不等式(组)应用题及问题详解
列不等式组解决实际问题
列一元一次不等式组解应用题的一般步 骤是: (1):审题,分析题目中已知什么,求 什么,明确各数量之间的关系 (2):设适当的未知数 (3):找出题目中的所有不等关系 (4):列不等式组 (5):求出不等式组的解集 (6):写出符合题意的答案 答:审、设、找、列、解、答。
某工人在生产中, 例1 某工人在生产中,经过第一次改进技 每天所做的零件的个数比原来多10个 术,每天所做的零件的个数比原来多 个, 因而他在8天内做完的零件就超过 因而他在 天内做完的零件就超过200个, 个 天内做完的零件就超过 后来,又经过第二次技术的改进, 后来,又经过第二次技术的改进,每天又多 个零件, 做37个零件,这样他只做 天,所做的零件 个零件 这样他只做4天 的个数就超过前8天的个数 天的个数, 的个数就超过前 天的个数,问这位工人原 先每天可做零件多少个? 先每天可做零件多少个?
例2、某中学为八年级寄宿学生安 排宿舍,如果每间4人,那么有20 人无法安排,如果每间8人,那么 有一间不空也不满,求宿舍间数 和寄宿学生人数。
例3、 某校为了奖励在数学竞赛中获奖 、 的学生,买了若干本课外读物准备送给他 的学生 买了若干本课外读物准备送给他 们. 如果每人送3本 则还余 则还余8本 如果前面每 如果每人送 本,则还余 本;如果前面每 人送5本 最后一人得到的课外读物不足 最后一人得到的课外读物不足3 人送 本,最后一人得到的课外读物不足 设该校买了m本课外读物 本.设该校买了 本课外读物 有x名学生 设该校买了 本课外读物,有 名学生 获奖,请解答下列问题 请解答下列问题: 获奖 请解答下列问题 (1)用含 的代数式表示 用含x的代数式表示 用含 的代数式表示m; (2)求出该校的获奖人数及所买课外读物 求出该校的获奖人数及所买课外读物 的本数. 的本数
不等式(组)应用题类型及解答(包含各种题型)
一元一次不等式(组)应用题类型及解答1.分配问题1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。
3、把若干颗花生分给若干只猴子.如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
问猴子有多少只,有多少颗?4、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?5、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数.6、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?7、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?8、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二、比较问题1、某校王校长暑假将带领该校市级三好学生去北京旅游。
甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元)①学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式)②当学生数是多少时,两家旅行社的收费一样? ③就学生数x讨论哪家旅行社更优惠。
③就学生数x讨论哪家旅行社更优惠。
2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。
不等式应用题(带答案)
解:设以后几天内平均每天至少要修路 x km。则 6x 1.2 6 解得: x 0.8
不等式应用 题
1、去年某市空气质量良好的天数与全年的天数(365)之比达到 60%,如果明年(365 天)这样的比值要超过
70%,那么明年空气质量良好的天数要比去年至少增加多少?
解:设明年空气质量良好的天数比去年增加了 x
x 365 60
则:
100
70
365
100
解得:x 36.5
依题意,x应为整数,所以: x 37
答:以后几天内平均每天至少要修路 0.8 km.
4、某次知识竞赛共有 20 道题,每一题答对得 10 分,答错或不答都扣 5 分,小明得分要超过 90 分,他至少要答对 多少分?
解:设小明至少要答对 x 道题。则10x 5(20 x) 90 解得: x 12 2 因为 x 必须取整数,所以, x 13 3
240 280
解得: x 10087000
答:前年全厂年利润至少 10087000 万元.
8、苹果的进价是每千克 1.5 元,销售中估计有 5%的苹果正常损耗,商家把售价至少定为多少,就能避免亏本?
解:设商家把售价至少定为每千克 x 元,就能避免亏本。则:
x 95 1.5
x 111
100
所以,累计购物超过 150 元时,到甲商场购物花费少
由:50< 0.95(x 50) 100 0.9(x 100)
不等式(组)及分式方程综合应用
典例精解
考点: 分式方程,一元一次不等式(组)的应用
开明中学开学初在金利源商场购进A,B两种品牌的足球, 购买A品牌足球花费了2500元,购买B品牌足球花费了2000 元,且购买A品牌足球的数量是购买B品牌足球数量的2倍, 已知购买一个B品牌足球比购买一个A品牌足球多花30元. (1)求购买一个A品牌、一个B品牌的足球各需多少元;
专题突破
旧知回顾
1、某产品进价120元,共有15件,为了使利润不低 于1000元,那么这件产品的定价至少在多少元?
解:设定价为x元
(x-120) ×15≥1000
2.某人骑一辆电动自行车,如果行驶速度增加5km/h ,那么2h所行驶的路程不少于原来速度2.5h所行驶 的路程.他原来行驶的速度最大是多少?
(3)【延伸题】在(2)条件下,若购买B品牌的足球数 不少于A品牌足球数的1.5倍,求有多少种购买方案?
变式训练
考点: 分式方程,一元一次不等式(组)的应用
为配合“一带一路”国家倡议,某铁路货运集装箱物流 园区正式启动了2期扩建工程.一项地基基础加固处理 工程由A、B两个工程公司承担建设,已知A工程公司 单独建设完成此项工程需要180天.A工程公司单独施 工45天后,B工程公司参与合作,两工程公司又共同施 工54天后完成了此项工程. (1)求B工程公司单独建设完成此项工程需要多少天?
(2)设未知数注意和题目中各个量关系都密切 的量,注意根据问题情况灵活选择设法,如直接 法,间接法,设多元等 (3)求分式方程的解,验根应从两个方面出发: 方程本身和实际意义
(2)开明中学为响应习总书记“足球进校园”的号召,决 定再次购进A,B两种品牌足球共50个.恰逢金利源商场对两 种品牌足球的售价进行调整,A品牌足球的售价比第一次购 买时提高了8%,B品牌足球按第一次购买时售价的9折出售. 如果这所中学此次购买A,B两种品牌足球的总费用不超过 3260元,那么开明中学此次最多可购买多少个B品牌足球?
