化工原理-5-第八章-气体吸收
化工原理之气体吸收
化工原理之气体吸收气体吸收是化工过程中常用的一种物理操作,它指的是将气体从气相吸收到液相中。
气体吸收广泛应用于环境工程、化工工艺、能源工程等领域,例如废气处理、石油炼制、烟气脱硫等。
一、气体吸收的基本原理气体吸收的基本原理是气体和液体之间的质量传递过程。
气体吸收的过程中,气体溶质分子通过气相和液相之间的传质界面传递到溶液中,从而实现气体从气相到液相的转移。
气体吸收的速度由以下几个因素决定:1.液相溶剂的性质:液相溶剂的挥发性、表面张力、黏度和溶解度等性质都会影响气体吸收的速度。
通常情况下,挥发性较强的溶剂对气体的吸收速率较快。
2.溶剂和气体溶质之间的亲和力:溶剂和气体溶质之间的亲和力越强,气体吸收速度越快。
3.传质界面的面积和传质界面的厚度:传质界面的面积越大,气体吸收速度越快;传质界面的厚度越薄,气体吸收速度越快。
4.溶解度:气体的溶解度越高,气体吸收速度越快。
5.气体浓度梯度:气体浓度梯度越大,气体吸收速度越快。
二、气体吸收的设备常见的气体吸收设备包括吸收塔、吸收柱和吸附塔等。
1.吸收塔:吸收塔是最常用的气体吸收设备之一,它主要由一个塔体和填料层组成。
气体通过底部进入吸收塔,液体从塔顶滴入塔体中。
在填料层的作用下,气体和液体之间的接触面积增加,从而促进气体的传质。
通过提供充分的接触时间和表面积,吸收塔可以实现高效的气体吸收。
2.吸收柱:吸收柱通常用于含有反应过程的气体吸收。
与吸收塔类似,吸收柱也包含一个塔体和填料层。
区别在于,吸收柱还包括一个液相反应器,用于在吸收气体的同时进行反应。
3.吸附塔:吸附塔是另一种常用的气体吸收设备,主要用于吸附分离等工艺中。
吸附过程通过吸附剂将目标气体吸附在其表面上实现。
吸附塔通常由多个吸附层和吸附剂床组成,气体从底部进入吸附塔,经过吸附剂床后,被吸附物质从气相转移到固相中,从而实现气体吸附。
三、气体吸收的应用气体吸收在化工工艺中有着广泛的应用。
1.废气处理:气体吸收是一种有效的废气处理方法,可用于去除废气中的有害污染物,如二氧化硫、氮氧化物等。
化工原理-5章气体吸收
液两相的浓度呈连续变化。如填
溶剂
料塔。
溶剂
规整填料
散装填料
塑料丝网波纹填料 塑料鲍尔环填料
级式接触:气、液两相逐级接 触传质,两相的组成呈阶跃变 化。 如板式塔。
气体
气体
a 微分接触
b 级式接触
图9-2 填料塔和板式塔
5.1.3 吸收操作的分类
物理吸收:吸收过程溶质与溶剂不发生显著的化学反应。如用水 吸收二氧化碳、用水吸收乙醇或丙醇蒸汽、用洗油吸收芳烃等。
硫回收
低温 甲 醇洗
甲醇 醋酸
CO分离
醋酐
低温甲醇洗装置
原气料体器气热I/交合换成 新醇鲜储甲槽 锅冷炉却给器水
原料气 冷却器
补充泵
洗氨器 原料气 体/热合交成换气器
原料气 /交废换气器热
地下 废液罐
地下 吸收器 废液泵
II
C02 甲 醇 级 间冷却器
H进2料S-冷吸却收器器
合成气 原料气
原 凝物料 气 冷
yA 1 yA
KmolA/ KmolB
在计算比质量分数或比摩尔分数的数值时, 通常以在操作中不转移到另一相的组分作为 B组分。在吸收中,B组分是指吸收剂或惰 性气,A组分是指吸收质.
