匀速圆周运动重点知识总结
高中物理【圆周运动】知识点、规律总结
考点一 圆周运动的运动学分析 1.圆周运动各物理量间的关系
自主学习
11
2.常见的三类传动方式及特点 (1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大 小相等,即 vA=vB.
3.当 v 一定时,a 与 r 成反比;当 ω 一定时,a 与 r 成正比. 4.向心力是效果力,在分析完物体受到的重力、弹力、摩擦力等性质力后,不能 另外添加一个向心力.
9
5.物体做匀速圆周运动还是偏离圆形轨道完全是由实际提供的向心力和所需的向 心力间的大小关系决定的.
6.皮带传动和摩擦传动装置中两轮边缘线速度大小相等,而同轴传动装置中两轮 角速度相等.
向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是
几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.
14
2.运动模型 运动模型
飞机水平转弯
火车转弯
向心力的来源图示
15
运动模型 圆锥摆
飞车走壁
向心力的来源图示
16
运动模型 汽车在水平路面转弯
水平转台(光滑)
6
三、离心现象 1.定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需 __向__心__力__的情况下,就做逐渐远离圆心的运动. 2.本质:做圆周运动的物体,由于本身的_惯__性___,总有沿着圆周切线方向飞出去 的趋势.
7
3.受力特点 (1)当 F =mω2r 时,物体做匀速圆周运动,如图所示.
(2)摩擦传动和齿轮传动:如图丙、丁所示,两轮边缘接触,接触点无打滑现象时, 两轮边缘线速度大小相等,即 vA=vB.
高中物理-匀速圆周运动
【知识梳理】一、匀速圆周运动:质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。
(举例:电风扇转动时,其上各点所做的运动;地球和各个行星绕太阳的运动,都认为是匀速圆周运动。
)注意:匀速圆周运动是变速曲线运动,匀速圆周运动的轨迹是圆,是曲线运动,运动的速度方向时刻在变化,因而匀速圆周运动不是匀速运动,而是变速曲线。
“匀速”二字仅指在相等的时间里通过相等的弧长。
二、线速度:物体做匀速圆周运动时,通过的弧长S 与时间t 的比值就是线速度的大小。
用符号v 表示: tS v =1、线速度是物体做匀速圆周运动的瞬时速度。
2、线速度是矢量,它既有大小,也有方向.线速度的方向-----在圆周各点的切线方向上.3、匀速圆周运动的线速度不是恒定的,方向是时刻变化的三、角速度:圆周半径转过的角度ϕ与所用时间t 的比值。
用ω表示:公式:tϕω=单位:s rad /匀速圆周运动的快慢也可以用角速度来描述。
物体在圆周上运动得越快,连接运动物体和圆心的半径在同样的时间内转过的角度就越大。
对某一确定的匀速圆周运动而言,角速度ω是恒定。
四、周期和频率匀速圆周运动是一种周期性的运动.周期(T ):做匀速圆周运动的物体运动一周所用的时间,单位是s 。
周期也是描述匀速圆周运动快慢的物理量,周期长运动慢,周期短运动快。
频率(f ):物体ls 由完成匀速圆周运动的圈数,单位是赫兹,记作“Hz ”.周期和频率互为倒数.频率也是描述匀速圆周运动快慢的物理量,频率低运动慢,频率高运动快。
Tf 1=转速n :做匀速圆周运动的物体单位时间内转过的圈数叫转速。
单位是r/s 、r/min 。
五、线速度、角速度、周期间的关系 1、定性关系三个物理量都是描述匀速圆周运动的快慢,匀速圆周运动得越快,线速度越大、角速度越大、周期越小. 2、定量关系设想物体沿半径为r 的圆周做匀速圆周运动,则在一个周期内转过的弧长为π2r ,转过的角度为π2,因此有 T r v π2=,Tπω2= 比较可知:v =ωr =2πnr =2πfr 结论:由v =r ω知,当v 一定时,ω与r 成反比;当ω一定时,v 与r 成正比;当r 一定时,v 与ω成正比。
匀速圆周运动知识点总结
匀速圆周运动(1)匀速圆周运动定义:任意相等时间内通过的弧长都相等的圆周运动—理想化模型。