不等式常见题型及解析题
不等式常见题型及解析题一、一元一次不等式1.问题描述解不等式$a x+b>c$,其中$a>0$。
2.解法分析根据不等式的性质,我们可以将不等式转化为等价的形式:$$ax+b=c$$然后确定不等式的解集。
(1)当$a>0$时将不等式转化为等式,我们得到$ax+b=c$,解得$x=\fr ac{c-b}{a}$。
此时,对于任意一个满足$c-b>0$的$x$,都可以使得$a x+b>c$,所以解集为$\le ft(\fr ac{c-b}{a},+∞\ri gh t)$。
(2)当$a<0$时将不等式转化为等式,我们得到$ax+b=c$,解得$x=\fr ac{c-b}{a}$。
此时,对于任意一个满足$c-b<0$的$x$,都可以使得$a x+b<c$,所以解集为$\le ft(-∞,\f r ac{c-b}{a}\r igh t)$。
(3)当$a=0$时此时,不等式退化为$b>c$或$b<c$,没有变量$x$,所以不存在解。
二、一元二次不等式1.问题描述解不等式$a x^2+bx+c>0$,其中$a>0$。
2.解法分析和一元一次不等式类似,我们可以将不等式转化为等价的形式:$$ax^2+b x+c=0$$然后确定不等式的解集。
(1)当$a>0$时判断二次函数$a x^2+b x+c$的图像与$x$轴的交点数:-当判别式$Δ=b^2-4a c$大于0时,二次函数与$x$轴有两个交点,此时不等式的解集为$\le ft(-∞,x_1\ri gh t)\c up\le ft(x_2,+∞\ri g ht)$,其中$x_1$和$x_2$分别为二次方程$a x^2+b x+c=0$的两个根。
-当判别式$Δ=b^2-4a c$等于0时,二次函数与$x$轴有一个交点,此时不等式的解集为$\ma th bb{R}$,即全体实数的集合。
-当判别式$Δ=b^2-4a c$小于0时,二次函数与$x$轴没有交点,此时不等式的解集为空集。
一元一次不等式(组)应用题及练习(含答案)
类型一例1.*校初三年级春游,现有36座和42座两种客车供选择租用,假设只租用36座客车假设干辆,则正好坐满;假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游"(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】此题的关键语句是:"假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人〞.理解这句话,有两层不等关系.(1)租用36座客车*辆的座位数小于租用42座客车(*-1)辆的座位数.(2)租用36座客车*辆的座位数大于租用42座客车(*-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车*辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意*应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,假设每人分4个,则剩下9个橘子;假设每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李〔药品、器械〕,租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车*辆,请你设计所有可能的租车方案;(2) 假设甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.*市局部地区遭受了罕见的旱灾,"旱灾无情人有情〞.*单位给*乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.〔1〕求饮用水和蔬菜各有多少件?〔2〕现方案租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.〔3〕在〔2〕的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:〔1〕设饮用水有*件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.〔2〕设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960〔元〕;②3×400+5×360=3000〔元〕;③4×400+4×360=3040〔元〕.所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积〔单位:亩〕种植B类蔬菜面积〔单位:亩〕总收入〔单位:元〕甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵ *种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积〔两类蔬菜的种植面积均为整数〕,求该种植户所有租地方案.2、*公司为了更好得节约能源,决定购置一批节省能源的10台新机器。
解不等式组计算专项练习60题(有答案解析)
解不等式组专项练习60题(有答案)1.2..3..4.,5..6..7.8..9.10.11.12.,13..14.,15.16.17..18.19.20..21..22..23.24.25.,.26.27.,28.29..30.已知:2a﹣3x+1=0,3b﹣2x﹣16=0,且a≤4<b,求x的取值范围.31..32..33.已知:a=,b=,并且2b≤<a.请求出x的取值范围.34.35.,36.,并将其解集在数轴上表示出来.37..38.,并把解集在数轴上表示出来.39.已知关于x、y的方程组的解满足x>y>0,化简|a|+|3﹣a|.40.,并把它的解集在数轴上表示出来.41.42.43..44..45..46..47.关于x、y的二元一次方程组,当m为何值时,x>0,y≤0.48.并将解集表示在数轴上.49.已知关于x、y的方程组的解是一对正数,求m的取值范围.50.已知方程组的解满足,化简.51..52.53..54..55..56.57.58.59.60.解不等式组60题参考答案:1、解:,由①得2x≥2,即x≥1;由②得x<3;故不等式组的解集为:1≤x<3.2.解:,由①得:x≤5,由②得:x>﹣2,不等式组的解集为﹣2<x≤53.解:解不等式①,得x>1.解不等式②,得x<2.故不等式组的解集为:1<x<2.4.解:,解不等式①得,x>1,解不等式②得,x<3,故不等式的解集为:1<x<3,5.