2014-2015高三期中考试数学理科
2014-2015学年四川省成都市新津中学高三(上)期中数学试卷和答案(理科)
2014-2015学年四川省成都市新津中学高三(上)期中数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知集合M={y|y=()x,x∈R},N={1,0,﹣1},则M∩N=()A.{1,0,﹣1}B.{1,﹣1}C.{1,0}D.{1}2.(5分)设a,b∈R,i是虚数单位,则“ab=0”是“复数为纯虚数”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)设α是第二象限角,P(x,4)为其终边上的一点,且cosα=x,则tanα=()A.B.C.D.4.(5分)若命题p1:y=log2014[(2﹣x)(2+x)]为偶函数;若命题p2:y=log2014为奇函数,则下列命题为假命题的是()A.p1∧p2B.p1∨¬p2C.p1∨p2D.p1∧¬p25.(5分)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是()A.8 B.C.10 D.6.(5分)已知正项等比数列{a n}满足a7=a6+2a5.若存在两项a m,a n使得,则的最小值为()A.B.C.D.7.(5分)如图所示的算法中,令a=tanθ,b=sinθ,c=cosθ,若在集合中,给θ取一个值,输出的结果是sinθ,则θ值所在范围是()A.B.C.D.8.(5分)函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式e x•f(x)>e x+1的解集为()A.{x|x>0}B.{x|x<0}C.{x|x<﹣1,或x>1}D.{x|x<﹣1,或0<x<1}9.(5分)O为平面上的定点,A、B、C是平面上不共线的三点,若,则△ABC是()A.以AB为底边的等腰三角形B.以BC为底边的等腰三角形C.以AB为斜边的直角三角形D.以BC为斜边的直角三角形10.(5分)已知直线(1﹣λ)x+(3λ+1)y﹣4=0(λ∈R)所过定点恰好落在曲线f(x)=上,若函数h(x)=f(x)﹣mx+2有三个不同的零点,则实数m的范围是()A.(,1)B.(﹣∞,)∪(1,+∞)C.(﹣∞,)∪[1,+∞)D.(,1]二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)(1﹣)4展开式中的系数是.12.(5分)已知向量与的夹角为,且,若,则实数λ=.13.(5分)两个等差数列的前n项和之比为,则它们的第7项之比为.14.(5分)函数y=x﹣2sinx在[0,π]上的递增区间是.15.(5分)若a,b是任意非零的常数,对于函数y=f(x)有以下5个命题:①f(x)是T=2a的周期函数的充要条件是f(x+a)=f(x﹣a);②f(x)是T=2a的周期函数的充要条件是f(x+a)=﹣f(x);③若f(x)是奇函数且是T=2a的周期函数,则f(x)的图形关于直线对称;④若f(x)关于直线对称,且f(x+a)=﹣f(x),则f(x)是奇函数;⑤若f(x)关于点(a,0)对称,关于直线x=b对称,则f(x)是T=4(a﹣b)的周期函数.其中正确命题的序号为.三、解答题(共6小题,满分75分.其中16-19每题12分,20题12分,21题14分)16.(12分)已知数列{a n}满足a1=,且a n+1=(n∈N+).(1)证明数列是等差数列,并求数列{a n}的通项公式;(2)设b n=a n a n+1(n∈N+),数列{b n}的前n项和记为T n,证明:T n<.17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c.已知.(Ⅰ)求角A的大小;(Ⅱ)求sinBsinC的最大值.18.(12分)某班的数学研究性学习小组有9名成员,在暑假中各自都进行了小课题研究活动,其中参加活动一次的为2人,参加活动两次的为3人,参加活动三次的为4人.(1)从中人选3人,求这3人参加活动次数各不相同的概率;(2)从中任选2人,求这2人参加活动次数之和的随机变量ξ的分布列和期望.19.(12分)如图四棱锥P﹣ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在AD上且AG=GD,BG⊥GC,GB=GC=2,E是BC的中点,四面体P﹣BCG的体积为.(1)求二面角P﹣BC﹣D的正切值;(2)求直线DP到平面PBG所成角的正弦值;(3)在棱PC上是否存在一点F,使异面直线DF与GC所成的角为60°,若存在,确定点F的位置,若不存在,说明理由.20.(13分)已知椭圆(a>b>0)的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为.(Ⅰ)求椭圆M的方程;(Ⅱ)设直线l与椭圆M交于A,B两点,且以AB为直径的圆过椭圆的右顶点C,求△ABC面积的最大值.21.(14分)设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=,g(x)=f(x)+f′(x).(Ⅰ)求g(x)的单调区间和最小值;(Ⅱ)讨论g(x)与的大小关系;(Ⅲ)是否存在x0>0,使得|g(x)﹣g(x0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.2014-2015学年四川省成都市新津中学高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知集合M={y|y=()x,x∈R},N={1,0,﹣1},则M∩N=()A.{1,0,﹣1}B.{1,﹣1}C.{1,0}D.{1}【解答】解:,则M∩N={1}.故选:D.2.(5分)设a,b∈R,i是虚数单位,则“ab=0”是“复数为纯虚数”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:因为“ab=0”得a=0或b=0,只有a=0,并且b≠0,复数为纯虚数,否则不成立;复数=a﹣bi为纯虚数,所以a=0并且b≠0,所以ab=0,因此a,b∈R,i是虚数单位,则“ab=0”是“复数为纯虚数”的必要不充分条件.故选:B.3.(5分)设α是第二象限角,P(x,4)为其终边上的一点,且cosα=x,则tanα=()A.B.C.D.【解答】解:由题意可得x<0,r=|OP|=,故cosα==.再由可得x=﹣3,∴tanα==﹣,故选:D.4.(5分)若命题p1:y=log2014[(2﹣x)(2+x)]为偶函数;若命题p2:y=log2014为奇函数,则下列命题为假命题的是()A.p1∧p2B.p1∨¬p2C.p1∨p2D.p1∧¬p2【解答】D解:函数y=log2014[(2﹣x)(2+x)],定义域均为(﹣2,2),对f(x)=log2014[(2﹣x)(2+x)],f(﹣x)=log2014[(2+x)(2﹣x)]=f(x),∴y=log2014[(2﹣x)(2+x)]为偶函数,即命题p1为真命题;对于函数,,∴为奇函数,命题p2为真命题;则有:命题p1∧(¬p2)中,p1为真命题,¬p2为假命题,“且”命题为假命题.故选:D.5.(5分)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是()A.8 B.C.10 D.【解答】解:三视图复原的几何体是一个三棱锥,如图,四个面的面积分别为:8,6,,10,显然面积的最大值,10.故选:C.6.(5分)已知正项等比数列{a n}满足a7=a6+2a5.若存在两项a m,a n使得,则的最小值为()A.B.C.D.【解答】解:设等比数列的公比为q(q>0),则∵a7=a6+2a5,∴a5q2=a5q+2a5,∴q2﹣q﹣2=0,∴q=2,∵存在两项a m,a n使得,∴a m a n=16a12,∴q m+n﹣2=16,∴m+n=6∴=(m+n)()=(10+)m=1,n=5时,=;m=2,n=4时,=.∴的最小值为,故选:B.7.(5分)如图所示的算法中,令a=tanθ,b=sinθ,c=cosθ,若在集合中,给θ取一个值,输出的结果是sinθ,则θ值所在范围是()A.B.C.D.【解答】解:程序框图的功能是求a,b,c的最大值∵输出的结果是sinθ,∴sinθ最大即解得故选:D.8.(5分)函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式e x•f(x)>e x+1的解集为()A.{x|x>0}B.{x|x<0}C.{x|x<﹣1,或x>1}D.{x|x<﹣1,或0<x<1}【解答】解:令g(x)=e x•f(x)﹣e x,则g′(x)=e x•[f(x)+f′(x)﹣1]∵对任意x∈R,f(x)+f′(x)>1,∴g′(x)>0恒成立即g(x)=e x•f(x)﹣e x在R上为增函数又∵f(0)=2,∴g(0)=1故g(x)=e x•f(x)﹣e x>1的解集为{x|x>0}即不等式e x•f(x)>e x+1的解集为{x|x>0}故选:A.9.(5分)O为平面上的定点,A、B、C是平面上不共线的三点,若,则△ABC是()A.以AB为底边的等腰三角形B.以BC为底边的等腰三角形C.以AB为斜边的直角三角形D.以BC为斜边的直角三角形【解答】解:设BC的中点为D,∵,∴•(2﹣2)=0,∴•2=0,∴⊥,故△ABC的BC边上的中线也是高线.故△ABC是以BC为底边的等腰三角形,故选:B.10.(5分)已知直线(1﹣λ)x+(3λ+1)y﹣4=0(λ∈R)所过定点恰好落在曲线f(x)=上,若函数h(x)=f(x)﹣mx+2有三个不同的零点,则实数m的范围是()A.(,1)B.(﹣∞,)∪(1,+∞)C.(﹣∞,)∪[1,+∞)D.(,1]【解答】解:依题意,直线为(x+y﹣4)﹣λ(x﹣3y)=0,联立,解得,故定点为(3,1),log a3=1,∴a=3,.令h(x)=f(x)﹣mx+2=0,故f(x)=mx﹣2.则f(x)的图象与g(x)=mx﹣2的图象有三个不同的交点.作图,得关键点A(0,﹣2),B(3,1),C(4,0),可知g(x)=mx﹣2应介于直线AB与直线AC之间.由k AB=1,,故.故选:A.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)(1﹣)4展开式中的系数是﹣16.【解答】解:的通项为,令r=1,可得的系数是﹣16,故答案为:﹣16.12.(5分)已知向量与的夹角为,且,若,则实数λ=1.【解答】解:∵,∴∵∴(2)=2∴2﹣2λ=0∴λ=1故答案为:113.(5分)两个等差数列的前n项和之比为,则它们的第7项之比为3:1.【解答】解:设这两个等差数列的前n项和分别为S n,T n,由题意知===3,故答案为:3:114.(5分)函数y=x﹣2sinx在[0,π]上的递增区间是[,π] .【解答】解:y′=1﹣2cosx,由y′=0解得x=,当0≤x<时,1﹣2cosx<0,∴函数y=x﹣2sinx在[0,]上递减;当<x≤π时,1﹣2cosx>0,∴函数y=x﹣2sinx在[,π]上递增;故答案为:[,π].15.(5分)若a,b是任意非零的常数,对于函数y=f(x)有以下5个命题:①f(x)是T=2a的周期函数的充要条件是f(x+a)=f(x﹣a);②f(x)是T=2a的周期函数的充要条件是f(x+a)=﹣f(x);③若f(x)是奇函数且是T=2a的周期函数,则f(x)的图形关于直线对称;④若f(x)关于直线对称,且f(x+a)=﹣f(x),则f(x)是奇函数;⑤若f(x)关于点(a,0)对称,关于直线x=b对称,则f(x)是T=4(a﹣b)的周期函数.其中正确命题的序号为①④⑤.【解答】解:f(x+a)=f(x﹣a)时,f(x+2a)=f(x),f(x)是T=2a的周期函数f(x)是T=2a的周期函数时,f(x+a)=f(x﹣a)一定成立,故①正确;当f(x+a)=﹣f(x)时,f(x+2a)=f(x),f(x)是T=2a的周期函数f(x)是T=2a的周期函数时,f(x+a)=﹣f(x)不一定成立,故f(x)是T=2a的周期函数的充分条件是f(x+a)=﹣f(x),故②错误;若f(x)是奇函数且是T=2a的周期函数,则f(x)的图形不一定是轴对称图象,故③错误;若f(x)关于直线对称,则f(a+x)=f(x),又由f(x+a)=﹣f(x),可得f (x)=﹣f(﹣x),即f(x)是奇函数,故④正确;函数f(x)是以4(m﹣a)为周期的周期函数.由条件图象关于点(a,0)对称,故﹣f(x)=f(2a﹣x),又图象关于直线x=b对称,f(2b﹣x)=f(x),所以,﹣f(2b﹣x)=f(2b﹣x),即﹣f(x)=f(2a﹣2b+x).由﹣f(x)=f(2a﹣2b+x)得:﹣f(2a﹣2b+x)=f(4a﹣4b+x),∴﹣(﹣f(x))=f(4a﹣4b+x),因此,f[4(a﹣b)+x]=f(x),所以,f(x)是以4(a﹣b)为周期的函数.故⑤正确故答案为:①④⑤三、解答题(共6小题,满分75分.其中16-19每题12分,20题12分,21题14分)16.(12分)已知数列{a n}满足a1=,且a n+1=(n∈N+).(1)证明数列是等差数列,并求数列{a n}的通项公式;(2)设b n=a n a n+1(n∈N+),数列{b n}的前n项和记为T n,证明:T n<.【解答】(1)证明:∵数列{a n}满足a1=,且a n+1=(n∈N+),∴=+3,∴=3,又,∴{}是首项为2,公差为3的等差数列.∴=2+(n﹣1)×3=3n﹣1,∴.(2)b n=a n a n+1==,∴T n===.∴T n<.17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c.已知.(Ⅰ)求角A的大小;(Ⅱ)求sinBsinC的最大值.【解答】解:(Ⅰ)∵=﹣,∴由正弦定理可得:=﹣,整理得:cosAsinB+2cosAsinC=﹣sinAcosB,即2cosAsinC=﹣sin(A+B),∴2cosAsinC=﹣sinC,∴cosA=﹣,又A为三角形的内角,则A=;(Ⅱ)由余弦定理得:a2=b2+c2﹣2bccosA=b2+c2+bc,①由正弦定理得:===,∴sinB=,sinC=,∴sinB•sinC=,②①代入②,sinB•si nC=≤=,当且仅当b=c时,sinBsinC取最大值.18.(12分)某班的数学研究性学习小组有9名成员,在暑假中各自都进行了小课题研究活动,其中参加活动一次的为2人,参加活动两次的为3人,参加活动三次的为4人.(1)从中人选3人,求这3人参加活动次数各不相同的概率;(2)从中任选2人,求这2人参加活动次数之和的随机变量ξ的分布列和期望.【解答】解:(1)从人中任选3人,一共有种不同选法,其中这3人的活动次数各不相同的选法有=24种,∴这3人参加活动次数各不相同的概率p==,(2)由题意知ξ=2,3,4,5,6,P(ξ=2)==,P(ξ=3)==,P(ξ=4)==,P(ξ=5)=,P(ξ=6)==.∴ξ的分布列为:Eξ==.19.(12分)如图四棱锥P﹣ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在AD上且AG=GD,BG⊥GC,GB=GC=2,E是BC的中点,四面体P﹣BCG的体积为.(1)求二面角P﹣BC﹣D的正切值;(2)求直线DP到平面PBG所成角的正弦值;(3)在棱PC上是否存在一点F,使异面直线DF与GC所成的角为60°,若存在,确定点F的位置,若不存在,说明理由.【解答】解:(1)∵BG⊥GC,GB=GC=2,四面体P﹣BCG的体积为,∴,解得PG=4,设二面角P﹣BC﹣D的大小为θ,∵GB=GC=2,E为中点,∴GE⊥BC,同理PE⊥BC,∴∠PEG=θ,∵BG⊥GC,GB=GC=2,∴EG==,∴tanθ===2.∴二面角P﹣BC﹣D的正切值为2.…(3分)(2)∵GB=GC=2,AG=GD,BG⊥GC,E是BC的中点,∴△BGC为等腰直角三角形,GE为∠BGC的角平分线,作DK⊥BG交BG的延长线于K,∵PG⊥平面ABCD,垂足为G,G在AD上,∴DK⊥面BPG∵∠DGK=∠BGA=45°,DK⊥GK,∴DK=GK,∵AG=GD,∴DK2+GK2=DG2=()2==,∴DK=CK=.∵PG=4,DG==,PG⊥DG,∴=,设直线DP与平面PBG所成角为α∵DK⊥面BPG∴∠DPK=α,∴,∴直线DP与平面PBG所成角的正弦值为.…(8分)(3)∵GB,GC,GP两两垂直,分别以GB,GC,GP为x,y,z轴建立坐标系假设F存在,设F(0,y,4﹣2y)(0<y<2),∵,∴,又直线DF与GC所成的角为60°∴,化简得:不满足0<y<2∴这样的点不存在.…(12分)20.