(2)特征物理量:为了描述匀速圆周运动的快慢引入的物理量1. 线速度(矢量):描述质点做圆周运动的快慢:(1)(比值法定义)单位—m/s(2)方向:圆周轨迹的切线方向2. 角速度(矢量):描述质点绕圆周运动的快慢(1)(比值法定义)单位—rad/s(2)方向:右手螺旋定则3. 周期T(s):做圆周运动的物体运动一周所用的时间叫周期。
4. 频率:作圆周运动的物体单位时间内,沿圆周绕圆心转动的圈数转速n(r/s或r/min):当单位时间取秒时,转速n与频率f在数值上相等关系:T=1/n4.关系:判断:根据,v与R成正比(F)(3)匀速圆周运动的条件引入:物体做曲线运动的条件:切向力改变速度大小,法向力改变速度方向。
1.条件:(1)初速度;(2)2. 说明:(1)向心力:效果力——只改变速度方向,不改变速度大小,由实际受的性质力提供。
变力——方向始终指向圆心(2)向心力产生的加速度叫做向心加速度,方向指向圆心;向心加速度描述速度方向变化的快慢(四)圆周运动的应用:(1)火车转弯:火车弯道处外轨略高于内轨,火车所受的力和力的合力提供向心力。
(2)汽车过拱桥:汽车在受到的力和力的合力提供向心力。
(3)物体做离心运动的原因是:。
(五)、竖直面内圆周运动的临界问题(1)轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:. 小球能通过最高点的临界条件:,(为支持力). 当时,有(为支持力)杆当时,有()当时,有(为拉力)(2)没有物体支持的小球(轻绳模型),在竖直平面作圆周运动通过最高点的临界条件:绳子和轨道对小球刚好没有力的作用试对右图的两种情境下球在最高点时进行受力分析,得出v临界=v>v临界时,球能过最高点,绳对球产生力、轨道对球产生力v<v临界时,球不能过最高点(实际上球还未滑到最高点就脱离了轨道).例1、小球在半径为的光滑半球内做水平面内的匀速圆周运动,试分析图中(小球与半球球心连线跟竖直方向的夹角)与线速度,周期的关系。
【知识点】高中物理圆周运动及向心力知识点总结
【知识点】高中物理圆周运动及向心力知识点总结一、匀速圆周运动1.定义:物体的运动轨迹是圆的运动叫做圆周运动,物体运动的线速度大小不变的圆周运动即为匀速圆周运动。
2.特点:①轨迹是圆;②线速度、加速度均大小不变,方向不断改变,故属于加速度改变的变速曲线运动,匀速圆周运动的角速度恒定;③匀速圆周运动发生条件是质点受到大小不变、方向始终与速度方向垂直的合外力;④匀速圆周运动的运动状态周而复始地出现,匀速圆周运动具有周期性。
3.描述圆周运动的物理量:(1)线速度v是描述质点沿圆周运动快慢的物理量,是矢量;其方向沿轨迹切线,国际单位制中单位符号是m/s,匀速圆周运动中,v的大小不变,方向却一直在变;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量;国际单位符号是rad/s;(3)周期T是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s;(4)频率f是质点在单位时间内完成一个完整圆周运动的次数,在国际单位制中单位符号是Hz;(5)转速n是质点在单位时间内转过的圈数,单位符号为r/s,以及r/min.4.各运动参量之间的转换关系:模型一:共轴传动模型二:皮带传动模型三:齿轮传动二、向心加速度1.定义:任何做匀速圆周运动的物体的加速度都指向圆心,这个加速度叫向心加速度。
注:并不是任何情况下,向心加速度的方向都是指向圆心。
当物体做变速圆周运动时,向心加速度的一个分加速度指向圆心。
2.方向:在匀速圆周运动中,始终指向圆心,始终与线速度的方向垂直。
向心加速度只改变线速度的方向而非大小。
3.意义:描述圆周运动速度方向方向改变快慢的物理量。
4.公式:5.两个函数图像:三、向心力1.定义:做圆周运动的物体所受到的沿着半径指向圆心的合力,叫做向心力。
2.方向:总是指向圆心。
3.公式:4.注意:①向心力的方向总是指向圆心,它的方向时刻在变化,虽然它的大小不变,但是向心力也是变力。
②在受力分析时,只分析性质力,而不分析效果力,因此在受力分析是,不要加上向心力。
匀速圆周运动知识点复习
匀速圆周运动知识点复习(一) 匀速圆周运动定义:任意相等时间内通过的弧长都相等的圆周运动—理想化模型。