解不等式①,得x≤﹣2,解不等式②,得x>﹣3,故原不等式组的解集为﹣3<x≤﹣2,6. 解:,解不等式①得:x>﹣1,解不等式②得:x≤2,不等式组的解集为:﹣1<x≤2,7.解:,由①得x>﹣3;由②得x≤1故此不等式组的解集为:﹣3<x≤1,8.解:解不等式①,得x<3,解不等式②,得x≥﹣1.所以原不等式的解集为﹣1≤x<3.9.解:∵由①得,x>﹣1;由②得,x≤4,∴此不等式组的解集为:﹣1<x≤4,10.解:,解不等式①得:x<3,解不等式②得:x≥1,不等式组的解集是1≤x<3 11.解:,由①得,x≥﹣;由②得,x<1,故此不等式组的解集为:﹣<x<1,12.解:∵由①得,x≤3,由②得x>0,∴此不等式组的解集为:0<x≤3,13.解:解不等式①,得x≥1;解不等式②,得x<4.∴1≤x<4.14.解:原不等式组可化为,解不等式①得x>﹣3;解不等式②得x≤3.所以-3<x≤315.解:由(1)得:x+4<4,x<0由(2)得:x﹣3x+3>5,x<﹣1∴不等式组解集是:x<﹣116.解:,解不等式(1),得x<5,解不等式(2),得x≥﹣2,因此,原不等式组的解集为﹣2≤x<5.17.解:由①得:去括号得,x﹣3x+6≤4,移项、合并同类项得,﹣2x≤﹣2,化系数为1得,x≥1.由②得:去分母得,1+2x>3x﹣3,移项、合并同类项得,﹣x>﹣4,化系数为1得,x<4 ∴原不等式组的解集为:1≤x<4.18.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解集为﹣1≤x<3.19.解:解不等式(1)得x<1解不等式(2)得x≥﹣2所以不等式组的解集为﹣2≤x<1.20.解:解不等式①,得x>﹣.解不等式②,得x≤4.所以,不等式组的解集是﹣<x≤4.21.解:①的解集为x≥1②的解集为x<4原不等式的解集为1≤x<4.22.解:解不等式(1),得2x+4<x+4,x<0,不等式(2),得4x≥3x+3,x≥3.∴原不等式无解.23.解:解不等式2x+5≤3(x+2),得x≥﹣1解不等式x﹣1<x,得x<3.所以,原不等式组的解集是﹣1≤x<3.24.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解是﹣1≤x<3.25.解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.26.:由不等式①得:x≥0由不等式②得:x<4原不等式组的解集为0≤x<427.解:由不等式①得:2x≤8,x≤4.由不等式②得:5x﹣2+2>2x,3x>0,x>0.∴原不等式组的解集为:0<x≤4.28.解:解不等式①,得x≤﹣1,解不等式②,得x>﹣2,所以不等式组的解集为﹣2<x≤﹣1.29.解:解不等式①,得x≤2.解不等式②,得x>﹣3.所以原不等式组的解集为x≤2.30. 解:由2a﹣3x+1=0,3b﹣2x﹣16=0,可得a=,b=,∵a≤4<b,∴,由(1),得x≤3.由(2),得x>﹣2.∴x的取值范围是﹣2<x≤3.31.解:由①得:x≤2.由②得:x>﹣1.∴不等式组的解集为﹣1<x≤2.32.解:解不等式①,得x>;解不等式②,得x≤4.∴不等式的解集是<x≤4.33.解:把a,b代入得:2×.化简得:6x﹣21≤15<2x+8.解集为:3.5<x≤6.34.解:解不等式①,得x≤2.5,解不等式②,得x>﹣1,解不等式③,得x≤2,所以这个不等式组的解集是﹣1<x≤2.35.解:解不等式①,得x≥﹣1.解不等式②,得x<2.所以不等式组的解集是﹣1≤x<2.36.解:由①,得x<2.由②,得x≥﹣1.∴这个不等式组的解集为﹣1≤x<2.37.解:由①得:x>﹣1由②得:x所以解集为﹣1<x.38.解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:39.解:由方程组,解得.由x>y>0,得.解得a>2当2<a≤3时,|a|+|3﹣a|=a+3﹣a=3;当a>3时,|a|+|3﹣a|=a+a﹣3=2a﹣3.40.解:由(1)得x<8由(2)得,x≥4故原不等式组的解集为4≤x<8.41.解:由①得2x<6,即x<3,由②得x+8>﹣3x,即x>﹣2,所以解集为﹣2<x<3.42.解:(1)去括号得,10﹣4x+12≥2x﹣2,移项、合并同类项得,﹣6x≥﹣24,解得,x≤4;(2)去分母得,3(x﹣1)>1﹣2x,去括号得,3x﹣3>1﹣2x,移项、合并同类项得,5x>4,化系数为1得,x>.∴不等式组的解集为:<x≤4.43.解:解第一个不等式得:x<;解第二个不等式得:x≥﹣12.故不等式组的解集是:﹣12≤x<.44.解:原方程组可化为:,由(1)得,x<﹣3由(2)得,x≥﹣4 根据“小大大小中间找”原则,不等式组的解集为﹣4≤x<﹣3.45.由①得:x<2,由②得:x≥﹣1∴﹣1≤x<2.46.整理不等式组得解之得,x>﹣2,x≤1∴﹣2<x≤147.解:①+②×2得,7x=13m﹣3,即x=③,把③代入②得,2×+y=5m﹣3,解得,y=78-m9,因为x>0,y≤0,所以,解得<m≤9848. 解不等式①,得x≤,解不等式②,得x≥﹣8.把不等式的解集在数轴上表示出来,如图:所以这个不等式组的解集为﹣8≤x≤.49.解:由题意可解得,解得,故<m<1350.解:由2x﹣2=5得x=,代入第一个方程得+2y=5a;则y=a﹣,由于y<0,则a<8(1)当a<﹣2时,原式=﹣(a+2)﹣[﹣(a﹣)]=﹣2;(2)当﹣2<a<时,原式=a+2﹣[﹣(a﹣)]=2a+;(3)当<a<时,原式=a+2﹣(a﹣)=2;51.解不等式(1)得:2﹣x﹣1≤2x+4 ﹣3x≤3 x≥﹣1解不等式(2),得:x2+x>x2+3x ﹣2x>0 x<0 ∴原不等式组的解集为:﹣1≤x<0.52.解不等式(1)得:x≥-1 解不等式(2),得:x<2 ∴原不等式组的解集为:﹣1≤x<2.53.解①得x<解②得x≥3,∴不等式组的解集为无解.54.解第一个不等式得x<8解第二个不等式得x≥2∴原不等式组的解集为:2≤x<8.55.解:由①得:1﹣2x+2≤5∴2x≥﹣2即x≥﹣1由②得:3x﹣2<2x+1∴x<3.∴原不等式组的解集为:﹣1≤x<3.56.解:原不等式可化为:即在数轴上可表示为:∴不等式的解集为:1≤x<357.解:,解不等式①,得x<3,解不等式②,得x≥﹣1,把不等式的解集在数轴上表示出来,如图所示.不等式组的解集是﹣1≤x<358.解:由题意,解不等式①得x>2,不等式②×2得x﹣2≤14﹣3x解得x≤4,∴原不等式组的解集为2<x≤4.59.解:解不等式①,得x<2.(2分)解不等式②,得x≥﹣1.(4分)所以,不等式组的解集是﹣1≤x<2.(5分)解集在数轴上表示为:60.解:由①,得x≥﹣,由②,得x<3,所以不等式组的解集为﹣≤x<3.。
