a 1a 2a 3⋯a 99=√q 4×99=q 4=9.6.【答案】 A【考点】 双曲线的特性 【解析】由题意可得c =4,由双曲线的渐近线方程和两直线垂直的条件:斜率之积为−1,可得a =b ,解方程可得a ,b 的值,即可得到所求双曲线的方程. 【解答】双曲线C:x 2a 2−y 2b 2=1(a >0, b >0)的一个焦点坐标为(4, 0),可得c =4,即有a 2+b 2=c 2=16,双曲线的两条渐近线互相垂直, 即直线y =ba x 和直线y =−ba x 垂直, 可得a =b ,解方程可得a =b =2√2, 则双曲线的方程为x 28−y 28=1.7.【答案】 B【考点】由三视图求体积 【解析】由题意判断几何体的形状,然后求解几何体的表面积即可. 【解答】几何体是组合体,上部是半圆柱,下部是半球,圆柱的底面半径与球的半径相同为1,圆柱的高为3,几何体的表面积为:2π×12+12×π+2×3+3π=6+6π. 8.【答案】 B【考点】 简单线性规划 【解析】作出约束条件{xy ≥0|x +y|≤2 所对应的可行域,变形目标函数,平移直线y =2x 可得结论. 【解答】作出约束条件{xy ≥0|x +y|≤2所对应的可行域(如图阴影) 变形目标函数可得y =−2x +z ,平移直线y =−2x 可知 当直线经过点A(−2, 0)时,目标函数取最小值−4 当直线经过点B(2, 0)时,目标函数取最大值4, 故z =−2x +y 的取值范围为[−4, 4]. 9.【答案】 C【考点】 程序框图 【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,可得答案. 【解答】由已知中程序的功能,可得循环变量的初值为1,终值为64,由于四个答案均为直到条件不满足时退出循环,故循环条件应为n ≤64,而每次累加量构造一个以1为首项,以2为公式的等比数列, 由S n =2n −1得:S n+1=2n+1−1=2S n +1, 故循环体内S =1+2S , 10.【答案】 C【考点】 数列递推式 【解析】由等式变形,可得{an2n−5}为等差数列,公差为1,首项为−5,运用等差数列的通项公式可得a n ,再由自然数和的公式、平方和公式,可得S n ,讨论n 的变化,S n 的变化,僵尸可得最小值. 【解答】∵ (2n −5)a n+1=(2n −3)a n +4n 2−16n +15,∴ a n+12n−3−a n 2n−5=1,a1−3=−5. 可得数列{an2n−5}为等差数列,公差为1,首项为−5.∴ a n2n−5=−5+n −1=n −6,∴ a n =(2n −5)(n −6)=2n 2−17n +30.∴ S n =2(12+22+……+n 2)−17(1+2+……+n)+30n =2×n(n +1)(2n +1)6−17×n(n +1)2+30n=4n 3−45n 2+131n6.可得n =2,3,4,5,S n 递减;n >5,S n 递增,∵ n ,m ∈N +,n >m ,S 1=15,S 2=19,S 5=S 6=5,S 7=14,S 8=36, S n −S m 的最小值为5−19=−14, 11.【答案】 B【考点】二面角的平面角及求法 【解析】正确作出图形,利用勾股定理建立方程,求出四面体的外接球的半径,即可求出四面体的外接球的体积. 【解答】如图所示,取BD 中点F ,连结AF 、CF ,则AF ⊥BD ,CF ⊥BD ,∴ ∠AFC 是二面角A −BD −C 的平面角, 过A 作AE ⊥平面BCD ,交CF 延长线于E ,∴ cos∠AFC =−13,cos∠AFE =13,AF =CF =√(2√3)2−(√3)2=3, ∴ AE =2√2,EF =1,设O 为球,过O 作OO′⊥CF ,交F 于O′,作OG ⊥AE ,交AE 于G ,设OO′=x ,∵ O′B =23CF =2,O′F =13CF =1,∴ 由勾股定理得R 2=O′B 2+OO ′2=4+x 2=OG 2+AG 2=(1+1)2+(2√2−x)2, 解得x =√2,∴ R 2=6,即R =√6,∴ 四面体的外接球的体积为V =43πR 3=43π×6√6=8√6π.12.【答案】 B【考点】利用导数研究函数的单调性 【解析】本题首先要对函数f(x)=e x −ln(x +3)进行求导,确定f′(x)在定义域上的单调性为单调递增函数,然后再利用当x ∈(a, b)时,利用f′(a)f′(b)<0确定导函数的极值点x 0∈(−1, −12)从而.得到x =x 0时是函数f(x)的最小值点. 【解答】因为函数f(x)=e x −ln(x +3),定义域为(−3, +∞),所以f′(x)=e x −1x+3, 易知导函数f′(x)在定义域(−3, +∞)上是单调递增函数, 又f′(−1)<0,f′(−12)>0,所以f′(x)=0在(−3, +∞)上有唯一的实根,不妨将其设为x 0,且x 0∈(−1, −12), 则x =x 0为f(x)的最小值点,且f′(x 0)=0,即e x 0=1x 0+3,两边取以e 为底的对数,得x 0=−ln(x 0+3) 故f(x)≥f(x 0)=ex 0−ln(x 0+3)=1x+3−ln(x 0+3)=1x 0+3+x 0,因为x 0∈(−1, −12),所以2<x 0+3<52,故f(x)≥f(x 0)=1x 0+3+(x 0+3)−3>2+12−3=−12,即对∀x ∈(−3, +∞),都有f(x)>−12.二、填空题(每题5分,满分20分,将答案填在答题纸上) 【答案】 −π 【考点】函数y=Asin (ωx+φ)的图象变换 【解析】根据三角函数图象平移法则,结合函数的奇偶性求出φ的最大值. 【解答】函数f(x)=2sin(2x +φ)(φ<0)的图象向左平移π3个单位长度, 得f(x +π3)=2sin[2(x +π3)+φ]=2sin(2x +φ+2π3)的图象,∴ g(x)=2sin(2x +2π3+φ);又g(x)是偶函数,∴ 2π3+φ=π2+kπ,k ∈Z ; ∴ φ=−π6+kπ,k ∈Z ; 又φ<0,∴ φ的最大值是−π6. 【答案】 2【考点】 二项式定理的应用 【解析】写出二项展开式的通项,由x 的指数为0求得r 值,可得ab =12,再由基本不等式求a +2b 的最小值. 【解答】(ax +bx )6展开式的通项为T r+1=C 6r ∗(ax)6−r ∗(bx )r =a 6−r ∗b r ∗C 6r∗x 6−2r ,由6−2r =0,得r =3.∴ a 3b 3∗C 63=52,即ab =12.∴ a +2b ≥2√2ab =2,当且仅当a =2b ,即a =1,b =12时,取“=”. ∴ a +2b 的最小值为2. 【答案】 (0, 1) 【考点】对数函数的图象与性质 【解析】利用单调性求解即可. 【解答】函数f(x)=log 2(4x +1)+mx ,当m >0时,可知f(x)时单调递增函数, 当x =0时,可得f(0)=1,那么不等式f(log 3x)<f(0)的解集, 即{x >0log 3x <0 , 解得:0<x <1. 【答案】 3【考点】 抛物线的求解 【解析】 此题暂无解析 【解答】解:方法一: 画出对应的图,设AB 与OP 的夹角为θ,则△ABQ 中AB 边上的高与△ABO 中AB 边上的高之比为PQsin θOPsin θ=PQOP , ∴ S △ABQS△ABO =PQ OP =y Q −y P y P=y Q y P−1.设P (y 122p ,y 1), 则直线OP:y =y 1y 122px ,即y =2p y 1x ,与y 2=8px 联立, 可得y Q =4y 1,从而得到面积比为4y1y 1−1=3.故答案为:3.方法二:记d(X,YZ)表示点X 到线段YZ 的距离, 则S △ABQS△ABO=d(Q,AB)d(O,AB)=|PQ||OP|,设|OQ||OP|=m ,P (x 0,y 0), 则OQ →=mOP →,即Q (mx 0,my 0).于是y 02=2px 0,(my 0)2=8pmx 0, 故m =4, 则|PQ||OP|=|OQ|−|OP||OP|=4−1=3,从而S △ABQS△ABO=3.故答案为:3.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)【答案】∵在△ABC中,内角A,B,C所对的边分别为a,b,c,B=60∘,c=8点M,N是线段BC的两个三等分点,BM=13BC,ANBM=2√3,∴设BM=x,则AN=2√3x,在△ABN中,由余弦定理得12x2=64+4x2−2×8×2xcos60∘,解得x=4(负值舍去),则BM=4,∴AM=√82+42−2×8×4×cos60∘=4√3.在△ABC中,由正弦定理得bsinB =csinC,∴sinC=csinBb =8×√3212=√33,又b=12>c,∴B>C,则C为锐角,∴cosC=√63,则sinA=sin(B+C)=sinBcosC+cosBsinC=√32×√63+12×√33=3√2+√36,∴△ABC的面积S=12bcsinA=48×3√2+√36=24√2+8√3.【考点】三角形求面积【解析】(1)设BM=x,则AM=2√3x,由余弦定理求出BM=4,由此利用余弦定理能求出b.(2)由正弦定理得bsinB =csinC,从而sinC=√33,由b=12>c,得B>C,cosC=√63,从而sinA=sin(B+C)=sinBcosC+cosBsinC=3√2+√36,由此能求出△ABC的面积.【解答】∵在△ABC中,内角A,B,C所对的边分别为a,b,c,B=60∘,c=8点M,N是线段BC的两个三等分点,BM=13BC,ANBM=2√3,∴设BM=x,则AN=2√3x,在△ABN中,由余弦定理得12x2=64+4x2−2×8×2xcos60∘,解得x=4(负值舍去),则BM=4,∴AM=√82+42−2×8×4×cos60∘=4√3.在△ABC中,由正弦定理得bsinB =csinC,∴sinC=csinBb =8×√3212=√33,又b=12>c,∴B>C,则C为锐角,∴cosC=√63,则sinA=sin(B+C)=sinBcosC+cosBsinC=√32×√63+12×√33=3√2+√36,∴△ABC的面积S=12bcsinA=48×3√2+√36=24√2+8√3.【答案】因为AD ⊥DE ,DC ⊥DE ,AD 、CD ⊂平面ABCD ,且AD ∩CD =D , 所以DE ⊥平面ABCD .又DE ⊂平面EDCF ,故平面ABCD ⊥平面EDCF . 由已知DC // EF ,所以DC // 平面ABFE .又平面ABCD ∩平面ABFE =AB ,故AB // CD . 所以四边形ABCD 为等腰梯形.又AD =DE ,所以AD =CD ,由题意得AD ⊥BD , 令AD =1,如图,以D 为原点,以DA 为x 轴, 建立空间直角坐标系D −xyz , 则D(0, 0, 0),A(1, 0, 0), F(−12, √32, 1),B(0, √3, 0), ∴ FA →=(32, −√32, −1),DB→=(0, √3, 0),DF →=(−12, √32, 1).设平面BDF 的法向量为n →=(x, y, z),则{n →∗DB →=√3y =0n →∗DF →=−12x +√32y +z =0 ,取x =2,得n →=(2, 0, 1), cos <FA →,n →>=FA →∗n→|FA →|∗|n →|=2×√5=√55. 设直线与平面BDF 所成的角为θ,则sinθ=√55.所以直线AF 与平面BDF 所成角的正弦值为√55.【考点】平面与平面垂直 直线与平面所成的角 【解析】(1)推导出AD ⊥DE ,DC ⊥DE ,从而DE ⊥平面ABCD .由此能证明平面ABCD ⊥平面EDCF .(2)以D 为原点,以DA 为x 轴,建立空间直角坐标系D −xyz ,利用向量法能求出直线AF 与平面BDF 所成角的正弦值. 【解答】因为AD ⊥DE ,DC ⊥DE ,AD 、CD ⊂平面ABCD ,且AD ∩CD =D , 所以DE ⊥平面ABCD .又DE ⊂平面EDCF ,故平面ABCD ⊥平面EDCF . 由已知DC // EF ,所以DC // 平面ABFE .又平面ABCD ∩平面ABFE =AB ,故AB // CD . 所以四边形ABCD 为等腰梯形.又AD =DE ,所以AD =CD ,由题意得AD ⊥BD , 令AD =1,如图,以D 为原点,以DA 为x 轴, 建立空间直角坐标系D −xyz , 则D(0, 0, 0),A(1, 0, 0), F(−12, √32, 1),B(0, √3, 0), ∴ FA →=(32, −√32, −1),DB →=(0, √3, 0),DF →=(−12, √32, 1).设平面BDF 的法向量为n →=(x, y, z),则{n →∗DB →=√3y =0n →∗DF →=−12x +√32y +z =0,取x =2,得n →=(2, 0, 1), cos <FA →,n →>=FA →∗n→|FA →|∗|n →|=2×5=√55. 设直线与平面BDF 所成的角为θ,则sinθ=√55.所以直线AF 与平面BDF 所成角的正弦值为√55.【答案】 解:(1)由题可知:a ×0.2+0.9a ×0.36+0.85a ×0.24+0.8a ×0.12+ 0.75a ×0.1+0.7a ×0.04=0.873a .(2)购买单价不高于平均估计单价的概率为 0.24+0.12+0.1+0.04=0.5=12.Y 的所有可能取值为5000,10000,15000,20000. P(Y =5000)=12×34=38,P(Y=10000)=12×14+12×34×34=1332,P(Y=15000)=12×C21×14×34=316,P(Y=20000)=12×14×14=132.∴Y的分布列为E(Y)=5000×38+10000×1332+15000×316+20000×132=9375.【考点】离散型随机变量的期望与方差【解析】此题暂无解析【解答】解:(1)由题可知:a×0.2+0.9a×0.36+0.85a×0.24+0.8a×0.12+ 0.75a×0.1+0.7a×0.04=0.873a.(2)购买单价不高于平均估计单价的概率为0.24+0.12+0.1+0.04=0.5=12.Y的取值为5000,10000,15000,20000.P(Y=5000)=12×34=38,P(Y=10000)=12×14+12×34×34=1332,P(Y=15000)=12×C21×14×34=316,P(Y=20000)=12×14×14=132.∴Y的分布列为E(Y)=5000×38+10000×1332+15000×316+20000×132=9375.【答案】(1)解:因为抛物线C2:y2=8x的焦点(2, 0),则c=2,b2=a2−c2=4,所以C1:x28+y24=1,设M(x 1, y 1),N(x 2, y 2),则{x 128+y 124=1,x 228+y 224=1, 两式相减得(x 1+x 2)(x 2−x 2)8+(y 1+y 2)(y 1−y 2)4=0,由MN 的中点为(1, 1),所以x 1+x 2=2,y 1+y 2=2, 所以y 2−y 1x2−x 1=−12.显然,点(1,1)在椭圆内部,所以直线MN 的斜率为−12. (2)证明:由椭圆的右焦点F 2(2, 0), 当直线AB 的斜率不存在或为0时,1m +1n =4√22√2=3√28. 当直线AB 的斜率存在且不为0,设直线AB 的方程为y =k(x −2)(k ≠0),设A(x 1, y 1),B(x 2, y 2),联立{y =k(x −2)x 2+2y 2=8 , 消去y 化简整理得(1+2k 2)x 2−8k 2x +8k 2−8=0, Δ=(−8k 2)2−4(1+2k 2)(8k 2−8)=32(k 2+1)>0, 所以x 1+x 2=8k 21+2k2,x 1x 2=8(k 2−1)1+2k 2,所以m =√1+k 2√(x 1+x 2)2−4x 1x 2=4√2(1+k 2)1+2k 2, 同理可得n =4√2(1+k 2)k 2+2. 所以1m+1n =4√2(1+2k 21+k 2+k 2+21+k 2)=3√28,为定值. 【考点】 椭圆的定义 【解析】 此题暂无解析 【解答】(1)解:因为抛物线C 2:y 2=8x 的焦点(2, 0),则c =2,b 2=a 2−c 2=4, 所以C 1:x 28+y 24=1,设M(x 1, y 1),N(x 2, y 2),则{x 128+y 124=1,x 228+y 224=1, 两式相减得(x 1+x 2)(x 2−x 2)8+(y 1+y 2)(y 1−y 2)4=0,由MN 的中点为(1, 1),所以x 1+x 2=2,y 1+y 2=2, 所以y 2−y 1x2−x 1=−12.显然,点(1,1)在椭圆内部,所以直线MN 的斜率为−12. (2)证明:由椭圆的右焦点F 2(2, 0), 当直线AB 的斜率不存在或为0时,1m +1n =4√22√2=3√28.当直线AB 的斜率存在且不为0,设直线AB 的方程为y =k(x −2)(k ≠0),设A(x 1, y 1),B(x 2, y 2),联立{y =k(x −2)x 2+2y 2=8 , 消去y 化简整理得(1+2k 2)x 2−8k 2x +8k 2−8=0, Δ=(−8k 2)2−4(1+2k 2)(8k 2−8)=32(k 2+1)>0, 所以x 1+x 2=8k 21+2k 2,x 1x 2=8(k 2−1)1+2k 2,所以m =√1+k 2√(x 1+x 2)2−4x 1x 2=4√2(1+k 2)1+2k 2, 同理可得n =4√2(1+k 2)k 2+2. 所以1m +1n =4√2(1+2k 21+k 2+k 2+21+k 2)=3√28,为定值. 【答案】由f(0)=1+2f(0),得f(0)=−1. 因为f′(x)=2e 2x −2e x −f′(0),所以f′(0)=2−2−f′(0),解得f′(0)=0. 所以f(x)=e 2x −2e x ,f′(x)=2e x (e x −1),当x ∈(−∞, 0)时,f′(x)<0,则函数f(x)在(−∞, 0)上单调递减; 当x ∈(0, +∞)时,f′(x)>0,则函数f(x)在(0, +∞)上单调递增. 令g(x)=af(x)−e x +x =ae 2x −(2a +1)e x +x , 根据题意,当x ∈(0, +∞)时,g(x)<0恒成立. g′(x)=(2ae x −1)(e x −1).①当0<a <12,x ∈(−ln2a, +∞)时,g′(x)>0恒成立,所以g(x)在(−ln2a, +∞)上是增函数,且g(x)∈(g(−ln2a),+∞), 所以不符合题意;②当a ≥12,x ∈(0, +∞)时,g′(x)>0恒成立,所以g(x)在(0, +∞)上是增函数,且g(x)∈(g(0),+∞),所以不符合题意; ③当a ≤0时,因为x ∈(0, +∞),所有恒有g′(x)<0, 故g(x)在(0, +∞)上是减函数,于是“g(x)<0对任意x ∈(0, +∞)都成立”的充要条件是g(0)≤0, 即a −(2a +1)≤0,解得:a ≥−1,故−1≤a ≤0. 综上,a 的取值范围是[−1, 0]. 【考点】利用导数研究函数的单调性 【解析】(1)求出函数的导数,计算f(0),求出f′(0)的值,求出函数的单调区间即可;(2)令g(x)=af(x)−e x +x ,求出函数的导数,通过讨论a 的范围,求出函数的最值,从而确定a 的范围即可. 【解答】由f(0)=1+2f(0),得f(0)=−1. 因为f′(x)=2e 2x −2e x −f′(0),所以f′(0)=2−2−f′(0),解得f′(0)=0. 所以f(x)=e 2x −2e x ,f′(x)=2e x (e x −1),当x ∈(−∞, 0)时,f′(x)<0,则函数f(x)在(−∞, 0)上单调递减;当x∈(0, +∞)时,f′(x)>0,则函数f(x)在(0, +∞)上单调递增.令g(x)=af(x)−e x+x=ae2x−(2a+1)e x+x,根据题意,当x∈(0, +∞)时,g(x)<0恒成立.g′(x)=(2ae x−1)(e x−1).①当0<a<12,x∈(−ln2a, +∞)时,g′(x)>0恒成立,所以g(x)在(−ln2a, +∞)上是增函数,且g(x)∈(g(−ln2a),+∞),所以不符合题意;②当a≥12,x∈(0, +∞)时,g′(x)>0恒成立,所以g(x)在(0, +∞)上是增函数,且g(x)∈(g(0),+∞),所以不符合题意;③当a≤0时,因为x∈(0, +∞),所有恒有g′(x)<0,故g(x)在(0, +∞)上是减函数,于是“g(x)<0对任意x∈(0, +∞)都成立”的充要条件是g(0)≤0,即a−(2a+1)≤0,解得:a≥−1,故−1≤a≤0.综上,a的取值范围是[−1, 0].请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]【答案】∵直线l的参数方程为{x=34+√3ty=a+√3t(t为参数),∴在直线l的参数方程中消去t可得直线l的普通方程为x−y−34+a=0,将x=ρcosθ,y=ρsinθ代入以上方程中,得到直线l的极坐标方程为ρcosθ−ρsinθ−34+a=0.∵圆C的标准方程为(x−3)2+(y−3)2=4,∴圆C的极坐标方程为ρ2−6ρcosθ−6ρsinθ+14=0.在极坐标系中,由已知可设M(ρ1,π3),A(ρ2,π3),B(ρ3, π3).联立{θ=π3ρ2−6ρcosθ−6ρsinθ+14=0,得ρ2−(3+3√3)ρ+14=0,∴ρ2+ρ3=3+3√3.∵点M恰好为AB的中点,∴ρ1=3+3√32,即M(3+3√32, π3).把M(3+3√32, π3)代入ρcosθ−ρsinθ−34+a=0,得3(1+√3)2×1−√32−34+a=0,解得a=94.【考点】参数方程与普通方程的互化【解析】(1)直线l的参数方程消去t可得直线l的普通方程,将x=ρcosθ,y=ρsinθ代入,能求出直线l 的极坐标方程.由圆的标准方程能求出圆C 的极坐标方程.(2)设M(ρ1,π3),A(ρ2,π3),B(ρ3, π3).联立{θ=π3ρ2−6ρcosθ−6ρsinθ+14=0 ,得ρ2−(3+3√3)ρ+14=0,从而ρ2+ρ3=3+3√3,进而M(3+3√32, π3).把M(3+3√32, π3)代入ρcosθ−ρsinθ−34+a =0,能求出a 的值.【解答】∵ 直线l 的参数方程为{x =34+√3t y =a +√3t(t 为参数),∴ 在直线l 的参数方程中消去t 可得直线l 的普通方程为x −y −34+a =0, 将x =ρcosθ,y =ρsinθ代入以上方程中,得到直线l 的极坐标方程为ρcosθ−ρsinθ−34+a =0. ∵ 圆C 的标准方程为(x −3)2+(y −3)2=4,∴ 圆C 的极坐标方程为ρ2−6ρcosθ−6ρsinθ+14=0. 在极坐标系中,由已知可设M(ρ1,π3),A(ρ2,π3),B(ρ3, π3). 联立{θ=π3ρ2−6ρcosθ−6ρsinθ+14=0 ,得ρ2−(3+3√3)ρ+14=0,∴ ρ2+ρ3=3+3√3. ∵ 点M 恰好为AB 的中点, ∴ ρ1=3+3√32,即M(3+3√32, π3). 把M(3+3√32, π3)代入ρcosθ−ρsinθ−34+a =0,得3(1+√3)2×1−√32−34+a =0,解得a =94.[选修4-5:不等式选讲]【答案】当m =2,n =−1时,f(x)=|2x +3|−|2x −1|, 不等式f(x)<2等价于{x <−32−(2x +3)+(2x −1)<2或{−32≤x ≤12(2x +3)+(2x −1)<2或{x >12(2x +3)−(2x −1)<2,解得:x <−32或−32≤x <0,即x <0. 所以不等式f(x)<2的解集是(−∞, 0).由题设可得,f(x)=|x +3|−|2x +n|={x +n −3,x <−33x +3+n,−3≤x ≤−n2−x +3−n,x >−n2 ,所以函数f(x)的图象与x 轴围成的三角形的三个顶点分别为:试卷第21页,总21页 A(−3+n 3, 0),B(3−n, 0),C(−n 2, 3−n 2),所以三角形ABC 的面积为12(3−n +3+n 3)(3−n 2)=(6−n)26, 由(6−n)26>24,解得:n >18或n <−6.【考点】绝对值不等式的解法与证明【解析】(1)代入m ,n 的值,得到关于x 的不等式组,解出即可;(2)求出A ,B ,C 的坐标,表示出三角形的面积,得到关于n 的不等式,解出即可.【解答】当m =2,n =−1时,f(x)=|2x +3|−|2x −1|,不等式f(x)<2等价于{x <−32−(2x +3)+(2x −1)<2 或{−32≤x ≤12(2x +3)+(2x −1)<2 或{x >12(2x +3)−(2x −1)<2, 解得:x <−32或−32≤x <0,即x <0.所以不等式f(x)<2的解集是(−∞, 0).由题设可得,f(x)=|x +3|−|2x +n|={x +n −3,x <−33x +3+n,−3≤x ≤−n 2−x +3−n,x >−n 2, 所以函数f(x)的图象与x 轴围成的三角形的三个顶点分别为:A(−3+n 3, 0),B(3−n, 0),C(−n 2, 3−n 2),所以三角形ABC 的面积为12(3−n +3+n 3)(3−n 2)=(6−n)26, 由(6−n)26>24,解得:n >18或n <−6.。