2.质量浓度与物质的量浓度
质量浓度是指单位体积混合物内所含物质的质量。对于A组分,有
A
mA V
kg / m3
对于气体混合物,在压强不太高、温度不太低的情况下,可视为理
EM s 83.318
第八章 吸收
三、吸收平衡线
表明吸收过程中气、液相平衡关系的图线称吸收平衡线。在吸收操作 中,通常用图来表示。
吸收平衡线
YA
1
mX A (1 m) X
化工原理--第八章 气体吸收
第八章气体吸收1.在温度为40℃、压力为101.3kPa 的条件下,测得溶液上方氨的平衡分压为15.0kPa 时,氨在水中的溶解度为76.6g (NH 3)/1000g(H 2O)。
试求在此温度和压力下的亨利系数E 、相平衡常数m 及溶解度系数H 。
解:水溶液中氨的摩尔分数为76.6170.07576.610001718x ==+由*p Ex=亨利系数为*15.0kPa 200.00.075p E x ===kPa 相平衡常数为t 200.0 1.974101.3E m p ===由于氨水的浓度较低,溶液的密度可按纯水的密度计算。
40℃时水的密度为992.2ρ=kg/m 3溶解度系数为kPa)kmol/(m 276.0kPa)kmol/(m 180.2002.99233S ⋅=⋅⨯==EM H ρ2.在温度为25℃及总压为101.3kPa 的条件下,使含二氧化碳为3.0%(体积分数)的混合空气与含二氧化碳为350g/m 3的水溶液接触。
试判断二氧化碳的传递方向,并计算以二氧化碳的分压表示的总传质推动力。
已知操作条件下,亨利系数51066.1⨯=E kPa ,水溶液的密度为997.8kg/m 3。
解:水溶液中CO 2的浓度为33350/1000kmol/m 0.008kmol/m 44c ==对于稀水溶液,总浓度为3t 997.8kmol/m 55.4318c ==kmol/m 3水溶液中CO 2的摩尔分数为4t 0.008 1.4431055.43c x c -===⨯由54* 1.6610 1.44310kPa 23.954p Ex -==⨯⨯⨯=kPa气相中CO 2的分压为t 101.30.03kPa 3.039p p y ==⨯=kPa <*p故CO 2必由液相传递到气相,进行解吸。
以CO 2的分压表示的总传质推动力为*(23.954 3.039)kPa 20.915p p p ∆=-=-=kPa3.在总压为110.5kPa 的条件下,采用填料塔用清水逆流吸收混于空气中的氨气。
《化工原理》第八章 吸收
中一
Y A mX A
(8-11)
第二节 吸收过程的相平衡关系
(3)吸收平衡线 表明吸收过程中气、液相平衡关系 的图线称吸收平衡线。在吸收操作中,通常用图来表示。
图8-2吸收平衡线
第二节 吸收过程的相平衡关系
式(8-10)是用比摩尔分数表示的气液相平衡关系。 它在坐标系中是一条经原点的曲线,称为吸收平衡线,如 图8-2(a)所示;式(8-11)在图坐标系中表示为一条经 原点、斜率为m的直线。如图8-2(b)所示。 (4)相平衡在吸收过程中的应用 ①判断吸收能否进行。由于溶解平衡是吸收进行的极 限,所以,在一定温度下,吸收若能进行,则气相中溶质 的实际组成 Y A 必须大于与液相中溶质含量成平衡时的组 成 Y ,即YA Y 。若出现 YA Y 时,则过程反向进行,为 解吸操作。图8-2中的A点,为操作(实际状态)点,若A Y 点位于平衡线的上方, A Y 为吸收过程;点在平衡线上,
yB 1 yA
(3)比质量分数与比摩尔分数的换算关系
WA mA nAM A M XA A mB nB M B MB
(8-3)
第二节 吸收过程的相平衡关系
M 式中 M 、B 分别为混合物中、组分的千摩尔质量, kg/kmol 。 在计算比质量分数或比摩尔分数的数值时,通常以在 操作中不转移到另一相的组分作为组分。在吸收中,组分 是指吸收剂或惰性气,组分是指吸收质。 2.质量浓度与物质的量浓度 质量浓度是指单位体积混合物内所含物质的质量。对 于组分,有 m V (8-4) 式中 A ——混合物中组分的质量浓度,㎏/m3; V ——混合物的总体积,m3。
二、气液相平衡关系
吸收的相平衡关系,是指气液两相达到平衡时,被吸 收的组分(吸收质)在两相中的浓度关系,即吸收质在吸 收剂中的平衡溶解度。 1.气体在液体中的溶解度 在恒定的压力和温度下,用一定量的溶剂与混合气体 在一密闭容器中相接触,混合气中的溶质便向液相内转移, 而溶于液相内的溶质又会从溶剂中逸出返回气相。随着溶 质在液相中的溶解量增多,溶质返回气相的量也在逐渐增 大,直到吸收速率与解吸速率相等时,溶质在气液两相中 的浓度不再发生变化,此时气液两相达到了动平衡。平衡 p A 表示; 时溶质在气相中的分压称为平衡分压,用符号 溶质在液相中的浓度称为平衡溶解度,简称溶解度;它们 之间的关系称为相平衡关系。
《化工原理》第八章-吸收章练习
mG L
) 1
1
mG ] L
L
1
1 0.926
ln[(1
0.926) 1
1 0.9
0.926]
6.9
H OG
H OL
mG L
1.2 0.926
1.11m
H=HOGNOG=1.11×6.9=7.66m
(2) 当NOG→∞时,由于
mG 1 , x2=0
L
y2min=mx2=0, ηmax=100%