(二) 特征物理量:为了描述匀速圆周运动的快慢引入的物理量1. 线速度(矢量):(1)t s v /=(比值法定义)单位—m/s(2) 方向:圆周轨迹的切线方向2. 角速度(矢量):(1)t /ϕω=(比值法定义)单位—rad/s(2) 方向:右手螺旋定则3. 周期T(s)转速n(r/s 或r/min):当单位时间取秒时,转速n 与频率f 在数值上相等关系:T=1/n4.关系:Rv n T t ====ππϕω22 ωππR Rn TR t s v ====22 判断:根据ωR v =,v 与R 成正比(F ) (三) 匀速圆周运动的条件引入:物体做曲线运动的条件:切向力改变速度大小,法向力改变速度方向。
1. 条件:(1)初速度0v ;(2)R n m R T m v m R v m mR F F v F 22222244,ππωω⋅=⋅⋅=⋅====⊥向合合 2. 说明:(1)向心力:效果力——只改变速度方向,不改变速度大小,由实际受的性质力提供。
变力——方向始终指向圆心(2)向心力产生的加速度叫做向心加速度,方向指向圆心;向心加速度描述速度方向变化的快慢R n R T v R v R a a v a 22222244,ππωω⋅=⋅⋅=⋅====⊥向合合 (四) 匀速圆周运动的性质:变速、变加速曲线运动(五) 匀速圆周运动问题的解题步骤1. 选取研究对象,确定轨道平面和圆心位置2. 受力分析,正交分解列方程3. 求解。
(六) 典型问题:1. 皮带传动与地球2. 自行车问题3. 周期运动4. 气体分子速率的测定5. 向心力实验6. 车辆转弯和火车转弯问题1: 火车转弯问题(1)如图所示是轨道与火车的示意图:工字型铁轨固定在水泥基础上,火车的两轮都有轮缘,突出的轮缘一般起定位作用;(2)若是平直轨道转弯,只能依靠外轨道对火车外轮缘的侧压力提供向心力,该侧压力的反作用力作用在铁轨上,长此以往会对铁轨造成极大的破坏作用,甚至会引起轨道变形,导致翻车事故;(3)实际铁轨采用什么方法减小火车在转弯处对轨道的破坏作用呢?分析:如图所示,实际铁轨在转弯处造得外轨高于内轨,即将外轨垫高,则轨道平面与水平面有一倾角α,火车转弯时,铁轨对火车的支持力N 的方向不再是竖直的,而是斜向轨道内侧,与重力的合力指向圆心,提供火车转往的向心力,满足Rm v m g 20tan =θ,(R 是转弯处轨道半径) 所以θtan 0gR v =(4)讨论:当0v v =时,θtan mg 恰好提供所需向心力,轮缘对内外轨道均无压力;当0v v >时,θtan mg 不足以提供所需向心力,需要外轨道对外轮轮缘施加一个侧压力,补充不足的向心力,此时火车轮缘对外轨道由侧压力;当0v v <时,θtan mg 大于所需向心力,需要内轨道对内轮轮缘施加一个侧压力,此时火车轮缘对内轨道由侧压力;由以上分析可知,为何在火车转弯处设有限速标志。
考点2匀速圆周运动 线速度、角速度和周期 向心加速度和向心力(知识梳理)
考点2 匀速圆周运动、线速度、角速度和周期、向心加速度和向心力第一部分 考纲扫描1.了解线速度、角速度、周期、频率、转速等概念。
理解向心力及向心加速度。
2.能结合生活中的圆周运动实例熟练地应用向心力和向心加速度处理问题。
3.能正确处理竖直平面内的圆周运动。
4.了解离心现象。
第二部分 知识梳理一、描述圆周运动的物理量1.线速度①定义:质点做圆周运动通过的弧长l 与通过这段弧长所用的时间t 的比值叫做圆周运动的线速度。
②线速度的公式为:2l r v t Tπ==。
③方向为沿圆周的切线方向。
作匀速圆周运动的物体速度方向时刻在变化,因此匀速圆周运动是一种变速运动。
2.角速度①定义:用连接物体和圆心的半径转过的角度θ跟转过这个角度所用的时间t 的比值叫做角速度。
②公式为:2t Tθπω==,单位是:弧度/秒(rad/s)。
3.周期①定义:做匀速圆周运动的物体运动一周所用的时间,称为周期。
周期越大,运动越慢。
②公式:2r T vπ= 频率——质点在1秒内转动的圈数。
频率越大,物体运动越快。
转数——质点每秒钟(或每分钟)所转过的圈数。
常用的单位有:转/分(r/min)。
4.描述匀速圆周运动的各个物理量的关系①角速度ω与周期的关系是:ω=2π/T②角速度和线速度的关系是:v=ωr③周期与频率的关系是: 1T f=; ④向心加速度与以上各运动学物理量之间的关系:a=2v r=2r ω=224r T π 5.描述圆周运动的力学物理量是向心力(F 向):它的作用是改变速度的方向。