(13分)已知椭圆(a>b>0)的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为.(Ⅰ)求椭圆M的方程;(Ⅱ)设直线l与椭圆M交于A,B两点,且以AB为直径的圆过椭圆的右顶点C,求△ABC面积的最大值.(Ⅰ)因为椭圆M上一点和它的两个焦点构成的三角形周长为,【解答】解:所以,又椭圆的离心率为,即,所以,…(2分)所以a=3,.所以b=1,椭圆M的方程为.…(3分)(Ⅱ)不妨设直线AB的方程x=ky+m.由消去x得(k2+9)y2+2kmy+m2﹣9=0,…(5分)设A(x1,y1),B(x2,y2),则有,.①…(6分)因为以AB为直径的圆过点C,所以.由,得(x1﹣3)(x2﹣3)+y1y2=0.…(7分)将x1=ky1+m,x2=ky2+m代入上式,得(k2+1)y1y2+k(m﹣3)(y1+y2)+(m﹣3)2=0.将①代入上式,解得或m=3(舍).…(8分)所以,令D是直线AB与X轴的交点,则|DC|=则有=.…(10分)设,则.取得最大值.…(12分)所以当时,S△ABC21.(14分)设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=,g(x)=f(x)+f′(x).(Ⅰ)求g(x)的单调区间和最小值;(Ⅱ)讨论g(x)与的大小关系;(Ⅲ)是否存在x0>0,使得|g(x)﹣g(x0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.【解答】解:(Ⅰ)由题设易知f(x)=lnx,g(x)=lnx+,∴g′(x)=,令g′(x)=0,得x=1,当x∈(0,1)时,g′(x)<0,故g(x)的单调递减区间是(0,1),当x∈(1,+∞)时,g′(x)>0,故g(x)的单调递增区间是(1,+∞),因此x=1是g(x)的唯一极值点,且为极小值点,从而是最小值点,∴最小值为g(1)=1;(Ⅱ)=﹣lnx+x,设h(x)=g(x)﹣=2lnx﹣x+,则h′(x)=,当x=1时,h(1)=0,即g(x)=,当x∈(0,1)∪(1,+∞)时,h′(x)<0,h′(1)=0,因此,h(x)在(0,+∞)内单调递减,当0<x<1,时,h(x)>h(1)=0,即g(x)>,当x>1,时,h(x)<h(1)=0,即g(x)<,(Ⅲ)满足条件的x0 不存在.证明如下:证法一假设存在x0>0,使|g(x)﹣g(x0)|<成立,即对任意x>0,有,(*)但对上述x0,取时,有lnx1=g(x0),这与(*)左边不等式矛盾,因此,不存在x0>0,使|g(x)﹣g(x0)|<成立.证法二假设存在x0>0,使|g(x)﹣g(x0)|成<成立.由(Ⅰ)知,的最小值为g(1)=1.又>lnx,而x>1 时,lnx 的值域为(0,+∞),∴x≥1 时,g(x)的值域为[1,+∞),从而可取一个x1>1,使g(x1)≥g(x0)+1,即g(x1)﹣g(x0)≥1,故|g(x1)﹣g(x0)|≥1>,与假设矛盾.∴不存在x0>0,使|g(x)﹣g(x0)|<成立.。
2014--2015高三数学期中考试理科题
2014――2015学年度第一学期期中考试高三数学(理)试题一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目要求的. 1.函数f(x)=ln(x 2-x)的定义域为( ) A.(0,1) B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞) 2.设a=sin 33°,b=cos 55°,c=tan 35°,则( ) A.a>b>c B.b>c>a C.c>b>a D.c>a>b 3.函数f(x)=log 21(x 2-4)的单调递增区间为( )A.(0,+∞)B.(-∞,0)C.(2,+∞)D.(-∞,-2) 4.已知函数f(x)=5|x|,g(x)=ax 2-x(a∈R).若f[g(1)]=1,则a=( ) A.1 B.2 C.3 D.-1 5.已知函数f(x)=则下列结论正确的是( )A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1,+∞)6.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=( ) A.0 B.1 C.2 D.37.定积分(2x+e x )dx 的值为( )A.e+2B.e+1C.eD.e-18.已知函数f(x)=ax 3-3x 2+1,若f(x)存在唯一的零点x 0,且x 0>0,则a的取值范围是( )A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1) 9.为了得到函数y=sin 3x+cos 3x 的图象,可以将函数y=2cos 3x 的图象( )A.向右平移4π个单位B.向左平移4π个单位C.向右平移12π个单位D.向左平移12π个单位10.已知函数f(x)=|x-2|+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k 的取值范围是( )A.B.C.(1,2)D.(2,+∞)二填空题:本大题共5小题,每小题5分.共25分.把答案填在题中的横线上.11.已知f(x)是定义在R 上且周期为3的函数,当x∈[0,3)时, f(x)=.若函数y=f(x)-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是 . 12.已知4a =2,lg x=a,则x= .13.函数f(x)=sin(x+2φ)-2sin φcos(x+φ)的最大值为 . 14.函数f(x)=log 2·lo(2x)的最小值为 .15.已知函数y=cos x 与y=sin(2x+φ)(0≤φ<π),它们的图象有一三、解答题(75分) (16)(本小题满分12分)已知函数21()cos (),()1sin 2122f x xg x x π=+=+。
【数学】2014-2015年江西省吉安一中高三(上)期中数学试卷与答案(理科)
2014-2015学年江西省吉安一中高三(上)期中数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.每小题只有一项是符合题目要求的)1.(5分)设M={x|x<4},N={x|x2<4},则()A.M⊊N B.N⊊M C.M⊆C R N D.N⊆C R M2.(5分)0(x﹣e x)dx=()A.﹣1﹣B.﹣1 C.﹣+D.﹣3.(5分)已知a,b∈R,则“log2a>log2b”是“()a<()b”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)若平面向量=(﹣1,2)与的夹角是180°,且||=3,则坐标为()A.(6,﹣3)B.(﹣6,3)C.(﹣3,6)D.(3,﹣6)5.(5分)已知等差数列{a n}中,a2+a14=16,a4=2,则S11的值为()A.15 B.33 C.55 D.996.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.7.(5分)已知直线l1:x+y=0,l2:kx﹣y+1=0,若l1到l2的夹角为60°,则k 的值是()A.或0 B.或0 C.D.8.(5分)若函数f(x)=(k﹣1)a x﹣a﹣x(a>0,a≠1)在R上既是奇函数,又是减函数,则g(x)=log a(x+k)的图象是()A.B.C.D.9.(5分)观察下列各式:72=49,73=343,74=2401,…,则72011的末两位数字为()A.01 B.43 C.07 D.4910.(5分)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|﹣|,其中O为原点,则实数a的值为()A.2 B.﹣2 C.2或﹣2 D.或﹣11.(5分)函数f(x)=x3+ax2+5x+6在区间[1,3]上为单调函数,则实数a的取值范围是()A.[﹣,]B.(﹣∞,﹣3)C.(﹣∞,﹣3][﹣,+∞)D.[﹣3,]12.(5分)已知函数f(x)是定义在R上不恒为零的函数,且对于任意实数a,b∈R,满足:f(ab)=af(b)+bf(a),f(2)=2,a n=(n∈N*),b n=(n∈N*).考察下列结论:①f(0)=f(1);②f(x)为偶函数;③数列{a n}为等比数列;④数列{b n}为等差数列.其中正确的结论共有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)在复平面内,复数对应的点位于第象限.14.(5分)已知函数f(x)=,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是.15.(5分)在计算“1×2+2×3+…+n(n+1)”时,某同学学到了如下一种方法:先改写第k项:k(k+1)=[k(k+1)(k+2)﹣(k﹣1)k(k+1)]由此得1×2=(1×2×3﹣0×1×2),2×3=(2×3×4﹣1×2×3)…n(n+1)=[n(n+1)(n+2)﹣(n﹣1)n(n+1)]相加,得1×2+2×3+…+n(n+1)=n(n+1)(n+2)类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”,其结果为.16.(5分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设=x,=y,对于函数y=f(x),给出以下三个结论:①当a=2时,函数f(x)的值域为[1,4];②∀a∈(0,+∞),都有f(1)=1成立;③∀a∈(0,+∞),函数f(x)的最大值都等于4.其中所有正确结论的序号是.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程)17.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.(Ⅰ)求A的大小;(Ⅱ)如果cosB=,b=2,求△ABC的面积.18.(12分)设命题P:关于x的不等式:|x﹣4|+|x﹣3|≥a的解集是R,命题Q:函数y=lg(ax2﹣2ax+1)的定义域为R,若P或Q为真,P且Q为假,求a 的取值范围.19.(12分)S n是等差数列{a n}的前n项和,a5=11,S5=35.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=a an(a是实常数,且a>0),求{b n}的前n项和T n.20.(12分)定义在R上的奇函数f(x)有最小正周期4,且x∈(0,2)时,.(1)求f(x)在[﹣2,2]上的解析式;(2)判断f(x)在(0,2)上的单调性,并给予证明;(3)当λ为何值时,关于方程f(x)=λ在[﹣2,2]上有实数解?21.(12分)已知圆O:x2+y2=4,点P为直线l:x=4上的动点.(Ⅰ)若从P到圆O的切线长为,求P点的坐标以及两条切线所夹劣弧长;(Ⅱ)若点A(﹣2,0),B(2,0),直线PA,PB与圆O的另一个交点分别为M,N,求证:直线MN经过定点(1,0).22.(12分)已知函数.(a为常数,a>0)(Ⅰ)若是函数f(x)的一个极值点,求a的值;(Ⅱ)求证:当0<a≤2时,f(x)在上是增函数;(Ⅲ)若对任意的a∈(1,2),总存在,使不等式f(x0)>m(1﹣a2)成立,求实数m的取值范围.2014-2015学年江西省吉安一中高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.每小题只有一项是符合题目要求的)1.(5分)设M={x|x<4},N={x|x2<4},则()A.M⊊N B.N⊊M C.M⊆C R N D.N⊆C R M【解答】解:N={x|x2<4}={x|﹣2<x<2},M={x|x<4},根据数轴易知N⊊M.故选:B.2.(5分)0(x﹣e x)dx=()A.﹣1﹣B.﹣1 C.﹣+D.﹣【解答】解:0(x﹣e x)dx=(x2﹣e x)=(0﹣1)﹣(﹣)=﹣;故选:C.3.(5分)已知a,b∈R,则“log2a>log2b”是“()a<()b”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:若“()a<()b”,则根据指数函数的单调性的性质可知a>b,当a,b由负值或等于0时,log2a>log2b不成立.若log2a>log2b,则a>b>0.此时“()a<()b”成立.∴“log2a>log2b”是“()a<()b”的充分不必要条件.故选:A.4.(5分)若平面向量=(﹣1,2)与的夹角是180°,且||=3,则坐标为()A.(6,﹣3)B.(﹣6,3)C.(﹣3,6)D.(3,﹣6)【解答】解:设=(x,y),由两个向量的夹角公式得cos180°=﹣1==,∴x﹣2y=15 ①,∵=3②,由①②联立方程组并解得x=3,y=﹣6,即=(3,﹣6),故选:D.5.(5分)已知等差数列{a n}中,a2+a14=16,a4=2,则S11的值为()A.15 B.33 C.55 D.99【解答】解:由等差数列{a n}中,a2+a14=16=2a8,可得a8=8,根据a8+a4=2a6,求出a6=5,故S11==11•a6=55,故选:C.6.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选:A.7.(5分)已知直线l1:x+y=0,l2:kx﹣y+1=0,若l1到l2的夹角为60°,则k 的值是()A.或0 B.或0 C.D.【解答】解:由已知方程可得直线l1和l2的斜率分别为,k,由夹角公式可得tan60°=,即=,解得k=或k=0故选:A.8.(5分)若函数f(x)=(k﹣1)a x﹣a﹣x(a>0,a≠1)在R上既是奇函数,又是减函数,则g(x)=log a(x+k)的图象是()A.B.C.D.【解答】解:∵函数f(x)=(k﹣1)a x﹣a﹣x(a>0,a≠1)在R上是奇函数,∴f(0)=0∴k=2,又∵f(x)=a x﹣a﹣x为减函数,所以1>a>0,所以g(x)=log a(x+2)定义域为x>﹣2,且递减,故选:A.9.(5分)观察下列各式:72=49,73=343,74=2401,…,则72011的末两位数字为()A.01 B.43 C.07 D.49【解答】解:根据题意,72=49,73=343,74=2401,则75在74的基础上再乘以7,所以末两位数字为07,进而可得76的末两位数字为49,77的末两位数字为43,78的末两位数字为01,79的末两位数字为07,…分析可得规律:n从2开始,4个一组,7n的末两位数字依次为49、43、01、07,则72011的与73对应,其末两位数字43;故选:B.10.(5分)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|﹣|,其中O为原点,则实数a的值为()A.2 B.﹣2 C.2或﹣2 D.或﹣【解答】解:由||=||得||2=||2,•=0,⊥,三角形AOB为等腰直角三角形,圆心到直线的距离为,即=,a=±2,故选C.11.(5分)函数f(x)=x3+ax2+5x+6在区间[1,3]上为单调函数,则实数a的取值范围是()A.[﹣,]B.(﹣∞,﹣3)C.(﹣∞,﹣3][﹣,+∞)D.[﹣3,]【解答】解:求导数可得:f′(x)=x2+2ax+5∵f(x)在[1,3]上为单调函数,∴f′(x)≤0或f′(x)≥0在[1,3]上恒成立.令f′(x)=0,即x2+2ax+5=0,则a=设g(x)=,则g′(x)=令g′(x)=0得:x=或x=﹣(舍去)∴当1≤x≤时,g′(x)≥0,当≤x≤3时,g′(x)≤0∴g(x)在(1,)上递增,在(,3)上递减,∵g(1)=﹣3 g(3)=﹣,g()=﹣∴g(x)的最大值为g()=﹣,最小值为g(1)=﹣3∴当f′(x)≤0时,a≤g(x)≤g(1)=﹣3当f′(x)≥0时,a≥g(x)≥g()=﹣∴a≤﹣3或a≥﹣故选:C.12.(5分)已知函数f(x)是定义在R上不恒为零的函数,且对于任意实数a,b∈R,满足:f(ab)=af(b)+bf(a),f(2)=2,a n=(n∈N*),b n=(n∈N*).考察下列结论:①f(0)=f(1);②f(x)为偶函数;③数列{a n}为等比数列;④数列{b n}为等差数列.其中正确的结论共有()A.1个 B.2个 C.3个 D.4个【解答】解:(1)对于任意实数a,b∈R,满足:f(ab)=af(b)+bf(a),f(0×0)=2f(0),f(0)=0,f(1×1)=2f(1),f(1)=0,故①f(0)=f(1)正确;(2)∵f[(﹣1)×(﹣1)]=﹣2f(﹣1),f(1)=﹣2f(﹣1)=0,f(﹣1)=0∴f(﹣x)=(﹣1)×f(x)+xf(﹣1)=﹣f(x),∴f(x)为奇函数,故②不正确;(3)根据f(ab)=af(b)+bf(a),得到:f(2)=2f(22)=2•22,f(23)=3×23,f(24)=f(22×22)=4×24,归纳得:f(2n)=n×2n,(n∈N*).