《方程的根与函数的零点》优秀公开课教案 (比赛课教案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《方程的根与函数的零点》教学设计

一、学情分析 程度差异性:中低等程度的学生占大多数,程度较高与程度很差的学生占少数.知识、心理、能力储备:学生之前已经学习了函数的图象和性质,现在基本会画简单函数的图象,也会通过图象去研究理解函数的性质,这就为学生理解函数的零点提供了帮助,初步的数形结合知识也足以让学生直观理解函数零点的存在性,因此从学生熟悉的二次函数的图象入手介绍函数的零点,从认知规律上讲,应该是容易理解的.

二、设计思想

教学理念:培养学生学习数学的兴趣,学会严密思考,并从中找到乐趣. 教学原则:注重各个层面的学生.

教学方法:三学一导.

三、教学目标

1.知识与技能:

①理解函数(结合二次函数)零点的概念,领会函数零点与相应方程的关系,掌握零点存在的判定条件;

②培养学生的观察能力;

2.过程与方法:

①通过观察二次函数图象,并计算函数在区间端点上的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法;

②让学生归纳整理本节所学知识.

3.情感、态度与价值观:

在函数与方程的联系中体验数学中的转化思想的意义和价值.

四、教学重点、难点

重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法. 难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法.

五、教学过程设计

1.指导学生进行课前学习

预习教材,完成以下习题:

2.指导学生进行课堂学习

(1)方程的根与函数的零点以及零点存在性的探索

问题1:先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:如图1

①方程0322=--x x 与函数322--=x x y

②方程0122=+-x x 与函数122+-=x x y

③方程0322=+-x x 与函数122+-=x x y

图1

[师生互动]

师:教师引导学生解方程、画函数图象、分析方程的根与图象和x 轴交点坐标的关系,推广到一般的方程和函数引出零点概念.

零点概念:对于函数y =f (x )(x ∈D ),把使f (x )=0成立的实数x 叫做函数y =f (x )(x ∈D )的零点.

师提示:根据零点概念,提出问题,零点是点吗?零点与函数方程的根有何关

系?

生:经过观察表格,得出第一个结论

师再问:根据概念,函数y =f (x )的零点与函数y =f (x )的图象与x 轴交点有什么关系

生:经过观察图像与x 轴交点完成解答,得出第二个结论

师:概括总结前两个结论(请学生总结).

1)概念:函数的零点并不是“点”,它不是以坐标的形式出现,而是实数。例如函数322--=x x y 的零点为x =-1,3

2)函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标.

3)方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.

师:引导学生仔细体会上述结论.

再提出问题:如何并根据函数零点的意义求零点?

生:可以解方程0)(=x f 而得到(代数法);

可以利用函数)(x f y =的图象找出零点.(几何法)

问题3:是不是所有的二次函数都有零点?

师:仅提出问题,不须做任何提示.

生:根据函数零点的意义探索研究二次函数的零点情况,并进行交流,总结概括形成结论.

二次函数)0(2≠++=a c bx ax y 的零点:看△

1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.

2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.

3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点.

第一阶段设计意图

本节的前半节一直以二次函数作为模本研究,此题是从特殊到一般的升华,也全面总结了二次函数零点情况,给学生一个清晰的解题思路,进而培养学生归纳总结能力.

(2)零点存在性的探

你能将结论进一步推广到()y f x =吗?

新知:对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点(zero point ).反思:函数()y f x =的零点、方程()0f x =的实数根、函数()y f x = 的图象与x 轴交点的横坐标,三者有什么关系?

2()(16)f x x x =-例1:求函数的零点

ln 260x x +-=思考:方程是否有实数根?有几个实数根?

一般地,我们有:如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线并且有f (a )·f (b )<0,那么函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根. 函数y =f (x )在哪几个区间内必有零点?为什么?

探究1:如果函数y = f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )>0时,函数在区间(a ,b )内没有零点吗?

探究2:如果函数y = f (x )在区间[a ,b ]上的图象是一条连续不断的曲线,并且有f (a )·f (b )<0时,函数在区间(a ,b )内有零点,但是否只一个零点?

探究3:如果函数y = f (x )在区间[a ,b ]上的图象是一条连续不断的曲线,并且函数在区间(a ,b )内有零点时一定有f (a )·f (b )<0 ?

探究4:如果函数y = f (x )在区间[a ,b ]上的图象不是一条连续不断的曲线,函数在区间(a ,b )内有零点时一定有f (a )·f (b )<0 ?

图3(反例)

师:总结两个条件:

1)函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线;

相关文档
最新文档