广东省广州二中2018年中考数学二模试卷(解析版)
广东省广州二中2018年中考数学二模试卷一、选择题(每小题3分,满分30分)1.下列运算正确的是()A.B.C.﹣|﹣2|=2D.2.将两个全等的直角三角形纸片构成如下的四个图形,这四个图形中是中心对称图形的是()A.B.C.D.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10104.把抛物线y=x2向右平移1个单位,所得抛物线的函数表达式为()A.y=x2+1B.y=(x+1)2C.y=x2﹣1D.y=(x﹣1)2 5.已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.6.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°7.某县为发展教育事业,加强了对教育经费的投入,2015年投入3千万元,预计2017年投入5千万元.设教育经费的年平均增长率为x,则下面所列方程正确的是()A.3(1+x)2=5B.3x2=5C.3(1+x%)2=5D.3(1+x)+3(1+x)2=58.如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A.B.C.abπD.acπ9.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A.30°B.35°C.40°D.50°10.如图,在Rt△AOB中,两直角边OA,OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数y=的图象恰好经过=4,tan∠ABO=,则k的值为()斜边A′B的中点C,且S△AOBA.3B.4C.6D.8二、填空题(本大题共6小题,每小题3分,满分18分)11.使有意义的x的取值范围是.12.因式分解:a2b﹣b=.13.如图△ABC中,BE平分∠ABC,DE∥BC,若DE=2AD,AE=2,那么AC=.14.如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于.15.分式方程+=2的解是.16.如图,AB是⊙O的弦,AB=8,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)解方程组:.18.(9分)如图,点E,F是平行四边形ABC D的对角线AC上的点,CE=AF,求证:BE =DF.19.(10分)先化简,再求值:,其中a=2,b=﹣1.20.(10分)为测山高,在点A处测得山顶D的仰角为31°,从点A向山方向前进140米到达点B,在B处测得山顶D的仰角为62°(如图).(1)在所给的图②中尺规作图:过点D作DC⊥AB,交AB的延长线于点C;(2)山高DC是多少(结果取整数)?21.(12分)某完全中学(含初、高中)篮球队12名队员的年龄情况如下:(1)这个队队员年龄的众数是,中位数是,平均数是.(2)若把这个队队员年龄的分布情况绘成扇形统计图,请求出年龄为15岁的队员人数所对应的圆心角的度数.(3)为了检查队员们的训练水平,教练要从年龄为15岁的4名队员(用A、B、C、D表示)中随机抽取2人,请用列表法或树形图法求出恰好选中B、D的概率.22.(12分)如图,四边形ABCD是正方形,点A的坐标是(0,1),点B的坐标是(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过A、C两点,两函数图象的另一个交点E的坐标是(m,3).(1)分别求出一次函数与反比例函数的解析式.(2)求出m的值,并根据图象回答:当x为何值时,一次函数的值大于反比例函数的值.(3)若点P是反比例函数图象上的一点,△AOP的面积恰好等于正方形ABCD的面积,求点P坐标.23.(12分)如图1,AB是⊙O的直径,AC是⊙O的切线.(1)连接BC,BC交⊙O于点E,连接AE.①若D为AC的中点,连接DE,证明:DE是⊙O的切线.②若BE=3EC,求tan∠ABC.(2)如图2,CF是圆O的另一条切线,F为切点,OC与圆O交于点G,求证:点G是三角形ACF的内心.24.(14分)已知抛物线y=ax2+bx+c经过A(0,2),B(2,﹣2)两点.(1)用含a的式子表示b.(2)当a=﹣时,y=ax2+bc+c的函数值为正整数,求满足条件的x值.(3)若a>0,线段AB下方的抛物线上有一点E,求证:不管a取何值,当△EAB的面积最大时,E点的横坐标为定值.25.(14分)如图1,在矩形ABCD中,AB=4,AD=6,M是AD的中点,点E是线段AB 上一动点,连接EM并延长交直线CD于点F,过M作MN⊥EF,交射线BC于点N,连接NF,点P是线段NF的中点.(1)连接图1中的PM,PC,求证:PM=PC.(2)如图2,当点N与C重合时,求AE的长.(3)当点E从点A运动到点B时,求点P经过的路径长.参考答案一、选择题1.下列运算正确的是()A.B.C.﹣|﹣2|=2D.【分析】根据算术平方根、负整数指数幂、绝对值性质、立方根的定义逐一计算可得.解:A、=2,此选项错误;B、()﹣2=4,此选项错误;C、﹣|﹣2|=﹣2,此选项错误;D、,此选项正确;故选:D.【点评】本题主要考查实数的运算,解题的关键是掌握算术平方根、负整数指数幂、绝对值性质、立方根的定义.2.将两个全等的直角三角形纸片构成如下的四个图形,这四个图形中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.【点评】此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:4 400 000 000=4.4×109,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.把抛物线y=x2向右平移1个单位,所得抛物线的函数表达式为()A.y=x2+1B.y=(x+1)2C.y=x2﹣1D.y=(x﹣1)2【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.解:原抛物线的顶点为(0,0),向右平移1个单位,那么新抛物线的顶点为(1,0);可设新抛物线的解析式为y=(x﹣h)2+k代入得:y=(x﹣1)2,故选:D.【点评】抛物线平移不改变二次项的系数的值,解决本题的关键是得到新抛物线的顶点坐标.5.已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.【分析】根据第二象限内点的特征,列出不等式组,求得a的取值范围,然后在数轴上分别表示出a的取值范围.解:∵点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则有解得﹣2<a<1.故选:C.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.第二象限的点横坐标为<0,纵坐标>0.6.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°【分析】本题主要利用两直线平行,内错角相等作答.解:根据题意可知,两直线平行,内错角相等,∴∠1=∠3,∵∠3+∠2=45°,∴∠1+∠2=45°∵∠1=20°,∴∠2=25°.故选:B.【点评】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.7.某县为发展教育事业,加强了对教育经费的投入,2015年投入3千万元,预计2017年投入5千万元.设教育经费的年平均增长率为x,则下面所列方程正确的是()A.3(1+x)2=5B.3x2=5C.3(1+x%)2=5D.3(1+x)+3(1+x)2=5【分析】设教育经费的年平均增长率为x,根据某地2015年投入教育经费3千万元,预计2017年投入5千万元可列方程.解:设教育经费的年平均增长率为x,则2016的教育经费为:3×(1+x)2017的教育经费为:3×(1+x)2.那么可得方程:3(1+x)2=5.故选:A.【点评】本题考查了一元二次方程的应用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.8.如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A.B.C.abπD.acπ【分析】易得此几何体为圆锥,侧面积=.解:由题意得底面直径为a,母线长为c,∴几何体的侧面积为acπ,故选:B.【点评】本题需先确定几何体的形状,关键是找到等量关系里相应的量.9.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A.30°B.35°C.40°D.50°【分析】欲求∠B的度数,需求出同弧所对的圆周角∠C的度数;△APC中,已知了∠A及外角∠APD的度数,即可由三角形的外角性质求出∠C的度数,由此得解.解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°;∴∠B=∠C=40°;故选:C.【点评】此题主要考查了三角形的外角性质及圆周角定理的应用.10.如图,在Rt△AOB中,两直角边OA,OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数y=的图象恰好经过=4,tan∠ABO=,则k的值为()斜边A′B的中点C,且S△AOBA.3B.4C.6D.8【分析】先根据三角函数设未知数,根据面积求B和A'的坐标,根据中点坐标公式可得C 的坐标,从而计算k的值;解:∵tan∠ABO==,∴设OA=x,则OB=2x,则S=OA•OB=x•2x=4,△ABO∴x=2,∴B(0,4),A'(4,2),∵点C为斜边A′B的中点,∴C(2,3),∴k=2×3=6;故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,解答本题的关键在于读懂题意,作出合适的辅助线,求出点C的坐标,然后根据点C的横纵坐标之积等于k值求解即可.二、填空题(本大题共6小题,每小题3分,满分18分)11.使有意义的x的取值范围是x≤1.【分析】根据二次根式的被开方数为非负数,即可得出x的范围.解:∵有意义,∴1﹣x≥0,解得:x≤1.故答案为:x≤1.【点评】此题考查了二次根式有意义的条件,属于基础题,解答本题的关键是熟练掌握二次根式的被开方数为非负数.12.因式分解:a2b﹣b=b(a+1)(a﹣1).【分析】先提取公因式b,再对余下的多项式利用平方差公式继续分解.解:a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1).故答案为:b(a+1)(a﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解的知识.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,注意因式分解要彻底.13.如图△ABC中,BE平分∠ABC,DE∥BC,若DE=2AD,AE=2,那么AC=6.【分析】首先证明BD=DE=2AD,再由DE∥BC,可得=,求出EC即可解决问题;解:∵DE∥BC,∴∠DEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DEB=∠DBE,∴DB=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴=,∴=,∴EC=4,∴AC=AE+EC=2+4=6,故答案为6.【点评】本题考查平行线分线段成比例定理,角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于.【分析】根据旋转的性质得到:BE′=DE=1,在直角△EE′C中,利用勾股定理即可求解.解:根据旋转的性质得到:BE′=DE=1,在直角△EE′C中:EC=DC﹣DE=2,CE′=BC+BE′=4.根据勾股定理得到:EE′===2.【点评】本题主要运用了勾股定理,能根据旋转的性质得到BE′的长度,是解决本题的关键.15.分式方程+=2的解是x=4.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:1+x﹣1=2x﹣4,解得:x=4,经检验x=4是分式方程的解.故答案为:x=4【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.16.如图,AB是⊙O的弦,AB=8,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是4.【分析】根据中位线定理得到MN的长最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=8,∴∠AC′B=45°,∴BC′=,=4.∴MN最大故答案为:4【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)解方程组:.【分析】方程组利用加减消元法求出解即可.解:①×3+②得:11x=11,即x=1,把x=1代入①得:y=﹣1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(9分)如图,点E,F是平行四边形ABCD的对角线AC上的点,CE=AF,求证:BE =DF.【分析】利用平行四边形的性质和平行线的性质可以得到相等的线段和相等的角,从而可以证明△BCE≌△DAF,进而证得结论.证明:∵四边形ABCD是平行四边形,∴CB=AD,CB∥AD,∴∠BCE=∠DAF,在△BCE和△DAF,,∴△BCE≌△DAF,∴BE=DF.【点评】本题考查了平行四边形的性质和全等三角形的判定及性质,本题的难点在于第一步的猜想,学生在解题时往往只考虑一种关系.19.(10分)先化简,再求值:,其中a=2,b=﹣1.【分析】根据提公因式法和分式的除法可以化简题目中的式子,再将a、b的值代入化简后的式子即可解答本题.解:====a﹣b,当a=2,b=﹣1时,原式=2﹣(﹣1)=2﹣+1=3﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.(10分)为测山高,在点A处测得山顶D的仰角为31°,从点A向山方向前进140米到达点B,在B处测得山顶D的仰角为62°(如图).(1)在所给的图②中尺规作图:过点D作DC⊥AB,交AB的延长线于点C;(2)山高DC是多少(结果取整数)?【分析】(1)以D为圆心,大于DC长度为半径作弧,与AB及其延长线相交于E、F,分别以E、F为圆心,ED为半径作弧,相交于G,过D、G作垂线即可;(2)根据角的度数判断出AB=DB,利用三角函数求出DC即可.解:(1)如图②,(2)如图②,∵∠DBC=62°,∠DAB=31°,∴∠BDA=∠DAB=31°,∴AB=DB,∵AB=140米,∴DB=140米,在Rt△DCB中,∠C=90°,sin∠DBC=,∴DC=140•sin62°≈124米.答:山高124米.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,将实际问题转化到三角形中是解题的关键.21.(12分)某完全中学(含初、高中)篮球队12名队员的年龄情况如下:(1)这个队队员年龄的众数是15,中位数是16,平均数是16.(2)若把这个队队员年龄的分布情况绘成扇形统计图,请求出年龄为15岁的队员人数所对应的圆心角的度数.(3)为了检查队员们的训练水平,教练要从年龄为15岁的4名队员(用A、B、C、D表示)中随机抽取2人,请用列表法或树形图法求出恰好选中B、D的概率.【分析】(1)众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解、利用求平均数公式计算即可;(2)年龄为15岁所占的百分比,乘以360即可得到结果.(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中B、D两人进行比赛的情况,再利用概率公式即可求得答案.解:(1)15岁出现了4次,次数最多,因而众数是:15;12个数,处于中间位置的都是16,因而中位数是:16.这个队队员的平均年龄=×(14×1+15×4+16×3+17×2+18×2)=16,故答案为15、16、16;(2)年龄为15岁的队员人数所对应的圆心角的度数360°×=120°;(3)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴恰好选中B、D的概率为=.【点评】此题主要考查了扇形统计图与条形统计图的综合应用以及利用列表法求概率等知识,利用条形统计图与扇形统计图得出正确信息是解题关键.22.(12分)如图,四边形ABCD是正方形,点A的坐标是(0,1),点B的坐标是(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过A、C两点,两函数图象的另一个交点E的坐标是(m,3).(1)分别求出一次函数与反比例函数的解析式.(2)求出m的值,并根据图象回答:当x为何值时,一次函数的值大于反比例函数的值.(3)若点P是反比例函数图象上的一点,△AOP的面积恰好等于正方形ABCD的面积,求点P坐标.【分析】(1)先根据A点和B点坐标得到正方形的边长,则BC=3,于是可得到C(3,﹣2),然后利用待定系数法求反比例函数与一次函数的解析式;(2)将点E的坐标(m,3)代入反比例函数的解析式即可求出m的值,根据图象找出一次函数落在反比例函数图象上方的部分对应的自变量的取值范围即可;(3)设P(t,﹣),根据三角形面积公式和正方形面积公式得到×1×|t|=3×3,然后解绝对值方程求出t即可得到P点坐标.解:(1)∵点A的坐标为(0,1),点B的坐标为(0,﹣2),∴AB=1+2=3,∵四边形ABCD为正方形,∴BC=AB=3,∴C(3,﹣2),把C(3,﹣2)代入y=,得k=3×(﹣2)=﹣6,∴反比例函数解析式为y=﹣;把C(3,﹣2),A(0,1)代入y=ax+b,得,解得,∴一次函数解析式为y=﹣x+1;(2)∵反比例函数y=﹣的图象过点E(m,3),∴m=﹣2,∴E点的坐标为(﹣2,3);由图象可知,当x<﹣2或0<x<3时,一次函数落在反比例函数图象上方,即当x<﹣2或0<x<3时,一次函数的值大于反比例函数的值;(3)设P(t,﹣),∵△AOP的面积恰好等于正方形ABCD的面积,∴×1×|t|=3×3,解得t=18或t=﹣18,∴P点坐标为(18,﹣)或(﹣18,).【点评】本题考查了正方形的性质,反比例函数与一次函数的交点问题,运用待定系数法求反比例函数以及一次函数的解析式,三角形的面积.运用数形结合思想以及方程思想是解题的关键.23.(12分)如图1,AB是⊙O的直径,AC是⊙O的切线.(1)连接BC,BC交⊙O于点E,连接AE.①若D为AC的中点,连接DE,证明:DE是⊙O的切线.②若BE=3EC,求tan∠ABC.(2)如图2,CF是圆O的另一条切线,F为切点,OC与圆O交于点G,求证:点G是三角形ACF的内心.【分析】(2)①根据切线的性质和圆周角定理得出∠CAB=∠AEB=∠AEC=90°,根据等腰三角形的性质得出∠DEA=∠DAE,∠OEA=∠EAO,求出∠DEO=∠D AO=90°,根据切线的判定得出即可.②由∠EAC+∠EAB=90°,∠EBA+∠EAB=90°,证得∠EAC=∠EBA,可证得△EAC∽△EBA,根据相似三角形的性质可求出EA=,根据正切函数的定义即可求得tan∠ABC 的值.(2)过A作∠CAF的角平分线分别交OC、CF于G、D两点,过F作∠CF A的角平分线分别交OC、CA于G、E两点连接OF,OC于AF交于点M,证明△CAM和△CFM全等,从而得到CO为∠ACF的角平分线,所以三条角平分线交于一点,即证点G是三角形ACF 的内心.