mG ] L
L
↑;不变
二、作图题
以下各小题y~x图中所示为原工况下的平衡线与操 作线,试画出按下列改变操作条件后的新平衡线 与操作线:
1.吸收剂用量增大
2.操作温度升高
1.吸收剂用量增大
2.操作温度升高
3.吸收剂入口浓度降低
3.吸收剂入口浓度降低
三、用清水逆流吸收除去混合物中的有害气体, 已知入塔气体组成,y1=0.1,η=90%,平衡关系: y=0.4x,液相传质单元高度HOL=1.2m,操作液气 比为最小液气比的1.2倍。试求:
8.GL m , y2min=mx2=0;
L m,
G
x1
y1 m
y2
y1
L ( y1 Gm
x2 )
0.1 0.1 1.5 2
0.025
9. L m
G
,NOG
y1 y2 ym
y1 y2 y2 mx2
1
9
10.N OG
1 1 mG
ln[(1
mG ) L
y1 y2
mx 2 mx 2
8.设计时,用纯水逆流吸收有害气体,平衡关系 为y=2x,入塔y1=0.1,液气比(L/G)=3,则出塔气 体浓度最低可降至 ,若采用(L/G)=1.5,则出 塔气体浓度最低可降至 。
化工原理-第8章 气体吸收
8.3 扩散和单相传质
① 溶质由气相主体传递到两相界面,即气相内的物质传递;
② 溶质在相界面上的溶解,由气相转入液相,即界面上发生 的溶解过程
③ 溶质自界面被传递至液相主体,即液相内的物质传递。 通常,第②步即界面上发生的溶解过程很容易进行,其阻力很小
( 传质速率 小,
=
传质推动力 传质阻力
)故认为相界面上的溶解推动力亦很
8.1概述
①溶剂应对被分离组分(溶质)有较大的溶解度,或者说在 一定的温度与浓度下,溶质的平衡分压要低。这样,从平衡角度 来说,处理一定量混合气体所需溶剂量较少,气体中溶质的极限 残余浓度亦可降低;就过程数率而言,溶质平衡分压↓,过程推 动力大,传质数率快,所需设备尺寸小。
②溶剂对混合气体中其他组分的溶解度要小,即溶剂应具备 较高的选择性。若溶剂的选择性不高,将同时吸收混合物中的其 他组分,只能实现组分间某种程度的增浓而不能实现较为完全的 分离。
⑷工业吸收流程(见旧讲稿) 由流程图可见,采用吸收操作实现气体混合物的分离必须解决下 列问题: ①选择合适的溶剂,使能选择性比溶解某个(或某些)被分离组 分; ②提供适当的传质设备(多位填料塔,也有板式塔)以实现气液 两相的接触,使被分离组分得以从气相转移到液相(吸收)或气相 (解吸);
8.1概述
注意:此时并非没有溶质分子继续进入液相,只是任何瞬间 进入液相的溶质分子数与从液相逸出的溶质分子数恰好相等,在 宏观上过程就象是停止了。这种状态称为相际动平衡,简称相平 衡。
8.2.1平衡溶解度
⑴溶解度曲线
对 单 组 分 物 理 吸 收 的 物 系 , 根 据相律 ,自 由度数F 为F=CΦ+2=3-2+2=3(C=3,溶质A,惰性组分B,溶剂S,Φ=2,气、液两 相),即在温度 t ,总压 p ,气、液相组成共4个变量中,由3个自 变量(独立变量),另1个是它们的函数,故可将平衡时溶质在气
新版化工原理习题答案(08)第八章--气体吸收[1]
第八章 气体吸收1. 在温度为40 ℃、压力为101.3 kPa 的条件下,测得溶液上方氨的平衡分压为15.0 kPa 时,氨在水中的溶解度为76.6 g (NH 3)/1 000 g(H 2O)。
试求在此温度和压力下的亨利系数E 、相平衡常数m 及溶解度系数H 。
解:水溶液中氨的摩尔分数为76.6170.07576.610001718x ==+ 由 *p Ex =亨利系数为*15.0kPa 200.00.075p E x ===kPa 相平衡常数为 t 200.0 1.974101.3E m p === 由于氨水的浓度较低,溶液的密度可按纯水的密度计算。
40 ℃时水的密度为992.2ρ=kg/m 3溶解度系数为 kPa)kmol/(m 276.0kPa)kmol/(m 180.2002.99233S ⋅=⋅⨯==EM H ρ2. 在温度为25 ℃及总压为101.3 kPa 的条件下,使含二氧化碳为3.0%(体积分数)的混合空气与含二氧化碳为350 g/m 3的水溶液接触。
试判断二氧化碳的传递方向,并计算以二氧化碳的分压表示的总传质推动力。
已知操作条件下,亨利系数51066.1⨯=E kPa ,水溶液的密度为997.8 kg/m 3。
解:水溶液中CO 2的浓度为 33350/1000kmol/m 0.008kmol/m 44c == 对于稀水溶液,总浓度为 3t 997.8kmol/m 55.4318c ==kmol/m 3 水溶液中CO 2的摩尔分数为4t 0.008 1.4431055.43c x c -===⨯ 由 54* 1.6610 1.44310kPa 23.954p Ex -==⨯⨯⨯=kPa气相中CO 2的分压为t 101.30.03kPa 3.039p p y ==⨯=kPa < *p故CO 2必由液相传递到气相,进行解吸。
以CO 2的分压表示的总传质推动力为*(23.954 3.039)kPa 20.915p p p ∆=-=-=kPa3. 在总压为110.5 kPa 的条件下,采用填料塔用清水逆流吸收混于空气中的氨气。
南京理工大学化工原理第5-8章课后答案