20道不等式组带解答过程
20道不等式组带解答过程篇一:不等式组是数学中非常重要的一个概念,用于求解具有不等性质的数列或不等式。
下面列出了20道不等式组题目,并附带解答过程。
1. 某项数列{a1, a2, a3, ...}的公差为2,首项为a1,求该数列的第10个数是多少?2. 已知数列{an}的前n项和为Sn,求数列{bn}的前n项和Sn"。
3. 某项数列{a1, a2, a3, ...}的前n项和为Sn,第n+1个数是a1,求数列{an}的前n+1个数是多少?4. 已知数列{an}的前n项和为Sn,求数列{bn}的前n+1项和Sn"。
5. 已知数列{an}的公比为2,首项为a1,求数列{bn}的前n项和。
6. 某项数列{an}的前n项和为Sn,第n+1个数是an+1,求数列{bn}的前n+2个数是多少?7. 已知数列{an}的前n项和为Sn,第n+1个数是an+2,求数列{bn}的前n+3个数是多少?8. 已知数列{an}的前n项和为Sn,第n+1个数是an+3,求数列{bn}的前n+4个数是多少?9. 已知数列{an}的前n项和为Sn,第n+1个数是an+4,求数列{bn}的前n+5个数是多少?10. 某项数列{an}的前n项和为Sn,第n+1个数是an+5,求数列{bn}的前n+6个数是多少?11. 已知数列{an}的公比为2,首项为a1,求数列{bn}的前n项和。
12. 已知数列{an}的前n项和为Sn,第n+1个数是an+6,求数列{bn}的前n+7个数是多少?13. 已知数列{an}的前n项和为Sn,第n+1个数是an+7,求数列{bn}的前n+8个数是多少?14. 某项数列{an}的前n项和为Sn,第n+1个数是an+8,求数列{bn}的前n+9个数是多少?15. 已知数列{an}的前n项和为Sn,第n+1个数是an+9,求数列{bn}的前n+10个数是多少?16. 已知数列{an}的公比为2,首项为a1,求数列{bn}的前n项和。
不等式(组)的应用——方案问题
不等式(组)的应用——方案问题一.解答题(共12小题)1.(2014•舟山)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?2.(2014•台湾)小佳的老板预计订购5盒巧克力,每盒颗数皆相同,分给工作人员,预定每人分15颗,会剩余80颗,后来因经费不足少订了2盒,于是改成每人分12颗,但最后分到小佳时巧克力不够分,只有小佳拿不到12颗,但她仍分到3颗以上(含3颗).请问所有可能的工作人员人数为何?请完整写出你的解题过程及所有可能的答案.3.(2014•湘潭)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台) 12 10月污水处理能力(吨/月) 200 160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.4.(2014•南宁)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?5.(2014•福州)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?6.(2014•齐齐哈尔)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)7.(2014•黄石)某校九(3)班去大冶茗山乡花卉基地参加社会实践活动,该基地有玫瑰花和蓑衣草两种花卉,活动后,小明编制了一道数学题:花卉基地有甲乙两家种植户,种植面积与卖花总收入如下表.(假设不同种植户种植的同种花卉每亩卖花平均收入相等)种植户玫瑰花种植面积(亩)蓑衣草种植面积(亩)卖花总收入(元)甲 5 3 33500乙 3 7 43500(1)试求玫瑰花,蓑衣草每亩卖花的平均收入各是多少?(2)甲、乙种植户计划合租30亩地用来种植玫瑰花和蓑衣草,根据市场调查,要求玫瑰花的种植面积大于蓑衣草的种植面积(两种花的种植面积均为整数亩),花卉基地对种植玫瑰花的种植给予补贴,种植玫瑰花的面积不超过15亩的部分,每亩补贴100元;超过15亩但不超过20亩的部分,每亩补贴200元;超过20亩的部分每亩补贴300元.为了使总收入不低于127500元,则他们有几种种植方案?8.(2014•开封二模)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.9.(2014•道里区三模)我市为创建全国卫生城市,有关部门计划购买甲、乙两种名贵树苗,栽种在入城大道的两侧,已知买甲种树苗、乙种树苗各1棵共需220元;买甲种树苗3棵,乙种树苗1棵共需420元,资料提示:甲、乙两种树苗的成活率分别为90%和95%.(1)购买两种树苗每棵各需多少元;(2)市相关部门研究决定:购买甲、乙两种树苗共800棵,购买树苗的钱数不得超过86500元,且这批树苗的成活率不低于92%,共有多少种购买方案?(3)直接写出最省钱的购买方案及此时买树苗的费用.10.(2014•昌宁县二模)某商店欲购进甲、乙两种商品,已知购进的甲商品的单价是乙商品的一半,进3件甲商品和1件乙商品恰好用200元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求购进的这两种商品的单价.(2)该商店有哪几种进货方案?11.(2014•牡丹江一模)为响应“大课间”活动,某学校准备购买棒球和篮球共200个,已知棒球每个55元,篮球每个95元,学校计划至少投入资金18200元,但不多于18300元.(1)学校有多少种购买方案;(2)哪种购买方案使学校投入资金最少?(3)当学校按(2)的方案买回200个球在“大课间”投入使用后,学校领导根据实际情况发现还应同时购买足球和大绳若干,来补充“大课间”活动,所以又投入资金2880元,若每个足球80元,每条大绳30元,则在钱全部用尽的情况下有多少种购买方法,请直接写出购买方法的种数.12.(2014•濮阳一模)某中学计划购买A,B两种型号的课桌凳,已知一套A型课桌凳比一套B型课桌凳少40元,且购买5套A型和1套B型共需1000元.(1)购买一套A型课桌凳和一套B型课桌凳各需要多少元?