描述圆周运动的运动学物理量和力学物理量之间的关系是:F 向= m 2v r= m 2r ω =m 224r T π=ma 。
[规律总结]在分析传送带或边缘接触问题时,要抓住的关系是:同转轴的各点角速度相同,而同一皮带(不打滑时)或相吻合的两轮边缘的线速度相同。
当分析既不同轴又不同皮带的问题时,往往需要找一个联系轴与皮带的中介点作为桥梁。
匀速圆周运动知识归纳
匀速圆周运动知识归纳圆周运动是高中物体中一种常见的运动,也是高中物理的一个重要知识点.以下就这部分内容需要重点掌握的知识进行归纳.一.知识整理1.匀速圆周运动的定义:质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动.2.描述匀速圆周运动的物理量(1)线速度:v s t=(s 是物体在时间t 内通过的圆弧长),方向沿圆弧上该点处的切线方向,它是描述物体做匀速圆周运动快慢的物理量.(2)角速度:ωθθ=t(是物体在时间t 内绕圆心转过的角度),单位是弧度每秒,符号是rad/s ,它是描述物体做匀速圆周运动快慢的物理量.(3)周期T 和频率f :做匀速圆周运动的物体运动一周所用的时间叫周期,周期的倒数叫频率.转速是指做匀速圆周运动的物体每秒转过的圈数,用n 表示,单位是转每秒,符号是r/s .它们都是描述物体做匀速圆周运动快慢的物理量.(4)线速度、角速度、周期和频率以及转速间的关系:①v r r Trf rn ====ωπππ222②ωπππ===222T f n ③T f n ==11.(5)向心加速度:描述线速度方向变化快慢的物理量.大小:a v r r r Tf r n r n =====22222222444ωπππ方向:总是沿着半径指向圆心,所以方向时刻在变化,是一个变的加速度.(6)向心力大小:F ma mv r m r rm Tf rm n rm n n ======22222222444ωπππ方向:总是沿着半径指向圆心,所以时刻在变化,向心力是一个变力.3.匀速圆周运动的特点:线速度大小恒定,角速度、周期和频率及转速都是恒定不变的,向心力和向心加速度的大小也都是恒定不变的,但线速度、向心力和向心加速度的方向都时刻在变化.所以匀速圆周运动是一种变加速曲线运动.4.物体做匀速圆周运动的条件:合外力的大小不变,方向始终与速度方向垂直且指向圆心.即合外力提供向心力,且时刻等于向心力时,物体就做匀速圆周运动.做圆周运动的物体,若实际提供的向心力小于它所需的向心力时,物体将逐渐远离圆心,做离心运动.做圆周运动的物体,若实际提供的向心力大于它所需的向心力时,物体将逐渐向圆心运动,做逐渐靠近圆心的运动.5.向心力的来源:在匀速圆周运动中,向心力是由物体受到的合外力来提供,且与合外力相等.在非匀速圆周运动中,向心力是由物体受到的合外力在指向圆心方向的分力来提供,且与合外力的这个分力相等,而这个分力只改变物体的速度方向;合外力在切线方向上的另一个分力改变了物体的速度大小.二.典型例题赏析例:如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则()A.球A 的线速度必定大于球B 的线速度B.球A 的角速度必定小于球B 的角速度C.球A 的运动周期必定小于球B 的运动周期D.球A 对筒壁的压力必定大于球B 对筒壁的压力解析:对A 、B 球进行受力分析可知,A 、B 两球受力一样,它们均受重力mg 和支持力N ,则重力和支持力的合力提供向心力,受力图如图3所示.则可知筒壁对小球的弹力N mg =sin θ,而重力和弹力的合力F mgctg =θ,由牛顿第二定律可得:mgctg mr m v r m r T θωπ===22224.则可得:ωθθπθθ====gctg r v grctg T r gctg N mg ,,,2sin 由于A 球运动的半径大于B 球运动的半径,由ωθ=gctg r 可知球A 的角速度必定小于球B 的角速度;由v grctg =θ可知球A 的线速度必定大于球B 的线速度;由T r gctg =2πθ可知球A 的运动周期必定大于球B 的运动周期;由N mg =sin θ可知球A 对筒壁的压力一定等于球B 对筒壁的压力.故正确的答案为A 、B .。
高中物理匀速圆周运动公式总结.doc
高中物理匀速圆周运动公式总结匀速圆周运动是高中物理的重要章节,是高中同学重点掌握的内容。
下面我给大家带来高中物理匀速圆周运动公式,希望对你有帮助。