∴a n==2n,∴==2=常数(n∈N*).③数列{a n}为等比数列正确;∵b n===n,(n∈N*).b n+1﹣b n=n+1﹣n=1=常数,(n∈N*).∴④数列{b n}为等差数列正确;所以①③④正确,故选:C.二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)在复平面内,复数对应的点位于第Ⅲ象限.【解答】解:===对应点坐标(),在第Ⅲ象限.故答案为:Ⅲ14.(5分)已知函数f(x)=,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是(﹣1,0).【解答】解:画出函数f(x)的图象(红色曲线),如图示:,令y=k,由图象可以读出:﹣1<k<0时,y=k和f(x)有3个交点,即方程f(x)=k有三个不同的实根,故答案为:(﹣1,0).15.(5分)在计算“1×2+2×3+…+n(n+1)”时,某同学学到了如下一种方法:先改写第k项:k(k+1)=[k(k+1)(k+2)﹣(k﹣1)k(k+1)]由此得1×2=(1×2×3﹣0×1×2),2×3=(2×3×4﹣1×2×3)…n(n+1)=[n(n+1)(n+2)﹣(n﹣1)n(n+1)]相加,得1×2+2×3+…+n(n+1)=n(n+1)(n+2)类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”,其结果为n(n+1)(n+2)(n+3).【解答】解:∵n(n+1)(n+2)=∴1×2×3=(1×2×3×4﹣0×1×2×3)2×3×4=(2×3×4×5﹣1×2×3×4)…n(n+1)(n+2)=∴1×2×3+2×3×4+…+n(n+1)(n+2)=[(1×2×3×4﹣0×1×2×3)+(2×3×4×5﹣1×2×3×4)+…+n×(n+1)×(n+2)×(n+3)﹣(n﹣1)×n ×(n+1)×(n+2)=故答案为:16.(5分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设=x,=y,对于函数y=f(x),给出以下三个结论:①当a=2时,函数f(x)的值域为[1,4];②∀a∈(0,+∞),都有f(1)=1成立;③∀a∈(0,+∞),函数f(x)的最大值都等于4.其中所有正确结论的序号是②③.【解答】解:如图所示,建立直角坐标系.∵在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),∴B(0,0),A(﹣2,0),D(﹣1,a),C(0,a).∵=x,(0≤x≤1).∴=(﹣2,0)+x(1,a)=(x﹣2,xa),∴==(0,a)﹣(x﹣2,xa)=(2﹣x,a﹣xa)∴y=f(x)==(2﹣x,﹣xa)•(2﹣x,a﹣xa)=(2﹣x)2﹣ax(a﹣xa)=(a2+1)x2﹣(4+a2)x+4.①当a=2时,y=f(x)=5x2﹣8x+4=,∵0≤x≤1,∴当x=时,f(x)取得最小值;又f(0)=4,f(1)=1,∴f(x)max=f(0)=4.综上可得:函数f(x)的值域为.因此①不正确.②由y=f(x)=(a2+1)x2﹣(4+a2)x+4.可得:∀a∈(0,+∞),都有f(1)=1成立,因此②正确;③由y=f(x)=(a2+1)x2﹣(4+a2)x+4.可知:对称轴x0=.当0<a≤时,1<x0,∴函数f(x)在[0,1]单调递减,因此当x=0时,函数f(x)取得最大值4.当时,0<x0<1,函数f(x)在[0,x0)单调递减,在(x0,1]上单调递增.又f(0)=4,f(1)=1,∴f(x)max=f(0)=4.因此③正确.综上可知:只有②③正确.故答案为:②③.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程)17.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.(Ⅰ)求A的大小;(Ⅱ)如果cosB=,b=2,求△ABC的面积.【解答】解:(Ⅰ)∵b2+c2=a2+bc,即b2+c2﹣a2=bc,∴cosA==,又A∈(0,π),∴A=;(Ⅱ)∵cosB=,B∈(0,π),∴sinB==,由正弦定理=,得a==3,∵b2+c2=a2+bc,即4+c2=9+2c,整理得:c2﹣2c﹣5=0,解得:c=1±,∵c>0,∴c=+1,=bcsinA=.则S△ABC18.(12分)设命题P:关于x的不等式:|x﹣4|+|x﹣3|≥a的解集是R,命题Q:函数y=lg(ax2﹣2ax+1)的定义域为R,若P或Q为真,P且Q为假,求a 的取值范围.【解答】解:P真⇒a≤1Q真⇒ax2﹣2ax+1>0恒成立(1)当a=0时,1>0恒成立,∴(2)⇔0<a<1∴0≤a<1∴若P真而Q假,则a<0或a=1,若Q真而P假,则0≤a<1∴所求a的取值范围是a≤1.19.(12分)S n是等差数列{a n}的前n项和,a5=11,S5=35.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=a an(a是实常数,且a>0),求{b n}的前n项和T n.【解答】解:(Ⅰ)由已知可得:a1+4d=11(1分),a1+2d=7(3分)解得:a1=3,d=2(5分)∴a n=2n+1(6分)(Ⅱ)∵a n=2n+1∴∴,∵a≠0∴{b n}是等比数列(7分)b1=a3,q=a2(8分)∴(1)当a=1时,b1=1,q=1,T n=n(9分)(2)当a≠1时,(12分)综上:(13分)20.(12分)定义在R上的奇函数f(x)有最小正周期4,且x∈(0,2)时,.(1)求f(x)在[﹣2,2]上的解析式;(2)判断f(x)在(0,2)上的单调性,并给予证明;(3)当λ为何值时,关于方程f(x)=λ在[﹣2,2]上有实数解?【解答】解:(1)设x∈(﹣2,0),则﹣x∈(0,2)∵x∈(0,2)时,=∴由函数f(x)为奇函数可得,f(﹣x)=﹣f(x)∴∵f(0)=0,∵周期为4且为奇函数,f(﹣2)=﹣f(2)=f(2)∴f(﹣2)=f(2)=0(2)设0<x1<x2<2令则==∵0<x1<x2<2∴g(x1)<g(x2)∴函数g(x)在(0,2)单调递增,且g(x)>0∴f(x)在(0,2)单调递减(3)由(2)可得当0<x<2时,单调递减故由奇函数的对称性可得,x∈(﹣2,0)时,当x=0时,f(0)=0∵关于方程f(x)=λ在[﹣2,2]上有实数解∴21.(12分)已知圆O:x2+y2=4,点P为直线l:x=4上的动点.(Ⅰ)若从P到圆O的切线长为,求P点的坐标以及两条切线所夹劣弧长;(Ⅱ)若点A(﹣2,0),B(2,0),直线PA,PB与圆O的另一个交点分别为M,N,求证:直线MN经过定点(1,0).【解答】解:根据题意,设P(4,t).(I)设两切点为C,D,则OC⊥PC,OD⊥PD,由题意可知|PO|2=|OC|2+|PC|2,即,(2分)解得t=0,所以点P坐标为(4,0).(3分)在Rt△POC中,易得∠POC=60°.(4分)所以两切线所夹劣弧长为.(5分)(II)设M(x1,y1),N(x2,y2),Q(1,0),依题意,直线PA经过点A(﹣2,0),P(4,t),可以设,(6分)和圆x2+y2=4联立,得到,代入消元得到,(t2+36)x2+4t2x+4t2﹣144=0,(7分)因为直线AP经过点A(﹣2,0),M(x1,y1),所以﹣2,x1是方程的两个根,所以有,,(8分)代入直线方程得,.(9分)同理,设,联立方程有,代入消元得到(4+t2)x2﹣4t2x+4t2﹣16=0,因为直线BP经过点B(2,0),N(x 2,y2),所以2,x2是方程的两个根,,,代入得到.(11分)若x1=1,则t2=12,此时显然M,Q,N三点在直线x=1上,即直线MN经过定点Q(1,0)(12分)若x1≠1,则t2≠12,x2≠1,所以有,(13分)所以k MQ=k NQ,所以M,N,Q三点共线,即直线MN经过定点Q(1,0).综上所述,直线MN经过定点Q(1,0).(14分)22.(12分)已知函数.(a为常数,a>0)(Ⅰ)若是函数f(x)的一个极值点,求a的值;(Ⅱ)求证:当0<a≤2时,f(x)在上是增函数;(Ⅲ)若对任意的a∈(1,2),总存在,使不等式f(x0)>m(1﹣a2)成立,求实数m的取值范围.【解答】解:由题得:.(Ⅰ)由已知,得且,∴a2﹣a﹣2=0,∵a>0,∴a=2经检验:a=2符合题意.(2分)(Ⅱ)当0<a≤2时,∵,∴,∴当时,.又,∴f'(x)≥0,故f(x)在上是增函数.(5分)(Ⅲ)a∈(1,2)时,由(Ⅱ)知,f(x)在上的最大值为,于是问题等价于:对任意的a∈(1,2),不等式恒成立.记,(1<a<2)则,当m=0时,,∴g(a)在区间(1,2)上递减,此时,g(a)<g(1)=0,由于a2﹣1>0,∴m≤0时不可能使g(a)>0恒成立,故必有m>0,∴.若,可知g(a)在区间上递减,在此区间上,有g (a)<g(1)=0,与g(a)>0恒成立矛盾,故,这时,g'(a)>0,g(a)在(1,2)上递增,恒有g(a)>g(1)=0,满足题设要求,∴,即,所以,实数m的取值范围为.(14分)赠送—高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f k x y1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔xy1x 2x 0>a O∙ab x 2-=k 0)(>k f xy1x 2x O∙ab x 2-=k<a 0)(<k f③x1<k <x 2 ⇔ af (k )<0第21页(共22页)④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2<k fxy1x 2x O∙<a 1k∙2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =xxx第22页(共22页)①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x>O-=f (p)f (q)()2b f a-0x x>O -=f(p) f(q)()2b f a-0x x<O-=f (p) f (q) ()2bf a-x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2bf a-x x<O-=f (p)f (q)()2b f a-x<O-=f (p)f (q)()2b f a-x。
赣州市2014—2015学年第二学期高三理科数学期中试题
俯视图(11题图)2014—2015学年第二学期赣州市十二县(市)期中联考高三年级数学(理科)试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设集合{})23lg(x y x A -==,集合{}x y y B -==1,则=B A ( ) A . )23,0[ B . (﹣∞,1] C .D .2.已知向量21,e e 是两个不共线的向量,若212e e a -=与21e e b λ+=共线,则λ的值为 ( ) A. 1- B. 21-C. 1D. 213.直线:1l y kx =+与圆221x y +=相交于A ,B 两点,则“△OAB 的面积为43”是“3=k ” 的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.设随机变量ξ服从正态分布N (0,1),若=<<-=>)02(,)2(ξξP p P 则 ( ) A .p +21B .p -1C .p -21D .p 21-5.设y x ,满足约束条件⎪⎩⎪⎨⎧≤-≥+≤+1011y x x y x ,则目标函数2-=x y z 的取值范围为 ( )A .[]3,3-B .[]2,2-C .[]1,1-D .⎦⎤⎢⎣⎡-32,32 6.在ABC ∆中,A B C 、、的对边分别为a b c 、、,且cos 3cos cos b C a B c B =-,2BA BC ⋅=, 则ABC ∆的面积为 ( )A .2B .23C . 22D . 247.定义在R 上的偶函数)(x f 满足:对任意的))(0,(,2121x x x x ≠-∞∈,都有0)()(1212<--x x x f x f .则( )A .)5(log )2()3.0(23.02f f f << B .)3.0()2()5(log 23.02f f f << C .)2()3.0()5(log 3.022f f f << D .)2()5(log )3.0(3.022f f f <<8.5)31(y x --的展开式中不含x 的项的系数和为 ( )A .32B .32-错误!未找到引用源。
【数学】2014-2015年北京市海淀区高三(上)期中数学试卷与答案(理科)
2014-2015学年北京市海淀区高三(上)期中数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分,每小题只有一个选项符合题意)1.(5分)设集合A={x∈R|x>1},B={x∈R|﹣1≤x≤2},则A∩B=()A.[﹣1,+∞)B.(1,+∞)C.(1,2]D.[﹣1,1)2.(5分)已知向量=(2,﹣1),=(3,x).若•=3,则x=()A.6 B.5 C.4 D.33.(5分)若等比数列{a n}满足a1+a3=5,且公比q=2,则a3+a5=()A.10 B.13 C.20 D.254.(5分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位5.(5分)设a=(),b=log2,c=log23,则()A.a>b>c B.c>a>b C.a>c>b D.c>b>a6.(5分)设a,b∈R,则“ab>0,且a>b”是“<”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)已知函数f(x)=,若关于x的方程f(x)=a(x+1)有三个不相等的实数根,则实数a的取值范围是()A.[,+∞)B.(0,+∞)C.C(0,1)D.(0,)8.(5分)设等差数列{a n}的前n项和为S n,在同一个坐标系中,a n=f(n)及S n=g (n)的部分图象如图所示,则()A.当n=4时,S n取得最大值B.当n=3时,S n取得最大值C.当n=4时,S n取得最小值D.当n=3时,S n取得最大值二、填空题(共6小题,每小题5分,满分30分)9.(5分)设复数z=,则|z|=.10.(5分)已知函数y=2|x+a|的图象关于y轴对称,则实数a的值是.11.(5分)(x+sinx)dx=.12.(5分)为净化水质,向一个游泳池加入某种化学药品,加药后池水中该药品的浓度C(单位:mg/L)随时间t(单位:h)的变化关系为C=,则经过h后池水中药品的浓度达到最大.13.(5分)如图所示,在△ABC中,D为BC边上的一点,且BD=2DC.若=m+n (m,n∈R),则m﹣n=.14.(5分)已知函数f(x)=Asin(xω+φ)(A,ω,φ是常数,A>0,ω>0)的最小正周期为π,设集合M={直线l|l为曲线y=f(x)在点(x0,f(x0))处的切线,x0∈[0,π)].若集合M中有且只有两条直线互相垂直,则ω=;A=.三、解答题(共6小题,满分80分)15.(13分)已知函数f(x)=sinx﹣sin(x+)(1)求f()的值;(2)求f(x)的单调递增区间.16.(13分)已知{a n}是各项均为正数的等比数列,a1=,且a1,a3,﹣a2成等差数列.(1)求{a n}的通项公式;(2)求数列{a n﹣n}的前n项和S n.17.(13分)如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=(1)求△ACD的面积;(2)若BC=2,求AB的长.18.(14分)已知函数f(x)=2alnx﹣x2+1(1)若a=1,求函数f(x)的单调递减区间;(2)若a>0,求函数f(x)在区间[1,+∞)上的最大值;(3)若f(x)≤0在区间[1,+∞)上恒成立,求a的最大值.19.(13分)已知数列{a n}的前n项和S n=(n=1,2,3,…)(1)求a1的值;(2)求证:(n﹣2)a n+1=(n﹣1)a n(n≥2);﹣1(3)判断数列{a n}是否为等差数列,并说明理由.20.