第五章 蒸馏5-1 苯和甲苯的饱和蒸气压数据如本题附表1所示。
根据表中数据作101.33kPa 下苯和甲苯溶液的t-x-y图及x-y 图。
此溶液服从拉乌尔定律。
习题5-1附表1温度 苯的饱和蒸气压甲苯的饱和蒸气压P A 0/kPa P B 0/kPa 80.2101.33 39.99 84.1 113.59 44.4 88.0 127.59 50.6 92.0 143.72 57.6 96.0 160.52 65.66 100 179.19 74.53 104 199.32 83.33 108 221.19 93.93 110.4233.05101.33解 根据拉乌尔定律,理想溶液上方各组分的平衡分压为 p A =p A °x A p B =p B °x B =(1-x A )总压 B A p p P += 所以,BA BA p p p P x --=A x Pp Pp y A A A==根据附表1数据计算气液相中甲苯的摩尔分率见本题附表2,根据附表2数据可作出t-x-y 图及x-y 图,见习题5-1附图1。
习题5-1附表2温度 苯饱和蒸气压 甲苯饱和蒸气压x A y A P A 0/kPa P B 0/kPa 80.2101.33 39.99 1 1 84.1 113.59 44.4 0.823 0.923 88.0 127.59 50.6 0.66 0.83 92.0 143.72 57.6 0.508 0.72 96.0 160.52 65.66 0.376 0.60 100 179.19 74.53 0.256 0.453 104 199.32 83.33 0.155 0.305 108 221.19 93.93 0.058 0.127 110.4233.05101.33习题5-1附图15-2 在101.33kPa下正庚烷和正辛烷的平衡数据如本题附表1所示。
试求:(1)在101.33kPa下溶液中含正庚烷为0.35(摩尔分率)时的泡点及平衡蒸气的瞬间组成?(2)在101.33kPa下加热到117℃溶液处于什么状态?各相的组成如何?溶液被加热到什么温度全部气化为饱和蒸气?习题5-2附表198.4 1.0 1.0105 0.656 0.81110 0.487 0.673115 0.311 0.491120 0.157 0.280125.6 0 0解根据本题附表1数据作出t-x-y图,查图可得。
第8章 化工原理气体吸收
8.3.1双组分混合物中的分子扩散
⑴费克定律 温度、总压一定,组分A在扩散方向上任 一点处的扩散通量与该处A的浓度梯度成正比。
dCA J A DAB d
JA——组分A扩散速率(扩散通量), kmol/(m2· s);
dCA ——组分A在扩散方向z上的浓度梯度(kmol/m3)/m; d DAB——组分A在B组分中的扩散系数,m2/s。
பைடு நூலகம்G L
8.3.5对流传质理论
②数学模型
DG p DG 1 ( pA pAi ) p ( y yi ) 气膜 N A RT G pBm RT G yBm
式中:
pBm yBm (1 y ) m p DG DG 1 DG p 1 kG RT G pBm RT G yBm RT G (1 y )m
pB1 pA1 pA2
0 扩散距离z
z
3)等分子反方向扩散发生在蒸馏过程中。
2.单向扩散及速率方程
JA
(1)总体流动:因溶质A扩散到界面溶 解于溶剂中,造成界面与主体的微小压差, NMcA/c 使得混合物向界面处的流 动。 总体流 动NM NMcB/c (2)总体流动的特点: JB 1)因分子本身扩散引起的宏观流动。 2)A、B在总体流动中方向相同,流动 速度正比于摩尔分率。 1 2
负号:表示扩散方向与浓度梯度方向相反,扩散沿 着浓度降低的方向进行。 理想气体:
pA cA RT
dc A 1 dp A = dz RT dz
DAB dpA JA RT dz
8.3.1双组分混合物中的分子扩散
对双组分混合物,总浓度 CM CA CB =常数
dC A dC B d d
陈敏恒 化工原理 第八章(吸收)1
解:(1) m
E p
1 .2
1 .2
y
0 .08
x x e x 0.0147
(3)达到极限时气体浓度最低为
y min y e 0.006
8.3 扩散和单向传质 一、相际传质过程 (1)溶质由气体主体扩 散至两相界面 (2)溶质在界面上溶解
y i f ( xi )
N 0
N A J A D
定态时 :
dc A dz
NA C D D p A1 p A 2 N A c A1 c A 2 RT nA pA ( 理想气体 c A ) V RT
(2)单向扩散 NB 0
cA dc A N A 1 D dz cM D cM D p c A1 c A 2 p A1 p A 2 NA c BM RT p BM
8.2.2 相平衡与吸收关系 一、判断过程的方向
y ye 或 x xe
吸收
y ye 或 x xe
解吸
二、指明过程的极限 吸收过程的极限为平衡状态.即 y y e 或 x x e
x1 max x1e
y1 m
y 2 min y 2 e mx 2
三、计算过程推动力 过程推动力为实际状态与平衡状态的偏离程度
cM c A cB c Ai cBi C
c A c Ai 必有 cB cBi
A, B 反向扩散