高中物理匀速圆周运动公式1.线速度V=s/t=2r/T2.角速度=/t=2/T=2f3.向心加速度a=V2/r=2r=(2/T)2r4.向心力F=mV2/r=m2r=mr(2/T)2=mv=F合5.周期与频率:T=1/f6.角速度与线速度的关系:V=r7.角速度与转速的关系=2n(此处频率与转速意义相同)8.主要物理量及单位:弧长(s):米(m);角度():弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度():rad/s;向心加速度:m/s2。
注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
高中物理匀速圆周运动知识点1、关于匀速圆周运动(1)条件:①物体在圆周上运动;②任意相等的时间里通过的圆弧长度相等。
(2)性质:匀速圆周运动是加速度变化(大小不变而方向不断变化)的变加速运动。
(3)匀速圆周运动的向心力:①是按力的作用效果来命名的力,它不是具有确定性质的某种力,相反,任何性质的力都可以作为向心力。
例如,小铁块在匀速转动的圆盘上保持相对静止的原因是,静摩擦力充当向心力,若圆盘是光滑的,就必须用线细拴住小铁块,才能保证小铁块同圆盘一起做匀速转动,这时向心力是由细线的拉力提供。
②向心力的作用效果是改变线速度的方向。
做匀速圆周运动的物体所受的合外力即为向心力,它是产生向心加速度的原因,其方向一定指向圆心,是变化的(线速度大小变化的非匀速圆周运动的物体所受的合外力不指向圆心,它既要改变速度方向,同时也改变速度的大小,即产生法向加速度和切向加速度)。
匀速圆周运动知识归纳与题型
匀速圆周运动基础知识:1.线速度: 222s v r r fr nr tTπωππ∆=====∆ 单位:米/秒,m/s2.角速度: ω=_________________________________ 单位:______3.周期: ________ 单位:______4.频率:______单位:_______5.转速:单位时间内转过的圈数。
________单位:______ n f = (条件是转速n 的单位必须为转/秒)6.向心加速度:_______________________________7.向心力:____________________________向心力是效果力,不改变速度的大小,向心力的方向时刻改变,因此匀速圆周运动是变速运动还是变加速!!!不是匀速运动。
.....向心力必须由物体所受其它力提供,受力分析时不会单独出现,否则一定是错的。
传动装置:要诀:同带等线速,同轴等角速1.共轴转动的特点:______________;2.皮带传动(链条)、齿轮传动(摩擦传动)的特点:_______________水平面内的圆周运动:1.常见模型:圆锥摆、火(汽)车转弯、飞车走壁、轮盘上圆周运动、离心运动;2.解题要领:①竖直方向的合力为___ ②水平方向的合力(分力)指向_____提供______竖直平面的圆周运动1.“绳模型”小球在竖直平面内做圆周运动过最高点情况。
(注意:绳对小球只能产生拉力) (1)小球能过最高点的临界条件:绳子和轨道对小球刚好没有力的作用(2)小球能过最高点条件:( ) (当v(3)不能过最高点条件: ( ) (实际上球还没有到最高点时,就脱离了轨道) 2.“杆模型”,小球在竖直平面内做圆周运动过最高点情况(1)小球能过最高点的临界条件:( ) (F 为支持力) (2)当0<v F 随v 增大而减小,且( )(F 为支持力)(3)当v =( )(4)当v ( ),且F>0(F 为拉力) 3.最低点绳杆模型都提供_____,且必有______圆周运动多解问题:由于周期性而造成多解,即一段时间内完成多个圆周运动,常与平抛运动结合 请自己总结本章自己的知识导图:1.质点做匀速圆周运动时,下列说法正确的是()A.线速度越大,周期一定越小B.角速度越大,周期一定越小C.转速越小,周期一定越小D.圆周半径越大,周期一定越小2.对于物体做匀速圆周运动,下列说法中正确的是()A. 其转速与角速度成反比,其周期与角速度成正比B. 运动的快慢可用线速度描述,也可用角速度来描述C. 匀速圆周运动的速度保持不变D. 做匀速圆周运动的物体,其加速度保持不变3.