(14分)设函数f(x)=,L为曲线C:y=f(x)在点(﹣1,)处的切线.(1)求L的方程;(2)当x<﹣时,证明:除切点(﹣1,)之外,曲线C在直线L的下方;(3)设x1,x2,x3∈R,且满足x1+x2+x3=﹣3,求f(x1)+f(x2)+f(x3)的最大值.2014-2015学年北京市海淀区高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分,每小题只有一个选项符合题意)1.(5分)设集合A={x∈R|x>1},B={x∈R|﹣1≤x≤2},则A∩B=()A.[﹣1,+∞)B.(1,+∞)C.(1,2]D.[﹣1,1)【解答】解:由题意得,集合A={x∈R|x>1},B={x∈R|﹣1≤x≤2},则A∩B={x∈R|1<x≤2}=(1,2],故选:C.2.(5分)已知向量=(2,﹣1),=(3,x).若•=3,则x=()A.6 B.5 C.4 D.3【解答】解:∵向量=(2,﹣1),=(3,x).•=3,∴6﹣x=3,∴x=3.故选:D.3.(5分)若等比数列{a n}满足a1+a3=5,且公比q=2,则a3+a5=()A.10 B.13 C.20 D.25【解答】解:由等比数列{a n}满足a1+a3=5,且公比q=2,∴a3+a5=a1q2+a3q2=q2(a1+a3)=20,故选:C.4.(5分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【解答】解:由于函数y=sin(2x+)=sin2(x+),∴将函数y=sin2x的图象向左平移个单位长度,可得函数y=sin(2x+)的图象,故选:B.5.(5分)设a=(),b=log2,c=log23,则()A.a>b>c B.c>a>b C.a>c>b D.c>b>a【解答】解:∵0<a=()<1,b=log2<0,c=log23>1,∴c>a>b.故选:B.6.(5分)设a,b∈R,则“ab>0,且a>b”是“<”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵a>b,ab>0,∴>,∴>,即<;是充分条件,若<,则﹣<0,∴<0,∴或,不是必要条件,故选:A.7.(5分)已知函数f(x)=,若关于x的方程f(x)=a(x+1)有三个不相等的实数根,则实数a的取值范围是()A.[,+∞)B.(0,+∞)C.C(0,1)D.(0,)【解答】解:作出函数f(x)的图象,如右图:作出直线y=a(x+1),则直线恒过(﹣1,0),关于x的方程f(x)=a(x+1)有三个不相等的实数根,即为当直线与曲线y=相交时,与f(x)的图象有三个交点,当直线与曲线y=相切时,设切点为(m,),则y′=,则切线斜率为=a,又a(m+1)=,由此解得,a=(负的舍去),故a的取值范围是(0,).故选:D.8.(5分)设等差数列{a n}的前n项和为S n,在同一个坐标系中,a n=f(n)及S n=g (n)的部分图象如图所示,则()A.当n=4时,S n取得最大值B.当n=3时,S n取得最大值C.当n=4时,S n取得最小值D.当n=3时,S n取得最大值【解答】解:由图象可知可能:①a7=0.7,S7=﹣0.8,a8=﹣0.4,由a7=0.7,a8=﹣0.4,可得d=﹣1.1,a1=7.3.∴S7=>0,与S7=﹣0.8,矛盾,舍去.②a7=0.7,S7=﹣0.8,S8=﹣0.4.由S7=﹣0.8,S8=﹣0.4,可得a8=0.4,∴=﹣0.4,解得a1=﹣0.5,∴a8=﹣0.5+7d,解得d=≠0.4﹣0.7=﹣0.3,矛盾,舍去.③a7=﹣0.8,S7=0.7,a8=﹣0.4.由a7=﹣0.8,S7=0.7,可得=0.7,解得a1=1,∴﹣0.8=1+6d,解得d=﹣0.3,而﹣0.4﹣(﹣0.8)=0.4,矛盾,舍去.④a7=﹣0.8,S7=0.7,S8=﹣0.4.由a7=﹣0.8,S7=0.7,可得,解得a1=1.∴﹣0.8=1+6d,解得d=﹣0.3,∴a8=﹣0.8﹣0.3=﹣1.1,∴S8=0.7﹣1.1=﹣0.4,满足条件.∴a n=a1+(n﹣1)d=1﹣0.3(n﹣1)=1.3﹣0.3n≥0,解得=4+,因此当n=4时,S n取得最大值.故选:A.二、填空题(共6小题,每小题5分,满分30分)9.(5分)设复数z=,则|z|=.【解答】解:z==,∴.故答案为:.10.(5分)已知函数y=2|x+a|的图象关于y轴对称,则实数a的值是0.【解答】解:∵函数y=2|x+a|的图象关于y轴对称,∴函数y=2|x+a|为偶函数,∴f(﹣x)=f(x),即2|x+a|=2|﹣x+a|,即|x+a|=|﹣x+a|=|x﹣a|恒成立,故a=0,故答案为:011.(5分)(x+sinx)dx=0.【解答】解:(x+sinx)dx=(﹣cosx)=﹣cosπ﹣[﹣cos (﹣π)]=0故答案为:0.12.(5分)为净化水质,向一个游泳池加入某种化学药品,加药后池水中该药品的浓度C(单位:mg/L)随时间t(单位:h)的变化关系为C=,则经过2h后池水中药品的浓度达到最大.【解答】解:C===5,当且仅当t=2时取等号.因此经过2h后池水中药品的浓度达到最大.故答案为:2.13.(5分)如图所示,在△ABC中,D为BC边上的一点,且BD=2DC.若=m+n (m,n∈R),则m﹣n=﹣2.【解答】解:在△ABC中,∵BD=2DC,∴=,又∵=﹣,∴=+=+=+(﹣),∴=﹣,∴=﹣=﹣+;又∵=m+n,∴m=﹣,n=,∴m﹣n=﹣2.故答案为:﹣2.14.(5分)已知函数f(x)=Asin(xω+φ)(A,ω,φ是常数,A>0,ω>0)的最小正周期为π,设集合M={直线l|l为曲线y=f(x)在点(x0,f(x0))处的切线,x0∈[0,π)].若集合M中有且只有两条直线互相垂直,则ω=2;A=.【解答】解:∵函数f(x)=Asin(xω+φ)的最小正周期为π,∴,即ω=2.∴f(x)=Asin(2x+φ),f′(x)=2Acos(2x+φ),∵曲线y=f(x)在点(x0,f(x0))处的切线x0∈[0,π)]有且只有两条直线互相垂直,∴f′(x)=2Acos(2x+φ)的最大值为1,即A=.故答案为:.三、解答题(共6小题,满分80分)15.(13分)已知函数f(x)=sinx﹣sin(x+)(1)求f()的值;(2)求f(x)的单调递增区间.【解答】解:(Ⅰ)f()=sin﹣sin(+)=1﹣=.(Ⅱ)f(x)=sinx﹣sin(x+)=sinx﹣(sinxcos)=sinx﹣(sinx+cosx)=sinx﹣cosx=sin(x﹣)函数y=sinx的单调递增区间为[2k,2k](k∈Z)由2k≤x﹣≤2k,(k∈Z)得:2kπ(k∈Z)所以f(x)的单调递增区间为[2kπ](k∈Z).16.(13分)已知{a n}是各项均为正数的等比数列,a1=,且a1,a3,﹣a2成等差数列.(1)求{a n}的通项公式;(2)求数列{a n﹣n}的前n项和S n.【解答】解:(1)∵a1,a3,﹣a2成等差数列.∴2a3=a1﹣a2,设等比数列{a n}的公比q>0,则,化为2q2+q﹣1=0,解得q=.∴=.(2)a n﹣n=﹣n.∴其前n项和S n=﹣=﹣.17.(13分)如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=(1)求△ACD的面积;(2)若BC=2,求AB的长.【解答】解:(1)因为∠D=2∠B,cos∠B=,所以cosD=cos2B=2cos2B﹣1=﹣.…(3分)因为∠D∈(0,π),所以sinD=.…(5分)因为AD=1,CD=3,所以△ACD的面积S===.…(7分)(2)在△ACD中,AC2=AD2+DC2﹣2AD•DC•cosD=12.所以AC=2.…(9分)因为BC=2,,…(11分)所以=.所以AB=4.…(13分)18.(14分)已知函数f(x)=2alnx﹣x2+1(1)若a=1,求函数f(x)的单调递减区间;(2)若a>0,求函数f(x)在区间[1,+∞)上的最大值;(3)若f(x)≤0在区间[1,+∞)上恒成立,求a的最大值.【解答】解:(Ⅰ)当a=1时,f(x)=2lnx﹣x2+1,f′(x)=,(x>0),令f′(x)<0.∵x>0,∴x2﹣1>0,解得:x>1,∴函数f(x)的单调递减区间是(1,+∞);(Ⅱ)f′(x)=,(x>0),令f′(x)=0,由a>0,解得x1=,x2=﹣(舍去),①当≤1,即0<a≤1时,在区间[1,+∞)上f′(x)≤0,函数f(x)是减函数.所以函数f(x)在区间[1,+∞)上的最大值为f(1)=0;②当>1,即a>1时,x在[1,+∞)上变化时,f′(x),f(x)的变化情况如下表∴函数f(x)在区间[1,+∞)上的最大值为f()=alna﹣a+1,综上所述:当0<a≤1时,函数f(x)在区间[1,+∞)上的最大值为f(1)=0;当a>1时,函数f(x)在区间[1,+∞)上的最大值为f()=alna﹣a+1,(Ⅲ)由(Ⅱ)可知:当0<a≤1时,f(x)≤f(1)=0在区间[1,+∞)上恒成立;当a>1时,由于f(x)在区间[1,]上是增函数,∴f()>f(1)=0,即在区间[1,+∞)上存在x=使得f(x)>0.综上所述,a的最大值为1.19.(13分)已知数列{a n}的前n项和S n=(n=1,2,3,…)(1)求a1的值;(n≥2);(2)求证:(n﹣2)a n+1=(n﹣1)a n﹣1(3)判断数列{a n}是否为等差数列,并说明理由.【解答】(1)解:由S n=,得,解得a1=1;(2)证明:∵S n=,∴.两式作差得:,即(n﹣2)a n+1=(n﹣1)a n﹣1(n≥2);(3)数列{a n}是等差数列.事实上,由S n=,∴..由(2)可得,(n≥3).∴.即(n﹣2)a n﹣2(n﹣2)a n﹣1+(n﹣2)a n﹣2=0.∵n≥3,∴a n﹣2a n﹣1+a n﹣2=0,即a n﹣a n﹣1=a n﹣1﹣a n﹣2(n≥3).∴数列{a n}是以1为首项,a2﹣1为公差的等差数列.20.(14分)设函数f(x)=,L为曲线C:y=f(x)在点(﹣1,)处的切线.(1)求L的方程;(2)当x<﹣时,证明:除切点(﹣1,)之外,曲线C在直线L的下方;(3)设x1,x2,x3∈R,且满足x1+x2+x3=﹣3,求f(x1)+f(x2)+f(x3)的最大值.【解答】(1)解:∵f(x)=,∴,∴.∴L的方程为,即;(2)证明:要证除切点(﹣1,)之外,曲线C在直线L的下方,只需证明∀,恒成立.∵5x2+16x+23>0,∴只需证明∀,5x3+11x2+7x+1<0恒成立即可.设,则g′(x)=15x2+22x+7=(x+1)(15x+7).令g′(x)=0,解得x1=﹣1,.当时,g′(x)>0,g(x)为增函数;当时,g′(x)<0,g(x)为减函数.∴明∀,5x3+11x2+7x+1<0恒成立;(3)①当时,由(2)知,,,.三式相加得:.∵x1+x2+x3=﹣3,∴,当且仅当x1=x2=x3=﹣1时取等号.②当x1,x2,x3中至少有一个大于等于时,不妨设,则,∵,,∴.综上所述,当x1=x2=x3=﹣1时,f(x1)+f(x2)+f(x3)取到最大值.赠送—高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f k x y1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔xy1x 2x 0>a O∙ab x 2-=k 0)(>k f xy1x 2x O∙ab x 2-=k<a 0)(<k f③x1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2<k fxy1x 2x O∙<a 1k∙2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =xxx①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x>O-=f (p)f (q)()2b f a-0x x>O -=f(p) f(q)()2b f a-0x x<O-=f (p) f (q) ()2bf a-x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2bf a-x x<O-=f (p)f (q)()2b f a-x<O-=f (p)f (q)()2b f a-x。
2014-2015年第二学期高三期中数学测试及答案
2014-2015学年第二学期高三期中测试卷科目:理科数学时间:120分钟 满分:150分第Ⅰ卷(选择题 共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A={}4,5,7,9,B={}3,4,7,8,9,全集B A U =,则集合()U C A B 中的元素共有 ( )A .3个B .4个C .5个D 6个.2.若复数z 满足i z i 34)43(+=-,则z 的虚部为 ( )A .4-B .54-C . 4D .543.已知55sin =α,则αα44cos sin -的值为 ( ) A .53-B .51- C . 51 D .534.5本不同的书全部分给 4个学生,每个学生至少一本,不同的分法种数为 ( ) A .480种 B .240种 C .120种 D .96种5.一只蚂蚁从正方体 1111D C B A ABCD -的顶点A 处出发,经正方体的表面,按最短路线爬行到顶点1C 处,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是 ( )A .(1)(2)B .(1)(3)C .(2)(4)D .(3)(4) 6.若c b a ,,是ABC ∆的三个内角的对边,且B b A a C c sin 3sin 3sin +=,则圆M :1222=+y x 被直线l :0=+-c by ax所截得的弦长为 ( ) A .64 B .62 C .6 D . 57.执行如图所示的程序框图,输出的S 值是 ( ) A .23-B .23C .0D .3 8.在数列}{n a 中,21=a ,)11ln(1++=+na a n n ,则=n a ( ) A .n ln 2+ B .n n ln )1(2-+ C .n n ln 2+ D .n n ln 1++9.函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩的零点个数是 ( )A . 3B .2C .1D .010.若实数y x ,满足1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩则23x y z +=的最小值是 ( )A .0B .1 CD . 911.设21,F F 为椭圆)0(1:22221>>b a by a x C =+与双曲线2C 的公共点左右焦点,它们在第一象限内交于点M ,△21F MF 是以线段1MF 为底边的等腰三角形,且21=MF .若椭圆1C 的离心率83=e ,则双曲线2C 的离心率是 ( ) A .45 B .23 C . D .412.已知圆O 的半径为1,PB PA ,为该圆的两条切线, B A ,为切点,则⋅的最小值为 ( ) A .223+- B .23+- C . 224+- D . 24+-第Ⅱ卷(非选择题,共90分)二、填空题:(本大题共4个小题,每小题5分,共20分.把答案填在题中横线上)13.n xx )212(-的二项展开式中只有第四项的二项式系数最大,则展开式中的常数项是 (用数字做答).14.若函数1)3(log -+=x y a )1,0(≠>a a 的图像恒过定点A ,P 是直线0543=++y x 上的为任意一点,则PA 最小值为 . 15.若数列{}n a 满足d a a nn =-+111为常数)d N n ,(*∈,则称数列{}n a 为调和数列,已知数列⎭⎬⎫⎩⎨⎧n x 1为调和数列,且2002021=+++x x x ,则=+165x x . 16.已知直线a x =)20(π<<a 与函数x x f sin )(=和函数x x g cos )(=的图像分别交于M ,N 两点,若51=MN ,则线段MN 中点的纵坐标为 . 三、解答题:(本题6道小题共70分.解答应写出文字说明、证明过程、演算步骤)17.(本小题满分12分)如图地平面上一旗杆设定为OP ,为测得它的高度h ,在地平面上取一基线a AB AB =,,在A 处测得P 点的仰角030,在B 处测得P 点的仰角045,又测得θ=∠AOB ,求旗杆的高度h .18.(本小题满分12分)如图,在四棱锥PABCD -中,ABCD 是正方形,PD ⊥平面ABCD, AB PD = ,,E F G 分别是,,PC PD BC 的中点.