(2)学校根据实际情况计划购买A,B两种型号的共100套,且购买课桌凳的总费用不超过18480元,并且购买A 型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?不等式(组)的应用—-方案问题参考答案与试题解析一.解答题(共12小题)1.(2014•舟山)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?考点:一元一次不等式组的应用;二元一次方程组的应用.专题:应用题.分析:(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.解答:解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.点评:本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.2.(2014•台湾)小佳的老板预计订购5盒巧克力,每盒颗数皆相同,分给工作人员,预定每人分15颗,会剩余80颗,后来因经费不足少订了2盒,于是改成每人分12颗,但最后分到小佳时巧克力不够分,只有小佳拿不到12颗,但她仍分到3颗以上(含3颗).请问所有可能的工作人员人数为何?请完整写出你的解题过程及所有可能的答案.考点:一元一次不等式组的应用.分析:设该公司的工作人员为x人.则每盒巧克力的颗数是,根据不等关系:每人分12颗,但最后分到小佳时巧克力不够分,只有小佳拿不到12颗,但她仍分到3颗以上(含3颗),列不等式组.解答:解:设该公司的工作人员为x人.则,解得16<x≤19.因为x是整数,所以x=17,18,19.答:所有可能的工作人员人数是17人、18人、19人.点评:本题考查了一元一次不等式组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.3.(2014•湘潭)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)12 10月污水处理能力(吨/月)200 160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.考点:一元一次不等式组的应用.专题:应用题.分析:(1)设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据企业最多支出89万元购买设备,要求月处理污水能力不低于1380吨,列出不等式组,然后找出最合适的方案即可.(2)计算出每一方案的花费,通过比较即可得到答案.解答:解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,解这个不等式组,得:2。
不等式(组)应用题(一)(人教版)(含答案)
不等式(组)应用题(一)(人教版)一、单选题(共6道,每道16分)1.为改善城市生态环境,实现城市生活垃圾减量化、资源化、无害化的目标,某市决定从3月1日起,在全市部分社区试点实施生活垃圾分类处理.某街道计划建造垃圾初级处理点20个,解决垃圾投放问题.A,B两种类型处理点的占地面积、可供居民使用幢数及造价见下表:已知可供建造垃圾初级处理点占地面积不超过,该街道共有490幢居民楼.设建造A类型处理点x个.(1)满足条件的建造方案共有几种?根据题意,所列方程(组)或不等式(组)正确的是( ) A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:不等式(组)应用题2.(上接第1题)(2)设建造垃圾处理点的总费用为w万元,则w可用含x的代数式表示为__________;当x=________时,费用最少.横线处依次所填正确的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:不等式(组)应用题3.《中华人民共和国个人所得税法》中规定:公民月工资所得不超过3500元部分不必纳税,超过3500元的部分为全月应纳税所得额,即全月应纳税所得额=当月工资-3500元.个人所得税款按下表累加计算:例如:某人某月工资为5500元,需交个人所得税为:(5500-3500-1500)×10%+1500×3%.(1)若某人月工资为4200元,则他应缴纳的个人所得税款为( )A.21元B.315元C.420元D.700元答案:A解题思路:试题难度:三颗星知识点:分段计费4.(上接第3题)(2)若小明今年4月份的工资应缴纳个人所得税款不低于145元,则他今年4月份工资至少为( )A.2500元B.4950元C.6000元D.6450元答案:C解题思路:试题难度:三颗星知识点:分段计费5.在某市开展城乡综合治理的活动中,需要将A,B,C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D,E两地进行处理.已知运往D地的数量为90立方米,运往E的数量为50立方米.(1)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地的数量不超过12立方米,则A,C两地运往D,E两地共有( )种方案.A.4B.3C.2D.1答案:C解题思路:试题难度:三颗星知识点:一元一次不等式组的应用6.(上接第5题)(2)已知从A,B,C三地把垃圾运往D,E两地处理所需费用如下表:在(1)的条件下,最少费用是( )元.A.2870B.2873C.2876D.2879答案:B解题思路:试题难度:三颗星知识点:一元一次不等式组的应用。
20道不等式组带解答过程
20道不等式组带解答过程篇一:不等式组是数学中一种基本的不等式表达方式,其可以用于求解各种数学问题。
下面,我们将提供20道不等式组题目,并给出解答过程。
正文:1. 某项工程,甲队单独完成需要60天,乙队单独完成需要50天,两队合作完成需要多少天?解答:甲队每天完成工程的1/60,乙队每天完成工程的1/50。
因此,两队合作完成需要的天数为:(1/60 + 1/50) * 2 = 14/100 * 2 = 28/100因此,需要28天才能完成这项工程。
2. 某项工程,甲队每天完成工程的1/12,乙队每天完成工程的1/15,两队合作完成需要多少天?解答:甲队每天完成工程的1/12,乙队每天完成工程的1/15。
因此,两队合作完成需要的天数为:(1/12 + 1/15) * 2 = 5/30 * 2 = 11/60因此,需要11天才能完成这项工程。
3. 某项工程,甲队每天完成工程的1/8,乙队每天完成工程的1/10,两队合作完成需要多少天?解答:甲队每天完成工程的1/8,乙队每天完成工程的1/10。