(1)等分子反向扩散 当液相能以同一速率向界面供应组分 B 时, c Bi 保持恒定: J A J B 或 J A J B 0 通过截面 PQ 的净物量为零. (2)单向扩散 当液相不能向界面提供组分 B 时,发生的是 组分 A 的单向扩散。例如:吸收 在单向扩散中将产生主体流动 扩散流:分子微观运动的宏观结果,纯组分 主体流动:宏观运动,同时带有组分 A 和 B 注意:在单向扩散中依然存在 J A J B
化工原理第八章 气体吸收
平衡关系与上式联立可求解界面浓度 xi 与 yi 。在用作图
3
三、工业吸收过程
工业的吸收过程常在吸收塔中进行。生产中除少部分直 接获得液体产品的吸收操作外,一般的吸收过程都要求 对吸收后的溶剂进行再生,即在另一称之为解析他的设 备中进行于吸收相反的操作-解吸。因此,一个完整地 吸收分离过程一般包括吸收和解吸两部分。
2024/3/25
4
8.2 吸收过程相平衡基础
对于单组分物理吸收,组分数c=3(溶质A、惰性 气体B、溶剂S),相数(气、液),自由度数F应为
F c23223
即在温度、总压和气、液组成共四个变量中,有三个是 自变量,另一个是它们的函数。
2024/3/25
6
在一定的操作温度和压力下,溶质在液相中的溶解 度由其相中的组成决定。在总压不很高的情况下,可以 认为气体在液体中的溶解度只取决于该气体的分压pA , 而与总压无关。于是,cA*与 pA 得函数关系可写成
ky P kG
Ky m Kx KG HKL
13
二、界面浓度的求取
当m随浓度变化时,用分传质速率方程式计算更加方 便,界面浓度 xi 与 yi 存在关系有:
(1)有双膜模型理论,yi 与 xi 在平衡线上。如果平衡线以
y f (x) 表示,则 yi 。 f (xi )
(2)可导出
y yi kx x xi ky
2024/3/25
12
不同的推动力所对应的不同传质系数和速率方程。
浓度组成表示法
表8—1 传质速率方程的各种形式
摩尔分率
物质得量浓度或分压
传质速率方程 总传质系数
2024/3/25
N A ky ( y yi ) kx (xi x) ky (y y*) kx (x* x)
化工原理气体吸收
化工原理气体吸收气体吸收是化学工程中一种常用的分离和纯化技术,用于从气体混合物中去除其中一种特定成分。
它广泛应用于石油、化工、环保等领域。
本文将介绍气体吸收的原理、装置和操作条件等方面的内容。
气体吸收的原理是利用溶剂与气体中的组分之间的化学或物理作用力,使目标组分从气相转移到液相中。
根据吸收剂的性质和反应过程的特点,气体吸收可分为物理吸收和化学吸收两种方式。
物理吸收是指目标组分在吸收剂中主要通过物理作用力,如分子间的范德华力、表面张力等,从气相吸附到液相中。
在物理吸收过程中,吸收剂的选择非常关键,常用的吸收剂包括水、有机溶剂(如乙醇、丙酮等)和离子液体等。
化学吸收是指目标组分在吸收剂中通过与吸收剂发生化学反应,形成溶解物而从气相吸附到液相中。
化学吸收通常需要在一定的温度、压力和pH值条件下进行。
化学吸收常用的吸收剂包括氨水、碱性溶液(如氢氧化钠溶液、氯化钠溶液等)和有机酸等。
气体吸收的装置主要由吸收器、进料装置、排气装置和再生装置等组成。
吸收器一般为塔状或柱状,内部设置填料或栅板,以增加气液接触的表面积,提高吸收效果。
进料装置用于将待吸收的气体引入吸收器,通常采用喷射装置或静态混合器。
排气装置用于将除去目标组分的废气排放到大气中。
再生装置用于将吸收剂中的目标组分进行回收或处理。
操作条件对气体吸收的效果有重要影响。
温度是其中的一个关键参数,一般情况下,吸收效果随着温度的升高而降低。
温度控制有利于提高吸收剂中目标组分的溶解度。
另外,压力、气体和液体的流动速度、吸收剂浓度和比表面积等,也会对气体吸收过程产生影响。
气体吸收在化工工艺中有着广泛的应用。
例如,气体吸收可用于去除工业废气中的有机物、硫化物、酸性气体等污染物。
此外,在炼油、气体处理和化学合成等过程中,气体吸收还常用于分离和提纯有机化合物、气体燃料的净化和升级等。
综上所述,气体吸收作为一种常见的分离和纯化技术,通过吸收剂与目标组分之间的化学或物理作用力,将气体中的特定成分从气相吸附到液相中。
化工原理吸收
化工原理吸收吸收是一种常见而重要的分离技术,在化工过程中广泛应用。
吸收是利用溶剂以物理或化学方式从气体、液体或固体中分离出物质的过程。
它在化工领域中的应用十分广泛,涵盖了多个行业,如石油化工、化肥、合成材料等。
吸收的基本原理是根据物质的相互作用力,并通过在溶剂中形成物质被吸附、溶解或反应的方式来实现物质的分离和纯化。
吸收过程一般分为两个阶段:传质和相平衡。
传质过程指的是溶质从气体、液体或固体相向吸收剂的传递过程。
相平衡指的是溶质在吸收剂中的浓度达到平衡状态。
吸收的过程可以通过多种方式实现。
其中最常见的是气体吸收。
气体吸收是将气态物质通过接触与吸收剂接触,然后进入吸收剂中的过程。
气体吸收的过程中,常使用物理吸收和化学吸收的方式进行。
物理吸收主要是利用溶质分子在吸收剂中溶解的溶解度差异来进行分离。
根据溶解度和吸收剂的选择,物理吸收一般具有以下几个特点:易于操作、能耗较低、对条件要求不高、纯化程度较低。
常用的吸收剂包括水、有机溶剂和溶液。