(1)求证:平面//PAB 平面EFG ;(2)在线段PB 上确定一点Q ,使PC ⊥平面ADQ ,并给出证明;19.某校学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶) .(1) 指出这组数据的众数和中位数;(2) 若幸福度不低于9.5分,则称该人 的幸福度为“极幸福”.求从这16人中随机 选取3人,至多有1人是“极幸福”的概率;(3) 以这16人的样本数据来估计整个社区的总体数据,若从该社区任选3人, 记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.20.(本小题满分12分)已知中心在坐标原点O 的椭圆C 经过点)3,2(A ,且点)0,2(F 为其右焦点 (1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在求出的l 方程;若不存在,说明理由.21.(本小题满分12分)已知函数 ()b xax x f ++=,)0(≠x 其中R b a ∈,. (1)若曲线()x f y =在点))2(,2(f P 处的切线方程为13+=x y ,求函数的解析式; (2)讨论函数()x f 的单调性;(3)若对于任意的]2,21[∈a ,不等式()10≤x f 在]1,41[上恒成立,求b 的取值范围.ABDEF PGCB选考题:(本小题满分10分 请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分)22. 选修4-1:几何证明选讲如图, AB 为圆O 的直径, CD 为垂直于AB 的一条弦,垂直为E ,弦BM 与CD 交于点F . (1)证明: M F E A ,,,四点共圆; (2)若44==BF MF ,求线段BC 的长.23.选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系, 已知直线l 上两点N M ,的极坐标分别为)0,2(、)2,332(π, 圆C 的参数方程⎩⎨⎧+-=+=θθsin 23cos 22y x (θ为参数),(1)设为P 线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.24.选修4—5:不等式选讲已知121<-x ,122<-x . (1)求证:6221<+<x x .(2)若1)(2+-=x x x f ,求证:21215)()(x x x f x f -<-.高三期中数学试题参考答案一:选择题:1 .C 2. D 3 .A 4 .B 5.C 6.C 7.B 8.A 9.B 10.C 11.B 12.A 二、填空题: 13. 20- 14.1 15. 20 16.107三、解答题:17.解:(Ⅰ)在PAO Rt ∆和PBO Rt ∆中030=∠PAO ,045=∠PBOh AO 3=,h BO = ………………… …5分在BAO ∆中,θ=∠BOA ,由余弦定理得θcos 32)3(222h h h h a ⋅-+= ……………………… 7分解得θcos 32422-=a hθcos 324-=a h … ………………………12分18.解: (1)因为 ,,E F G 分别是,,PC PD BC 的中点.所以AB DC EF ////,⊂AB 平面PAB ,所以 //EF 平面PAB 同理 //FG 平面PAB ,F EF FG =⊂EF FG ,平面EFG所以 平面//PAB 平面EFG ; ……………………………6分(2)取线段PB 的中点为Q ,则PC ⊥平面ADQ 成立。
2014-2015学年度第一学期期中考试高三数学理科试题
2014-2015学年度第一学期期中考试高三数学试卷(理科)一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合13{|()}xM y y ==,2{|log (1)}N x y x ==-,则M R N =( ) A .(0,1) B .(]0,1 C .(1,)+∞ D .(0,+∞)2.若120a b <<<,则( )A .22ab a >B .22ab b >C .2log ()1ab >-D .2log ()2ab <-3.等差数列{}n a 的通项公式是12n a n =-,其前项和为n S ,则数列{}nS n的前11项和为( )A .-44 (B)-66 C .-55 D .554.已知函数2()21(0)f x ax ax a =-+<,若12x x <,120x x +=,则1()f x 与2()f x 的大小关系是( )A .1()f x =2()f xB .1()f x >2()f xC .1()f x <2()f xD .与a 的值有关5.抛物线22y x =-上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A .98B .78C .98-D .78-6.已知向量a 与b 的夹角为o 60,3a =,13a b +=,则b 等于( ) A .1 B .3 C .4 D .57.已知m 、n 是两条直线,,,αβγ是三个平面,给出下列四个命题: ①若,,//,m n m n αβ⊥⊥则//αβ; ②若,,//αγβγαβ⊥⊥则;③若βαβα//,//,,则n m n m ⊂⊂; ④若,m α⊥,n β⊥m n ⊥,则αβ⊥.其中真命题是( )A .①和②B .①和③C .③和④D .①和④8.设函数()y f x =的反函数为()1y f x -=,且()21y f x =+的图像过点()1,2,则()131y f x -=-的图像必过点( )A .()1,3B .()3,1C .()2,3D .()2,19.已知(,1)AB k =,(2,4)AC =,若k 为满足||4AB ≤的一随机整数..,则ABC ∆是直角三角形的概率是( )A . 14B .12C .37 D .3410.将正三棱柱截去三个角(如图1所示A 、B 、C 分别是三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )11.若AB 是过椭圆22221x y a b+=(0)a b >>中心的一条弦,M 是椭圆上任意一点,且AM ,BM 与坐标轴不平行,1k ,2k 分别为直线AM ,BM 的斜率(其中222c a b =-),则12k k ⋅=( )A .22c a -B .22c b -C .22b a -D .22a b -12.已知函数3ax y e x =+()a R ∈有大于零的极值点,则( )A .3a >-B .3a <-C .13a >-D .13a <-二、填空题(4×4′=16分):13.在(51)x 展开式中,1x 的系数是: ;14.抛物线C :2y x x =-+与直线l :10x y --=所围成的平面图形的面积是: ;15.过P (-1,2)的直线⎩⎨⎧-=+-=t y tx 4231(t 为参数)与双曲线22(2)1y x --=相交于A 、B 两点,若C 为AB 的中点,则=PC ;E F DIA H GBC EF D AB C侧视 图1图2 BEABEB BECBED16.曲线2cos ρθ=关于直线4πθ=-对称的曲线方程为 .三、解答题(满分74分):17.(12分)在ABC ∆中,内角A ,B ,C ,的对边分别为,,a b c ,已知角3,A a π==B=x ,ABC ∆的周长为y . (1)求函数()y f x =的解析式和定义域; (2)求函数()y f x =的值域.18.(12分)一个口袋中装有编号分别为1,2,3,4,5,6的6个大小相同的球,从中任取3个,用ξ表示取出的3个球中的最大编号.(1)求ξ的分布列;(2)求ξ的数学期望和方差.19.(12分)直三棱柱111ABC-A B C 中,1AC CC 2,AB BC ===,D 是1BA 上一点,且AD ⊥平面1A BC .(1)求证:BC ⊥平面11ABB A ;(2)求异面直线1A C 与AB 所成角的大小; (3)求二面角1A C B A --余弦值的大小.20.(12分)已知中心在原点的双曲线C 的左焦点为)0,2(-,而C 的右准线方程为23=x .(1)求双曲线C 的方程;(2)若过点)2,0(,斜率为k 的直线与双曲线C 恒有两个不同的交点A 和B ,且满足5OA OB ⋅< (其中O 为原点),求实数k 的取值范围.21.(12分)已知1=x 是函数1)1(3)(23+++-=nx x m mx x f 的一个极值点,0,,<∈m R n m(1)求m 与n 的关系表达式; (2)求函数)(x f 的单调区间;(3)当]1,1[-∈x 时,函数)(x f y =的图象上任意一点的切线斜率恒大于m 3,求m 的取值范围.22.(14分)已知函数()20y x x =≥的图象上有一列点()111,P x y ,()222,P x y ,…,(),n n n P x y ,…,以点n P 为圆心的圆n P 与以点n+1P 为圆心的圆n+1P 外切,且均与x 轴相切.若11x =,且1n n x x +<.(1)求数列{}n x 的通项;(2)圆n P 的面积为n S ,n n T S =+,求证:4n T <.高三数学(理科)参考答案一、选择题BDBCD ADACA CB二、填空题13.-80; 14.43; 15.157; 16.2sin ρθ=-三、解答题17.(1)()263)0,y x x ππ=++∈;(2)(y ∈.18.(1)(2) 214E ξ=; 6380D ξ=.19.(1)略; (2)3π ;.20.(1)2213x y -=;(2)(k ∈.21.(1)36n m =+;(2)单调递减区间()()2,1,1,m -∞++∞;单调递增区间()21,1m +; (3)()43,0m ∈-.22.(1)121n x n =-;(2)1n =时,1n T T =<1n >2n ==<=()111111114223141(1)11n n n n T -⎤<+-+-++-=+-⎤⎦⎦。
山东省临沂市2014-2015学年高三上学期期中考试理科数学试题word版含答案
高三教学质量检测考试理科数学2014.11本试卷分为选择题和非选择题两部分,共4页,满分150分,考试时间120分钟第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知全集2,{|1},{|20}U R A x x B x x x ==>=->,则()U C AB =( )A .{}|2x x ≤B .{}|1x x ≥C .{}|01x x ≤≤D .{}|02x x ≤≤ 2、下列函数中,在区间(0,)+∞上为增函数的是( )A .2(1)y x =- B .2xy -= C .ln y x = D .y3、已知命题:22;p q ≤ ) A .p q ∧ B .p q ∧⌝ C .p q ⌝∧ D .p q ⌝∧⌝4、设函数()()23,(2)f x x g x f x =++=,则()g x 的表达式是( ) A .21x + B .21x - C .23x - D .27x +5、如图,AB 是O 的直径,点,C D 是半圆弧AB 上的两个三等分点,,AB a AC b ==,则AD =( )A .12a b + B .12a b - C .12a b + D .12a b - 6、函数(01)xxa y a x=<<的图象的大致形状是( )7、已知角α的终边经过点(3,4)-,则tan2α=( )A .13-B .12- C .2 D .3 8、给出下列四个结论:①函数()2log f x x =是偶函数;②若393,log a x a ==,则x =③若,1x x R e x ∀∈≥+,则0:,1x p x R e x ⌝∀∈≤+;④“3x >”是“21x ->”的充分不必要条件,其中正确的结论的个数是( )A .0B .1C .3D .3 9、已知函数()sin()f x x ϕ=-,且()30f x dx π=⎰,则函数()f x 的图象的一条对称轴是( )A .23x π=B .56x π=C .3x π=D .6x π= 10、设()22x x f x -=-,若当,02πθ⎡⎫∈-⎪⎢⎣⎭时,21()(3)0cos 1f m f m θ-+->-恒成立,则实数m 的取值范围是( )A .(),2-∞-B .()2,1-C .()[),21,-∞-+∞D .(),2(1,)-∞-+∞第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。
2014-2015理朝阳高三期中理科试题
北京市朝阳区2014-2015学年度高三年级第一学期期中统一考试数学试卷(理工类) 2014.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.已知集合{}{}2+20,0A x x x B x x =-<=>,则集合AB 等于A.{}2x x >-B.{}01x x << C. {}1x x < D.{}21x x -<< 2.已知命题p :0x ∀>,44x x+≥;命题q :0x ∃∈R ,021x =-.则下列判断正确的是 A .p 是假命题 B .q 是真命题 C .()p q ⌝∧是真命题 D .()p q ⌝∧是真命题 3. 执行如图所示的程序框图,则输出的k 的值是A.120B.105C.15D.54.曲线xy 1=与直线21,e x x ==及x 轴所围成的图形的面积是 A. 2e B. 2e 1- C. e D. 2开始 k=1,i =1 结束 i =i +2 i>5?输出k 是否 k=k×i 第3题图5.设,a b 是两个非零的平面向量,下列说法正确的是① 若0×a b =,则有+=-a b a b ; ② ⋅=a b a b ;③ 若存在实数λ,使得a =λb ,则+=+a b a b ; ④若+=-a b a b ,则存在实数λ,使得a =λb . A. ①③ B. ①④ C.②③ D. ②④6.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为 A. 3000 B.3300 C.3500 D.40007.如图,某地一天中6时至14时的温度变化曲线近似满足函数()b x A y ++=ϕωsin (其中 0ω>,2ϕπ<<π),则估计中午12时的温度近似为( )A. 30 ℃B. 27 ℃C.25 ℃D.24 ℃ 8.设函数(),()f x g x 满足下列条件:(1)对任意实数12,x x 都有121212()()()()()f x f x g x g x g x x ⋅+⋅=-; (2)(1)1f -=-,(0)0f =,(1)1f =. 下列四个命题:①(0)1g =; ②(2)1g =; ③22()()1f x g x +=;④当2n >,n *∈N 时,[][]()()n nf xg x+的最大值为1. 其中所有正确命题的序号是( ) A. ①③ B. ②④ C. ②③④ D. ①③④30 20 10 Ot/hT /℃ 68 10 12 14第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知平面向量,a b 满足1=a ,(1,1)=b ,且a b ,则向量a 的坐标是_______.10.已知1tan()=47απ+, (,)2απ∈π,则tan α的值是_______;cos α的值是_______. 11.若23,0()0,0,0x x f x x ax b x +>⎧⎪==⎨⎪+<⎩,, 是奇函数,则+a b 的值是_______.12.已知等差数列{}n a 中,n S 为其前n 项和.若13574a a a a +++=-,816S =-, 则公差d =_______;数列{}n a 的前______项和最大.13.已知x ,y 满足条件3260,20,20.x y x y y +-≤⎧⎪+-≥⎨⎪-≤⎩若目标函数z ax y =+(其中0a >)仅在点(2,0)处取得最大值,则a 的取值范围是 .14.如图,在水平地面上有两座直立的相距60 m 的铁塔1AA 和1BB .已知从塔1AA 的底部看塔1BB 顶部的仰角是从塔1BB 的底部看塔1AA 顶部的仰角的2倍,从两塔底部连线中点C 分别看两塔顶部的仰角互为余角.则从塔1BB 的底部看塔1AA 顶部的仰角的正切值为 ;塔1BB 的高为 m.A 1ABB 1C第14题图三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分)已知函数()3sin cos f x x a x =-(x ∈R )的图象经过点(,1)3π. (Ⅰ)求函数()f x 的解析式;(Ⅱ)求函数()f x 的最小正周期和单调递减区间.16. (本小题满分13分)如图,在△ABC 中,ACB ∠为钝角,π2,2,6AB BC A ===.D 为AC 延长线上一点,且31CD =+. (Ⅰ)求BCD ∠的大小;(Ⅱ)求BD 的长及△ABC 的面积.17. (本小题满分13分)在递减的等比数列{}n a 中,设n S 为其前n 项和,已知214a =,378S =. (Ⅰ)求n a ,n S ;(Ⅱ)设2log n n b S =,试比较22n n b b ++与1n b +的大小关系,并说明理由. 18. (本小题满分14分)已知函数2(),x f x a x aR =-. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若()f x 在(1,2)上是单调函数,求a 的取值范围.DCBA19.(本小题满分14分)已知函数()y f x =,若在区间(2,2)-内有且仅有一个0x ,使得0()1f x =成立,则称函数()f x 具有性质M .(Ⅰ)若()sin 2f x x =+,判断()f x 是否具有性质M ,说明理由;(Ⅱ)若函数2()221f x x mx m =+++具有性质M ,试求实数m 的取值范围.20. (本小题满分13分)对于项数为m 的有穷数列{}n a ,记123m a x {,,,,}(1,2,3,,)k k b a a a a k m ==,即k b 为123,,,,k a a a a 中的最大值,则称{}n b 是{}n a 的“控制数列”,{}n b 各项中不同数值的个数称为{}n a 的“控制阶数”.(Ⅰ)若各项均为正整数的数列{}n a 的控制数列{}n b 为1,3,3,5,写出所有的{}n a ; (Ⅱ)若100m =,2n a tn n =-,其中11(,)42t ∈,{}n b 是{}n a 的控制数列,试用t 表示112233100100()()()()b a b a b a b a -+-+-++-的值;(Ⅲ)在1,2,3,4,5的所有全排列中,将每种排列视为一个数列,对于其中控制阶数为2的所有数列,求它们的首项之和.。