因此,两队合作完成需要的天数为:(1/8 + 1/10) * 2 = 3/20 * 2 = 3/50因此,需要3天才能完成这项工程。
4. 某项工程,甲队每天完成工程的1/16,乙队每天完成工程的1/20,两队合作完成需要多少天?解答:甲队每天完成工程的1/16,乙队每天完成工程的1/20。
因此,两队合作完成需要的天数为:(1/16 + 1/20) * 2 = 5/40 * 2 = 11/80因此,需要11天才能完成这项工程。
5. 某项工程,甲队每天完成工程的1/15,乙队每天完成工程的1/22,两队合作完成需要多少天?解答:甲队每天完成工程的1/15,乙队每天完成工程的1/22。
因此,两队合作完成需要的天数为:(1/15 + 1/22) * 2 = 7/66 * 2 = 13/111因此,需要13天才能完成这项工程。
不等式应用题(带答案)
不等式应用题(带答案)不等式应用题1. 某商场正在举行打折活动,标有原价为x元的商品打7折出售,小明买了一个售价为y元的商品打了折后用了z元购买,设不等式x>y>z,请计算头一个不等式。
解: 原价为x元的商品打7折后的价格为0.7x元,由题意可知小明买的商品在打折后售价为0.7x元,且小明用z元购买了该商品。
根据不等式的性质,可得到如下关系式:0.7x > z即,x > z/0.7所以,头一个不等式为x > z/0.7。
2. 一辆汽车每小时以v公里的速度行驶,已知行驶t小时后行驶了s 公里,求不等式v < s/t。
解: 汽车行驶t小时后行驶的路程为vt公里,已知行驶了s公里,则可得到如下关系式:vt > s即,v > s/t所以,不等式为v > s/t。
3. 小明参加了一场马拉松比赛,他总共用时t小时,已知他的平均速度为v千米每小时,求不等式t > d/v,其中d为比赛的总路程。
解: 小明参加马拉松比赛用时t小时,根据速度的定义可知,平均速度v等于总路程d除以用时t,即:v = d/t由于不等式是要求t > d/v,将v的表达式代入可得:t > d/(d/t)化简后得到:t > t,该不等式恒成立。
所以,不等式为t > d/v。
4. 一个三角形的两边长分别为a和b,夹角为θ (0° < θ < 180°),求不等式a + b > 2absin(θ)。
解: 根据三角形的余弦定理可得 a² = b² + c² - 2bc cos(θ),将此式代入不等式中可得:a +b > 2ab sin(θ) + 2bc cos(θ)又因为sin(θ) ≤ 1,所以2ab sin(θ) ≤ 2ab,化简后得到:a +b > 2bc cos(θ)由于夹角θ位于 (0°, 180°) 之间,所以cos(θ) > 0,即2bc cos(θ) > 0。
专题05 不等式与不等式组专题详解(解析版)
专题05 不等式与不等式组专题详解专题05 不等式与不等式组专题详解 (1)9.1 不等式 (3)知识框架 (3)一、基础知识点 (3)知识点1 不等式及其解集 (3)知识点2 不等式的基本性质 (4)二、典型题型 (5)题型1 不等式的概念 (5)题型2 根据数量关系列不等式 (5)题型3不等式的解(集) (6)题型4 不等式性质的运用 (6)题型5 实际问题与不等式 (7)三、难点题型 (8)题型1 不等式性质的综合应用 (8)题型2 用作差法比较大小 (9)9.2 一元一次不等式 (10)知识框架 (10)一、基础知识点 (10)知识点1 一元一次不等式的解法 (10)知识点2 列不等式解应用题 (11)二、典型题型 (13)题型1 一元一次不等式的判定 (13)题型2 解一元一次不等式 (13)题型3 列不等式,求取值范围 (14)题型4 一元一次不等式的应用 (14)三、难点题型 (16)题型1 含参数的不等式 (16)题型2 不等式的整数解 (16)题型3 方程与不等式 (17)题型4 含绝对值的不等式 (18)9.3 一元一次不等式组 (19)知识框架 (19)一、基础知识点 (19)知识点1 一元一次不等式组及解集的定义 (19)知识点2 一元一次不等式组解集的确定及解法 (19)知识点3 双向不等式及解法 (21)二、典型题型 (23)题型1 一元一次不等式组的判定 (23)题型2 一元一次不等式组的解集 (23)题型3 解一元一次不等式组 (24)题型4 一元一次不等式组的应用 (25)一、用不等式组解决实际问题 (25)二、方案设计 (26)三、最值问题 (27)三、难点题型 (29)题型1 由不等式组确定字母的取值 (29)题型2 不等式组中的数学思想 (30)一、整体思想 (30)二、数形结合 (31)三、分类讨论 (31)题型3 不等式的应用 (32)题型4 不等式的综合 (33)9.1 不等式知识框架{基础知识点{不等式及其解集不等式的基本性质典型题型{ 不等式的概念根据数量关系列不等式不等式的解(集)不等式性质的运用实际问题与不等式难点题型{不等式性质的综合应用作差法比较大小 一、基础知识点知识点1 不等式及其解集1)不等式:用不等符号表示不等关系的式子。
列方程(组)、不等式(组)解应用题
列方程(组)、不等式(组)解应用题1、某城市按以下规定收取每月的水费:用水量不超过6吨,按每吨1.2元收费;如果超过6吨,未超过部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?2、江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克,求粗加工的该种山货质量.3、植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵?4、整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?5、一群学生前往位于青田县境内的滩坑电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有趣的现象,每位男生看到白色与红色的安全帽一样多,而每位女生看到白色的安全帽是红色的2倍.根据这些信息,请你推测这群学生共有多少人?6、A 、B 两地相距40km ,甲骑自行车从A 地出发1小时后,乙也从A 地出发,用相当于甲的1.5的速度追赶,当追到B 地时,甲比乙先到20分钟,求甲、乙两人的速度.7、 某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?8、北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)9、开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本. (1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.10、某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件.