甲沿着半径为R的圆周跑道匀速跑步,乙沿着半径为2R的圆周跑道匀速跑步,在相同的时间内,甲、乙各自跑了一圈,他们的角速度和线速度的大小分别为ω1、ω2和v1、v2.则()A.ω1>ω2,v1>v2B.ω1<ω2,v1<v2 C.ω1=ω2,v1<v2 D.ω1=ω2,v1=v24.关于向心力的说法正确的是()A.物体由于做圆周运动而产生了一个向心力B.做圆周运动的物体除受其他力外,还要受到一个向心力的作用C.向心力不改变圆周运动物体速度的大小D.做圆周运动的物体其向心力是不变的5.静止在地球上的物体都要随地球一起转动,下列说法正确的是()A.它们的运动周期都是相同的B.它们的线速度都是相同的C.它们的线速度大小都是相同的D.它们的角速度是不同的6.物体做匀速圆周运动过程中,其向心加速度( )A. 大小、方向均保持不变B. 大小、方向均时刻改变C. 大小时刻改变、方向保持不变D. 大小保持不变、方向时刻改变 7.关于向心加速度的物理意义,下列说法正确的是( )A. 它描述的是线速度大小变化的快慢B. 它描述的是线速度方向变化的快慢C. 它描述的是物体运动的路程变化的快慢D. 它描述的是角速度变化的快慢 8.关于匀速圆周运动的向心加速度,下列说法正确的是( )A. 由于2v a r =,所以线速度大的物体的向心加速度大B. 由于2v a r=,所以旋转半径大的物体的向心加速度小C. 由于2a r ω=,所以角速度大的物体的向心加速度大D. 以上结论都不正确9.如图所示,A 、B 两物体作匀速圆周运动时的向心加速度随半径变化的关系图线,其中B 图线为双曲线,可得出 ( )A. A 物体运动时的线速度大小保持不变B. A 物体运动时的角速度大小保持不变C. B 物体运动时的角速度保持不变D. B 物体运动的线速度随r 而改变10.如图所示,小球在一细绳的牵引下,在光滑桌面上绕绳的另一端O 作匀速圆周运动,关于小球的受力情况,下列说法中正确的是( )A. 受重力和向心力的作用B. 受重力、支持力、拉力和向心力的作用C. 受重力、支持力和拉力的作用D. 受重力和支持力的作用11.如图所示,小物体A与圆盘保持相对静止,跟着圆盘一起做匀速圆周运动,则()A. A受重力、支持力,两者的合力提供向心力B. A受重力、支持力和指向圆心的摩擦力,摩擦力充当向心力C. A受重力、支持力、向心力、摩擦力D. 以上均不正确12.如图所示,一小球套在光滑轻杆上,绕着竖直轴OO′匀速转动,下列关于小球受力的说法中正确的是()A. 小球受到离心力、重力和弹力B. 小于受到重力和弹力C. 小球受到重力、弹力、向心力D. 小球受到重力、弹力、下滑力13.如图所示,一圆筒绕其中心轴匀速转动,圆筒内壁上紧靠着一个物体与圆筒一起运动,相对筒无滑动,物体所受向心力是()A. 筒壁对物体的弹力B. 物体的重力C. 筒壁对物体的静摩擦力D. 物体所受重力与弹力的合力14.如图所示,一个匀速转动的圆盘上有a、b、c三点,已知oc=12oa,则下面说法中错误..的是( )A. a,b两点线速度相同B. a、b、c三点的角速度相同C. c点的线速度大小是a点线速度大小的一半D. a、b、c三点的运动周期相同15.如图所示是一个玩具陀螺,a、b 和c 是陀螺表面上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是()A. a、b 和c 三点的线速度大小相等B. a、b 两点的线速度始终相同C. a、b 和c 三点的角速度大小相等D. a、b 两点的加速度比c 点的大16.如图所示,一球体绕轴O1O2以角速度ω旋转,A、B为球体上两点.下列说法中正确的()A. A、B两点具有相同的角速度B. A、B两点具有相同的线速度C. A、B两点具有相同的向心加速度D. A、B两点的向心加速度方向都指向球心17.如图所示,两个皮带轮通过皮带传动(皮带与轮不发生相对滑动).大轮半径是小轮半径的2倍,设A、B分别是大小轮轮缘上的一点,现比较它们的线速度v、角速度ω、周期T和频率f之间的关系,正确的是()①v A :v B =1:2 ②ωA :ωB =1:2 ③T A :T B =1:2 ④f A :f B =1:2 A. ①② B. ②③ C. ②④ D. ①④18.如图所示,相同材料制成的A 、B 两轮水平放置,它们靠轮边缘间的摩擦转动,两轮半径R A =2R B ,当主动轮A 匀速转动时,在A 轮边缘放置的小木块P 恰能与轮保持相对静止.若将小木块放在B 轮上,欲使木块相对B 轮也相对静止,则木块距B 轮转轴的最大距离为( )A. R BB.2B R C. 3B R D. 4B R 19.如图所示,修正带是通过两个齿轮的相互咬合进行工作的。