河南省实验中学高三上学期期中考试 数学(理)
河南省实验中学2014——2015学年上期期中试卷高三 理科数学命题人:程建辉 审题人:丁海丽(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{||2,}A x x x R =≤∈,{|4,}B x x Z =≤∈,则 ( )A.(0,2)B.[0,2]C.(0,2]D.{0,1,2}2.记,那么 ( )A. B.- C. D.-3.已知集合{1,2,3,4},{,,}A B a b c ==,为集合到集合的一个函数,那么该函数的值域C 的不同情况有( ) A .7种 B .4种 C .8种 D .12种4.设向量,向量,向量,则向量( ) A .(-15,12) B.0 C.-3 D.-115.设是等差数列,是其前n 项和,且,,则下列结论错误的是( ) A . B . C . D .和均为的最大值6.在△ABC 中,,若此三角形有两解,则b 的范围为( ) A . B .b > 2 C .b<2 D .7.已知函数的周期是,将函数)0( 2cos 3>⎪⎭⎫ ⎝⎛-=ωπωx y 的图象沿轴向右平移个单位,得到函数的图象,则函数( ) A. B. C. D.8.设△ABC 的三内角A 、B 、C 成等差数列,sinA 、sinB 、 sinC 成等比数列,则这个三角形的形状是( )A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形9.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )10.O 为平面上的一个定点,A 、B 、C 是该平面上不共线的三点,若,则△ABC 是( ) A.以AB 为底边的等腰三角形 B.以BC 为底边的等腰三角形 C.以AB 为斜边的直角三角形 D.以BC 为斜边的直角三角形11.设p:2()e ln 21xf x x x mx =++++在内单调递增,q:,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件12.已知两条直线:y=m 和:y= (m >0),与函数的图像从左至右相交于点A,B,与函数的图像从左至右相交于C,D.记线段AC 和BD 在X 轴上的投影长度分别为a,b,当m 变化时,的最小值为( ) A . B. C. D.二、填空题:请把答案填在题中横线上(每小题5分,共20分). 13.计算= .14.已知A,B,C 三点在同一条直线上,O 为直线外一点,若0pOA qOB rOC ++=,其中p,q,rR ,则 .15设x 、、、y 成等差数列,x 、、、y 成等比数列,则的取值范围是 . 16.已知函数21,(0)()log ,(0)ax x f x x x +≤⎧=⎨>⎩,若函数y=f(f(x))+1有4个不同的零点,则实数a 的取值范围是 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共70分).17.(本小题满分12分)设函数的定义域为,命题与命题,若真,假,求实数的取值范围.18.(本小题满分12分)已知,其中()x x x m ωωωcos 3,cos sin +=→,()x x x n ωωωsin 2,sin cos -=→,且,若相邻两对称轴间的距离不小于。
2014-2015年河南省名校高三(上)期中数学试卷及参考答案(理科)
2014-2015学年河南省名校高三(上)期中数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题纸的相应位置.1.(5分)在复平面内,复数Z=+i2015对应的点位于()A.第四象限B.第三象限C.第二象限D.第一象限2.(5分)已知集合M={x|y=lg},N={y|y=x2+2x+3},则(∁R M)∩N=()A.{x|0<x<1}B.{x|x>1}C.{x|x≥2}D.{x|1<x<2}3.(5分)已知sin2α=﹣,α∈(﹣,0),则sinα+cosα=()A.B.﹣ C.﹣ D.4.(5分)设f(x)是定义在R上的奇函数,当x<0时,f(x)=x﹣e﹣x(e为自然数的底数),则f(ln6)的值为()A.ln6+6 B.ln6﹣6 C.﹣ln6+6 D.﹣ln6﹣65.(5分)已知向量+=(2,﹣8),﹣=(﹣8,16),则与夹角的余弦值为()A.B.C.D.6.(5分)执行如图所示的程序框图,会输出一列数,则这个数列的第3项是()A.870 B.30 C.6 D.37.(5分)函数f(x)=sin(2x+φ)(|φ|<π)的图象向左平移个单位后关于原点对称,则函数f(x)在[0,]上的最小值为()A.﹣B.﹣ C.D.8.(5分)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A.2 B.C.D.39.(5分)已知数列{a n}为等差数列,{b n}为等比数列,且满足:a1003+a1013=π,b6•b9=2,则tan=()A.1 B.﹣1 C.D.10.(5分)如图,把圆周长为1的圆的圆心C放在y轴上,顶点A(0,1),一动点M从A开始逆时针绕圆运动一周,记=x,直线AM与x轴交于点N(t,0),则函数t=f(x)的图象大致为()A.B. C.D.11.(5分)已知函数f(x)=,若a、b、c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2014)B.(1,2015)C.(2,2015)D.[2,2015]12.(5分)已知定义在R上的函数f(x)满足f(x+1)=f(1﹣x)且在[1,+∞)上是增函数,不等式f(ax+2)≤f(x﹣1)对任意x∈[,1]恒成立,则实数a 的取值范围是()A.[﹣3,﹣1]B.[﹣2,0]C.[﹣5,﹣1]D.[﹣2,1]二、填空题:本大题共4小题,每小题5分,满分20分.请把答案填在答题纸的相应位置.13.(5分)已知tan(θ﹣π)=2,则sin2θ+sinθcosθ﹣2cos2θ+3的值为.14.(5分)图中阴影部分的面积等于.15.(5分)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最大值时,+﹣的最大值为.16.(5分)设f(x)是定义在R上的偶函数,且对于∀x∈R恒有f(x+1)=f(x ﹣1),已知当X∈[0,1]时,f(x)=()1﹣x,则(1)f(x)的周期是2;(2)f(x)在(1,2)上递减,在(2,3)上递增;(3)f(x)的最大值是1,最小值是0;(4)当x∈(3,4)时,f(x)=()x﹣3其中正确的命题的序号是.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)设函数.(Ⅰ)求f(x)的最大值,并写出使f(x)取最大值是x的集合;(Ⅱ)已知△ABC中,角A,B,C的对边分别为a,b,c.若.求a的最小值.18.(12分)已知数列{a n}的前n项和为S n,S n=2a n﹣2.(1)求数列{a n}的通项公式;(2)设b n=log2a n,c n=,记数列{c n}的前n项和T n,若对n∈N*,T n≤k (n+4)恒成立,求实数k的取值范围.19.(12分)如图,在斜三棱柱ABC﹣A1B1C1中,O是AC的中点,A1O⊥平面ABC,∠BCA=90°,AA1=AC=BC.(Ⅰ)求证:A1B⊥AC1;(Ⅱ)求二面角A﹣BB1﹣C的余弦值.20.(12分)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.21.(12分)已知函数f(x)=x2+a(x+lnx),x>0,a∈R是常数.(1)求函数y=f(x)的图象在点(1,f(1))处的切线方程;(2)若函数y=f(x)图象上的点都在第一象限,试求常数a的取值范围;(3)证明:∀a∈R,存在ξ∈(1,e),使f′(ξ)=.四、请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第22题计分.【选修4-1:几何证明选讲】22.(10分)选修4﹣1:几何证明选讲如图,已知圆上的,过C点的圆的切线与BA的延长线交于E点.(Ⅰ)证明:∠ACE=∠BCD;(Ⅱ)若BE=9,CD=1,求BC的长.【选修4-4:坐标系与参数方程】23.已知直线l:(t为参数)经过椭圆C:(φ为参数)的右焦点F.(Ⅰ)求m的值;(Ⅱ)设直线l与椭圆C交于A,B两点,求|FA|•|FB|的最大值与最小值.【选修4-5:不等式选讲】24.已知函数f(x)=|2x+1|+|2x﹣3|(1)求不等式f(x)≤6的解集;(2)若关于x的不等式f(x)≤|a﹣2|的解集非空,求实数a的取值范围.2014-2015学年河南省名校高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题纸的相应位置.1.(5分)在复平面内,复数Z=+i2015对应的点位于()A.第四象限B.第三象限C.第二象限D.第一象限【解答】解:复数Z=+i2015=﹣i=﹣i=﹣.复数对应点的坐标(),在第四象限.故选:A.2.(5分)已知集合M={x|y=lg},N={y|y=x2+2x+3},则(∁R M)∩N=()A.{x|0<x<1}B.{x|x>1}C.{x|x≥2}D.{x|1<x<2}【解答】解:集合M={x|y=lg},,解得:0<x<1,M={x|0<x<1},∴∁R M={x|x≤0或x≥1}N={y|y=x2+2x+3}={y|y≥2},(∁R M)∩N=[2,+∞)故选:C.3.(5分)已知sin2α=﹣,α∈(﹣,0),则sinα+cosα=()A.B.﹣ C.﹣ D.【解答】解:∵α∈(﹣,0),∴sinα+cosα>0,∴(sinα+cosα)2=1+sin2α=,∴sinα+cosα=,故选:A.4.(5分)设f(x)是定义在R上的奇函数,当x<0时,f(x)=x﹣e﹣x(e为自然数的底数),则f(ln6)的值为()A.ln6+6 B.ln6﹣6 C.﹣ln6+6 D.﹣ln6﹣6【解答】解:∵当x<0时,f (x)=x﹣e﹣x,∴f(﹣ln6)=﹣ln6﹣e ln6=﹣ln6﹣6,又∵f (x)是定义在R上的奇函数,∴f(ln6)=﹣f(﹣ln6)=ln6+6故选:A.5.(5分)已知向量+=(2,﹣8),﹣=(﹣8,16),则与夹角的余弦值为()A.B.C.D.【解答】解:由向量,,得=(﹣3,4),=(5,﹣12),所以||=5,||=13,=﹣63,即与夹角的余弦值cosθ==.故选:B.6.(5分)执行如图所示的程序框图,会输出一列数,则这个数列的第3项是()A.870 B.30 C.6 D.3【解答】解:当N=1时,A=3,故数列的第1项为3,N=2,满足继续循环的条件,A=3×2=6;当N=2时,A=6,故数列的第2项为6,N=3,满足继续循环的条件,A=6×5=30;当N=3时,A=30,故数列的第3项为30,故选:B.7.(5分)函数f(x)=sin(2x+φ)(|φ|<π)的图象向左平移个单位后关于原点对称,则函数f(x)在[0,]上的最小值为()A.﹣B.﹣ C.D.【解答】解:函数f(x)=sin(2x+φ)图象向左平移个单位得,由于函数图象关于原点对称,∴函数为奇函数,又|φ|<π,∴,得,∴,由于,∴0≤2x≤π,∴,当,即x=0时,.故选:A.8.(5分)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A.2 B.C.D.3【解答】解:根据三视图判断几何体为四棱锥,其直观图是:V==3⇒x=3.故选:D.9.(5分)已知数列{a n}为等差数列,{b n}为等比数列,且满足:a1003+a1013=π,b6•b9=2,则tan=()A.1 B.﹣1 C.D.【解答】解:数列{a n}为等差数列,{b n}为等比数列,且满足:a1003+a1013=π,b6•b9=2,所以a1+a2015=a1003+a1013=π,b7•b8=b6•b9=2,所以tan=tan=.故选:D.10.(5分)如图,把圆周长为1的圆的圆心C放在y轴上,顶点A(0,1),一动点M从A开始逆时针绕圆运动一周,记=x,直线AM与x轴交于点N(t,0),则函数t=f(x)的图象大致为()A.B. C.D.【解答】解:当x由0→时,t从﹣∞→0,且单调递增,由→1时,t从0→+∞,且单调递增,∴排除A,B,C,故选:D.11.(5分)已知函数f(x)=,若a、b、c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2014)B.(1,2015)C.(2,2015)D.[2,2015]【解答】解:作出函数的图象如图,直线y=m交函数图象于如图,不妨设a<b<c,由正弦曲线的对称性,可得(a,m)与(b,m)关于直线x=对称,因此a+b=1,当直线y=m=1时,由log2014x=1,解得x=2014,即x=2014,∴若满足f(a)=f(b)=f(c),(a、b、c互不相等),由a<b<c可得1<c<2014,因此可得2<a+b+c<2015,即a+b+c∈(2,2015).故选:C.12.(5分)已知定义在R上的函数f(x)满足f(x+1)=f(1﹣x)且在[1,+∞)上是增函数,不等式f(ax+2)≤f(x﹣1)对任意x∈[,1]恒成立,则实数a 的取值范围是()A.[﹣3,﹣1]B.[﹣2,0]C.[﹣5,﹣1]D.[﹣2,1]【解答】解:定义在R上的函数f(x)满足f(x+1)=f(1﹣x)且在[1,+∞)上是增函数,可得出函数图象关于x=1对称,且函数在(﹣∞,1)上减,由此得出自变量离1越近,函数值越小,综合考虑四个选项,四个选项中的集合中都有﹣1,0不存在于A,C两个选项的集合中,B中集合是D中集合的子集,故可通过验证a的值取0与1时两种情况得出正确选项.当a=0时,不等式f(ax+2)≤f(x﹣1)变为f(2)≤f(x﹣1),有函数f(x)图象特征可得出|2﹣1|≤|x﹣1﹣1|,解得x≥3或x≤1,满足,不等式f(ax+2)≤f(x﹣1)对任意x∈[,1]恒成立,由此排除A,C两个选项.当a=1时,不等式f(ax+2)≤f(x﹣1)变为f(x+2)≤f(x﹣1),有函数f(x)图象特征可得出|x+2﹣1|≤|x﹣1﹣1|,解得x≤,不满足不等式f(ax+2)≤f (x﹣1)对任意x∈[,1]恒成立,由此排除D选项.综上可知,B选项是正确的.故选:B.二、填空题:本大题共4小题,每小题5分,满分20分.请把答案填在答题纸的相应位置.13.(5分)已知tan(θ﹣π)=2,则sin2θ+sinθcosθ﹣2cos2θ+3的值为.