(1) 求A、B两种纪念品的进价分别为多少?(2) 若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出候总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?参考答案1、【解析】根据总费用等于水量乘以平均值得出方程,求出水量,然后求出水费。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式组应用题及答案1.如图是用矩形厚纸片(厚度不计)做长方体包装盒的示意图,阴影部分是裁剪掉的部分.沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处矩形形状的“舌头”用来折叠后粘贴或封盖.(1)若用长31cm,宽26cm的矩形厚纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的2.5倍,三处“舌头”的宽度相等.求“舌头”的宽度和纸盒的高度;(2))现有一张40cm×35 cm的矩形厚纸片,按如图所示的方法设计包装盒,用来包装一个圆柱形工艺笔筒,已知该种笔筒的高是底面直径2.5倍,要求包装盒“舌头”的宽度为2cm(如有多余可裁剪),问这样的笔筒底面直径最大可以为多少?分析:找出题中的折叠规律,空间思维的,想象一下纸盒折叠后的形状,设“舌头”的宽为x,长为y,利用矩形硬纸的长宽,正确的列出方程,即可求出,(2)做成的包装盒的长宽必不大于纸盒的长宽列不等式.解答:解:(1)设“舌头”的宽度为xcm,盒底边长为ycm.根据题意得解得6×2.5=15(cm)答:“舌头”的宽度为2cm,纸盒的高度为15cm.(2)设瓶底直径为dcm,根据题意得解得:d≤8答:这样的笔筒的底面直径最大可以为8cm.水是人类最宝贵的资源之一,我国水资源均占有量远远低于世界平均水平,为了节约用水,保护环境,学校于本学期初便制定了详细的用水计划,如果实际每天比计划多用1t水,那么本学期的用水总量将会超过2300t如果实际每天比计划节约1t水,那么本学期的用水总量将会不足2100t.在本学期得在校时间按110天计算,那么学校计划每天用水量应控制在什么范围?解:设每天用水X吨(X+1)*110>2300(X-1)*110<2100解得:11分之219<X<11分之221答:在11分之219到11分之221之间.已知二元一次方程组{2X+Y=5M+6,X-2Y=-17}的接X,Y都是正数,且X的值小于Y的值,求M的取值范围。
先用消元法解X、Y1)-2)*2:Y+4Y=5M+40 => Y=M+8代入1):X=2M-1由题意0<X<Y得0<2M-1<M+8解M得 1/2<M<9(2009•十堰)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:分析:(1)关系式为:A型沼气池占地面积+B型沼气池占地面积≤365;A型沼气池能用的户数+B型沼气池能用的户数≥492;(2)由(1)得到情况进行分析.解答:解:(1)设建造A型沼气池x个,则建造B型沼气池(20-x)个(1分),依题意得:(3分),解得:7≤x≤9(4分).∵x为整数∴x=7,8,9,∴满足条件的方案有三种(5分).(2)设建造A型沼气池x个时,总费用为y万元,则:y=2x+3(20-x)=-x+60(6分),∵-1<0,∴y随x增大而减小,当x=9时,y的值最小,此时y=51(万元)(7分).∴此时方案为:建造A型沼气池9个,建造B型沼气池11个(8分).解法②:由(1)知共有三种方案,其费用分别为:方案一:建造A型沼气池7个,建造B型沼气池13个,总费用为:7×2+13×3=53(万元)(6分).方案二:建造A型沼气池8个,建造B型沼气池12个,总费用为:8×2+12×3=52(万元)(7分).方案三:建造A型沼气池9个,建造B型沼气池11个,总费用为:9×2+11×3=51(万元).∴方案三最省钱(8分).(2004•安徽)喷灌是一种先进的田间灌水技术,雾化指标P是它的技术要素之一,当喷嘴的直径d(mm),喷头的工作压强为h(kPa)时,雾化指标P= ,如果树喷灌时要求3000≤P≤4000,若d=4mm,求h的范围..分析:把d代入公式得到P=25h,再根据P的取值范围建立不等式从而求到h 的取值范围.解答:解:把d=4代入公式P= 中得:P=即P=25h又∵3000≤P≤4000∴3000≤25h≤4000120≤h≤160故h的范围为120~160(kPa)(2005•南通)海门市三星镇的叠石桥国际家纺城是全国最大的家纺专业市场,年销售额突破百亿元.2005年5月20日,该家纺城的羽绒被和羊毛被这两种产品的销售价如下表:现购买这两种产品共80条,付款总额不超过2万元.问最多可购买羽绒被多少条?分析:设购买羽绒被x条,则购买羊毛被(80-x)条,根据付款总额不超过2万元就可以列出不等式,解出x,x取整数.解答:解:设购买羽绒被x条,则购买羊毛被(80-x)条.根据题意,得415x+150(80-x)≤20000.(3分)整理,得265x≤8000.解之得x≤ .(5分)∵x为整数∴x的最大整数值为30.答:最多可购买羽绒被30条.(7分)某幼儿园把一筐桔子分给若干个小朋友,若每人3只,那么还剩59只,若每人5只,那么最后一个小朋友分到桔子,但不足4只,试求这筐桔子共有多少只?考点:一元一次不等式组的应用.专题:和差倍关系问题.分析:“不足4只”意思是最后一个小朋友分得的桔子数在0和4之间,把相关数值代入计算即可.解答:解:设幼儿园共有x名小朋友,则桔子的个数为(3x+59)个,由“最后一个小朋友分到桔子,但不足4个”可得不等式组0<(3x+59)-5(x-1)<4,解得30<x<32,∴x=31,∴有桔子3x+59=3×31+59=152(个).答:这筐桔子共有152个.小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端;体重整好是妈妈一半的小宝和妈妈一同坐在跷跷板的一端.这时,爸爸的一端仍然着地.后来,小宝借来一个质量为6千克的哑铃,加在他和妈妈坐的一端,结果,爸爸被跷起离地.小宝的体重约是多少千克?(精确到1千克)考点:一元一次不等式组的应用.专题:应用题.