证明:(1)①连接OE,如图1所示∵AC是⊙O的切线,AB是⊙O的直径,∴∠CAB=∠AEB=∠AEC=90°,又∵D为AC中点,∴DE=CD=DA,∴∠DEA=∠DAE,∵OE=OA,∴∠OEA=∠EAO,∴∠DEA+∠OEA=∠DAE+∠EAO即∠DEO=∠DAO=90°,∵点E在⊙O上,∴DE与⊙O相切.②在直角△EAC与直角△EBA中,∵∠EAC+∠EAB=90°,∠EBA+∠EAB=90°,∴∠EAC=∠EBA,∴△EAC∽△EBA,∴=,EA2=EB•EC,设EC=1,则EB=3,EA2=EB•EC=3,EA=,∴tan∠ABC==.(2)过A作∠CAF的角平分线分别交OC、CF于G、D两点,过F作∠CF A的角平分线分别交OC、CA于G、E两点连接OF,OC与AF交于点M,如图2,由垂径定理可知:AF⊥OC,AM=MF在△CAM和△CFM中,∴△CAM≌△CFM∴∠ACO=∠FCO∴CO为∠ACF的角平分线,又∵CO交AD、EF于G∴点G是三角形ACF的内心.【点评】本题主要考查了切线的性质和判定定理,全等三角形的判定和性质,正切三角函数的定义,三角形的内心等知识,综合能力强,熟练掌握切线的性质和判定是解决问题的关键.24.(14分)已知抛物线y=ax2+bx+c经过A(0,2),B(2,﹣2)两点.(1)用含a的式子表示b.(2)当a=﹣时,y=ax2+bc+c的函数值为正整数,求满足条件的x值.(3)若a>0,线段AB下方的抛物线上有一点E,求证:不管a取何值,当△EAB的面积最大时,E点的横坐标为定值.【分析】(1)利用待定系数法建立方程组求解即可得出结论;(2)先求出抛物线解析式,进而根据函数值为正数求出x的范围,再根据整数即可得出结论;(3)根据三角形的面积的计算方法建立函数关系式,即可得出结论.解:(1)∵抛物线y=ax2+bx+c经过A(0,2),B(2,﹣2),∴,∴,即:b=﹣2a﹣2;(2)由(1)知,c=2,b=﹣2a﹣2,∵a=﹣,∴b=﹣1,∴抛物线解析式为y=﹣x2﹣x+2=﹣(x+1)2+,∵y=ax2+bc+c的函数值为正数,∴﹣(x+1)2+>0,∴(x+1)2﹣5<0,∴﹣﹣1<x<﹣1,∵y=ax2+bc+c的函数值为整数,即﹣(x+1)2+为整数,∴(x+1)2是奇数,∴x为偶数,∴x=﹣2或x=0;(3)由(1)知,c=2,b=﹣2a﹣2,∴抛物线的解析式为y=ax2﹣(2a+2)x+2,∵A(0,2),B(2,﹣2),∴直线AB的解析式为y=﹣2x+2,∵点E在线段AB下方的抛物线上,设点E(m,am2﹣(2a+2)m+2),过点E作y轴的平行线,交AB于F,∴F(m,﹣2m﹣2),∴EF=﹣2m﹣2﹣[am2﹣(2a+2)m+2]=﹣a(m﹣1)2+a,∴S=EF×|x B﹣x A|=EF=﹣a(m﹣1)2+a,△EAB∵a>0,∴﹣a<0,∴m=1时,△EAB面积最大,即:不管a取大于0的何值,当△EAB的面积最大时,E点的横坐标为定值,定值为1.【点评】此题是二次函数综合题,主要考查了待定系数法,解不等式的方法,三角形的面积的计算方法,函数极值的确定方法,表示出EF是解本题的关键.25.(14分)如图1,在矩形ABCD中,AB=4,AD=6,M是AD的中点,点E是线段AB 上一动点,连接EM并延长交直线CD于点F,过M作MN⊥EF,交射线BC于点N,连接NF,点P是线段NF的中点.(1)连接图1中的PM,PC,求证:PM=PC.(2)如图2,当点N与C重合时,求AE的长.(3)当点E从点A运动到点B时,求点P经过的路径长.【分析】(1)如图1中,连接PM、PC.利用直角三角形斜边中线定理证明即可;(2)如图2中,连接EC,设AE=x.首先证明AE=DF,在Rt△ECM中,利用勾股定理构建方程即可解决问题;(3)如图3中,点P的运动轨迹是线段PP1.作PH⊥AD于H.利用勾股定理求出PP1即可解决问题;解:(1)如图1中,连接PM、PC.∵四边形ABCD是矩形,∴∠FCN=90°,∵PF=FN,∴PC=FN,∵NM⊥EF,∴∠FMN=90°,∵FP=FN,∴PM=FN,∴PM=PC.(2)如图2中,连接EC,设AE=x.∵AB∥DF,∴∠AEM=∠F,∵AM=MD,∠AMD=∠DMF,∴△AME≌△DMF,∴AE=DF=x,EM=FM,∵NM⊥EF,∴EC=CF=4+x,在Rt△EBC中,∵EB2+BC2=EC2,∴(4﹣x)2+62=(x+4)2,∴x=.∴AE=.(3)如图3中,点P的运动轨迹是线段PP1.作PH⊥AD于H.当点E与A重合时,点P是矩形CDMN的中点,易知PH=2,DH=,当点E与B重合时,点P1在AD的延长线上,设BN1=F1N1=m,在Rt△CF1N1中,m2=(m﹣6)2+82,∴m=,∴CN1=﹣6=,∴DP1=CN1=,∴HP1=+=,在Rt△HPP1中,PP1==,∴点P的运动路径为.【点评】本题考查四边形综合题、全等三角形的判定和性质、线段的垂直平分线的性质、直角三角形的斜边中线定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考压轴题.。
2018届广州市高三年级调研测试(理科数学)答案
2018届广州市高三年级调研测试 理科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题不给中间分.二.填空题13.10 14.4 15.4 16.11π 三、解答题17.(1)解法1:由已知,得cos cos 2cos a B b A c A +=.(本题只写了一个正弦定理也1分)由正弦定理,得sin cos sin cos 2sin cos A B B A C A +=,…………………………………………1分 即sin()2sin cos A B C A +=.(注跳步不扣分)…………………………………………2分因为sin()sin()sin A B C C π+=-=,…………………………………………………………………3分 所以sin 2sin cos C C A =.………………………………………………………………………………4分因为sin 0C ≠,所以1cos 2A =.(注sin 0C ≠不写不扣分)………………………………………5分 因为0A <<π,所以3A π=.(注范围不写不扣分)…………………………………6分 解法2:由已知根据余弦定理,得()222222222a c b b c a a c b ac bc+-+-⨯=-⨯.……………………1分 即222b c a bc +-=.(注写余弦定理给1分)(但写对两个定理只给 1分)……………………3分所以2221cos 22b c a A bc +-==.…………………………………………………………………………5分因为0A <<π, 所以3A π=.…………………………………………………………………………6分(2)解法1:由余弦定理2222cos a b c bc A =+-,得224bc b c +=+,………………………………………………………………………………………7分 即2()34b c bc +=+.……………………………………………………………………………………8分因为22b c bc +⎛⎫≤ ⎪⎝⎭,………………………………………………………………………………………9分所以223()()44b c b c +≤++. 即4b c +≤(当且仅当2b c == 时等号成立).(注没有取等条件不扣分) ………………………………………………………11分 所以6a b c ++≤.故△ABC 周长a b c ++的最大值为6.……………………………………12分解法2:因为2sin sin sin a b c R A B C ===,且2a =,3A π=,所以b B =,c C =.…………………………………………………………………8分所以)2sin sin 3a b c B C ++=++22sin sin 3B B ⎡π⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦………………………9分24sin 6B π⎛⎫=++ ⎪⎝⎭.……………………………………………………………………10分因为203B π<<,所以当3B π=时,a b c ++取得最大值6.故△ABC 周长a b c ++的最大值为6.………………………………………………………………12分 18.(1)证明:连接 BD ,交 AC 于点O ,设PC 中点为F ,连接OF ,EF .因为O ,F 分别为AC ,PC 的中点,所以OF PA ,且12OF PA =,因为DE PA ,且12DE PA =,所以OF DE ,且OF DE =.………………………………1分 所以四边形O F E D 为平行四边形,所以O D E F ,即BD EF . ………………………………2分因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA BD ⊥(垂直占1分). 因为ABCD 是菱形,所以BD AC ⊥(这个垂直占1分).因为PA AC A = ,所以BD ⊥平面PAC (没有写相交不扣分).……………………4分因为BD EF ,所以EF ⊥平面PAC .………………………………………………………………5分 因为FE ⊂平面PCE ,所以平面PAC ⊥平面PCE . ………………………………………………6分(2)解法1:因为直线 PC 与平面ABCD 所成角为o45,所以45=∠PCA ,所以2AC PA ==.………………………………………………………………7分 所以AC AB =,故△ABC 为等边三角形.设BC 的中点为M ,连接AM ,则AM BC ⊥. 以A 为原点,AM ,AD ,AP 分别为x y z ,,轴,建立空间直角坐标系xyz A -(如图).(画出或说出建系都给1分)则()20,0,P ,()01,3,C ,()12,0,E ,()02,0,D , ()21,3-=,PC ,()11,3,-=CE ,()10,0,=DE .(注:不写向量不扣分)…………9分设平面PCE 的法向量为{}111,,x y z n =,则0,0,PC CE ⎧=⎪⎨=⎪⎩n n即11111120,0.y z y z +-=++=⎪⎩ 11,y =令则11 2.x z ⎧=⎪⎨=⎪⎩所以)=n .……………………………………………………………10分设平面CDE 的法向量为()222,,x y z =m ,则0,0,DE CE ⎧⋅=⎪⎨⋅=⎪⎩m m即22220,0.z y z =⎧⎪⎨++=⎪⎩令21,x =则220.y z ⎧=⎪⎨=⎪⎩所以()=m .…………11分 设二面角D CE P --的大小为θ,由于θ为钝角,所以cos cos ,θ⋅=-=-==⋅n m n m n m. 所以二面角D CE P --的余弦值为46-.(注结论错了扣1分)…………………………12分解法2:因为直线PC 与平面ABCD 所成角为45,且⊥PA 平面ABCD ,所以45PCA ∠=,所以2==AC PA .………………………………………………………………7分 因为2AB BC ==,所以∆ABC 为等边三角形. 因为⊥PA 平面ABCD ,由(1)知//PA OF , 所以⊥OF 平面ABCD .因为⊂OB 平面ABCD ,⊂OC 平面ABCD ,所以⊥OF OB 且⊥OF OC . 在菱形ABCD 中,⊥OB OC .以点O 为原点,OB ,OC ,OF 分别为x ,y ,z 轴,建立空间直角坐标系-O xyz (如图).则(0,0,0),(0,1,2),(0,1,0),((-O P C D E ,则(0,2,2),(1,1),(1,0)=-=-=- CP CE CD .……………………………………………9分 设平面PCE 的法向量为111(,,)x y z =n ,则0,0,CP CE ⎧⋅=⎪⎨⋅=⎪⎩ n n即11111220,0.y z y z -+=⎧⎪⎨-+=⎪⎩ 令11=y ,则111,1.y z =⎧⎨=⎩,则法向量()0,1,1=n .……………10分设平面CDE 的法向量为222(,,)x y z =m ,则0,0,CE CD ⎧⋅=⎪⎨⋅=⎪⎩ m m即222220,0.y z y ⎧-+=⎪⎨-=⎪⎩ 令21=x ,则220.y z ⎧=⎪⎨=⎪⎩则法向量()1,=m .………………………………………………11分设二面角--P CE D 的大小为θ,由于θ为钝角,则cos cos ,θ⋅=-=-==⋅n m n m n m. 所以二面角--P CE D的余弦值为…………………………………………………………12分z OyxPACBDE19.解:(1)由已知数据可得24568344455,455x y ++++++++====.(只算对一个也给1分)…………………1分因为51()()(3)(1)000316iii x x y y =--=-⨯-++++⨯=∑,………………………………………2分 ,52310)1()3()(22222512=+++-+-=-∑=i ix x ………………………………………………3分==4分所以相关系数()()0.95nii xx y y r --===≈∑.(算错扣1分,但没算成小数不扣分只写根号的就行)………………5分因为0.75r >,所以可用线性回归模型拟合y 与x 的关系. (只要说出0.75r >就不扣分)…………6分 (2)记商家周总利润为Y 元,由条件可知至少需安装1台,最多安装3台光照控制仪.①安装1台光照控制仪可获得周总利润3000元.………………………………………………………7分 ②安装2台光照控制仪的情形:当X >70时,只有1台光照控制仪运行,此时周总利润Y =3000-1000=2000元, 当30<X ≤70时,2台光照控制仪都运行,此时周总利润Y =2×3000=6000元,(注:对1个只给1分) 故Y 的分布列为所以20000.26000EY =⨯+⨯9分③安装3台光照控制仪的情形:当X >70时,只有1台光照控制仪运行,此时周总利润Y =1×3000-2×1000=1000元, 当50≤X ≤70时,有2台光照控制仪运行,此时周总利润Y =2×3000-1×1000=5000元, 当30<X ≤70时,3台光照控制仪都运行,周总利润Y =3×3000=9000元, 故Y 的分布列为所以10000.25000EY =⨯+⨯11或12分综上可知,为使商家周总利润的均值达到最大应该安装2台光照控制仪.(没有这句式话不扣分)…12分20.解:(1)因为椭圆C 的离心率为12,所以12c a =,即2a c =.……………………………………1分又222+a b c =,得22=3b c ,即2234b a =,所以椭圆C 的方程为2222134y x a a +=.把点⎛ ⎝⎭代人C 中,解得24a =.相当于 a,b 各1分………………………………2分 所以椭圆C 的方程为22143y x +=.(相当于 a,b 各1分…………………3分 (2)解法1:设直线l 的斜率为k ,则直线l 的方程为+2y kx =,由222,1,34y kx x y ⎧=++=⎪⎨⎪⎩得()2234120k x kx ++=.(只设了方程也给1分)………………………4分设(),A A A x y , (),B B B x y ,则有0A x =,21234B kx k -=+,…………………………………………5分 所以226834B k y k -+=+.所以2221268,3434k k B k k ⎛⎫--+ ⎪++⎝⎭(横,纵坐标各1 分)………………………………………6分因为MO MA =,所以M 在线段OA 的中垂线上,所以1M y =,因为2M M y kx =+,所以1M x k =-,即1,1M k ⎛⎫- ⎪⎝⎭.………………………………7分 设(,0)H H x ,又直线HM 垂直l ,所以1MHk k =-,即111H k x k=---.…………………………8分所以1H x k k =-,即1,0H k k ⎛⎫- ⎪⎝⎭.……………………………………………………………………9分又()10,1F ,所以21221249,3434k k F B k k ⎛⎫--= ⎪++⎝⎭,11,1F H k k ⎛⎫=-- ⎪⎝⎭ . 因为110F B F H ⋅= ,所以2221249034341k k k k k k --⎛⎫⋅-= ⎪+⎝⎭-+,………………………………………10分 解得283k =.……………………………………………………………………………………………11分 所以直线l的方程为2y x =+.………………………………………………………………12分解法2:设直线l 的斜率为k ,则直线l 方程+2y kx =,由222,1,34y kx x y ⎧=++=⎪⎨⎪⎩得()2234120k x kx ++=,…………………………………………………………4分设(),A A A x y ,(),B B B x y ,则有0A x =,21234B kx k -=+.…………………………………………5分 所以226834B k y k -+=+.所以21221249,3434k k F B k k ⎛⎫--= ⎪++⎝⎭,()1,1H FH x =-.…………………………………………………6分 因为110F B F H ⋅= ,所以21234H kx k -⋅+2249034k k --=+,解得29412H k x k -=.………………………7分 因为MO MA = ,所以()22222M M M M x y x y +=+-,解得1M y =.………………………………8分所以直线M H 的方程为219412k y x k k ⎛⎫-=-- ⎪⎝⎭.………………………………………………………9分联立22,194,12y kx k y x k k =+⎛⎫-=--⎧ ⎪⎝⎭⎪⎨⎪⎩解得()22920121M k y k +=+.……………………………………………10分 由()229201121M k y k +==+,解得283k =.………………………………………………………………11分 所以直线l的方程为23y x =±+.………………………………………………………………12分21.解:(1)函数()f x 的定义域为()0,+∞.当2b =时,()2ln f x a x x =+,所以()222a x af x x x x+'=+=.(定义域和求导写一个就给这1分)……………………1分 ① 当0a >时,()0f x '>,所以()f x 在()0,+∞上单调递增,…………………………………2分取10e ax -=,则211e 1e 0a a f --⎛⎫⎛⎫=-+< ⎪ ⎪⎝⎭⎝⎭,(没取点,画图说明有交点都不扣分)…………3分(或:因为00x <<01ex <时,所以()200001ln ln ln 0e f x a x x a x a a a =+<+<+=.)因为()11f =,所以()()010f x f < ,此时函数()f x 有一个零点.………………………………4分②当0a <时,令()0f x '=,解得x =当0x <<时,()0f x '<,所以()f x 在⎛ ⎝上单调递减;当x >()0f x '>,所以()f x 在⎫+∞⎪⎪⎭上单调递增.要使函数()f x 有一个零点,则02af a ==即2e a =-.………………………5分综上所述,若函数()f x 恰有一个零点,则2e a =-或0a >.………………………………………6分(2)因为对任意121,,e ex x ⎡⎤∈⎢⎥⎣⎦,有()()12e 2f x f x -≤-成立,因为()()()()12max min f x f x f x f x -≤-⎡⎤⎡⎤⎣⎦⎣⎦,所以()()max min e 2f x f x -≤-⎡⎤⎡⎤⎣⎦⎣⎦.……………7分因为0a b +=,则a b =-.所以()ln b f x b x x =-+,所以()()11b b b x b f x bx x x---'=+=. 当01x <<时,()0f x '<,当1x >时,()0f x '>,所以函数()f x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增,()()min 11f x f ==⎡⎤⎣⎦,………………8分 因为1e eb f b -⎛⎫=+ ⎪⎝⎭与()e e bf b =-+,所以()()max 1max ,e e f x f f ⎧⎫⎛⎫=⎡⎤⎨⎬ ⎪⎣⎦⎝⎭⎩⎭.(没有证明 只要说出()1,e e f f ⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭两个谁大就可以) ……………………………………………………9分设()()1e e e 2e b b g b f f b -⎛⎫=-=-- ⎪⎝⎭()0b >, 则()e e220bbg b -'=+->=.所以()g b 在()0,+∞上单调递增,故()()00g b g >=,所以()1e e f f ⎛⎫> ⎪⎝⎭.从而()max f x =⎡⎤⎣⎦()e e bf b =-+.………………………………………………………………………10分所以e 1e 2b b -+-≤-即e e 10bb --+≤,设()=e e 1b b b ϕ--+()0b >,则()=e 1bb ϕ'-.当0b >时,()0b ϕ'>,所以()b ϕ在()0,+∞上单调递增.又()10ϕ=,所以e e 10bb --+≤,即为()()1b ϕϕ≤,解得1b ≤.……………………………11分因为0b >,所以b 的取值范围为(]0,1.………………………………………………………………12分22.解:(1)因为曲线1C 的参数方程为cos 2sin x y αα=⎧⎨=⎩(α为参数),因为2.x x y y '=⎧⎨'=⎩,,则曲线2C 的参数方程2cos 2sin .x y αα'=⎧⎨'=⎩,.(代入对一个给1分)………………2分所以2C 的普通方程为224x y ''+=.……………………………………………………………………3分 所以2C 为圆心在原点,半径为2的圆.(只要说出是圆就不扣分)……………………………4分 所以2C 的极坐标方程为24ρ=,即2ρ=.…………………………………………………………5分 (2)解法1:直线l 的普通方程为100x y --=.…………………………………………………………6分曲线2C 上的点M 到直线l的距离+)10|d απ-==8分 当cos +=14απ⎛⎫ ⎪⎝⎭即()=24k k αππ-∈Z 时,d2.……………9分 当cos +=14απ⎛⎫- ⎪⎝⎭即()3=24k k απ+π∈Z 时,d+10分 解法2:直线l 的普通方程为100x y --=.…………………………………………………………6分因为圆2C 的半径为2,且圆心到直线l 的距离252|1000|=--=d ,…………………………7分因为225>,所以圆2C 与直线l 相离.………………………………………………………………8分所以圆2C 上的点M 到直线l 的距离最大值为225+=+r d ,最小值为225-=-r d .…10分23.解:(1)当1=a时,()|1|=+f x x .…………………………………………………………………1分①当1x ≤-时,原不等式可化为122x x --≤--,解得1≤-x .…………………………………2分②当112x -<<-时,原不等式可化为122+≤--x x ,解得1≤-x ,此时原不等式无解.……3分③当12x ≥-时,原不等式可化为12+≤x x ,解得1≥x .…………………………………………4分综上可知,原不等式的解集为{1x x ≤-或}1≥x .…………………………………………………5分(2)解法1:①当3a≤时,()3,3,23,3,3,.a x g x x a x a a x a -≤-⎧⎪=----<<-⎨⎪-≥-⎩……………………………………6分所以函数()g x 的值域[]3,3A a a =--,因为[2,1]-⊆A ,所以3231a a -≤-⎧⎨-≥⎩,,解得1a ≤.……7分 ②当3a>时,()3,,23,3,3, 3.a x a g x x a a x a x -≤-⎧⎪=++-<<-⎨⎪-≥-⎩…………………………………………………8分所以函数()g x 的值域[]3,3A a a =--,因为[2,1]-⊆A ,所以3231a a -≤-⎧⎨-≥⎩,,解得5a ≥.………9分综上可知,a 的取值范围是(][),15,-∞+∞ .………………………………………………………10分解法2:因为|+||+3|x a x -≤()+(+3)3x a x a -=-,……………………………………………7分所以()g x =()|+3||+||+3|-=-∈---f xx x a x a a .所以函数()g x 的值域[|3|,|A a a =---.……………8分因为[2,1]-⊆A ,所以|3|2|3|1a a --≤-⎧⎨-≥⎩,,解得1a ≤或5a ≥.所以a 的取值范围是(][),15,-∞+∞ .………10分。