化学吸收则是通过物质在吸收剂中发生化学反应,使溶质与吸收剂发生反应,产生新的物质,在产生反应的同时将溶质分离出来。
化学吸收一般具有下面几个特点:通过反应能够得到较高的吸收效果;能够得到较高纯度的产品;操作较复杂,条件苛刻;产生的副产物难以处理。
常用的吸收剂包括酸、碱、氧化剂等。
化学吸收和物理吸收在实际应用中往往结合使用,通过化学反应实现更高效的物质分离。
在工业生产中,常常使用吸收塔进行吸收操作。
吸收塔是一个用于进行气体吸收的设备,一般由填料、进料与出料管道以及循环泵组成。
填料可以增加界面面积,提高吸收效果。
除了气体吸收外,液体吸收也是常见的一种吸收形式。
液体吸收一般是将液态物质通过接触与吸收剂接触并吸收的过程。
液体吸收主要用于分离和纯化液态物质,常见的应用有酸碱中和、有机溶剂回收等。
总之,吸收是一种常用的化工分离技术,通过物理吸收和化学吸收的方式,实现物质的分离和纯化。
化工原理下册气体吸收
第8章气体吸收dC A dz因为C MD C B2 C M D C A1 —A2N Aln ——CB1 5 C B 2 —'C B1DC :m CA1C A2lnDPln P B2 RT P BIRT P BmP AI -P A2液膜中的传质速率 NA = kx ( X A,iX A)或NA = k l (C A,i - CA )111式中,KxFK y ,K x'x k y m11m------- = ----------------- "T -------------K ykyk xD C Al — C A2D AB ---------- 7 ----------O2、单向扩散和主体流动(分子扩散 +同方向上缓慢的总体流动)速率引起缓慢的总体流动的原因:溶质A 不断在气液相界面上发生溶解,自气相中消失,使得气液相界面附近的气相中产生空穴位,因此,引起缓慢的总体流动来补充所产生的空穴位。
如果是在气相中的传质,组分的浓度可以用分压表示,则3、对流传质 集总参数法表示传质速率气膜中的传质速率N A 二 k y (y A -y A,i )或 N A 二 k G (P A - P A,i )式中,k y =Pk G ,k x = Pk l 包括气膜和液膜的总传质速率N A =K y (y A - y A,e )或 N A = K x (X A,e - X A )解吸操作,包括气膜和液膜的总传质速率N A 二 K y (y A,e 一 Y A )或 N A 二 K X (X A - X A,e )4、传质控制如果m1 ————,则 K y k y ,传质过程为气膜阻力控制,k xk yNM - Nnet,ACB2CB1如果1 1- ,则K x k x,传质过程为液膜阻力控制。
mk y k x塔内任一横截面上气相组成 y 与液相组成x 之间的关系式,即操作线方程式:L八 G xy2- X 2L 和填料层高度H 。
化工原理 第八章 吸收
水吸收NH3、HCl。
三、传质阻力分析
1 1 1 K x mk y k x
液相阻力控制(液膜控制):当 1/mky<<1/kx,则 1/Kx≈1/kx。 此时传质阻力集中于液相。 液膜控制的条件:
分在液体溶剂中溶解度的差异来 分离气体混合物的操作。
溶质A(吸收质):能溶于液体的组分 惰性组分B:不能溶于液体的组分 吸收剂S:吸收操作所用的溶剂
吸收液(溶液):溶有溶质的溶液
吸收尾气:排出的气体,主要成分为惰性气体,还含有残余溶 质
8.1 概述
吸收在化工中的应用: 1.制取化工产品 将气体中需要的成分用指定的溶剂吸收出来,成为液态产 品。如:用水吸收HCl、NO2制取工业盐酸和硝酸。 2.分离气体混合物 工业上利用吸收分离气体混合物。热甲碱法吸收二氧化碳。 3.从气体中回收有用组分 用洗油回收粗苯或二氯乙烷。 4.气体净化 ①原料气的净化。 ②尾气、废气的净化以保护环境。 5.生化工程 菌体在发酵罐中培养。发酵罐中要给予大量的空气以维持 微生物的正常代谢,要应用空气中的氧在水中吸收这一过程。
总传质速率方程
N A K y ( y y*) N A K x ( x* x ) N A K G ( p A p* A) N A K L (C * A CA)
总传质系数与分传质系数的关系
1 1 1 K G kG HkL 1 1 1 m K y k y kx 1 H 1 K L kG k L
(3)挥发性 (4)黏性 (5)其它
不易挥发 粘度要低 无毒,无腐蚀性,不易燃烧,不发泡。 价廉易得,化学稳定性等
第八章 气体吸收-第五节-低浓度气体吸收
三个数群之间的关系如下:
西北大学化工原理
西北大学化工原理
①当y1/y2一定,
m
L G
增大,NOG和H都增大
②当m一定,L/G下降(液体用量减少)H增大 ③
m
L G
一定,y1/y2增大(分离要求改变) NOG和H都增大。
同理可以推出液相浓度差为推动力的传质单元数
N OL ⎡ ⎤ y1 − mx 2 1 = + A⎥ ln ⎢(1 − A) y1 − mx1 1− A ⎣ ⎦
y1 − y 2 d (Δy ) Δy1 − Δy 2 ( y − ye )
y 1− y 2 Δy1 G y1 − y 2 G G y1 − y 2 ln = = = Kya Δy1 − Δy 2 Δy 2 Kya Δy1 − Δy 2 Kya Δy m Δ ln Δyy1 2