分析:关键描述语:①体重整好是妈妈一半的小宝和妈妈一同坐在跷跷板的一端,这时爸爸的一端仍然着地,即小宝和妈妈的体重和小于爸爸的体重.②小宝借来一个质量为6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地,即小宝和妈妈哑铃的总质量大于爸爸的质量.列不等式组求解即可.解答:解:设小宝的体重为x千克,则妈妈的体重为2x千克,依题意得解得22<x<24∵小宝的体重精确到1千克∴x=23,即小宝的体重约为23千克.某种植物适宜生长在温度在18℃~20℃的山区,已知山区海拔每升高100米,气温下降0.5℃,现在测得山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?(假设山脚海拔为0米)考点:一元一次不等式的应用.专题:应用题.分析:设该植物种在海拔x米的地方为宜,根据“温度在18℃~20℃”作为不等关系列不等式组,解不等式组即可.解答:解:设该植物种在海拔x米的地方为宜,则解得400≤x≤800答:该植物种在山的400--800米之间比较适宜.(2001•安徽)恩格尔系数表示家庭日常饮食开支占家庭经济总收入的比例,它反映了居民家庭的实际生活水平,各种类型家庭的恩格尔系数如下表所示:则用含n的不等式表示小康家庭的恩格尔系数为40%≤n≤49%.考点:一元一次不等式的应用.专题:图表型.分析:本题要用含n的不等式表示小康家庭的恩格尔系数,只要找出小康家庭所在的系数,令n处在该范围内即可.解答:解:依题意得不等式:40%≤n≤49%.一个三角形三边长分别是3、1-2m、8,则m的取值范围是-5<m<-2.考点:三角形三边关系.分析:根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求m的取值范围.解答:解:由三角形三边关系定理得8-3<1-2m<8+3,即-5<m<-2.即m的取值范围是-5<m<-2.(2010•温州)某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了8支.考点:一元一次不等式组的应用.专题:应用题.分析:根据“所付金额大于26元,但小于27元”作为不等关系列不等式组求其整数解即可求解.解答:解:设签字笔购买了x支,则圆珠笔购买了15-x支,根据题意得解不等式组得7<x<9∵x是整数∴x=8.有人问一位老师,他所教的班有多少学生,老师说:“现在班中有一半的学生正在做数学作业,四分之一的学生做语文作业,七分之一的学生在做英语作业,还剩不足6位的学生在操场踢足球。
”试问这个班共有多少学生?解:设一共有X个学生依题意,X是2,4,7的公倍数,即X可以被28整除。
所以X=28,56,84,... 又因为X-1/2X-1/4X-1/7X<6 只有X=28时满足条件答:有28人.(2007•广州)某博物馆的门票每张10元,一次购买30张到99张门票按8折优惠,一次购买100张以上(含100张)按7折优惠.甲班有56名学生,乙班有54名学生.(1)若两班学生一起前往参观博物馆,购买门票最少共需花费770元.(2)当两班实际前往该博物馆参观的总人数多于30人且不足100人时,至少要88人,才能使得按7折优惠购买100张门票比实际人数按8折优惠购买门票更便宜.考点:一元一次不等式的应用.专题:应用题;分类讨论.分析:(1)两个班分别买票时,按8折优惠,共同买票时按7折优惠,分别计算出这两种情况下,甲乙两班所需的费用,然后判断出购买门票最少要多少钱;(2)我们可根据两班前往博物馆参观的人数在30-100人之内,实际人数按8折购票所需的钱>购买100张门票7折的钱数,以此来列出不等式组,求出自变量的取值范围,找出符合条件的值.解答:解:(1)当两个班分别购买门票时,甲班购买门票的费用为56×10×0.8=448元乙班购买门票的费用54×10×0.8=432元甲乙两班分别购买门票共需花费880元当两个班一起购买门票时,甲乙两班共需花费(56+54)×10×0.7=770元答:甲乙两班购买门票最少共需花费770元.(2)(2)当多于30人且不足100人时,设有x人前往参观,才能使得按7折优惠购买100张门票比根据实际人数按8折优惠购买门票更便宜,根据题意得解得87.5<x<100答:当多于30人且不足100人时,至少有88人前往参观,才能使得按7折优惠购买100张门票比根据实际人数按8折优惠购买门票更便宜.(2009•株洲)初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知:在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分每份可得0.2元.(1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份.(2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内.考点:一元一次不等式组的应用.专题:应用题.分析:(1)1000份是界限,那就算出1000份时能赚多少钱,进行分析.(2)关系式为:1000份的收入+超过1000份的收入≥140;1000份的收入+超过1000份的收入≤200解答:解:(1)如果孔明同学卖出1000份报纸,则可获得:1000×0.1=100元,没有超过140元,从而不能达到目的;(注:其它说理正确、合理即可.)(3分)(2)设孔明同学暑假期间卖出报纸x份,(2)设孔明同学暑假期间卖出报纸x份,由(1)可知x>1000,依题意得:,(7分)解得:1200≤x≤1500.(9分)答:孔明同学暑假期间卖出报纸的份数在1200~1500份之间.(10分)(2010•宜宾)小明利用课余时间回收废品,将卖得的钱去购买5本大小不同的两种笔记本,要求共花钱不超过28元,且购买的笔记本的总页数不低于340页,两种笔记本的价格和页数如下表.为了节约资金,小明应选择哪一种购买方案?请说明理由.考点:一元一次不等式组的应用.专题:方案型;图表型.分析:设购买大笔记本为x本,则购买小笔记本为(5-x)本.不等关系:①5本大小不同的两种笔记本,要求共花钱不超过28元;②购买的笔记本的总页数不低于340页.解答:解:设购买大笔记本为x本,则购买小笔记本为(5-x)本.依题意,得,解得,1≤x≤3.x为整数,∴x的取值为1,2,3.当x=1时,购买笔记本的总金额为6×1+5×4=26(元);当x=2时,购买笔记本的总金额为6×2+5×3=27(元);当x=3时,购买笔记本的总金额为6×3+5×2=28(元).∴应购买大笔记本l本,小笔记本4本,花钱最少.。