【省级联考】2018年广东省高考数学二模试卷(理科)
2018年广东省高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知x,y∈R,集合A={2,log3x},集合B={x,y},若A∩B={0},则x+y=()A.B.0 C.1 D.32.若复数z1=1+i,z2=1﹣i,则下列结论错误的是()A.z1•z2是实数 B.是纯虚数C.|z|=2|z2|2D.z=4i3.已知=(﹣1,3),=(m,m﹣4),=(2m,3),若,则()A.﹣7 B.﹣2 C.5 D.84.如图,是以正方形的边AD为直径的半圆,向正方形内随机投入一点,则该点落在阴影区域内的概率为()A.B.C.D.5.已知等比数列{a n}的首项为1,公比q≠﹣1,且a5+a4=3(a3+a2),则=()A.﹣9 B.9 C.﹣81 D.816.已知双曲线C:(a>0,b>0)的一个焦点坐标为(4,0),且双曲线的两条渐近线互相垂直,则该双曲线的方程为()A.=1 B.C.=1 D.=1或=17.已知某几何体的三视图如图所示,则该几何体的表面积为()A.8π+6 B.6π+6 C.8π+12 D.6π+128.设x,y满足约束条件,则z=2x+y的取值范围是()A.[﹣2,2]B.[﹣4,4]C.[0,4]D.[0,2]9.在印度有一个古老的传说:舍罕王打算奖赏国际象棋的发明人﹣﹣宰相宰相西萨•班•达依尔.国王问他想要什么,他对国王说:“陛下,请您在这张棋盘的第1个小格里,赏给我1粒麦子,在第2个小格里给2粒,第3小格给4粒,以后每一小格都比前一小格加一倍.请您把这样摆满棋盘上所有的64格的麦粒,都赏给您的仆人吧!”国王觉得这要求太容易满足了,就命令给他这些麦粒.当人们把一袋一袋的麦子搬来开始计数时,国王才发现:就是把全印度甚至全世界的麦粒全拿来,也满足不了那位宰相的要求.那么,宰相要求得到的麦粒到底有多少粒?下面是四位同学为了计算上面这个问题而设计的程序框图,其中正确的是()A.B.C.D.10.已知数列{a n}前n项和为S n,a1=15,且满足(2n﹣5)a n+1=(2n﹣3)a n+4n2﹣16n+15,已知n,m∈N+,n>m,则S n﹣S m的最小值为()A.B.C.﹣14 D.﹣2811.已知菱形ABCD的边长为2,∠BAD=60°,沿对角线BD将菱形ABCD折起,使得二面角A﹣BD﹣C的余弦值为,则该四面体ABCD外接球的体积为()A.B.8πC.D.36π12.已知函数f(x)=e x﹣ln(x+3),则下面对函数f(x)的描述正确的是()A.∀x∈(﹣3,+∞),f(x)≥B.∀x∈(﹣3,+∞),f(x)C.∃x0∈(﹣3,+∞),f(x0)=﹣1 D.f(x)min∈(0,1)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.将函数f(x)=2sin(2x+φ)(φ<0)的图象向左平移个单位长度,得到偶函数g(x)的图象,则φ的最大值是.14.已知a>0,b>0,(ax+)6展开式的常数项为,则a+2b的最小值为.15.已知函数f(x)=log2(4x+1)+mx,当m>0时,关于x的不等式f(log3x)<1的解集为.16.设过抛物线y2=2px(p>0)上任意一点P(异于原点O)的直线与抛物线y2=8px(p>0)交于A,B两点,直线OP与抛物线y2=8px(p>0)的另一个交点为Q ,则=三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知B=60°,c=8.(1)若点M,N是线段BC的两个三等分点,BM=BC ,=2,求AM的值;(2)若b=12,求△ABC的面积.18.如图,在五面体ABCDEF中,四边形EDCF是正方形,AD=DE,∠ADE=90°,∠ADC=∠DCB=120°.(1)证明:平面ABCD⊥平面EDCF;(2)求直线AF与平面BDF所成角的最正弦值.19.经销商第一年购买某工厂商品的单价为a(单位:元),在下一年购买时,购买单价与其上年度销售额(单位:万元)相联系,销售额越多,得到的优惠力度越大,具体情况如表:为了研究该商品购买单价的情况,为此调查并整理了50个经销商一年的销售额,得到下面的柱状图.已知某经销商下一年购买该商品的单价为X(单位:元),且以经销商在各段销售额的频率作为概率.(1)求X的平均估计值.(2)该工厂针对此次的调查制定了如下奖励方案:经销商购买单价不高于平均估计单价的获得两次抽奖活动,高于平均估计单价的获得一次抽奖活动.每次获奖的金额和对应的概率为记Y(单位:元)表示某经销商参加这次活动获得的奖金,求Y的分布列及数学期望..20.已知椭圆C1:(b>0)的左、右焦点分别为F1,F2,点F2也为抛物线C2:y2=8x的焦点.(1)若M,N为椭圆C1上两点,且线段MN的中点为(1,1),求直线MN的斜率;(2)若过椭圆C1的右焦点F2作两条互相垂直的直线分别交椭圆于A,B和C,D,设线段AB,CD的长分别为m,n,证明是定值.21.已知f′(x)为函数f(x)的导函数,f(x)=e2x+2f(0)e x﹣f′(0)x.(1)求f(x)的单调区间;(2)当x>0时,af(x)<e x﹣x恒成立,求a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,直线l的参数方程为(t为参数),圆C的标准方程为(x﹣3)2+(y﹣3)2=4.以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(1)求直线l和圆C的极坐标方程;(2)若射线θ=与l的交点为M,与圆C的交点为A,B,且点M恰好为线段AB的中点,求a的值.[选修4-5:不等式选讲]23.已知f(x)=|mx+3|﹣|2x+n|.(1)当m=2,n=﹣1时,求不等式f(x)<2的解集;(2)当m=1,n<0时,f(x)的图象与x轴围成的三角形面积大于24,求n的取值范围.2018年广东省高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知x,y∈R,集合A={2,log3x},集合B={x,y},若A∩B={0},则x+y=()A.B.0 C.1 D.3【分析】根据A∩B={0}即可得出0∈A,0∈B,这样即可求出x,y的值,从而求出x+y的值.【解答】解:A∩B={0};∴0∈A,0∈B;∴log3x=0;∴x=1,y=0;∴x+y=1.故选:C.【点评】考查列举法表示集合的概念,交集的概念及运算,以及元素与集合的关系.2.若复数z1=1+i,z2=1﹣i,则下列结论错误的是()A.z1•z2是实数 B.是纯虚数C.|z|=2|z2|2D.z=4i【分析】直接利用复数代数形式的乘除运算及复数模的求法逐一判断得答案.【解答】解:∵z1=1+i,z2=1﹣i,∴z1•z2=1﹣i2=2,故A正确;,故B正确;,,故C正确;,故D错误.故选:D.【点评】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.3.已知=(﹣1,3),=(m,m﹣4),=(2m,3),若,则()A.﹣7 B.﹣2 C.5 D.8【分析】根据平面向量的坐标运算与共线定理、数量积运算法则,计算即可.【解答】解:=(﹣1,3),=(m,m﹣4),=(2m,3),若,则﹣1×(m﹣4)﹣3×m=0;解得m=1;∴=(1,﹣3)=(2,3);=1×2+(﹣3)×3=﹣7.故选:A.【点评】本题考查了平面向量的坐标运算与共线定理、数量积运算问题,是基础题.4.如图,是以正方形的边AD为直径的半圆,向正方形内随机投入一点,则该点落在阴影区域内的概率为()A.B.C.D.【分析】根据图象的关系,求出阴影部分的面积,结合几何概型的概率公式进行求解即可.【解答】解:连结AE,结合图象可知弓形①与弓形②面积相等,将弓形①移动到②的位置,则阴影部分将构成一个直角三角形,则阴影部分的面积为正方形面积的,则向正方形内随机投入一点,则该点落在阴影区域内的概率P=,故选:D.【点评】本题主要考查几何概型的概率公式的应用,求出阴影部分的面积是解决本题的关键.5.已知等比数列{a n}的首项为1,公比q≠﹣1,且a5+a4=3(a3+a2),则=()A.﹣9 B.9 C.﹣81 D.81【分析】等比数列{a n}的首项为1,公比q≠﹣1,且a5+a4=3(a3+a2),可得=3(a2q+a2),化为:q2=3.由等比数列的性质可得:a 1a2……a9=q1+2+……+8=q4×9,代入=q4.即可得出.【解答】解:等比数列{a n}的首项为1,公比q≠﹣1,且a5+a4=3(a3+a2),∴=3(a2q+a2),化为:q2=3.由等比数列的性质可得:a1a2……a9=q1+2+……+8==q4×9则==q4=9.故选:B.【点评】本题考查了等差数列与等比数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于中档题.6.已知双曲线C:(a>0,b>0)的一个焦点坐标为(4,0),且双曲线的两条渐近线互相垂直,则该双曲线的方程为()A.=1 B.C.=1 D.=1或=1【分析】由题意可得c=4,由双曲线的渐近线方程和两直线垂直的条件:斜率之积为﹣1,可得a=b,解方程可得a,b的值,即可得到所求双曲线的方程.【解答】解:双曲线C:(a>0,b>0)的一个焦点坐标为(4,0),可得c=4,即有a2+b2=c2=16,双曲线的两条渐近线互相垂直,即直线y=x和直线y=﹣x垂直,可得a=b,解方程可得a=b=2,则双曲线的方程为﹣=1.故选:A.【点评】本题考查双曲线的方程和性质,主要是渐近线方程的运用,以及两直线垂直的条件:斜率之积为﹣1,考查方程思想和运算能力,属于基础题.7.已知某几何体的三视图如图所示,则该几何体的表面积为()A.8π+6 B.6π+6 C.8π+12 D.6π+12【分析】由题意判断几何体的形状,然后求解几何体的表面积即可.【解答】解:几何体是组合体,上部是半圆柱,下部是半球,圆柱的底面半径与球的半径相同为1,圆柱的高为3,几何体的表面积为:2π×12+12×π+2×3+3π=6+6π.故选:B.【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.8.设x,y满足约束条件,则z=2x+y的取值范围是()A.[﹣2,2]B.[﹣4,4]C.[0,4]D.[0,2]【分析】作出约束条件所对应的可行域,变形目标函数,平移直线y=2x 可得结论.【解答】解:作出约束条件所对应的可行域(如图阴影)变形目标函数可得y=﹣2x+z,平移直线y=﹣2x可知当直线经过点A(﹣2,0)时,目标函数取最小值﹣4当直线经过点B(2,0)时,目标函数取最大值4,故z=﹣2x+y的取值范围为[﹣4,4].故选:B.【点评】本题考查简单线性规划,准确作图是解决问题的关键,属中档题.9.在印度有一个古老的传说:舍罕王打算奖赏国际象棋的发明人﹣﹣宰相宰相西萨•班•达依尔.国王问他想要什么,他对国王说:“陛下,请您在这张棋盘的第1个小格里,赏给我1粒麦子,在第2个小格里给2粒,第3小格给4粒,以后每一小格都比前一小格加一倍.请您把这样摆满棋盘上所有的64格的麦粒,都赏给您的仆人吧!”国王觉得这要求太容易满足了,就命令给他这些麦粒.当人们把一袋一袋的麦子搬来开始计数时,国王才发现:就是把全印度甚至全世界的麦粒全拿来,也满足不了那位宰相的要求.那么,宰相要求得到的麦粒到底有多少粒?下面是四位同学为了计算上面这个问题而设计的程序框图,其中正确的是()A.B.C.D.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.【解答】解:由已知中程序的功能,可得循环变量的初值为1,终值为64,由于四个答案均为直到条件不满足时退出循环,故循环条件应为n≤64,而每次累加量构造一个以1为首项,以2为公式的等比数列,由S n=2n﹣1得:S n+1=2n+1﹣1=2S n+1,故循环体内S=1+2S,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.已知数列{a n}前n项和为S n,a1=15,且满足(2n﹣5)a n+1=(2n﹣3)a n+4n2﹣16n+15,已知n,m∈N+,n>m,则S n﹣S m的最小值为()A.B.C.﹣14 D.﹣28【分析】由等式变形,可得{}为等差数列,公差为1,首项为﹣5,运用等差数列的通项公式可得a n,再由自然数和的公式、平方和公式,可得S n,讨论n 的变化,S n的变化,僵尸可得最小值.【解答】解:∵(2n﹣5)a n=(2n﹣3)a n+4n2﹣16n+15,+1∴﹣=1,=﹣5.可得数列{}为等差数列,公差为1,首项为﹣5.∴=﹣5+n﹣1=n﹣6,∴a n=(2n﹣5)(n﹣6)=2n2﹣17n+30.∴S n=2(12+22+……+n2)﹣17(1+2+……+n)+30n=2×﹣17×+30n=.可得n=2,3,4,5,S n递减;n>5,S n递增,∵n,m∈N+,n>m,S1=15,S2=19,S5=S6=5,S7=14,S8=36,S n﹣S m的最小值为5﹣19=﹣14,故选:C.【点评】本题考查了数列递推关系、等差数列的通项公式、分组求和方法,考查了推理能力与计算能力,属于中档题.11.已知菱形ABCD的边长为2,∠BAD=60°,沿对角线BD将菱形ABCD折起,使得二面角A﹣BD﹣C的余弦值为,则该四面体ABCD外接球的体积为()A.B.8πC.D.36π【分析】正确作出图形,利用勾股定理建立方程,求出四面体的外接球的半径,即可求出四面体的外接球的体积.【解答】解:如图所示,取BD中点F,连结AF、CF,则AF⊥BD,CF⊥BD,∴∠AFC是二面角A﹣BD﹣C的平面角,过A作AE⊥平面BCD,交CF延长线于E,∴cos∠AFC=﹣,cos,AF=CF==3,∴AE=2,EF=1,设O为球,过O作OO′⊥CF,交F于O′,作OG⊥AE,交AE于G,设OO′=x,∵O′B=CF=2,O′F==1,∴由勾股定理得R2=O′B2+OO'2=4+x2=OG2+AG2=(1+1)2+(2﹣x)2,解得x=,∴R2=6,即R=,∴四面体的外接球的体积为V=πR3==8π.故选:B.【点评】本题考查四面体的外接球的体积的求法,考查四面体、球等基础知识,考查运用求解能力、空间想象能力、探索能力、转化与化归思想、函数与方程思想,是中档题.12.已知函数f(x)=e x﹣ln(x+3),则下面对函数f(x)的描述正确的是()A.∀x∈(﹣3,+∞),f(x)≥B.∀x∈(﹣3,+∞),f(x)C.∃x0∈(﹣3,+∞),f(x0)=﹣1 D.f(x)min∈(0,1)【分析】本题首先要对函数f(x)=e x﹣ln(x+3)进行求导,确定f′(x)在定义域上的单调性为单调递增函数,然后再利用当x∈(a,b)时,利用f′(a)f′(b)<0确定导函数的极值点x0∈(﹣1,﹣)从而.得到x=x0时是函数f(x)的最小值点.【解答】解:因为函数f(x)=e x﹣ln(x+3),定义域为(﹣3,+∞),所以f′(x)=e x﹣,易知导函数f′(x)在定义域(﹣3,+∞)上是单调递增函数,又f′(﹣1)<0,f′(﹣)>0,所以f′(x)=0在(﹣3,+∞)上有唯一的实根,不妨将其设为x0,且x0∈(﹣1,﹣),则x=x0为f(x)的最小值点,且f′(x0)=0,即e=,两边取以e为底的对数,得x0=﹣ln(x0+3)故f(x)≥f(x0)=e﹣ln(x0+3)=﹣ln(x0+3)=+x0,因为x0∈(﹣1,﹣),所以2<x0+3,故f(x)≥f(x0)=>2+=﹣,即对∀x∈(﹣3,+∞),都有f(x)>﹣.故选:B.【点评】本题表面考查命题的真假判断,实际上是考查函数的求导,求最值问题,准确计算是基础,熟练运用知识点解决问题是关键.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.将函数f(x)=2sin(2x+φ)(φ<0)的图象向左平移个单位长度,得到偶函数g(x)的图象,则φ的最大值是.【分析】根据三角函数图象平移法则,结合函数的奇偶性求出φ的最大值.【解答】解:函数f(x)=2sin(2x+φ)(φ<0)的图象向左平移个单位长度,得f(x+)=2sin[2(x+)+φ]=2sin(2x+φ+)的图象,∴g(x)=2sin(2x++φ);又g(x)是偶函数,∴+φ=+kπ,k∈Z;∴φ=﹣+kπ,k∈Z;又φ<0,∴φ的最大值是﹣.故答案为:﹣.【点评】本题考查了三角函数的图象与性质的应用问题,是基础题.14.已知a>0,b>0,(ax+)6展开式的常数项为,则a+2b的最小值为2.【分析】写出二项展开式的通项,由x的指数为0求得r值,可得ab=,再由基本不等式求a+2b的最小值.【解答】解:(ax+)6展开式的通项为x6﹣2r,由6﹣2r=0,得r=3.∴,即.∴a+2b,当且仅当a=2b,即a=1,b=时,取“=”.∴a+2b的最小值为2.故答案为:2.【点评】本题考查二项式定理的应用,考查二项式系数的性质,训练了利用基本不等式求最值,是基础题.15.已知函数f(x)=log2(4x+1)+mx,当m>0时,关于x的不等式f(log3x)<1的解集为(0,1).【分析】利用单调性求解即可.【解答】解:函数f(x)=log2(4x+1)+mx,当m>0时,可知f(x)时单调递增函数,当x=0时,可得f(0)=1,那么不等式f(log3x)<f(0)的解集,即,解得:0<x<1.故答案为(0,1)【点评】本题考查的知识点是对数函数的图象和性质,符合函数的单调性判断,3难度不大,属于基础题.16.设过抛物线y2=2px(p>0)上任意一点P(异于原点O)的直线与抛物线y2=8px(p>0)交于A,B两点,直线OP与抛物线y2=8px(p>0)的另一个交点为Q,则=3【分析】联立方程组求出P,Q的坐标,计算OP,PQ的比值得出结论.【解答】解:设直线OP方程为y=kx(k≠0),联立方程组,解得P(,),联立方程组,解得Q(,),∴|OP|==,|PQ|==,∴==3.故答案为:3.【点评】本题考查了抛物线的性质,属于中档题.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知B=60°,c=8.(1)若点M,N是线段BC的两个三等分点,BM=BC,=2,求AM的值;(2)若b=12,求△ABC的面积.【分析】(1)设BM=x,则AM=2x,由余弦定理求出BM=4,由此利用余弦定理能求出b.(2)由正弦定理得=,从而sinC=,由b=12>c,得B>C,cosC=,从而sinA=sin(B+C)=sinBcosC+cosBsinC=,由此能求出△ABC的面积.【解答】解:(1)∵在△ABC中,内角A,B,C所对的边分别为a,b,c,B=60°,c=8点M,N是线段BC的两个三等分点,BM=BC,=2,∴设BM=x,则AN=2x,在△ABN中,由余弦定理得12x2=64+4x2﹣2×8×2xcos60°,解得x=4(负值舍去),则BM=4,∴AM==4.(2)在△ABC中,由正弦定理得=,∴sinC===,又b=12>c,∴B>C,则C为锐角,∴cosC=,则sinA=sin(B+C)=sinBcosC+cosBsinC=×=,∴△ABC的面积S=bcsinA=48×=24.【点评】本题考查三角形的边长的求法,考查三角形面积的求法,考查三角函数性质、三角函数恒等式、余弦定理、三角形面积公式等基础知识,考查运用求解能力,考查函数与方程思想,是中档题.18.如图,在五面体ABCDEF中,四边形EDCF是正方形,AD=DE,∠ADE=90°,∠ADC=∠DCB=120°.(1)证明:平面ABCD⊥平面EDCF;(2)求直线AF与平面BDF所成角的最正弦值.【分析】(1)推导出AD⊥DE,DC⊥DE,从而DE⊥平面ABCD.由此能证明平面ABCD⊥平面EDCF.(2)以D为原点,以DA为x轴,建立空间直角坐标系D﹣xyz,利用向量法能求出直线AF与平面BDF所成角的正弦值.【解答】证明:(1)因为AD⊥DE,DC⊥DE,AD、CD⊂平面ABCD,且AD∩CD=D,所以DE⊥平面ABCD.又DE⊂平面EDCF,故平面ABCD⊥平面EDCF.解:(2)由已知DC∥EF,所以DC∥平面ABFE.又平面ABCD∩平面ABFE=AB,故AB∥CD.所以四边形ABCD为等腰梯形.又AD=DE,所以AD=CD,由题意得AD⊥BD,令AD=1,如图,以D为原点,以DA为x轴,建立空间直角坐标系D﹣xyz,则D(0,0,0),A(1,0,0),F(﹣,,1),B(0,,0),∴=(,﹣,﹣1),=(0,,0),=(﹣,,1).设平面BDF的法向量为=(x,y,z),则,取x=2,得=(2,0,1),cos<,>===.