圆周运动总结知识要点
圆周运动问题是高考考查的热点,物体在竖直面内的圆周运动中临界条件的考查在高考中多有出现圆周运动的特点:物体所受外力在沿半径指向圆心的合力才是物体做圆周运动的向心力,因此利用矢量合成的方法分析物体的受力情况同样也是本单元的基本方法;只有物体所受的合外力的方向沿半径指向圆心,物体才做匀速圆周运动。
另外,由于在具体的圆周运动中,物体所受除重力以外的合外力总指向圆心,与物体的运动方向垂直,因此向心力对物体不做功,所以物体的机械能守恒。
(一)匀速圆周运动1. 定义:做圆周运动的质点,若在相等的时间内通过的圆弧长度相等,这种运动就叫做匀速圆周运动。
2. 运动学特征:v 大小不变,T 不变,ω不变,向a 大小不变;v 和向a 的方向时刻在变,匀速圆周运动是加速度不断改变的变速运动。
3. 动力学特征:合外力大小恒定,方向始终指向圆心。
(二)描述圆周运动的物理量 1. 线速度(1)物理意义:描述质点沿圆周运动的快慢。
(2)方向:质点在圆弧某点的线速度方向沿圆弧该点的切线方向。
(3)大小:(s 是t 时间内通过的弧长)。
2. 角速度 (1)物理意义:描述质点绕圆心转动的快慢。
(s /rad ),ϕ是连接质点(2)大小:和圆心的半径在t 时间内转过的角度。
3. 周期T ,频率f 做匀速圆周运动的物体运动一周所用的时间叫做周期。
做匀速圆周运动的物体单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速。
4. v 、ω、T 、f 的关系f 1T =f 2T 2π=π=ωω=π=r r T 2v5. 向心加速度(1)物理意义:描述线速度方向改变的快慢。
(2)大小:=a 0222222v r T 4r f 4r r v ω=π=π=ω=(3)方向:总是指向圆心(三)向心力向F1. 作用效果:产生向心加速度,不断改变质点的速度方向,维持质点做圆周运动,但不改变速度的大小。
2. 大小:rm r mv F 22ω==向3. 来源:向心力是按效果命名的力,可以由某个力提供,也可以由几个力的合力提供或由某个力的分力提供,如同步卫星的向心力由万有引力提供,圆锥摆摆球所受向心力由重力和绳上的拉力的合力提供4. 匀速圆周运动中向心力就是合外力,而在非匀速圆周运动中,向心力是合外力沿半径方向的一个分力,合外力的另一个分力沿切线方向,用来改变线速度的大小。
第六章-圆周运动章末复习-知识点和题型总结-2023年高一物理期末高效复习专题
第六章:圆周运动章末复习知识点一:匀速圆周运动及其描述一、匀速圆周运动1.圆周运动:物体的运动轨迹是圆的运动.2.匀速圆周运动:质点沿圆周运动,如果在相等的时间内通过的圆弧长度相等,这种运动就叫匀速圆周运动.二、匀速圆周运动的线速度、角速度和周期1.线速度(1)定义式:v=Δs Δt.如果Δt取的足够小,v就为瞬时线速度.此时Δs的方向就与半径垂直,即沿该点的切线方向.(2)线速度的方向:质点在圆周某点的线速度方向沿圆周上该点的切线方向.(3)物理意义:描述质点沿圆周运动的快慢.2.角速度:半径转过的角度Δφ与所用时间Δt的比值,即ω=ΔφΔt(如图所示).国际单位是弧度每秒,符号是rad/s.3.转速与周期(1)转速n:做圆周运动的物体单位时间内转过的圈数,常用符号n表示.(2)周期T:做匀速圆周运动的物体运动一周所用的时间叫做周期,用符号T 表示.(3)转速与周期的关系:若转速的单位是转每秒(r/s),则转速与周期的关系为T=1n .4.匀速圆周运动的特点(1)线速度的大小处处相等.(2)由于匀速圆周运动的线速度方向时刻在改变,所以它是一种变速运动.这里的“匀速”实质上指的是“匀速率”而不是“匀速度三、描述圆周运动的各物理量之间的关系1.线速度与周期的关系:v=2πr T.2.角速度与周期的关系:ω=2πT.3.线速度与角速度的关系:v=ωr.知识点二、同轴转动和皮带传动1.同轴转动(1)角速度(周期)的关系:ωA=ωB,T A=T B.(2)线速度的关系:vAvB=rR.2.皮带(齿轮)传动(1)线速度的关系:v A=v B(2)角速度(周期)的关系:ωAωB=rR、TATB=Rr.