【解答】解:∵已知tan(θ﹣π)=2=tanθ,则sin2θ+sinθcosθ﹣2cos2θ+3=+3=+3=+3=,故答案为.14.(5分)图中阴影部分的面积等于1.【解答】解:根据题意,该阴影部分的面积为=x3=(13﹣03)=1故答案为:115.(5分)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最大值时,+﹣的最大值为1.【解答】解:由正实数x,y,z满足x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2.∴===1,当且仅当x=2y>0时取等号,此时z=2y2.∴+﹣==≤1,当且仅当y=1时取等号,即+﹣的最大值是1.故答案为1.16.(5分)设f(x)是定义在R上的偶函数,且对于∀x∈R恒有f(x+1)=f(x ﹣1),已知当X∈[0,1]时,f(x)=()1﹣x,则(1)f(x)的周期是2;(2)f(x)在(1,2)上递减,在(2,3)上递增;(3)f(x)的最大值是1,最小值是0;(4)当x∈(3,4)时,f(x)=()x﹣3其中正确的命题的序号是(1)(2)(4).【解答】解:(1)∵对任意的x∈R恒有f(x+1)=f(x﹣1),∴f(x+2)=f[(x+1)﹣1]=f(x),即2是f(x)的周期,(1)正确;(2)∵x∈[0,1]时,f(x)=()1﹣x=2x﹣1为增函数,又f(x)是定义在R上的偶函数,∴f(x)在区间[﹣1,0]上单调递减,又其周期T=2,∴f(x)在(1,2)上递减,在(2,3)上递增,(2)正确;(3)由(2)x∈[0,1]时,f(x)=()1﹣x=2x﹣1为增函数,f(x)在区间[﹣1,0]上单调递减,且其周期为2可知,f (x )max =f (1)=21﹣1=20=1,f (x )min =f (0)=20﹣1=,故(3)错误; (4)当x ∈(3,4)时,x ﹣4∈(﹣1,0),4﹣x ∈(0,1), ∴f (4﹣x )=()1﹣(4﹣x )=,又f (x )是周期为2的偶函数,∴f (4﹣x )=f (x )=,(4)正确.综上所述,正确的命题的序号是(1)(2)(4), 故答案为:(1)(2)(4).三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)设函数.(Ⅰ)求f (x )的最大值,并写出使f (x )取最大值是x 的集合; (Ⅱ)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若.求a 的最小值.【解答】解:(Ⅰ)f (x )=cos (2x ﹣)+2cos 2x=(cos2xcos +sin2xsin)+(1+cos2x )=cos2x ﹣sin2x +1=cos (2x +)+1,(3分)∵﹣1≤cos (2x +)≤1,即cos (2x +)最大值为1,∴f (x )的最大值为2,(4分) 要使f (x )取最大值,cos (2x +)=1,即2x +=2kπ(k ∈Z ),解得:x=kπ﹣(k ∈Z ),则x 的集合为{x |x=kπ﹣(k ∈Z )};(6分)(Ⅱ)由题意,f (B +C )=cos [2(B +C )+]+1=,即cos (2π﹣2A +)=,化简得:cos (2A ﹣)=,(8分)∵A ∈(0,π),∴2A ﹣∈(﹣,),则有2A﹣=,即A=,(10分)在△ABC中,b+c=2,cosA=,由余弦定理,a2=b2+c2﹣2bccos=(b+c)2﹣3bc=4﹣3bc,(12分)由b+c=2知:bc≤=1,当且仅当b=c=1时取等号,∴a2≥4﹣3=1,则a取最小值1.(14分)18.(12分)已知数列{a n}的前n项和为S n,S n=2a n﹣2.(1)求数列{a n}的通项公式;(2)设b n=log2a n,c n=,记数列{c n}的前n项和T n,若对n∈N*,T n≤k (n+4)恒成立,求实数k的取值范围.【解答】解:(1)当n=1时,a1=S1=2a1﹣2,解得a1=2.当n≥2时,a n=S n﹣S n﹣1=2a n﹣2﹣(2a n﹣1﹣2)=2a n﹣2a n﹣1,化为a n=2a n﹣1,∴数列{a n}是以2为公比的等比数列,∴.(2)∵b n=log2a n==n,∴c n==.∴数列{c n}的前n项和T n=+…+==.∵对n∈N*,T n≤k(n+4)恒成立,∴,化为=.∵n++5=9,当且仅当n=2时取等号.∴,∴.∴实数k的取值范围是.19.(12分)如图,在斜三棱柱ABC﹣A1B1C1中,O是AC的中点,A1O⊥平面ABC,∠BCA=90°,AA1=AC=BC.(Ⅰ)求证:A1B⊥AC1;(Ⅱ)求二面角A﹣BB1﹣C的余弦值.【解答】解:(Ⅰ)因为A1O⊥平面ABC,所以A1O⊥BC.又BC⊥AC,所以BC⊥平面A1ACC1,所以AC1⊥BC.…(2分)因为AA1=AC,所以四边形A1ACC1是菱形,所以AC1⊥A1C.所以AC1⊥平面A1BC,所以A1B⊥AC1.…(5分)(Ⅱ)以OC为单位长度,建立如图所示的空间直角坐标系O﹣xyz,则A(0,﹣1,0),B(2,1,0),C(0,1,0),C1(0,2,).=(2,2,0),=(0,1,),设=(x,y,z)是面ABB1的一个法向量,则•=0,•=0,即,取x=,得=(,﹣,1).同理面CBB1的一个法向量为=(0,﹣,1).…(10分)因为cos<>=.二面角A﹣BB 1﹣C是锐二面角,所以二面角A﹣BB1﹣C的余弦值.…(12分)20.(12分)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.【解答】解:(Ⅰ)设椭圆的右焦点为F2(c,0),由|AB|=|F1F2|,可得,化为a2+b2=3c2.又b2=a2﹣c2,∴a2=2c2.∴e=.(Ⅱ)由(Ⅰ)可得b2=c2.因此椭圆方程为.设P(x0,y0),由F1(﹣c,0),B(0,c),可得=(x0+c,y0),=(c,c).∵,∴=c(x0+c)+cy0=0,∴x0+y0+c=0,∵点P在椭圆上,∴.联立,化为=0,∵x0≠0,∴,代入x0+y0+c=0,可得.∴P.设圆心为T(x1,y1),则=﹣,=.∴T,∴圆的半径r==.设直线l的斜率为k,则直线l的方程为:y=kx.∵直线l与圆相切,∴,整理得k2﹣8k+1=0,解得.∴直线l的斜率为.21.(12分)已知函数f(x)=x2+a(x+lnx),x>0,a∈R是常数.(1)求函数y=f(x)的图象在点(1,f(1))处的切线方程;(2)若函数y=f(x)图象上的点都在第一象限,试求常数a的取值范围;(3)证明:∀a∈R,存在ξ∈(1,e),使f′(ξ)=.【解答】(1)解:函数f(x)=x2+a(x+lnx)的导数f′(x)=2x+a(1+),f(1)=1+a,f′(1)=2+2a,则函数y=f(x)的图象在点(1,f(1))处的切线为y﹣(1+a)=(2+2a)(x﹣1),即y=(1+a)(2x﹣1);(2)解:①a=0时,f(x)=x2,因为x>0,所以点(x,x2)在第一象限,依题意,f(x)=x2+a(x+lnx)>0;②a>0时,由对数函数性质知,x∈(0,1)时,lnx∈(﹣∞,0),alnx∈(﹣∞,0),从而“∀x>0,f(x)=x2+a(x+lnx)>0”不成立;③a<0时,由f(x)=x2+a(x+lnx)>0得,设,g′(x)=+,则g(x)≥g(1)=﹣1,从而,﹣1<a<0;综上所述,常数a的取值范围﹣1<a≤0.(3)证明:直接计算知,设函数g(x)=f′(x)﹣=2x﹣(e+1)+﹣,,,当a>e(e﹣1)2或时,<0,因为y=g(x)的图象是一条连续不断的曲线,所以存在ξ∈(1,e),使g(ξ)=0,即ξ∈(1,e),使f′(ξ)=;当时,g(1)、g(e)≥0,而且g(1)、g(e)之中至少一个为正,由均值不等式知,,等号当且仅当时成立,所以g(x)有最小值,且,此时存在ξ∈(1,e)(或),使g(ξ)=0.综上所述,∀a∈R,存在ξ∈(1,e),使f′(ξ)=.四、请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第22题计分.【选修4-1:几何证明选讲】22.(10分)选修4﹣1:几何证明选讲如图,已知圆上的,过C点的圆的切线与BA的延长线交于E点.(Ⅰ)证明:∠ACE=∠BCD;(Ⅱ)若BE=9,CD=1,求BC的长.【解答】(Ⅰ)证明:∵,∴∠ABC=∠BCD.又∵EC为圆的切线,∴∠ACE=∠ABC,∴∠ACE=∠BCD.(Ⅱ)∵EC为圆的切线,∴∠CDB=∠BCE,由(Ⅰ)可得∠BCD=∠ABC.∴△BEC∽△CBD,∴,∴BC2=CD•EB=1×9=9,解得BC=3.【选修4-4:坐标系与参数方程】23.已知直线l:(t为参数)经过椭圆C:(φ为参数)的右焦点F.(Ⅰ)求m的值;(Ⅱ)设直线l与椭圆C交于A,B两点,求|FA|•|FB|的最大值与最小值.【解答】解:(Ⅰ)椭圆的参数方程化为普通方程,得,∴a=5,b=3,c=4,则点F的坐标为(4,0).∵直线l经过点(m,0),∴m=4.…(4分)(Ⅱ)将直线l的参数方程代入椭圆C的普通方程,并整理得:(9cos2α+25sin2α)t2+72tcosα﹣81=0.设点A,B在直线参数方程中对应的参数分别为t1,t2,则|FA|•|FB|=|t1t2|=.…(8分)当sinα=0时,|FA|•|FB|取最大值9;当sinα=±1时,|FA|•|FB|取最小值.…(10分)【选修4-5:不等式选讲】24.已知函数f(x)=|2x+1|+|2x﹣3|(1)求不等式f(x)≤6的解集;(2)若关于x的不等式f(x)≤|a﹣2|的解集非空,求实数a的取值范围.【解答】解:(1)∵函数f(x)=|2x+1|+|2x﹣3|,∴不等式f(x)≤6 等价于①,或②,或③.解①求得﹣1≤x<﹣;解②求得﹣≤x≤;解③求得<x≤2.综合可得,原不等式的解集为[﹣1,2].(2)∵f(x)=|2x+1|+|2x﹣3|≥|2x+1﹣(2x﹣3)|=4,则f(x)的最小值为4.若关于x的不等式f(x)≤|a﹣2|的解集非空,则|a﹣2|≥4,a﹣2≥4,或a ﹣2≤﹣4,求得a≥6,或a≤﹣2,故a的范围为{a|a≥6,或a≤﹣2 }.。
【数学】2014-2015年河南省焦作市高三(上)期中数学试卷与答案(理科)
2014-2015学年河南省焦作市高三(上)期中数学试卷(理科)一、选择题(共12题,每小题5分,共60分)1.(5分)已知集合A={x|0≤x≤2},B={y|1<y<3},则A∩B=()A.[1,2) B.[0,3) C.(1,2]D.[0,3]2.(5分)“a=1”是“复数a2﹣1+(a+1)i(a∈R,i为虚数单位)是纯虚数”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)已知双曲线﹣y2=1(a>0)的实轴长2,则该双曲线的离心率为()A.B.C.D.4.(5分)已知log7[log3(log2x)]=0,那么x等于()A.B.C.D.5.(5分)如图所示是计算某年级500名学生期末考试(满分为100分)及格率q的程序框图,则图中空白框内应填入()A.q=B.q= C.q=D.q=6.(5分)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种 B.10种C.18种D.20种7.(5分)设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β8.(5分)要得到函数f(x)=sin(2x+)的导函数f′(x)的图象,只需将f (x)的图象()A.向左平移个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)B.向左平移个单位,再把各点的纵坐标缩短到原来的(横坐标不变)C.向左平移个单位,再把各点的纵坐标缩短到原来的(横坐标不变)D.向左平移个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)9.(5分)设z=x+y,其中实数x,y满足若z的最大值为12,则z的最小值为()A.﹣3 B.3 C.﹣6 D.610.(5分)将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m,n)重合,则m+n=()A.B.C.D.11.(5分)一只蚂蚁从正方体ABCD﹣A1B1C1D1的顶点A处出发,经正方体的表面,按最短路线爬行到达顶点C1位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是()A.①②B.①③C.②④D.③④12.(5分)德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=被称为狄利克雷函数,其中R为实数集,Q为有理数集,则关于函数有如下四个命题:①f(f(x))=0;②函数f(x)是偶函数;③任取一个不为零的有理数T,f(x+T)=f(x)对任意的x∈R恒成立;④存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.其中的真命题是()A.①②④B.②③C.③④D.②③④二、填空题(共4小题,每小题5分,共20分)13.(5分)的展开式中,常数项为.(用数字作答)14.(5分)已知向量,夹角为45°,且||=1,|2﹣|=,则||=.15.(5分)函数f(x)=x3+x2﹣6x+m的图象不过第Ⅱ象限,则m的取值范围是16.(5分)已知cos=,cos cos=,cos cos cos=,…,根据这些结果,猜想出的一般结论是.三、解答题17.(12分)已知等差数列{a n}的前n项和为S n,且a2=8,S4=40.数列{b n}的前n项和为T n,且T n﹣2b n+3=0,n∈N*.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设c n=,求数列{c n}的前2n+1项和P2n+1.18.(12分)某家电专卖店在国庆期间设计一项有奖促销活动,每购买一台电视,即可通过电脑产生一组3个数的随机数组,根据下表兑奖:商家为了了解计划的可行性,估计奖金数,进行了随机模拟试验,并产生了20个随机数组,试验结果如下:247,235,145,324,754,500,296,065,379,118,520,161,218,953,254,406,227,111,358,791.(1)在以上模拟的20组数中,随机抽取3组数,求至少有1组获奖的概率;(2)根据以上模拟试验的结果,将频率视为概率:(i)若活动期间某单位购买四台电视,求恰好有两台获奖的概率;(ii)若本次活动平均每台电视的奖金不超过85元,求m的最大值.19.(12分)如图1,直角梯形ABCD中,AB∥CD,∠BAD=90°,AB=AD=2,CD=4,点E为线段AB上异于A,B的点,且EF∥AD,沿EF将面EBCF折起,使平面EBCF ⊥平面AEFD,如图2.(Ⅰ)求证:AB∥平面DFC;(Ⅱ)当三棱锥F﹣ABE体积最大时,求平面ABC与平面AEFD所成锐二面角的余弦值.20.(12分)已知圆C经(x﹣1)2+(y﹣2)2=5经过椭圆E:+=1(a>b>0)的右焦点F和上顶点B.(1)求椭圆E的方程;(2)过原点O的射线l在第一象限与椭圆E的交点为Q,与圆C的交点为P,M 为OP的中点,求•的最大值.21.(12分)已知函数f(x)=ln(x+a)﹣x2,x∈[0,2],a>0.(1)若存在x0∈[0,2],使得函数y=f(x)在点(x0,f(x0))处的切线斜率k ≤1,求实数a的取值范围;(2)求函数f(x)的最小值.请考生从22、23、24中任选一题作答。
2015届高三上学期期中考试数学(理)试题(含答案)
①若 m 1,则 S 1 ;②若 m
11
1
, 则 n 1; ③若 n , 则
24
2
其中正确命题的是( ▲ )
A. ①
B.
①②
C.
②③
D.
①②③
二、填空题(本大题共 7 小题,每小题 4 分,共 28 分)
2 m 0.
2
11. 若 sin cos
3 ,则 sin 2 3
▲.
12. 如图是某几何体的三视图 , 其中正视图和侧视图是全等的矩形 , 底边长为 2,
于 __▲ .
15. 设抛物线 C : y2 4x 的焦点为 F, 过点 F 的直线与抛物线 C 交于 A, B 两点 , 过 AB 的中点 M作准
线的垂线与抛物线交于点
P, 若 PF
3
, 则弦长
AB 等于 __▲
.
2
16. 记数列
an 的前 n 和为 sn ,若
sn an
是公差为 d 的等差数列,则
an 为等差数列时 , d 的值为
▲.
17. 设 x, y 是正实数,且 x y 1,则 x2
y2
的最小值是 ___▲
.