设直线与平面BDF所成的角为θ,则sinθ=.所以直线AF与平面BDF 所成角的正弦值为.【点评】本题考查面面垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19.经销商第一年购买某工厂商品的单价为a(单位:元),在下一年购买时,购买单价与其上年度销售额(单位:万元)相联系,销售额越多,得到的优惠力度越大,具体情况如表:为了研究该商品购买单价的情况,为此调查并整理了50个经销商一年的销售额,得到下面的柱状图.已知某经销商下一年购买该商品的单价为X(单位:元),且以经销商在各段销售额的频率作为概率.(1)求X的平均估计值.(2)该工厂针对此次的调查制定了如下奖励方案:经销商购买单价不高于平均估计单价的获得两次抽奖活动,高于平均估计单价的获得一次抽奖活动.每次获奖的金额和对应的概率为记Y(单位:元)表示某经销商参加这次活动获得的奖金,求Y的分布列及数学期望..【分析】(1)由统计表和柱状图能得到X的平均估计值.(2)购买单价不高于平均估计单价的概率为0.24+0.12+0.04=0.5=.Y的取值为5000,10000,15000,20000.分别求出相应的概率,由此能求出Y的分布列和E(Y).【解答】解:(1)由题可知:X的平均估计值为:a×0.2+0.9a×0.36+0.85a×0.24+0.8a×0.12+0.75a×0.1+0.7a×0.04=0.873a.(2)购买单价不高于平均估计单价的概率为0.24+0.12+0.04=0.5=.Y的取值为5000,10000,15000,20000.P(Y=5000)=,P(Y=10000)==,P(Y=15000)==,P(Y=20000)==.∴Y的分布列为:E(Y)=+20000×=9375(元).【点评】本题考查学生对频率分布直方图的理解以及分布列的相关知识,考查运算求解能力、数据处理能力、应用意识,考查分类与整合思想、必然与或然思想、化归与转化思想.20.已知椭圆C1:(b>0)的左、右焦点分别为F1,F2,点F2也为抛物线C2:y2=8x的焦点.(1)若M,N为椭圆C1上两点,且线段MN的中点为(1,1),求直线MN的斜率;(2)若过椭圆C1的右焦点F2作两条互相垂直的直线分别交椭圆于A,B和C,D,设线段AB,CD的长分别为m,n,证明是定值.【分析】(1)根据抛物线的性质,求得c,即可求得b的值,利用“点差法”即可求得直线MN的斜率;(2)分类讨论,当直线AB的斜率存在时,设直线AB的方程,代入椭圆方程,利用韦达定理及弦长公式即可求得m的值,同理即可求得n的值,即可求得是定值.【解答】解:(1)抛物线C2:y2=8x的焦点(2,0),则c=2,b2=a2﹣c2=4,∴椭圆的标准方程:,设M(x1,y1),N(x2,y2),则,两式相减得:=﹣•,由MN的中点为(1,1),则x1+x2=2,y1+y2=2,∴直线MN的斜率k==﹣,∴直线MN的斜率为﹣;(2)由椭圆的右焦点F2(2,0),当直线AB的斜率不存在或为0时,+=+=,当直线AB的斜率存在且不为0,设直线AB的方程为y=k(x﹣2),设A(x1,y1),B(x2,y2),联立,消去y化简整理得:(1+2k2)x2﹣8k2x+8k2﹣8=0,△=(﹣8k2)2﹣4(1+2k2)(8k2﹣8)=32(k2+1)>0,∴x1+x2=,x1x2=,则m==,同理可得:,∴=(+)=,综上可知:是定值.【点评】本题考查椭圆的标准方程及性质,直线与椭圆的位置关系,考查韦达定理,弦长公式的应用,考查转化思想,属于中档题.21.已知f′(x)为函数f(x)的导函数,f(x)=e2x+2f(0)e x﹣f′(0)x.(1)求f(x)的单调区间;(2)当x>0时,af(x)<e x﹣x恒成立,求a的取值范围.【分析】(1)求出函数的导数,计算f(0),求出f′(0)的值,求出函数的单调区间即可;(2)令g(x)=af(x)﹣e x+x,求出函数的导数,通过讨论a的范围,求出函数的最值,从而确定a的范围即可.【解答】解:(1)由f(0)=1+2f(0),得f(0)=﹣1.因为f′(x)=2e2x﹣2e x﹣f′(0),所以f′(0)=2﹣2﹣f′(0),解得f′(0)=0.所以f(x)=e2x﹣2e x,f′(x)=2e x(e x﹣1),当x∈(﹣∞,0)时,f′(x)<0,则函数f(x)在(﹣∞,0)上单调递减;当x∈(0,+∞)时,f′(x)>0,则函数f(x)在(0,+∞)上单调递增.(2)令g(x)=af(x)﹣e x+x=ae2x﹣(2a+1)e x+x,根据题意,当x∈(0,+∞)时,g(x)<0恒成立.g′(x)=(2ae x﹣1)(e x﹣1).①当0<a<,x∈(﹣ln2a,+∞)时,g′(x)>0恒成立,所以g(x)在(﹣ln2a,+∞)上是增函数,且g(x)∈(g(﹣ln2a),+∞),所以不符合题意;②当a≥,x∈(0,+∞)时,g′(x)>0恒成立,所以g(x)在(0,+∞)上是增函数,且g(x)∈(g(0),+∞),所以不符合题意;③当a≤0时,因为x∈(0,+∞),所有恒有g′(x)<0,故g(x)在(0,+∞)上是减函数,于是“g(x)<0对任意x∈(0,+∞)都成立”的充要条件是g(0)≤0,即a﹣(2a+1)≤0,解得:a≥﹣1,故﹣1≤a≤0.综上,a的取值范围是[﹣1,0].【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道综合题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,直线l的参数方程为(t为参数),圆C的标准方程为(x﹣3)2+(y﹣3)2=4.以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(1)求直线l和圆C的极坐标方程;(2)若射线θ=与l的交点为M,与圆C的交点为A,B,且点M恰好为线段AB的中点,求a的值.【分析】(1)直线l的参数方程消去t可得直线l的普通方程,将x=ρcosθ,y=ρsinθ代入,能求出直线l的极坐标方程.由圆的标准方程能求出圆C的极坐标方程.(2)设M(),A(),B(ρ3,).联立,得,从而ρ2+ρ3=3+3,进而M(,).把M(,)代入,能求出a的值.【解答】解:(1)∵直线l的参数方程为(t为参数),∴在直线l的参数方程中消去t可得直线l的普通方程为x﹣y﹣=0,将x=ρcosθ,y=ρsinθ代入以上方程中,得到直线l的极坐标方程为ρcosθ﹣ρsinθ﹣=0.∵圆C的标准方程为(x﹣3)2+(y﹣3)2=4,∴圆C的极坐标方程为ρ2﹣6ρcosθ﹣6ρsinθ+14=0.(2)在极坐标系中,由已知可设M(),A(),B(ρ3,).联立,得,∴ρ2+ρ3=3+3.∵点M恰好为AB的中点,∴,即M(,).把M(,)代入,得×﹣=0,解得a=.【点评】本题考查直线和圆的极坐标方程的求法,考查实数值的求法,考查极坐标方程、直角坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.[选修4-5:不等式选讲]23.已知f(x)=|mx+3|﹣|2x+n|.(1)当m=2,n=﹣1时,求不等式f(x)<2的解集;(2)当m=1,n<0时,f(x)的图象与x轴围成的三角形面积大于24,求n的取值范围.【分析】(1)代入m,n的值,得到关于x的不等式组,解出即可;(2)求出A,B,C的坐标,表示出三角形的面积,得到关于n的不等式,解出即可.【解答】解:(1)当m=2,n=﹣1时,f(x)=|2x+3|﹣|2x﹣1|,不等式f(x)<2等价于或或,解得:x<﹣或﹣≤x<0,即x<0.所以不等式f(x)<2的解集是(﹣∞,0).(2)由题设可得,f(x)=|x+3|﹣|2x+n|=,所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为:A(﹣,0),B(3﹣n,0),C(﹣,3﹣),所以三角形ABC的面积为(3﹣n+)(3﹣)=,由>24,解得:n>18或n<﹣6.【点评】本题考查了解绝对值不等式问题,考查分类讨论思想,转化思想,是一道综合题.。
2018届广州市高三年级调研测试(理科数学)答案(可编辑修改word版)
数学(理科)试题 A 第 1 页 共 11 页( )2018 届广州市高三年级调研测试理科数学试题答案及评分参考评分说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3. 解答右端所注分数,表示考生正确做到这一步应得的累加分数.4. 只给整数分数.选择题不给中间分.一.选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 ACBBAADDBACC二.填空题13.1014.415.416.11π三、解答题17.(1)解法 1:由已知,得 a cos B + b cos A = 2c cos A .由正弦定理,得sin A c os B + sin B cos A = 2 sin C cos A ,… ........................................................... 1 分 即sin( A + B ) = 2 s in C cos A .… ........................................................................................................... 2 分因为sin( A + B ) = sin(- C ) = sin C , ..................................................................................................... 3 分所以sin C = 2 s in C cos A .... .. (4)分因为sin C ≠ 0 ,所以cos A =π1. .......................................................................................................... 5 分2因为0 < A < π ,所以 A = .… .......................................................................................................... 6 分 3a 2 + c 2 -b 2解法 2:由已知根据余弦定理,得 a ⨯= 2c - b ⨯ 2acb 2 +c 2 - a 2 2bc.… ........................... 1 分 即b 2 + c 2 - a 2 = bc . .............................................................................................................................. 3 分 b 2 + c 2 - a 21 所以cos A = = 2bc . .............................................................................................................. 5 分2数学(理科)试题 A 第 2 页 共 11 页⎪ 因为0 < A < π , 所以 A = π .… .......................................................................................................... 6 分3(2)解法 1:由余弦定理 a 2 = b 2 + c 2 - 2bc cos A ,得bc + 4 = b 2 + c 2 ,… .............................................................................................................................. 7 分即(b + c )2 = 3bc + 4 . ............................................................................................................................... 8 分⎛ b + c ⎫2因为bc ≤ ,… .............................................................................................................................. 9 分2 ⎝ ⎭ 所以(b + c )2 ≤3 (b + c )2 +4 . 4 即b + c ≤ 4 (当且仅当b = c = 2时等号成立).... .. (11)分所以 a + b + c ≤ 6 .故△ ABC 周长 a + b + c 的最大值为6 .… ........................................................................................... 12 分 解法 2:因为a =b =c= 2R ,且 a = 2 , A = π,sin A sin B sin C 3所以b =sin B ,c = 3sin C .… ............................................................................................... 8 分 34 34 3 ⎡ ⎛ 2π ⎫⎤所以 a + b + c = 2 + (sin B + sin C ) = 2 +3 3 ⎢sin B + sin 3 - B ⎪⎥ ............................. 9 分 ⎣⎝ ⎭⎦= 2 + 4 s in ⎛B + π ⎫ .…................................................................................................... 10 分6 ⎪ ⎝ ⎭2π π因为0 < B < ,所以当 B = 3 时, a + b + c 取得最大值6 . 3故△ ABC 周长 a + b + c 的最大值为6 .… ........................................................................................... 12 分18.(1)证明:连接 BD ,交 AC 于点O ,设 PC 中点为 F ,P连接OF , EF .因为O , F 分别为 AC , PC 的中点, FE所以OF PA ,且OF = 1PA ,2A因为 DE P A ,且DE = 1 PA , O2BC所以OF D E ,且OF = DE . ............................................................................................................ 1 分4 3 4 3 D数学(理科)试题 A 第 3 页 共 11 页2 3 2 2 ⋅ 2所以四边形OFED 为平行四边形,所以ODE F ,即 BD E F . ................................................... 2 分 因为 PA ⊥ 平面 ABCD , BD ⊂ 平面 ABCD ,所以 PA ⊥BD . 因为 ABCD 是菱形,所以 BD ⊥ AC .因为 PA AC = A ,所以 BD ⊥ 平面 PAC . ....................................................................................... 4 分 因为 BD E F ,所以 EF ⊥ 平面PAC . ................................................................................................. 5 分 因为 FE ⊂ 平面 PCE ,所以平面 PAC ⊥ 平面 PCE . ......................................................................... 6 分 (2)解法 1:因为直线 PC 与平面 ABCD 所成角为45o,所以∠PCA = 45 ,所以 AC = PA = 2 . ............................................................................................... 7 分 所以 AC = AB ,故△ ABC 为等边三角形. 设 BC 的中点为 M ,连接 AM ,则 AM ⊥ BC .以 A 为原点, AM , AD , AP 分别为 x ,y ,z 轴,建立空间直 角坐标系 A - xyz (如图).则 P (0,0,2) , C( 3,1,0), E (0,2,1), D (0,2,0),PC = ( 3,1,- 2), CE = (- 3,1,1), DE = (0,0,1).…………………………9 分设平面 PCE 的法向量为 n = {x 1, y 1, z 1},⎧n = 0, ⎧ 3x + y - 2z = 0, ⎪ P C ⎪ 1 1 1 则⎨n 即⎨ ⎩⎪ CE = 0, ⎪⎩- 3x 1 + y 1 + z 1 = 0.令 y = 1, 则⎧⎪x 1 = 3,所以 n = ( 3,1, 2).… ...................................................................................... 10 分1⎨ ⎩ z 1 = 2.设平面CDE 的法向量为 m = ( x 2 , y 2 , z 2 ) ,⎧⎪m ⋅ = 0, ⎧⎪z 2 = 0,⎧⎪ y = 3,DE 则⎨ 即⎨令 x = 1, 则⎨ 2 所以m = (1, 3, 0).… .......... 11 分 m ⋅= 0, ⎪- 3x + y + z = 0. 2 ⎪ z = 0. ⎩⎪ CE⎩ 2 2 2 ⎩ 2设二面角 P - CE - D 的大小为,由于为钝角,所以cos= - cos n , m = -= - = - 6 .4所以二面角 P - CE - D 的余弦值为-6 .… ................................................................................... 12 分4解法 2:因为直线 PC 与平面 ABCD 所成角为45 ,且 PA ⊥ 平面 ABCD ,z PEADy BMCxn ⋅ m n ⋅ m数学(理科)试题 A第 4 页 共 11 页3 2 ⋅ 2⎨ A⎪m ⋅ 5所以∠PCA = 45 ,所以 AC = PA = 2 .… ........................................................................................... 7 分 因为 AB = BC = 2 ,所以∆ABC 为等边三角形. 因为 PA ⊥ 平面 ABCD ,由(1)知 PA //OF , 所以OF ⊥ 平面 ABCD .因为OB ⊂ 平面 ABCD , OC ⊂ 平面 ABCD ,所以OF ⊥ OB 且OF ⊥OC . 在菱形 ABCD 中, OB ⊥ OC .以点O 为原点, OB , OC , OF 分别为 x , y , z 轴,建立空间直角坐标系O - xyz (如图).则O (0, 0, 0), P (0, -1, 2), C (0,1, 0), D (- 3, 0, 0), E (- 3, 0,1) ,则 CP = (0, -2, 2), CE = (- 3, -1,1), CD = (- 3, -1, 0) . (9)分设平面 PCE 的法向量为 n = (x 1 , y 1 , z 1 ) ,⎧⎪n ⋅ CP = 0, ⎧⎪-2 y 1 + 2z 1 = 0, z 则⎨n ⋅ = 0, 即⎨- 3x - y + z P= 0.⎩⎪ CE⎩⎪ 1 1 1 令 y = 1 ,则⎧ y 1 = 1,,则法向量 n = (0,1,1) .……………10 分E1 ⎨z = 1. ⎩ 1设平面CDE 的法向量为 m = (x 2 , y 2 , z 2 ) ,DO⎧⎪m ⋅ C E = 0, 则⎨ ⎩ CD = 0, ⎧⎪- 即⎨⎪⎩- 3x 2 - y 2 + z 2 = 0, 3x 2 - y 2 = 0.xBCy令 x 2= 1,则⎧⎪ y 2 = - ⎪⎩z 2 = 0.3,则法向量 m = (1, - 3, 0).… ................................................................. 11 分设二面角 P - CE - D 的大小为,由于为钝角,则cos= - cosn , m = -= - = - 6 . 4所以二面角 P - CE - D 的余弦值为-6 . ................................................................................... 12 分419.解:(1)由已知数据可得 x =2 + 4 + 5 + 6 + 8= 5, y =3 +4 + 4 + 4 + 5= 4 .… ............................1 分 55因为∑( xi- x )( y i - y ) = (-3) ⨯ (-1) + 0 + 0 + 0 + 3 ⨯1 = 6 ..................................................... 2 分i =1n ⋅ m n ⋅ m数学(理科)试题 A 第 5 页 共 11 页∑ i =1 5(x - x )2i(-1)2 + 02 + 02 + 02 + 122 ∑ i =1n n( x - x ) 2∑ i =1( y - y )2ii2 5 ⋅ 2 910= (-3)2 + (-1)2 + 02 +12 + 322………………………………………………3 分= .