西北大学化工原理
G y1 − y 2 H= K y a Δy m
(8 − 76) (8 − 77 )
西北大学化工原理
2、平衡线为直线时的对数平均推动力
y1 − y 2 dy = d (Δy ) Δy1 − Δy 2
G H= Kya
∫
y1
y2
dy G = y − ye Kya
∫
Δy1
Δy 2
G y1 − y 2 = Kya Δy1 − Δy 2
∫
Δy1
Δy 2
d (Δy ) Δy
A B
y2
x2
x1
x2
X
西北大学化工原理
逆流与并流的比较: 1)逆流推动力均匀,且逆流 ∆ Y
m
>并流∆ Y
m
2) Y1大,逆流时Y1与X1在塔底相迂有利于提高X1 X2小,逆流时Y2与X2在塔顶相迂有利于降低Y2 Y3 X1 Y1 X2 逆流与并流操作线练习 A C
化工原理气体吸收实验
一、实验名称气体吸收实验二、实验目的(1)观察气、液在填料塔内的操作状态,掌握吸收操作方法。
(2)测定在不同喷淋量下,气体通过填料层的压降与气速的关系曲线。
(3)测定在填料塔内用水吸收CO2的液相体积传质系数X K α。
(4) 对不同填料的填料塔进行性能测试比较。
三、实验原理液体吸收是运用混合气体中各组分在同一溶剂的溶解度差异,通过气液充分接触,溶解度较大的气体组分较多地进入液相而与其他组分分离的操作。
填料塔的流体力学特性是吸收设备的重要参数,可计算填料塔所需动力消耗和确定最佳操作气速。
流体力学特性用气体通过填料层产生的压降表示,在填料因子、填料层高度、液体喷淋密度一定时随气体速度的变化而变。
本实验采用水吸收CO2-空气混合气中的CO2,常压下CO2在水中溶解度较小,用水吸收CO2的操作为液膜控制,在低浓度吸收时填料层高度12a X X X LdXZ K X X*=Ω-⎰即12a X X X L dXK Z X X*=Ω-⎰; 气液平衡关系符合亨利定律,则12aX m X X L K Z X -=•Ω∆,121122111222()()ln ln m X X X X X X X X X X X X X ****∆-∆---∆==∆-∆-; 由亨利定律得Y X m*=,其中,1E ym Y P y ==-;由测定物性参数水温、大气压确定亨利常数。
同时测定CO2-空气混合气体进、出填料塔CO2含量(摩尔分率),即可获得X *。
通过气相色谱仪或CO2分析仪测塔底、塔顶气相中CO2摩尔分率,转子流量计测混合气体用量,涡轮流量计测吸收剂水用量,即可测定液体体积传质系数a X K 。
四、实验装置图及主要设备(包括名称、型号、规格)(1)吸收实验流程图如下图所示:1-气体调节阀;2-孔板流量计;3-闸阀;;4,12,13-空气切换阀;5-CO2流量计;6-混合气体流量计;7-涡轮流量计;8,10-水流量调节阀;9-拉西环填料塔;11-θ环填料塔;14-塔底液位调节阀(2)设备及仪表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课后习题
P70页 5、6、7 下周上课前交
8.4.4填料塔的设计型计算和操作型分析 无论是设计型问题还是操作型问题,其求解的方法都是通过联立 求解全塔物料衡算和填料层高度计算式以及相平衡关系式。下面 分别讨论: 一、填料塔的设计型计算 设计型计算的特点:给定进口气体的溶质浓度yb、进塔混合气的 流率G、相平衡关系及分离要求,计算达到指定的分离要求所需 要的塔高度。 要完成设计型计算还要解决以下问题: ①确定传质系数; ②气液两相流向的选择,通常采取逆流操作; ③吸收剂进口浓度的确定; ④吸收剂用量的确定。
* 故: yb yb yb 0.05 0.14 0.224 0.01864
m 2 .s
* y a y a y a 4 10 4 0.14 0.002 0.00372
0.01864 0.00372 y m 9.258 10 3 0.01864 ln 0.00372
H 1.1508 4.96 5.65m
二、填料塔的操作型计算
特点:塔设备已给定(对填料塔高度h已知),基本类型有:
①校核现有的塔设备对指定的生产任务是否适用,如已知T、 P、H、G、L、xa、yb,校核ya是否满足要求; ②考察某一操作条件改变时,吸收结果的变化情况或为达到 指定的生产任务应采取的措施。如对给定的吸收塔,若气体处 理量增加(其余条件不变),分析ya、yb的变化趋势或此时应 采取什么措施才有可能使ya保持不变。
G y ya L
mG m 2G mG 1 y b mx a L y a L xa L 1 ln mG y a mx a 1 L
最后整理得:
mG y b mx a mG 1 ln 1 mG L y a mx a L 1 L L A ,A称为吸收因数 引入概念:令 mG 其几何意义为:操作线斜率L/G与平衡线斜率m之比;而 N OG
例:在填料层为6m的塔内用清水吸收含氨1.5%(体积分数)的气 体混合物(余位惰性气体),混合气体流率为0.024kmol/(m2.s), 入口清水流率为0.023kmol/(m2.s)。操作条件下相平衡关系为 y=0.8x,总体积传质系数Kya为0.06kmol/(m3.s.⊿y)。试问: ①若希望氨的吸收率不低于99%,问能否满足要求? ②该塔的实际收率为多少?