x 2 y1
三、解答题:本大题共 5 小题,共 72 分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分 14 分)
已知函数 f ( x)
sin
x cos x
sin 2
an
是等比数列,并求
2
an 的通项公式 an ;
( 2 ) 数 列 bn 满 足 bn
(3n
n 1) 2 n an , 数 列 bn
的 前 n 项 和 为 Tn , 若 不 等 式
【数学】2014-2015年山东省青岛三中高三(上)期中数学试卷与答案(理科)
2014-2015学年山东省青岛三中高三(上)期中数学试卷(理科)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|y=},则∁U A=()A.[1,+∞)B.(﹣∞,1)C.(1,+∞)D.(﹣∞,1]2.(5分)已知命题p,q,“¬p为假”是“p∨q为真”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)向量,,且∥,则cos2α=()A.B.C.D.4.(5分)已知a>0且a≠1,函数y=log a x,y=a x,y=x+a在同一坐标系中的图象可能是()A.B. C.D.5.(5分)定义运算=ad﹣bc,若函数f(x)=在(﹣∞,m)上单调递减,则实数m的取值范围是()A.(﹣2,+∞)B.[﹣2,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣2] 6.(5分)设x,y满足约束条件,若目标函数的最小值为,则a的值为()A.2 B.4 C.6 D.87.(5分)设、都是非零向量,下列四个条件中,一定能使+=成立的是()A.=﹣B.∥C.=2D.⊥8.(5分)下列命题中正确的是()A.y=x+的最小值是2B.y=的最小值是2C.y=sin2x+的最小值是4D.y=2﹣3x﹣(x<0)的最小值是2﹣49.(5分)已知,则=()A.B.C.﹣1 D.±110.(5分)已知函数f(x)的导函数图象如图所示,若△ABC为锐角三角形,则一定成立的是()A.f(cosA)<f(cosB)B.f(sinA)<f(cosB)C.f(sinA)>f(sinB)D.f(sinA)>f(cosB)第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)已知函数f(x)=,则f(f())的值是=.12.(5分)曲线y=sinx(0)与y轴、直线y=1围成的封闭图形的面积为.13.(5分)已知0<<β<π,且cos,sin(α+β)=,则sinα=.14.(5分)已知函数f(x)是(﹣∞,+∞)上的奇函数,且f(x)的图象关于直线x=1对称,当x∈[﹣1,0]时,f(x)=﹣x,则f(2013)+f(2014)=.15.(5分)有以下四个命题:①命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”;②已知a>0,b>0,则>是a>b的充要条件;③命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为真命题;④命题“∀∈R,|x+4|﹣|x﹣1|<k”是真命题,则k>5.其中正确命题的序号是.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.(12分)用数学归纳法证明:l3+23+33+…+n3=(n∈N﹡).17.(12分)已知函数f(x)=x2+alnx(a≠0)(Ⅰ)a=﹣2时,求函数f(x)的单调增区间;(Ⅱ)判断函数f(x)在定义域内有无极值,若有,求之.18.(12分)设集合A为函数y=ln(﹣x2﹣2x+8)的定义域,集合B为函数的值域,集合C为不等式的解集.(1)求A∩B;(2)若C⊆∁R A,求a的取值范围.19.(12分)已知函数f(x)=2s inωxcosωx+2sin2ωx﹣(ω>0)的最小正周期为π.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象.若y=g(x)在[0,b](b>0)上至少含有10个零点,求b 的最小值.20.(13分)已知函数f(x)=x2+2x+b(b∈R).(Ⅰ)若函数f(x)的值域为[0,+∞),若关于x的不等式f(x)<c(c>0)的解集为(k,k+6)(k∈R),求c的值;(Ⅱ)当b=0时,m为常数,且0<m<1,1﹣m≤t≤m+1,求的取值范围.21.(14分)已知函数f(x)=e x﹣x2﹣ax(a∈R).(Ⅰ)若函数f(x)的图象在x=0处的切线方程为y=2x+b,求a,b的值;(Ⅱ)若函数在R上是增函数,求实数a取值范围;(Ⅲ)如果函数g(x)=f(x)﹣(a﹣)x2有两个不同的极值点x1,x2,证明:a>.2014-2015学年山东省青岛三中高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|y=},则∁U A=()A.[1,+∞)B.(﹣∞,1)C.(1,+∞)D.(﹣∞,1]【解答】解:A={x|y=}={x|1﹣x>0}={x|x<1},则∁U A={x|x≥1},故选:A.2.(5分)已知命题p,q,“¬p为假”是“p∨q为真”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:若¬p为假,则p为真,则p∨q为真,即充分性成立,当p假q真时,满足p∨q为真,但¬p为真,则必要性不成立,则“¬p为假”是“p∨q为真”的充分不必要条件,故选:A.3.(5分)向量,,且∥,则cos2α=()A.B.C.D.【解答】解:∵,,且∥,∴,即,化简得sinα=,∴cos2α=1﹣2sin2α=1﹣=故选:D.4.(5分)已知a>0且a≠1,函数y=log a x,y=a x,y=x+a在同一坐标系中的图象可能是()A.B. C.D.【解答】解:∵函数y=a x与y=log a x互为反函数,∴它们的图象关于直线y=x对称.再由函数y=a x的图象过(0,1),y=log a x,的图象过(1,0),A选项中的y=a x,a>1,y=log a x,a>1,但y=x+a中的a<1,不符合题意;B选项中的y=a x,a>1,y=log a x,0<a<1,但y=x+a中的a<1,不符合题意;C选项中的y=a x,0<a<1,y=log a x,0<a<1,但y=x+a中的a<1,符合题意;D选项中的y=a x,0<a<1,y=log a x,0<a<1,但y=x+a中的a>1,不符合题意;观察图象知,只有C正确.故选:C.5.(5分)定义运算=ad﹣bc,若函数f(x)=在(﹣∞,m)上单调递减,则实数m的取值范围是()A.(﹣2,+∞)B.[﹣2,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣2]【解答】解:∵,∴=(x﹣1)(x+3)﹣2×(﹣x)=x2+4x﹣3=(x+2)2﹣7,∴f(x)的单调递减区间为(﹣∞,﹣2),∵函数在(﹣∞,m)上单调递减,∴(﹣∞,m)⊆(﹣∞,﹣2),即m≤﹣2,∴实数m的取值范围是m≤﹣2.故选:D.6.(5分)设x,y满足约束条件,若目标函数的最小值为,则a的值为()A.2 B.4 C.6 D.8【解答】解:目标函数的几何意义为动点P(x,y)到点M(﹣1,﹣1)的斜率,即k.作出不等式对应的平面区域如图(阴影部分),由图象可知当点P位于点B(,0)时,目标函数有最小值,即,解得a=2,故选:A.7.(5分)设、都是非零向量,下列四个条件中,一定能使+=成立的是()A.=﹣B.∥C.=2D.⊥【解答】解:由+=得若=﹣=,即,则向量、共线且方向相反,因此当向量、共线且方向相反时,能使+=成立,对照各个选项,可得B项中向量、的方向相同或相反,C项中向量向量、的方向相同,D项中向量、的方向互相垂直.只有A项能确定向量、共线且方向相反.故选:A.8.(5分)下列命题中正确的是()A.y=x+的最小值是2B.y=的最小值是2C.y=sin2x+的最小值是4D.y=2﹣3x﹣(x<0)的最小值是2﹣4【解答】解:A.x<0时,y<0,因此最小值不是2;B.∵≥2,当且仅当x=1时取等号,其最小值为2;C.∵0<sin2x≤1,∴y>4,因此不正确;D.∵x<0,∴﹣x>0.∴y=2﹣3x﹣==2+4,当且仅当时取等号.其最小值为:2+4,因此不正确.综上可得:只有B正确.故选:B.9.(5分)已知,则=()A.B.C.﹣1 D.±1【解答】解:∵cos(x﹣)=﹣,∴cosx+cos(x﹣)=cosx+cosx+sinx=cosx+sinx=(cosx+sinx)=cos(x﹣)=﹣1.故选:C.10.(5分)已知函数f(x)的导函数图象如图所示,若△ABC为锐角三角形,则一定成立的是()A.f(cosA)<f(cosB)B.f(sinA)<f(cosB)C.f(sinA)>f(sinB)D.f(sinA)>f(cosB)【解答】解:根据导数函数图象可判断;f(x)在(0,1)单调递增,(1,+∞)单调递减,∵△ABC为锐角三角形,∴A+B,0﹣B<A,∴0<sin(﹣B)<sinA<1,0<cosB<sinA<1f(sinA)>f(sin(﹣B)),即f(sinA)>f(cosB)故选:D.第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)已知函数f(x)=,则f(f())的值是=﹣2.【解答】解:∵函数,∴f()=2+=4.=f(4)==﹣2.故答案为:﹣2.12.(5分)曲线y=sinx(0)与y轴、直线y=1围成的封闭图形的面积为﹣1.【解答】解:y=sinx(0)与y轴、直线y=1的交点分别为(0,0),(,1),故曲线y=sinx(0)与y轴、直线y=1围成的封闭图形的面积为S=(1﹣sinx)dx=(x+cosx)|=﹣1,故答案为:﹣1,13.(5分)已知0<<β<π,且cos,sin(α+β)=,则sinα=.【解答】解:由于0<<β<π,cos,则sinβ==.由于,则cos(α+β)=﹣=﹣,则有sinα=sin(α+β﹣β)=sin(α+β)cosβ﹣cos(α+β)sinβ=×(﹣)﹣(﹣)×=.故答案为:.14.(5分)已知函数f(x)是(﹣∞,+∞)上的奇函数,且f(x)的图象关于直线x=1对称,当x∈[﹣1,0]时,f(x)=﹣x,则f(2013)+f(2014)=﹣1.【解答】解:∵f(x)的图象关于直线x=1对称,∴f(x)=f(2﹣x),又f(x)是(﹣∞,+∞)上的奇函数,∴f(x)=﹣f(x﹣2),∴f(x+4)=﹣f(x+2)=﹣[﹣f(x)]=f(x),即4为f(x)的周期,∴f(2013)=f(4×503+1)=f(1),f(2014)=f(4×503+2)=f(2),由x∈[﹣1,0]时,f(x)=﹣x,得f(1)=﹣f(﹣1)=﹣1,由f(x)=f(2﹣x),得f(2)=f(0)=0,∴f(2013)+f(2014)=﹣1+0=﹣1,故答案为:﹣1.15.(5分)有以下四个命题:①命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”;②已知a>0,b>0,则>是a>b的充要条件;③命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为真命题;④命题“∀∈R,|x+4|﹣|x﹣1|<k”是真命题,则k>5.其中正确命题的序号是①②④.【解答】解:①命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”,正确;②已知a>0,b>0,则>是a>b的充要条件,正确;③若方程x2+x﹣m=0有实根,则△=1+4m≥0,解得.命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为“若方程x2+x﹣m=0有实根,则m>0”,是假命题;④令f(x)=|x+4|﹣|x﹣1|,则f(x)=,可得﹣5≤f(x)≤5,因此命题“∀∈R,|x+4|﹣|x﹣1|<k”是真命题,则k>5,正确.其中正确命题的序号是①②④.故答案为:①②④.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.(12分)用数学归纳法证明:l3+23+33+…+n3=(n∈N﹡).【解答】证明:①当n=1时,左边=1,右边=1,∴n=1时,等式成立.②假设n=k时,等式成立,即13+23+33++k3+(k+1)3=∴n=k+1时,等式成立.综合①、②原等式获证.17.(12分)已知函数f(x)=x2+alnx(a≠0)(Ⅰ)a=﹣2时,求函数f(x)的单调增区间;(Ⅱ)判断函数f(x)在定义域内有无极值,若有,求之.【解答】解:(1)当a=﹣2时,f(x)=x2﹣2lnx,其定义域为(0,+∞),∴f′(x)=2x﹣=,令f′(x)=0,解得x=1,当x>1时,f′(x)>0,此时函数f(x)单调递增;当0<x<1时,f′(x)<0,此时函数f(x)单调递减.∴函数的单调递增区间为(1,∞);递减区间为(0,1].(2)∵f(x)=x2+alnx,其定义域为(0,+∞),∴f′(x)=2x+=,①当a>0时,f′(x)>0恒成立,故函数f(x)在(0,+∞)上单调递增,无极值,②当a<0时,令f′(x)=0,解得x=,当0<x<时,f′(x)<0,此时函数f(x)单调递减;当x>时,f′(x)>0,此时函数f(x)单调递增.∴当x=时,函数f(x)取得极小值,f()=﹣+ln(﹣)18.(12分)设集合A为函数y=ln(﹣x2﹣2x+8)的定义域,集合B为函数的值域,集合C为不等式的解集.(1)求A∩B;(2)若C⊆∁R A,求a的取值范围.【解答】解:(1)∵﹣x2﹣2x+8>0,∴解得A=(﹣4,2).∵,∴B=(﹣∞,﹣3]∪[1,+∞);所以A∩B=(﹣4,﹣3]∪[1,2);(2)∵C R A=(﹣∞,﹣4]∪[2,+∞),C⊆C R A,若a<0,则不等式的解集只能是(﹣∞,﹣4]∪[,+∞),故定有≥2得解得﹣≤a<0若a>0,则不等式的解集[﹣4,],但C⊆C R A,故a∈∅.∴a的范围为<0.19.(12分)已知函数f(x)=2sinωxcosωx+2sin2ωx﹣(ω>0)的最小正周期为π.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象.若y=g(x)在[0,b](b>0)上至少含有10个零点,求b 的最小值.【解答】解:(Ⅰ)由题意,可得f(x)==.∵函数的最小正周期为π,∴=π,解之得ω=1.由此可得函数的解析式为.令,解之得∴函数f(x)的单调增区间是.(Ⅱ)将函数f(x)的图象向左平移个单位,再向上平移1个单位,可得函数y=f(x+)+1的图象,∵∴g(x)=+1=2sin2x+1,可得y=g(x)的解析式为g(x)=2sin2x+1.令g(x)=0,得sin2x=﹣,可得2x=或2x=解之得或.∴函数g(x)在每个周期上恰有两个零点,若y=g(x)在[0,b]上至少含有10个零点,则b不小于第10个零点的横坐标即可,即b的最小值为.20.(13分)已知函数f(x)=x2+2x+b(b∈R).(Ⅰ)若函数f(x)的值域为[0,+∞),若关于x的不等式f(x)<c(c>0)的解集为(k,k+6)(k∈R),求c的值;(Ⅱ)当b=0时,m为常数,且0<m<1,1﹣m≤t≤m+1,求的取值范围.【解答】解:(Ⅰ)由值域为[0,+∞),当x2+2x+b=0时有△=4﹣4b=0,即b=1.则f(x)=x2+2x+1=(x+1)2,由已知f(x)=(x+1)2<c解得,,∵不等式f(x)<c的解集为(k,k+6),∴,解得c=9.(Ⅱ)当b=0时,f(x)=x2+2x,∴.∵0<m<1,1﹣m≤t≤m+1,∴0<1﹣m≤t≤m+1<2.令,则,当0<t<1时,g'(t)>0,g(t)单调增,当1<t<2时,g'(t)<0,g(t)单调减,∴当t=1时,g(t)取最大值,.∵=,∴g(1﹣m)<g(1+m).∴的范围为.21.(14分)已知函数f(x)=e x﹣x2﹣ax(a∈R).(Ⅰ)若函数f(x)的图象在x=0处的切线方程为y=2x+b,求a,b的值;(Ⅱ)若函数在R上是增函数,求实数a取值范围;(Ⅲ)如果函数g(x)=f(x)﹣(a﹣)x2有两个不同的极值点x1,x2,证明:a>.【解答】解:(Ⅰ)∵f(x)=e x﹣x2﹣ax,∴f′(x)=e x﹣x﹣a,∴根据导数的几何意义可得,切线的斜率k=f'(0)=1﹣a,∵切线方程为y=2x+b,则k=2,∴1﹣a=2,解得a=﹣1,∴f(x)=e x﹣x2+x,∴f(0)=1,即切点(0,1),∴1=2×0+b,解得b=1;(Ⅱ)由题意f'(x)>0即e x﹣x﹣a≥0恒成立,∴a≤e x﹣x恒成立.设h(x)=e x﹣x,则h′(x)=e x﹣1.当x变化时,h′(x)、h(x)的变化情况如下表:∴h(x)min=h(0)=1,∴a≤1;(Ⅲ)∵g(x)=f(x)﹣(a﹣)x2,∴g(x)=e x﹣x2﹣ax﹣ax2+x2=e x﹣ax2﹣ax,∴g′(x)=e x﹣2ax﹣a,∵x1,x2是函数g(x)的两个不同极值点(不妨设x1<x2),∴e x﹣2ax﹣a=0(*)有两个不同的实数根x1,x2当时,方程(*)不成立则,令,则由p′(x )=0得:当x 变化时,p (x ),p′(x )变化情况如下表:∴当时,方程(*)至多有一解,不合题意; 当时,方程(*)若有两个解,则所以,.赠送—高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f k x y1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0)(<k f xy1x 2x 0>a O∙kx y1x 2x O∙k<a 0)(>k f④k 1<x 1≤x 2<k 2 ⇔xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O∙<a 1k ∙2k 0)(1<k f 0)(2<k f ab x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =x>O-=f(p) f (q)()2b f a-x>O-=f (p)f (q)()2b f a-xx>O-=f (p) f (q)()2b f a-0x x>O -=f(p) f(q)()2b f a-0x xfxfx①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x<O-=f (p)f(q)()2bf a-x x<O-=f (p)f (q)()2b f a-x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015高三期中考试数学理科
D
第 2 页共 12 页
2014-2015学年度第一学期唐山市开滦一中高三期中考试数学理科试卷
第 3 页共 12 页
2014-2015学年度第一学期唐山市开滦一中高三期中考试数学理科试卷
第 4 页共 12 页
2014-2015学年度第一学期唐山市开滦一中高三期中考试数学理科试卷
第 5 页共 12 页
2014-2015学年度第一学期唐山市开滦一中高三期中考试数学理科试卷
第 6 页 共 12 页 2014-2015学年度第一学期唐山市开滦一中高三期中考试数学理科试卷
15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.
16.△ABC 中,∠A 、∠B 、∠C 的对边分别为c b a ,,,重心为G ,若33=+
+c b a ,则∠A= .
唐山市开滦一中2014—2015学年度第一学期期中考试
高三年级数学试卷(理) 二.填空题:本大题4个小题,每小题5分,共20分。
将答案直接填在题中横线上。
13.________________ ;14.________________ 15.________________; 16.________________.
三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分) 函数b x ax x f ++=1)((a ,b 为常数),且方程x x f 23)(=有两个 实根为2,121=-=x x . (1)求)(x f y =的解析式;
(2)求满足不等式()3>x f的解集
第 7 页共 12 页
2014-2015学年度第一学期唐山市开滦一中高三期中考试数学理科试卷
第 8 页 共 12 页
2014-2015学年度第一学期唐山市开滦一中高三期中考试数学理科试卷
18. (本题满分12分)
已知函数y =x +t x 有如下性质:如果常数
t >0,那么该函数在(0,t ]上是减函数,
在[t ,+∞)上是增函数.已知f (x )=4x 2-12x -32x +1
,x ∈[0,1],利用上述性质, 求函数f (x )的单调区间和值域;
19. (本题满分12分)
第 9 页 共 12 页
2014-2015学年度第一学期唐山市开滦一中高三期中考试数学理科试卷 已知函数)(1cos 2)62sin()(2R x x x x f ∈-+-=π
(1)求)(x f 的单调递增区间;
(2)在△ABC 中,三内角A,B,C 的对边分别
为c b a ,,,已知21
)(=A f ,c a b ,,成等差数列,且
9=⋅,求a 的值.
第 10 页 共 12 页
2014-2015学年度第一学期唐山市开滦一中高三期中考试数学理科试卷
20. (本题满分12分)
设函数f (x )=ln x +(x -a )2,a ∈R.
(Ⅰ)若a =0,求函数f (x )在[1,e]上的最小值;
(Ⅱ)若函数f (x )在1[,2]2
上存在单调递增区间,试求实数a 的取值范围;
21. (本题满分12分)
已知△ABC 的面积S 满足
2323≤≤S ,且3=⋅,与BC 的夹角为θ.
(1)求θ的取值范围;
(2)求函数θθθθθ22cos cos sin 32sin
3)(++=f 的最大值及
最小值
22. (本小题满分12分)设函数1
()ln x x be f x ae x x -=+,
曲线()y f x =在点(1,(1)f )处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.。