… ....................................................................... 4 分∑( x i- x )( y i- y )6所以相关系数 r =i =1= =≈ 0.95 .….................... 5 分因为 r > 0.75 ,所以可用线性回归模型拟合 y 与 x 的关系. ................................................................. 6 分(2)记商家周总利润为Y 元,由条件可知至少需安装 1 台,最多安装 3 台光照控制仪.①安装 1 台光照控制仪可获得周总利润 3000 元.… ............................................................................... 7 分 ②安装 2 台光照控制仪的情形:当 X >70 时,只有 1 台光照控制仪运行,此时周总利润 Y =3000-1000=2000 元,当 30<X ≤70 时,2 台光照控制仪都运行,此时周总利润 Y =2×3000=6000 元, 故Y 的分布列为所以 EY = 2000 ⨯ 0.2 + 6000 ⨯ 0.8 = 5200 元. (9)分③安装 3 台光照控制仪的情形:当 X >70 时,只有 1 台光照控制仪运行,此时周总利润 Y =1×3000-2×1000=1000 元, 当 50≤X ≤70 时,有 2 台光照控制仪运行,此时周总利润 Y =2×3000-1×1000=5000 元, 当 30<X ≤70 时,3 台光照控制仪都运行,周总利润 Y =3×3000=9000 元, 故Y 的分布列为Y 1000 5000 9000 P0.20.70.1所以 EY = 1000 ⨯ 0.2 + 5000 ⨯ 0.7 + 9000 ⨯ 0.1 = 4600 元. (11)分综上可知,为使商家周总利润的均值达到最大应该安装 2 台光照控制仪.… ................................... 12 分5 ∑ i =15( y - y )2inY 2000 6000 P0.20.8数学(理科)试题 A 第 6 页 共 11 页+= ⎝ 1 1 ⎝⎭ 2 ⎪20.解:(1)因为椭圆C 的离心率为 1 ,所以 c = 1,即a = 2c .… ................................................... 1 分2a 23y 2x 2又 a 2= b 2+c 2,得b 2=3c 2,即b 2= a 2,所以椭圆C 的方程为 4 a 2 + 3 = 1 . a 2 4⎛ 2 6 ⎫ 2把点 1, 3 ⎪ 代人C 中,解得 a = 4 .… ........................................................................................... 2 分⎝ ⎭2 所以椭圆C 的方程为y x 1 .… ...................................................................................................3 分 43(2)解法 1:设直线l 的斜率为k ,则直线l 的方程为 y = kx +2 ,⎧ y = kx + 2, 由 2 2得(3k 2 + 4) x 2 +12kx = 0 .… ................................................................................... 4 分 ⎨ x + y= 1, ⎪⎩ 3 4设 A ( x A , y A ) , B ( x B , y B ) ,则有 x A = 0 , x B = -12k 3k 2 + 4,… ........................................................... 5 分所以 y B =-6k 2 + 8 .3k 2+ 4⎛ -12k -6k 2 + 8 ⎫所以 B 3k 2 + , 4 3k 2+ 4 ⎪ ..................................................................................................... 6 分 ⎭因为 MO = MA ,所以 M 在线段OA 的中垂线上,所以 y = 1,因为 y = kx+ 2 ,所以 x = - 1 ,即 M ⎛ - 1 ,1⎫.… ........................................... 7 分M M M Mkk ⎪ ⎝ ⎭设 H (x H, 0) ,又直线 HM 垂直l ,所以 k MH = - ,即k 1 - 1 - x kH = - .… ................................... 8 分 k所以 x= k - 1 ,即 H ⎛ k - 1 , 0 ⎫.… ................................................................................................... 9 分Hkk ⎪ ⎝ ⎭⎛ -12k 4 - 9k 2 ⎫⎛ 1 ⎫又 F 1 (0,1) ,所以 F 1B = 3k 2 +, 2⎪ , F 1H = k - , -1⎪ . ⎝4 3k + 4 ⎭ ⎝ k ⎭-12k ⋅⎛1 ⎫ 4 - 9k2 因为 F 1B ⋅ F 1H = 0 ,所以 3k 2 + 4 k - k ⎪ -3k 2 + 4= 0 ,… ....................................................... 10 分数学(理科)试题 A 第 7 页 共 11 页2 632 63⎝ ⎭⎪ ( 2)⎪解得 k 2 = 8.…....................................................................................................................................... 11 分3所以直线l 的方程为 y = ±x + 2 .… ........................................................................................... 12 分解法 2:设直线l 的斜率为k ,则直线l 方程 y = kx +2 ,⎧ y = kx + 2, 由 2 2得(3k 2 + 4) x 2 +12kx = 0 ,… ................................................................................... 4 分 ⎨ x + y= 1, ⎪⎩ 3 4设 A ( x A , y A ) , B ( x B , y B ) ,则有 x A = 0 , x B = -12k 3k 2 + 4.… .......................................................... 5 分所以 y B =-6k 2 + 8 .3k 2+ 4⎛ -12k 4 - 9k 2 ⎫所以 F 1B = 3k 2 + , 4 3k 2 + 4 ⎪ , F 1H = ( x H , -1) .… ....................................................................... 6 分-12k 4 - 9k 2 9k 2 - 4因为 F 1B ⋅ F 1H = 0 ,所以 3k 2 + 4 ⋅ x H - 3k 2 + 4 = 0 ,解得 x H = 12k.… ............................... 7 分2 2 22 因为 MO = MA ,所以 x M + y M = x M + ( y M - 2) 1 ⎛ 9k 2 - 4 ⎫,解得 y M = 1.… ......................................... 8 分所以直线 MH 的方程为 y = - k x - 12k ⎪ . (9)分⎧ y = kx + 2,⎪⎝ ⎭9k 2 + 20 联立⎨ y = - 1 ⎛ x - 9k 2 - 4 ⎫ ⎪ , 解得 y M = 12 (1+ k 2 ) .… .............................................................. 10 分 ⎩k ⎝ 9k 2 + 20 12k ⎭ 2 8由 y M = = 1 ,解得 k = .… .......................................................................................... 11 分 12 1+ k 3所以直线l 的方程为 y = ±x + 2 .… ........................................................................................... 12 分21.解:(1)函数 f ( x ) 的定义域为(0, +∞) .数学(理科)试题 A 第 8 页 共 11 页a- a2 - a 2 - a 2 1 1 a = ⎧ ⎛ 1 ⎫ ⎫ e e ⎭⎝ ⎭ 当b = 2 时, f ( x ) = a ln x + x 2 ,所以 f '( x ) = a + 2x = 2x 2+ a .… ........................................... 1 分xx① 当 a > 0 时, f '( x ) > 0 ,所以 f ( x ) 在(0, +∞) 上单调递增,… ............................................... 2 分- 1⎛ - 1 ⎫⎛ - 1 ⎫2取 x 0 = e a, 则 f e a ⎪ = -1 + e a ⎪ < 0 ,… ................................................................................... 3 分⎝ ⎭ ⎝ ⎭(或:因为0 < x <且 x < 时,所以 f ( x ) = a ln x + x 2 < a ln x + a < a ln + a = 0 .)e0 0 0 0e因为 f (1) = 1,所以 f ( x 0 ) f (1) < 0 ,此时函数 f ( x ) 有一个零点.… .......................................... 4 分②当 a < 0 时,令 f '( x ) = 0 ,解得 x =当0 < x 时, f '( x ) < 0 ,所以 f ( x ) 在⎛ 上单调递减;当 x f '( x ) > 0 ,所以 f ( x ) 在⎝ a ⎫ - , +∞ 上单调递增.2 ⎪ ⎭要使函数 f ( x ) 有一个零点,则 f= a l n - = 0 即 a = -2e .… ............................... 5 分 2 综上所述,若函数 f ( x ) 恰有一个零点,则 a = -2e 或a > 0 .… ....................................................... 6 分(2)因为对任意 x , x ∈⎡1 , e ⎤,有 f ( x ) - f ( x) ≤ e - 2 成立,1 2⎢⎣ e ⎥⎦1 2 因为 f ( x 1 ) - f ( x 2 ) ≤ ⎡⎣ f ( x )⎤⎦max - ⎡⎣ f ( x )⎤⎦min ,所以 ⎡⎣ f ( x )⎤⎦max - ⎡⎣ f ( x )⎤⎦min ≤ e - 2 .… .............................................................................................. 7 分 因为 a + b = 0 ,则 a = -b . 所以 f ( x ) = -b ln x + x b,所以 f '( x ) =-b + bx b -1 = b (x b -1) .x x当0 < x < 1时, f '( x ) < 0 ,当 x > 1 时, f '( x ) > 0 , 所以函数 f ( x ) 在⎡1 ,1⎫上单调递减,在(1, e ]上单调递增, ⎡ f (x )⎤= f (1) = 1,… ................. 8 分⎢⎣ e ⎪⎣ ⎦min因为 f ⎛ 1 ⎫ = b + e -b与 f (e ) = -b + e b ,所以⎡ f ( x )⎤max f , f (e ) .… ............... 9 分⎪ ⎣ ⎦max ⎨ ⎪ ⎬ ⎩ ⎝ ⎭ ⎭- a 2 - a 2 - a2数学(理科)试题 A 第 9 页 共 11 页222 e ⎪e ⎪ ⎩ 设 g (b ) =f (e ) - f ⎛ 1 ⎫ = e b - e -b- 2b (b > 0) , ⎝ ⎭则 g '(b ) = e b + e -b - 2 > 2 - 2 = 0 .所以 g (b ) 在(0, +∞) 上单调递增,故 g (b ) > g (0) = 0 ,所以 f (e ) > f ⎛ 1 ⎫ .⎝ ⎭从而 ⎡⎣ f ( x )⎤⎦max = 分f (e )= -b + e b . ............................................................................................................. 10 所以-b + e b -1 ≤ e - 2 即e b - b - e +1 ≤ 0 , 设(b ) =e b - b - e +1 (b > 0) ,则'(b ) =e b -1.当b > 0 时,'(b ) > 0 ,所以(b ) 在(0, +∞) 上单调递增.又(1) = 0 ,所以e b - b - e +1 ≤ 0 ,即为(b ) ≤(1) ,解得b ≤ 1 . ............................................... 11 分因为b > 0 ,所以b 的取值范围为(0,1] ................................................................................................ 12 分22.解:(1)因为曲线C 的参数方程为⎧ x = cos(为参数),1⎧ x ' = 2x⎨y = 2 sin⎧ x ' = 2 cos 因为⎨ y ' = y . ,则曲线C 2 的参数方程⎨ y ' = 2 s in . . ........................................................................ 2 分⎩ ⎩所以C 2 的普通方程为 x '2 + y '2 = 4 . ...................................................................................................... 3 分所以C 2 为圆心在原点,半径为 2 的圆. ................................................................................................... 4 分所以C 2 的极坐标方程为2= 4 ,即= 2 . ........................................................................................ 5 分(2)解法 1:直线l 的普通方程为 x - y - 10 = 0 . ....................................................................................... 6 分|2cos- 2sin - 10||2 2cos(π- 10|曲线C 2 + ) 上的点M 到直线l 的距离d = =4 . ................ 8 分当cos⎛+ π ⎫ =1即=2k π - π (k ∈ Z ) 时, d 取到最小值为|2 - 10| =5 - 2 . ...................9 分4 ⎪ 4⎝ ⎭当cos ⎛+ π ⎫ = -1即= 3π + 2k π(k ∈ Z ) 时, d 取到最大值为|2 2 +10| =2 + 5.………10 分4 ⎪ 4 2 ⎝ ⎭解法 2:直线l 的普通方程为 x - y - 10 = 0 ........................................................................................ 6 分2 e b ⋅ e -b2 2数学(理科)试题 A 第 10 页 共 11 页2 2 2 2 ⎨ ⎩⎨⎨ ⎩⎨a - 3 ≥ 1,因为圆C 2 的半径为 2,且圆心到直线l 的距离 d == 5 ,… ................................... 7 分因为5 > 2 ,所以圆C 2 与直线l 相离.… ........................................................................................... 8 分所以圆C 2 上的点 M 到直线l 的距离最大值为 d + r = 5 + 2 ,最小值为 d - r = 5 - 2 .…10 分23.解:(1)当 a = 1 时, f (x ) =| x +1| . ................................................................................................... 1 分①当 x ≤ -1时,原不等式可化为-x -1 ≤ -2x - 2 ,解得 x ≤ -1. ................................................. 2 分 ②当-1 < x < - 1时,原不等式可化为 x +1 ≤ -2x - 2 ,解得 x ≤ -1,此时原不等式无解.……3 分2③当 x ≥ - 1时,原不等式可化为 x +1 ≤ 2x ,解得 x ≥ 1. .......................................................... 4 分2 综上可知,原不等式的解集为{x x ≤ -1 或 x ≥ 1} . .......................................................................... 5 分⎧3 - a , (2)解法 1:①当 a ≤ 3 时, g (x ) = ⎪-2x - a - 3, ⎪a - 3, 所以函数 g ( x ) 的值域 A = [a - 3, 3 - a ] ,x ≤ -3, - 3 < x < -a , x ≥ -a .……………………………………6 分因为[-2,1] ⊆ A ,所以⎧a - 3 ≤ -2解得 a ≤ 1 . ................................................................................... 7 分⎩3 - a ≥ 1,⎧3 - a , ②当 a > 3 时, g ( x ) = ⎪2x + a + 3, ⎪a - 3, x ≤ -a , - a < x < -3, x ≥ -3.…………………………………………………8 分所以函数 g ( x ) 的值域 A = [3 - a , a - 3] , 因为[-2,1] ⊆ A ,所以⎧3 - a ≤ -2解得 a ≥ 5 . ................................................................................... 9 分⎩综上可知, a 的取值范围是(-∞,1] [5, +∞) . .................................................................................. 10 分解法 2:因为| x +a | - | x +3 | ≤ ( x +a ) - (x +3) = a - 3 , ................................................................... 7 分所以 g (x ) = f (x )- | x +3 |=| x +a | - | x +3 |∈[- | a - 3 |,| a - 3 |] . | 0 - 0 - 10 |2数学(理科)试题 A 第 11 页 共 11 页 ⎨ 所以函数 g (x ) 的值域 A = [- | a - 3 |,| a - 3 |]. (8)分因为[-2,1] ⊆ A ,所以⎧- | a - 3 |≤ -2 解得 a ≤ 1 或 a ≥ 5 . ⎩| a - 3 |≥ 1,所以a 的取值范围是(-∞,1] [5, +∞) . ............................................................................................. 10 分。
2018年广州二模理科数学试题
秘密★启用前 试卷类型:A2018年市普通高中毕业班综合测试〔二〕理科数学2018.4本试卷共5页,23小题,总分值150分。
考试用时120分钟。
考前须知:1.答卷前,考生务必将自己的和考生号、试室号、座位号填写在答题卡上,并用2B 铅笔在答题卡的相应位置填涂考生号。
2.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
写在本试卷上无效。