N OG
0.05 4 10 3 4.9687 3 9.258 10
H 1.1508 4.9687 5.72m
②吸收因数法
脱吸因数:S mG 0.14 0.04 0.675 L 0.008288
N OG
y b mx a 1 ln 1 S S 1 S y a mx a 1 0.05 0.14 0.002 ln 1 0.675 0.675 1 0.675 0.004 0.14 0.002 4.96
dy y y*
令 y y* y 以下将证明 y和y之间成线性关系! 因为:y y y* y mx b
根据操作线方程: y y a Lx xa G
G 则: xa y y a ,将该式代入 y 中,得: x L
G y y y* y m x a y y a b L mG mG 1 ya b y mx a L L
故: y 和y之间成线性关系!因为是线性关系,两边对y求导数,则:
mG dy mG dy 1 , dy 1 L dy L
mG 两边积分: dy 1 dy ya ya L
yb yb
mG y b y a 即: 1 L yb y a
现设平衡关系服从亨利定律,y* mx ,代入上式,则:
ห้องสมุดไป่ตู้
N OG
yb
yb
ya
dy y mx
x 又:根据逆流操作线方程: xa
则: N OG
dy ya G y m x a y y a L yb dy ya mG mG y a mx a 1 y L L
由于: N OG y
又因为: N OG
yb y a y m
故平均推动力为: y m
y b y a y ln b y a
y m 称为气相对数平均传质推动力。
以图表示:
同理,对于液相,相应地有:
N OL
式中: x m
xb x a xb xb x a ln xb x a x a x m
S mG ,为脱吸因数,显然,S=1/A。 L y b mx a 1 则:N OG ln 1 S S 1 S y a mx a
也可写成:
N OG
A 1 y b mx a 1 ln 1 1 A A y a mx a A
y m
y b y a 为求出⊿ym,必须要知道吸收塔进出口处气液两相组成。 y b ln y a
如上图所示,根据回收率定义: 1
3 则:y a 1 yb 1 0.92 0.05 4 10
Gy a y 1 a Gy b yb
三、传质单元数的计算 根据相平衡关系的不同,传质单元数的计算可以选择不同的计算方法。 1、对数平均推动力法 在吸收操作所涉及的组成范围内,若相平衡关系可用直线方程表示, 即相平衡关系服从亨利定律 y* mx 或在操作组成范围内平衡关系为直线 y* mx b 因为:N OG y
yb a
y b mx a 进塔组成yb、xa一定时,若要求吸收率高,则yb小,相应的 y a mx a
y b mx a 表示吸收的要求或吸收的程度,当气液两相的 y a mx a
值大,对于一定的S值,则NOG也大,即所需的填料层高度高;反之亦然。
y b mx a 一定,NOG与S之间的关系 ② y a mx a
yib yb yib, yia y a yia ;
xib xib xb , xia xia x a
2、吸收因数法
因为, OG N
yb
ya
分子dy所做的工作,现在吸收因数法则主要是对分母进行变化。
dy ,上面对数平均推动力法实际上是对积分项中 y y*
y b y a 0.05 4 10 3 L 0.1295 又: 0.05 x * xa G min 0.002 0.14 L 则: 1.6L 1.6 0.1295 0.04 0.008288 kmol
m in
G xb xa yb y a 0.224 L
解: H N OG H OG
H OG G K ya
G 41
1 1 0.04 kmol 2 m .s 3600 2 0.6 4
H OG
0.04 1.1508 m 0.035
①对数平均推动力法
N OG
yb
ya
yb y a dy y y* y m
若以液相浓度差为总推动力,则: xb dx N OL xa x * x 平衡线:
y mx *
操作线: G y y a Lx xa
L y y a x xa G
N OL
整理,最后得:
xb xa
xb mdx xa y mx
mdx ya L x xa mx G
x b x a x ln b x a
xm 称为液相对数平均传质推动力。
若以分传质推动力表示,则有: y b y a y y ib y ia NG , im y y im ln ib y ia
x xia xb x a xim ib NL , x xim ln ib xia
N OL
y b mx a S ln 1 S S SN OG 1 S y a mx a
若平衡关系不能满足亨利定律,但可近似地表示成如下直线形式:
y mx b
则:
N OG
* yb y a 1 ln 1 S S * 1 S ya ya
下面通过例题来阐述设计型计算的过程:
例:在一填料吸收塔中,用平均相对分子质量为170的煤油逆流吸 收含苯5%(体积分率)的煤气,煤气的流量为41kmol/h,要求苯 的回收率为92%。已知塔顶进入的煤油含苯0.2%(摩尔分数,下 同),煤油的耗用量为最小耗用量的1.6倍。吸收塔在常温、常压 下操作,在操作浓度范围内,系统的气、液平衡关系式为y=0.14x, 总体积传质系数Kya=0.035kmol/(m3.s)。已知塔径为0.6m,问所 需塔高为多少?
N OL
* yb y a S ln 1 S S * 1 S ya ya
式中:
* y a mx a b
3、其他计算法 以 N OG
yb
ya
dy 为例: y y*
如果平衡线不是直线,则以上两种方法皆不适用,这时应当知道, NOG的计算实质上是求上式等号右边的定积分问题,定积分的计算 可以采用近似方法解决的,如数值积分中的梯形法、辛普森法、龙 贝格法等等。
对上式进行分析:
y b mx a 以上两式实际上由三个数群NOG、1/A(S)、 y a mx a
y b mx a 构成,以NOG为纵坐标,以 为横坐标(对数坐标), y a mx a
S为参变量,作图如下:
①S一定,NOG与
y b mx a 之间的关系 y a mx a