3.作答填空题和解答题时,必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保持答题卡的整洁。
考试完毕后,将试卷和答题卡一并交回。
一、选择题:此题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.假设112z =+i , 21z =-i ,那么12z z = A .6B 2.集合{}2,M x x x =∈Z ≤,{}2230N x x x =--<,那么M N =A .(]1,2-B .[]1,2-C .{}0,2D.{}0,1,23.执行如图的程序框图, 假设输出32y =,那么输入A .2log 31-B .21log 3-C .21log 3- D4.假设双曲线2222:1x y C a b-=()0,0a b >>的渐近线与圆()2221x y -+=相切,那么C 的渐近线方程为 A .13y x =±B .33y x =±C .3y x =±D .3y x =± 5.根据以下图给出的2000年至2016年我国实际利用外资情况,以下结论正确的选项是A .2000年以来我国实际利用外资规模与年份负相关B .2010年以来我国实际利用外资规模逐年增加C .2008年我国实际利用外资同比增速最大D .2010年我国实际利用外资同比增速最大6.假设αβ,为锐角,且π2πcos sin 63αβ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,那么 A .3π=+βαB .6π=+βαC .3π=-βαD .6π=-βα7.椭圆()2222:10x y C a b a b+=>>的左焦点为F ,直线3y x =与C 相交于,A B 两点,且AF BF ⊥,那么C 的离心率为A .212-B .21-C .312-D .31-8.某几何体由长方体和半圆柱体组合而成,如图, 网格纸上小正方形的边长为1,粗线画出的是 该几何体的三视图,那么该几何体的外表积是 A .18+πB .182+π C .16+πD .162+π实际利用外资规模 实际利用外资同比增速9.x =6π是函数()()sin 2f x x ϕ=+的图象的一条对称轴,且()ππ2f f ⎛⎫⎪⎝⎭<,那么()f x 的单调递增区间是 A .π2ππ,π()63k k k ⎡⎤++∈⎢⎥⎣⎦Z B .πππ,π()36k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .ππ,π()2k k k ⎡⎤+∈⎢⎥⎣⎦Z D .ππ,π()2k k k ⎡⎤-∈⎢⎥⎣⎦Z 10.函数()f x =e 2xx +-的零点为a ,函数()ln 2g x x x =+-的零点为b ,那么以下不等式中成立的是A .e ln 2ab +>B .e ln 2ab +<C .223a b +<D .1ab >11.体积为3P ABC -的顶点都在球O 的球面上,PA ⊥平面ABC , 2=PA ,120ABC ︒∠=,那么球O 的体积的最小值为A .773πB .2873C .19193D .76193π 12.直线l 与曲线32113y x x x =-++有三个不同交点()()1122,,,,A x y B x y ()33,C x y ,且AB AC =,那么()31=+∑iii x y =A .4B .5C .6D .7二、填空题:此题共4小题,每题5分,共20分.13.向量a 与b 的夹角为4π,2,2==a b ()⊥+λa a b ,那么实数λ=. 14.古希腊著名的毕达哥拉斯学派把1,3,6,10,…这样的数称为“三角形数〞,而把1,4,9,16,…这样的数称为“正方形数〞.如图,可以发现任何一个大于1的“正方形数〞都可以看作两个相邻“三角形数〞之和,以下等式:①361521=+;②491831=+;③642836=+;④813645=+中符合这一规律的等式是.〔填写所有正确结论的编号〕……15.622x y x ⎛⎫-+ ⎪⎝⎭的展开式中,33x y 的系数是.〔用数字作答〕16.等边三角形ABC 的边长为4,其外接圆圆心为点O ,点P 在△ABC ,且1OP =,BAP θ∠=,当△APB 与△APC 的面积之比最小时,sin θ的值为.三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答. 〔一〕必考题:共60分. 17.〔本小题总分值12分〕各项均为正数的数列{}n a 满足221132n n n n a a a a ++=+,且()24333a a a +=+, 其中n ∈N *.〔1〕证明数列{}n a 是等比数列,并求其通项公式; 〔2〕令n n b na =, 求数列{}n b 的前n 项和n S . 18.〔本小题总分值12分〕如图,三棱柱111ABC A B C -的底面是边长为1的正三角形,11A A AC =, 侧面11A ACC ⊥底面ABC ,直线1A B 与平面11A ACC 所成角为60︒. 〔1〕证明: 11A A AC ⊥;〔2〕求二面角1A A B C --的余弦值.19.〔本小题总分值12分〕某工厂生产的A 产品按每盒10件包装,每盒产品需检验合格后方可出厂,检验方案是:从每盒10件产品中任取4件,4件都做检验,假设4件都为合格品,那么认为该盒产品合格且其余产品不再检验;假设4件中次品数多于1件,那么认为该盒产品不合格且其余产品不再检验;假设4件中只有1件次品,那么把剩余的6件采用一件一件抽取出来检验,没有检验出次品那么认为该盒产品合格,检验出次品那么认为该盒产品不合格且停止检验.假设某盒A 产品中有8件合格品,2件次品. 〔1〕求该盒A 产品可出厂的概率;〔2〕每件产品的检验费用为10元,且抽取的每件都需要检验,设该盒A 产品的检验费用为X (单位:元). 〔ⅰ〕求()40P X =;〔ⅱ〕求X 的分布列和数学期望EX .A 1C 1B 1CBA20.〔本小题总分值12分〕O 为坐标原点,点()0,2R ,F 是抛物线()2:20C x py p =>的焦点,3RF OF =.〔1〕求抛物线C 的方程;〔2〕过点R 的直线l 与抛物线C 相交于,A B 两点,与直线2y =-交于点M ,抛物线C在点A ,B 处的切线分别记为12,l l ,1l 与2l 交于点N ,假设△MON 是等腰三角形, 求直线l 的方程.21.〔本小题总分值12分〕函数()f x =e 2xx ax --.〔1〕假设函数()f x 在R 上单调递增,求a 的取值围;〔2〕假设1a =,证明:当0x >时,()2ln 2ln 2122f x ⎛⎫>-- ⎪⎝⎭.参考数据: e 2.71828≈,ln 20.69≈.〔二〕选考题:共10分.请考生在第22、23题中任选一题做答,如果多做,那么按所做的第一题计分.22.〔本小题总分值10分〕选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程为11,2(,2x t t y ⎧=-⎪⎪⎨⎪=⎪⎩为参数). 以坐标原点为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为()()2212sin 0a a ρθ+=>.〔1〕求l 的普通方程和C 的直角坐标方程; 〔2〕假设l 与C 相交于A ,B 两点,且AB=a 的值.23.〔本小题总分值10分〕选修4-5:不等式选讲函数()2121f x x x =++-,不等式()2f x ≤的解集为M . 〔1〕求M ;〔2〕证明:当,a b M ∈时,1a b a b ++-≤.。
2017-2018年广州市普通高中毕业班综合测试(二)理科数学试卷及答案
题卡一并交回 .
参考公式:锥体的体积公式是 V 体的高 .
1 Sh, 其中 S 是锥体的底面积 , h 是锥
3
一、选择题:本大题共 8 小题,每小题 5 分,满分 40 分.在每小题
D
. 12 12
8.将正偶数 2, 4,6,8, 按表 1的方
式进行
排列,记 aij 表示第 i 行第 j 列
的数,若
aij 2014 ,则 i j 的值为
A .257
B
.256
C .254
D
.253
第 1列 第 2列 第 3列 第 4列 第 5列
第 1行
2
4
6
8
第 2行
16
14
12
10
第 3行
18
.3
A .存在 x0 R,使得 x03 x02
B
.不存在 x0 R,使得 x03 x02
C .存在 x0 R,使得 x03 x02
D
.对任意 x R,都有 x3 x2
4. 将函数 f x 后得到函数
3sin 2x cos2x( x R) 的图象向左平移 个单位长度
6
y g x ,则函数 y g x
A .是奇函数
试卷类型: A 2017-2018 年广州市普通高中毕业班综合测
试(二) 数学(理科)
4 本试卷共 4 页, 21 小题, 满分 150 分. 考试用时 120 分钟 .
注意事项: 1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的 姓名和考生号、试室号、座位号填写在答题卡上 . 用 2B 铅笔将试卷类型( A)填涂在答题卡相应位置上 .
2018届广州市高三年级调研测试(理科数学)试题及答案
秘密 ★ 启用前 试卷类型: A2018届广州市高三年级调研测试理科数学2017.12 本试卷共5页,23小题, 满分150分。
考试用时120分钟。
注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用2B 铅笔在答题卡的相应位置填涂考生号。
2.作答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
写在本试卷上无效。
3.第Ⅱ卷必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,0,1,2,3A =-,{}230B x x x =->,则A B =IA .{}1-B .{}1,0-C .{}1,3-D .{}1,0,3-2.若复数z 满足()12i 1i z +=-,则z =A .25B .35CD3.在等差数列{}n a 中,已知22a =,前7项和756S =,则公差d =A .2B .3C .2-D .3-4.已知变量x ,y 满足202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,,,则2z x y =+的最大值为A .0B .4C .5D .65.912x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数为A .212-B .92-C .92D .2126.在如图的程序框图中,()i f x '为()i f x 的导函数,若0()sin f x x =,则输出的结果是 A .sin x -B .cos xC .sin xD .cos x -7.正方体1111ABCD A B C D -的棱长为2,点M 为1CC 的中点,点N 为线段1DD 上靠近1D 的三等分点,平面BMN 交1AA 于点Q ,则AQ 的长为 A .23B .12C .16D .138.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为A .ln 2B .1C .1ln 2-D .1ln 2+9.某学校获得5个高校自主招生推荐名额,其中甲大学2名,乙大学2名,丙大学1名,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有 A .36种B .24种C .22种D .20种10()0ϕϕ>个单位,所得图象对应的函数恰为奇函数,则ϕ的最小值为 A .6πB .12πC .4π D .3π 11.在直角坐标系xOy 中,设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,P 为双曲线C 的右支上一点,且△OPF 为正三角形,则双曲线C 的离心率为 ABC.1 D.2+12.对于定义域为R 的函数()f x ,若满足① ()00f =;② 当x ∈R ,且0x ≠时,都有()0xf x '>;③ 当120x x <<,且12x x =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.现给出四个函数:()32132f x x x =-+;()2e 1xf x x =--;()()3ln 1,0,0;2,x x f x x x ⎧-+≤⎪= ⎨>⎪⎩()411,0,2120,0.xx x f x x ⎛⎫+≠ ⎪-⎝⎭=⎧⎪=⎨⎪⎩则其中是“偏对称函数”的函数个数为A .0B .1C .2D .3二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(),2x x =-a ,()3,4=b ,若a b P ,则向量a 的模为________. 14.在各项都为正数的等比数列{}n a 中,若20182a =,则2017201912a a +的最小值为________. 15.过抛物线C :22(0)y px p => 的焦点F 的直线交抛物线C 于A ,B 两点.若6AF =,3BF =,则p 的值为________.16.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的表面积为________.三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答. (一)必考题:共60分.17.(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足2a =,cos (2)cos a B c b A =-. (1)求角A 的大小;(2)求△ABC 周长的最大值.18.(本小题满分12分)如图,已知多面体PABCDE 的底面ABCD 是边长为2的菱形,EDBCA PPA ⊥底面ABCD ,ED PA P ,且22PA ED ==.(1)证明:平面PAC ⊥平面PCE ;(2)若直线 PC 与平面ABCD 所成的角为o45,求二面角D CE P --的余弦值.19.(本小题满分12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:周光照量X (单位:小时) 3050X << 5070X ≤≤ 70X >光照控制仪最多可运行台数321若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以过去50周的周光照量的频率作为周光照量发生的概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?附:相关系数公式∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20.(本小题满分12分)如图,在直角坐标系xOy 中,椭圆C :22221y x a b+=()0a b >>的上焦点x y (百斤)54386542(千克)O为1F ,椭圆C 的离心率为12,且过点1,3⎛ ⎝⎭. (1)求椭圆C 的方程;(2)设过椭圆C 的上顶点A 的直线l 与椭圆C 交于点B (B 不在y 轴上),垂直于l 的直线与l 交于点M ,与x 轴交于点H ,若110F B F H •=u u u r u u u u r ,且MO MA =,求直线l 的方程.21.(本小题满分12分)已知函数()ln bf x a x x=+()0a ≠.(1)当2b =时,若函数()f x 恰有一个零点,求实数a 的取值范围;(2)当0a b +=,0b >时,对任意121,,e e x x ⎡⎤∈⎢⎥⎣⎦,有()()12e 2f x f x -≤-成立,求实数b 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为cos 2sin x y αα=⎧⎨=⎩,(α为参数),将曲线1C 经过伸缩变换2x x y y'=⎧⎨'=⎩,后得到曲线2C .在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为cos sin 100ρθρθ--=.(1)说明曲线2C 是哪一种曲线,并将曲线2C 的方程化为极坐标方程;(2)已知点M 是曲线2C 上的任意一点,求点M 到直线l 的距离的最大值和最小值. 23.(本小题满分10分)选修4-5:不等式选讲已知函数()||f x x a =+. (1)当1=a 时,求不等式()211f x x ≤+-的解集;(2)若函数()()3g x f x x =-+的值域为A ,且[]2,1A -⊆,求a 的取值范围.2018届广州市高三年级调研测试 理科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一.选择题二.填空题13.10 14.4 15.4 16.11π三、解答题17.(1)解法1:由已知,得cos cos 2cos a B b A c A +=.错误!未找到引用源。
2018年广东省广州市高考数学二模试卷(理科)(解析版)
A.18+π 9. (5 分) 已知 x=
B.18+2π
C.16+π
D.16+2π ) <f (π ) ,
是函数 f (x) =sin (2x+φ) 的图象的一条对称轴, 且f (
第 2 页(共 21 页)
则 f(x)的单调递增区间是( A.[kπ+ ,kπ+ ](k∈Z)
) B.[kπ D.[kπ ,kπ+ ](k∈Z)
第 3 页(共 21 页)
题:共 60 分. 17. (12 分)已知各项均为正数的数列{an}满足 其中 n∈N*. (1)证明数列{an}是等比数列,并求其通项公式; (2)令 bn=nan,求数列{bn}的前 n 项和 Sn. 18. (12 分)如图,已知三棱柱 ABC﹣A1B1C1 的底面是边长为 1 的正三角形,A1A=A1C, 侧面 A1ACC1⊥底面 ABC,直线 A1B 与平面 A1ACC1 所成角为 60°. (1)证明:A1A⊥A1C; (2)求二面角 A﹣A1B﹣C 的余弦值. = +2anan+1,且 a2+a4=3(a3+3) ,
19. (12 分)某工厂生产的 A 产品按每盒 10 件包装,每盒产品需检验合格后方可出厂,检 验方案是:从每盒 10 件产品中任取 4 件,4 件都做检验,若 4 件都为合格品,则认为该 盒产品合格且其余产品不再检验;若 4 件中次品数多于 1 件,则认为该盒产品不合格且 其余产品不再检验;若 4 件中只有 1 件次品,则把剩余的 6 件采用一件一件抽取出来检 验,没有检验出次品则认为该盒产品合格,检验出次品则认为该盒产品不合格且停止检 验.假设某盒 A 产品中有 8 件合格品,2 件次品. (1)求该盒 A 产品可出厂的概率; (2)已知每件产品的检验费用为 10 元,且抽取的每件都需要检验,设该盒 A 产品的检验 费用为 X(单位:元) . (ⅰ)求 P(X=40) ; (ⅱ)求 X 的分布列和数学期望 EX. 20. (12 分)已知 O 为坐标原点,点 R(0,2) ,F 是抛物线 C:x =2py(p>0)的焦点, |RF|=3|OF|. (1)求抛物线 C 的方程; (2)过点 R 的直线 l 与抛物线 C 相交于 A,B 两点,与直线 y=﹣2 交于点 M,抛物线 C 在
最新届广州市高三二模数学(理)
2018年广州市普通高中毕业班综合测试(二)数 学(理科)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、若112z =+i , 21z =-i,则12z z =( )A .6BCD2、已知集合{}2,M x x x =∈Z ≤,{}2230N x x x =--<,则MN =( )A .(]1,2-B .[]1,2- C .{}0,2D .{}0,1,23、执行如图的程序框图, 若输出32y =, 则输入x 的值为()A .2log 31-B .21log 3-C .21log 3- D4、若双曲线2222:1x y C a b-=()0,0a b >>的渐近线与圆()2221x y -+=相切,则C 的渐近线方程为( )A .13y x =±B .3y x =±C .y = D.3y x =±5、根据下图给出的2000年至2016年我国实际利用外资情况,以下结论正确的是( )A .2000年以来我国实际利用外资规模与年份负相关B .2010年以来我国实际利用外资规模逐年增加C .2008年我国实际利用外资同比增速最大D .2010年我国实际利用外资同比增速最大6、若αβ,为锐角,且π2πcos sin 63αβ⎛⎫⎛⎫-=+ ⎪⎪⎝⎭⎝⎭,则( ) A .3π=+βα B .6π=+βα C .3π=-βα D .6π=-βα7、已知椭圆()2222:10x y C a b a b+=>>的左焦点为F ,直线y =与C 相交于,A B 两点,且AF BF ⊥,则C 的离心率为( )A .12B 1C .12D 18、某几何体由长方体和半圆柱体组合而成,如图,网格纸上小正方形的边长为1,粗线画出的是该几何体的三视图,则该几何体的表面 积是( )A .18+πB .182+πC .16+πD .162+π9、已知x =6π是函数()()sin 2f x x ϕ=+的图象的一条对称轴,且()ππ2f f ⎛⎫⎪⎝⎭<, 则()f x 的单调递增区间是( )A .π2ππ,π()63k k k ⎡⎤++∈⎢⎥⎣⎦ZB .πππ,π()36k k k ⎡⎤-+∈⎢⎥⎣⎦ZC .ππ,π()2k k k ⎡⎤+∈⎢⎥⎣⎦ZD .ππ,π()2k k k ⎡⎤-∈⎢⎥⎣⎦Z10、已知函数()f x =e 2x x +-的零点为a ,函数()ln 2g x x x =+-的零点为b ,则下列不等式中成立的是( ) A .e ln 2a b +>B .e ln 2a b +<C .223a b +<D .1ab >11的三棱锥P ABC -的顶点都在球O 的球面上,PA ⊥平面ABC , 2=PA ,120ABC ︒∠=,则球O 的体积的最小值为( )A .3π B .3π C .3D .3π 12、已知直线l 与曲线32113y x x x =-++有三个不同交点()()1122,,,,A x y B x y ()33,C x y ,且AB AC =,则()31=+∑i i i x y =( )A .4B .5C .6D .7二、填空题:本题共4小题,每小题5分,共20分.13、已知向量a 与b 的夹角为4π,2,==a b ()⊥+λa a b ,则实数λ= .14、古希腊著名的毕达哥拉斯学派把1,3,6,10,…这样的数称为“三角形数”,而把1,4,9,16,… 这样的数称为“正方形数”.如图,可以发现任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和,下列等式:①361521=+;②491831=+;③642836=+; ④813645=+中符合这一规律的等式是 .(填写所有正确结论的编号)……15、622x y x ⎛⎫-+ ⎪⎝⎭的展开式中,33x y 的系数是 .(用数字作答)16、已知等边三角形ABC 的边长为4,其外接圆圆心为点O ,点P 在△ABC 内,且1OP =,BAP θ∠=,当△APB 与△APC 的面积之比最小时,sin θ的值为 .三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答.(一)必考题:共60分.17、(本小题满分12分)已知各项均为正数的数列{}n a 满足221132n n n n a a a a ++=+,且()24333a a a +=+,其中n ∈N *.(1)证明数列{}n a 是等比数列,并求其通项公式; (2)令n n b na =, 求数列{}n b 的前n 项和n S .18、(本小题满分12分)如图,已知三棱柱111ABC A B C -的底面是边长为1的正三角形,11A A A C =,侧面11A ACC ⊥底面ABC ,直线1A B 与平面11A ACC 所成角为60︒.(1)证明: 11A A A C ⊥;(2)求二面角1A A B C --的余弦值.A 1C 1B 1 CBA19、(本小题满分12分)某工厂生产的A 产品按每盒10件包装,每盒产品需检验合格后方可出厂,检验方案是:从每盒10件产品中任取4件,4件都做检验,若4件都为合格品, 则认为该盒产品合格且其余产品不再检验;若4件中次品数多于1件,则认为该盒产品 不合格且其余产品不再检验;若4件中只有1件次品,则把剩余的6件采用一件一件抽取 出来检验,没有检验出次品则认为该盒产品合格,检验出次品则认为该盒产品不合格 且停止检验.假设某盒A 产品中有8件合格品,2件次品. (1)求该盒A 产品可出厂的概率;(2)已知每件产品的检验费用为10元,且抽取的每件都需要检验,设该盒A 产品的检验费用为X (单位:元). (ⅰ)求()40P X =;(ⅱ)求X 的分布列和数学期望EX .20、(本小题满分12分)已知O 为坐标原点,点()0,2R ,F 是抛物线()2:20C x py p =>的焦点,3RF OF =. (1)求抛物线C 的方程;(2)过点R 的直线l 与抛物线C 相交于,A B 两点,与直线2y =-交于点M ,抛物线C在点A ,B 处的切线分别记为12,l l ,1l 与2l 交于点N ,若△MON 是等腰三角形,求直线l 的方程.21、(本小题满分12分)已知函数()f x =e 2x x ax --. (1)若函数()f x 在R 上单调递增,求a 的取值范围;(2)若1a =,证明:当0x >时,()2ln 2ln 2122f x ⎛⎫>-- ⎪⎝⎭.参考数据: e 2.71828≈,ln 20.69≈.(二)选考题:共10分.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题计分.22、(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程为11,2(,x t t y ⎧=-⎪⎪⎨⎪=⎪⎩为参数). 以坐标原点为极点, 以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为()()2212sin 0a a ρθ+=>. (1)求l 的普通方程和C 的直角坐标方程;(2)若l 与C 相交于A ,B 两点,且AB=,求a 的值.23、(本小题满分10分)选修4-5:不等式选讲已知函数()2121f x x x =++-,不等式()2f x ≤的解集为M . (1)求M ;(2)证明:当,a b M ∈时,1a b a b ++-≤.。
2018年广东省广州二中中考数学二模试卷(解析版)
2018年广东省广州二中中考数学二模试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项,只有一项是符合题目要求的)1.(3分)下列运算正确的是()A.B.C.﹣|﹣2|=2D.2.(3分)将两个全等的直角三角形纸片构成如下的四个图形,这四个图形中是中心对称图形的是()A.B.C.D.3.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010 4.(3分)把抛物线y=x2向右平移1个单位,所得抛物线的函数表达式为()A.y=x2+1B.y=(x+1)2C.y=x2﹣1D.y=(x﹣1)2 5.(3分)已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.6.(3分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°7.(3分)某县为发展教育事业,加强了对教育经费的投入,2015年投入3千万元,预计2017年投入5千万元.设教育经费的年平均增长率为x,则下面所列方程正确的是()A.3(1+x)2=5B.3x2=5C.3(1+x%)2=5D.3(1+x)+3(1+x)2=58.(3分)如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A.B.C.abπD.acπ9.(3分)如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B 等于()A.30°B.35°C.40°D.50°10.(3分)如图,在Rt△AOB中,两直角边OA,OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数y=的图象恰好经过斜边A′B的中点C,且S△AOB=4,tan∠ABO=,则k的值为()A.3B.4C.6D.8二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)使有意义的x的取值范围是.12.(3分)因式分解:a2b﹣b=.13.(3分)如图△ABC中,BE平分∠ABC,DE∥BC,若DE=2AD,AE=2,那么AC=.14.(3分)如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于.15.(3分)分式方程+=2的解是.16.(3分)如图,AB是⊙O的弦,AB=8,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)解方程组:.18.(9分)如图,点E,F是平行四边形ABCD的对角线AC上的点,CE=AF,求证:BE =DF.19.(10分)先化简,再求值:,其中a=2,b=﹣1.20.(10分)为测山高,在点A处测得山顶D的仰角为31°,从点A向山方向前进140米到达点B,在B处测得山顶D的仰角为62°(如图).(1)在所给的图②中尺规作图:过点D作DC⊥AB,交AB的延长线于点C;(2)山高DC是多少(结果取整数)?21.(12分)某完全中学(含初、高中)篮球队12名队员的年龄情况如下:(1)这个队队员年龄的众数是,中位数是,平均数是.(2)若把这个队队员年龄的分布情况绘成扇形统计图,请求出年龄为15岁的队员人数所对应的圆心角的度数.(3)为了检查队员们的训练水平,教练要从年龄为15岁的4名队员(用A、B、C、D 表示)中随机抽取2人,请用列表法或树形图法求出恰好选中B、D的概率.22.(12分)如图,四边形ABCD是正方形,点A的坐标是(0,1),点B的坐标是(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过A、C两点,两函数图象的另一个交点E的坐标是(m,3).(1)分别求出一次函数与反比例函数的解析式.(2)求出m的值,并根据图象回答:当x为何值时,一次函数的值大于反比例函数的值.(3)若点P是反比例函数图象上的一点,△AOP的面积恰好等于正方形ABCD的面积,求点P坐标.23.(12分)如图1,AB是⊙O的直径,AC是⊙O的切线.(1)连接BC,BC交⊙O于点E,连接AE.①若D为AC的中点,连接DE,证明:DE是⊙O的切线.②若BE=3EC,求tan∠ABC.(2)如图2,CF是圆O的另一条切线,F为切点,OC与圆O交于点G,求证:点G 是三角形ACF的内心.24.(14分)已知抛物线y=ax2+bx+c经过A(0,2),B(2,﹣2)两点.(1)用含a的式子表示b.(2)当a=﹣时,y=ax2+bc+c的函数值为正整数,求满足条件的x值.(3)若a>0,线段AB下方的抛物线上有一点E,求证:不管a取何值,当△EAB的面积最大时,E点的横坐标为定值.25.(14分)如图1,在矩形ABCD中,AB=4,AD=6,M是AD的中点,点E是线段AB 上一动点,连接EM并延长交直线CD于点F,过M作MN⊥EF,交射线BC于点N,连接NF,点P是线段NF的中点.(1)连接图1中的PM,PC,求证:PM=PC.(2)如图2,当点N与C重合时,求AE的长.(3)当点E从点A运动到点B时,求点P经过的路径长.2018年广东省广州二中中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项,只有一项是符合题目要求的)1.【解答】解:A、=2,此选项错误;B、()﹣2=4,此选项错误;C、﹣|﹣2|=﹣2,此选项错误;D、,此选项正确;故选:D.2.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.3.【解答】解:4 400 000 000=4.4×109,故选:B.4.【解答】解:原抛物线的顶点为(0,0),向右平移1个单位,那么新抛物线的顶点为(1,0);可设新抛物线的解析式为y=(x﹣h)2+k代入得:y=(x﹣1)2,故选:D.5.【解答】解:∵点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则有解得﹣2<a<1.故选:C.6.【解答】解:根据题意可知,两直线平行,内错角相等,∴∠1=∠3,∵∠3+∠2=45°,∴∠1+∠2=45°∵∠1=20°,∴∠2=25°.故选:B.7.【解答】解:设教育经费的年平均增长率为x,则2016的教育经费为:3×(1+x)2017的教育经费为:3×(1+x)2.那么可得方程:3(1+x)2=5.故选:A.8.【解答】解:由题意得底面直径为a,母线长为c,∴几何体的侧面积为acπ,故选:B.9.【解答】解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°;∴∠B=∠C=40°;故选:C.10.【解答】解:∵tan∠ABO==,∴设OA=x,则OB=2x,则S△ABO=OA•OB=x•2x=4,∴x=2,∴B(0,4),A'(4,2),∵点C为斜边A′B的中点,∴C(2,3),∴k=2×3=6;故选:C.二、填空题(本大题共6小题,每小题3分,满分18分)11.【解答】解:∵有意义,∴1﹣x≥0,解得:x≤1.故答案为:x≤1.12.【解答】解:a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1).故答案为:b(a+1)(a﹣1).13.【解答】解:∵DE∥BC,∴∠DEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DEB=∠DBE,∴DB=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴=,∴=,∴EC=4,∴AC=AE+EC=2+4=6,故答案为6.14.【解答】解:根据旋转的性质得到:BE′=DE=1,在直角△EE′C中:EC=DC﹣DE =2,CE′=BC+BE′=4.根据勾股定理得到:EE′===2.15.【解答】解:去分母得:1+x﹣1=2x﹣4,解得:x=4,经检验x=4是分式方程的解.故答案为:x=416.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=8,∴∠AC′B=45°,∴BC′=,∴MN最大=4.故答案为:4三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.【解答】解:①×3+②得:11x=11,即x=1,把x=1代入①得:y=﹣1,则方程组的解为.18.【解答】证明:∵四边形ABCD是平行四边形,∴CB=AD,CB∥AD,∴∠BCE=∠DAF,在△BCE和△DAF,,∴△BCE≌△DAF,∴BE=DF.19.【解答】解:====a﹣b,当a=2,b=﹣1时,原式=2﹣(﹣1)=2﹣+1=3﹣.20.【解答】解:(1)如图②,(2)如图②,∵∠DBC=62°,∠DAB=31°,∴∠BDA=∠DAB=31°,∴AB=DB,∵AB=140米,∴DB=140米,在Rt△DCB中,∠C=90°,sin∠DBC=,∴DC=140•sin62°≈124米.答:山高124米.21.【解答】解:(1)15岁出现了4次,次数最多,因而众数是:15;12个数,处于中间位置的都是16,因而中位数是:16.这个队队员的平均年龄=×(14×1+15×4+16×3+17×2+18×2)=16,故答案为15、16、16;(2)年龄为15岁的队员人数所对应的圆心角的度数360°×=120°;(3)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴恰好选中B、D的概率为=.22.【解答】解:(1)∵点A的坐标为(0,1),点B的坐标为(0,﹣2),∴AB=1+2=3,∵四边形ABCD为正方形,∴BC=AB=3,∴C(3,﹣2),把C(3,﹣2)代入y=,得k=3×(﹣2)=﹣6,∴反比例函数解析式为y=﹣;把C(3,﹣2),A(0,1)代入y=ax+b,得,解得,∴一次函数解析式为y=﹣x+1;(2)∵反比例函数y=﹣的图象过点E(m,3),∴m=﹣2,∴E点的坐标为(﹣2,3);由图象可知,当x<﹣2或0<x<3时,一次函数落在反比例函数图象上方,即当x<﹣2或0<x<3时,一次函数的值大于反比例函数的值;(3)设P(t,﹣),∵△AOP的面积恰好等于正方形ABCD的面积,∴×1×|t|=3×3,解得t=18或t=﹣18,∴P点坐标为(18,﹣)或(﹣18,).23.【解答】证明:(1)①连接OE,如图1所示∵AC是⊙O的切线,AB是⊙O的直径,∴∠CAB=∠AEB=∠AEC=90°,又∵D为AC中点,∴DE=CD=DA,∴∠DEA=∠DAE,∵OE=OA,∴∠OEA=∠EAO,∴∠DEA+∠OEA=∠DAE+∠EAO即∠DEO=∠DAO=90°,∵点E在⊙O上,∴DE与⊙O相切.②在直角△EAC与直角△EBA中,∵∠EAC+∠EAB=90°,∠EBA+∠EAB=90°,∴∠EAC=∠EBA,∴△EAC∽△EBA,∴=,EA2=EB•EC,设EC=1,则EB=3,EA2=EB•EC=3,EA=,∴tan∠ABC==.(2)如图2,连接AG,BG.∵AC,FC都是圆O的切线,∴AC=FC,AF⊥OC.∴OC平分∠ACO.又AC是圆O的切线,∴∠CAG=∠ABG.又AB是直径,∴∠AGB=90°.∴∠GAF=∠OGB.∵∠OGB=∠OBG,∴∠CAG=∠GAF.∴AG是∠CAF的角平分线,∴点G是三角形ACF的内心.24.【解答】解:(1)∵抛物线y=ax2+bx+c经过A(0,2),B(2,﹣2),∴,∴,即:b=﹣2a﹣2;(2)由(1)知,c=2,b=﹣2a﹣2,∵a=﹣,∴b=﹣1,∴抛物线解析式为y=﹣x2﹣x+2=﹣(x+1)2+,∵y=ax2+bc+c的函数值为正数,∴﹣(x+1)2+>0,∴(x+1)2﹣5<0,∴﹣﹣1<x<﹣1,∵y=ax2+bc+c的函数值为整数,即﹣(x+1)2+为整数,∴(x+1)2是奇数,∴x为偶数,∴x=﹣2或x=0;(3)由(1)知,c=2,b=﹣2a﹣2,∴抛物线的解析式为y=ax2﹣(2a+2)x+2,∵A(0,2),B(2,﹣2),∴直线AB的解析式为y=﹣2x+2,∵点E在线段AB下方的抛物线上,设点E(m,am2﹣(2a+2)m+2),过点E作y轴的平行线,交AB于F,∴F(m,﹣2m﹣2),∴EF=﹣2m﹣2﹣[am2﹣(2a+2)m+2]=﹣a(m﹣1)2+a,∴S△EAB=EF×|x B﹣x A|=EF=﹣a(m﹣1)2+a,∵a>0,∴﹣a<0,∴m=1时,△EAB面积最大,即:不管a取大于0的何值,当△EAB的面积最大时,E点的横坐标为定值,定值为1.25.【解答】解:(1)如图1中,连接PM、PC.∵四边形ABCD是矩形,∴∠FCN=90°,∵PF=FN,∴PC=FN,∵NM⊥EF,∴∠FMN=90°,∵FP=FN,∴PM=FN,∴PM=PC.(2)如图2中,连接EC,设AE=x.∵AB∥DF,∴∠AEM=∠F,∵AM=MD,∠AMD=∠DMF,∴△AME≌△DMF,∴AE=DF=x,EM=FM,∵NM⊥EF,∴EC=CF=4+x,在Rt△EBC中,∵EB2+BC2=EC2,∴(4﹣x)2+62=(x+4)2,∴x=.∴AE=.(3)如图3中,点P的运动轨迹是线段PP1.作PH⊥AD于H.当点E与A重合时,点P是矩形CDMN的中点,易知PH=2,DH=,当点E与B重合时,点P1在AD的延长线上,设BN1=F1N1=m,在Rt△CF1N1中,m2=(m﹣6)2+82,∴m=,∴CN1=﹣6=,∴DP1=CN1=,∴HP1=+=,在Rt△HPP1中,PP1==,∴点P的运动路径为.。
2018届广州市高三年级调研测试(理科数学)答案
4.只给整数分数.选择题不给中间分.
•选择题题号1源自2345
6
7
8
9
10
11
12
答案
A
C
B
B
A
A
D
D
B
A
C
C
.填空题
13.10
14.4
15.4
16.11
三、解答题
17.(1)解法1:由已知,得acosB bcosA 2c cos A.
由正弦定理,得si n AcosB si n BcosA 2si n Ceos A ,1分
即sin (A B) 2si nCcosA.
因为sin (A B) sin( C) si nC,
所以si nC 2si nCcosA.
因为si nC 0,所以cos A丄
2
因为0 A,所以A -.
3
2 2 2 2 2 2
解法2:由已知根据余弦定理,得aa c——2c bb c―—.
2ac2bc
即b2c2a2bc
因为BD P EF,所以EF平面PAC.5分
因为FE平面PCE,所以平面PAC平面PCE.6分
(2)解法1:因为直线PC与平面ABCD所成角为45°,
所以PCA45,所以AC PA2.7分
所以AC AB,故△ABC为等边三角形.
2018
理科数学试题答案及评分参考
评分说明:
1•本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内 容比照评分参考制订相应的评分细则.
2•对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度, 可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答 有较严重的错误,就不再给分.
广东省广州市2018届高三4月综合测试(二模)数学理试题(答案打印版)
2 π 2π 或 sin sin ,所以 + 3 3 6 3 3
F O
A
π 2 ,解得 或 0 (舍去) + 3 3 3
F2
7.解析:如图,设椭圆的右焦点为 F2 ,连结 AF2 ,由对称性可知 AF AF2 ,在 Rt△AFF2 中, AO 为 斜边 FF2 上的中线,所以 AO FO F2O ,又 AOF2 60 ,所以 AF2 F 60, AFF2 30 ,所 以 AF2 : AF : FF2 1: 3 : 2 ,所以离心率 e 8.解析:直观图如图所示,其表面积
2018 年广州市普通高中毕业班综合测试(二)理科数学参考答案
1 B 13 2 D 3 A 4 B 14 5 C 6 C 7 D 15 8 A 9 B 10 C 16 11 B 12 D
2
①③④
120
13 3 8
1. 解析: z1 z2 z1 z2
5 2 10
2.解析: M {2, 1, 0,1, 2}, N {x | ( x 1)( x 3) 0} {x | 1 x 3}, M N {0,1, 2} 3.解析: y
2 log 2 x, x 1 2 ,
x
x
x ≤1
,所以当 x 1 时, y 2 log 2 x
3 1 , log 2 x , x 2 1 , 2 2
当 x ≤ 1 时,y 2
3 3 , x log 2 log 2 3 log 2 2 log 2 3 1 1 , 所以输入 x 的值为 log 2 3 1 或 2 . 2 2
2018年广州二模理科数学试题(含详细答案)
2018年广州二模理科数学试题(含详细答案)2018年广州市普通高中毕业班综合测试(二)理科数学试卷,共5页,23小题,满分150分,考试用时120分钟。
注意事项:1.在答题卡上填写姓名、考生号、试室号和座位号,并用2B铅笔填涂考生号。
2.选择题用2B铅笔在答题卡上填涂,填涂错误需用橡皮擦干净。
3.填空题和解答题必须使用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡指定区域内,不得使用铅笔和涂改液。
4.必须保持答题卡整洁,考试结束后将试卷和答题卡一并交回。
一、选择题:共12小题,每小题5分,共60分。
1.已知z1=1+2i,z2=1-i,则z1z2=6.2.已知集合M={x|x≤2,x∈Z},N={x|x-2x-3<0},则M=[-1,2]。
3.执行如图所示的程序框图,若输出y=3,则输入x的值为2.4.已知C: (x^2/a^2)-(y^2/b^2)=1(a>0,b>0)的渐近线与圆(x-2)^2+y^2=1相切,则C的渐近线方程为y=±(x/3)。
5.根据图表,结论B“2010年以来我国实际利用外资规模逐年增加”是正确的。
6.已知cos(α)+cos(β)=1/2,sin(α)+sin(β)=√3/2,则α-β=π/3.7.已知椭圆C: (x^2/16)+(y^2/9)=1,点P(4,1)在C上,则点P关于x轴的对称点P'的坐标为(4,-1)。
二、填空题:共6小题,每小题5分,共30分。
8.已知函数f(x)=x^3+ax^2+bx+c,当x=1时,f(x)=0,f'(1)=0,f''(1)=2,则a=-3,b=3,c=-1.9.已知向量a=2i+j,b=i+2j,则|a-b|=√10.10.已知函数f(x)在区间[0,1]上具有二阶连续导数,且f(0)=f(1)=0,f''(x)+2f'(x)+f(x)=0,则f(x)=e^(-x)(x^2-2x)。