知识点三、向心力1.定义:物体做匀速圆周运动时所受合力方向始终指向圆心,这个指向圆心的合力就叫做向心力.2.大小:F=mω2r=m v2 r.3.方向:总是沿半径指向圆心,方向时刻改变.4.效果力向心力是根据力的作用效果来命名的,凡是产生向心加速度的力,不管属于哪种性质,都是向心力.二:向心力的来源物体做圆周运动时,向心力由物体所受力中沿半径方向的力提供.几种常见的实例如下:实例向心力示意图用细线拴住的小球在竖直面内转动至最高点时绳子的拉力和重力的合力提供向心力,F向=F+G用细线拴住小球在光滑水平面内做匀速圆周运动线的拉力提供向心力,F向=F T物体随转盘做匀速圆周运动,且相对转盘静止转盘对物体的静摩擦力提供向心力,F向=F f小球在细线作用下,在水平面内做圆周运动重力和细线的拉力的合力提供向心力,F向=F合知识点四:向心加速度的方向及意义1.物理意义描述线速度改变的快慢,只表示线速度的方向变化的快慢,不表示其大小变化的快慢.2.方向总是沿着圆周运动的半径指向圆心,即方向始终与运动方向垂直,方向时刻改变.3.圆周运动的性质不论向心加速度a n的大小是否变化,a n的方向是时刻改变的,所以圆周运动的向心加速度时刻发生改变,圆周运动一定是非匀变速曲线运动.“匀速圆周运动中”的“匀速”应理解为“匀速率”.4.变速圆周运动的向心加速度做变速圆周运动的物体,加速度一般情况下不指向圆心,该加速度有两个分量:一是向心加速度,二是切向加速度.向心加速度表示速度方向变化的快慢,切向加速度表示速度大小变化的快慢.所以变速圆周运动中,向心加速度的方向也总是指向圆心.二:向心加速度的公式和应用1.公式a n =v2r=ω2r=4π2T2r=4π2n2r=4π2f2r=ωv.2.向心加速度的大小与半径的关系(1)当半径一定时,向心加速度的大小与角速度的平方成正比,也与线速度的平方成正比.随频率的增大或周期的减小而增大.(2)当角速度一定时,向心加速度与运动半径成正比.(3)当线速度一定时,向心加速度与运动半径成反比.(4)a n与r的关系图象:如图552所示.由a nr图象可以看出:a n与r成正比还是反比,要看ω恒定还是v恒定.图552知识点五:生活在的圆周运动一:火车转弯问题1.轨道分析火车在转弯过程中,运动轨迹是一圆弧,由于火车转弯过程中重心高度不变,故火车轨迹所在的平面是水平面,而不是斜面.火车的向心加速度和向心力均沿水平面指向圆心.图5732.向心力分析如图573所示,火车速度合适时,火车受重力和支持力作用,火车转弯所需的向心力完全由重力和支持力的合力提供,合力沿水平方向,大小F=mg tan θ.3.规定速度分析若火车转弯时只受重力和支持力作用,不受轨道压力,则mg tan θ=m v 2 0R,可得v0=gR tan θ(R为弯道半径,θ为轨道所在平面与水平面的夹角,v0为转弯处的规定速度).4.轨道压力分析(1)当火车行驶速度v等于规定速度v0时,所需向心力仅由重力和弹力的合力提供,此时火车对内外轨道无挤压作用.(2)当火车行驶速度v与规定速度v0不相等时,火车所需向心力不再仅由重力和弹力的合力提供,此时内外轨道对火车轮缘有挤压作用,具体情况如下:①当火车行驶速度v>v0时,外轨道对轮缘有侧压力.②当火车行驶速度v<v0时,内轨道对轮缘有侧压力.二:拱形桥汽车过凸形桥(最高点)汽车过凹形桥(最低点) 受力分析牛顿第二定律求向心力 F n =mg -F N =m v 2rF n =F N -mg =m v 2r牛顿第三定律求压力F 压=F N =mg -m v 2rF 压=F N =mg +m v 2r讨论v 增大,F 压减小;当v 增大到rg 时,F 压=0v 增大,F 压增大 超、失重汽车对桥面压力小于自身重力,汽车处于失重状态汽车对桥面压力大于自身重力,汽车处于超重状态知识点六:离心运动1.离心运动的实质离心现象的本质是物体惯性的表现.做圆周运动的物体,由于惯性,总是有沿着圆周切线飞出去的趋向,之所以没有飞出去,是因为受到向心力的作用.从某种意义上说,向心力的作用是不断地把物体从圆周运动的切向方向拉回到圆周上来.2.离心运动的条件做圆周运动的物体,提供向心力的外力突然消失或者合外力不能提供足够大的向心力.3.离心运动、近心运动的判断如图578所示,物体做圆周运动是离心运动还是近心运动,由实际提供的向心力F n 与所需向心力⎝ ⎛⎭⎪⎫m v 2r 或mr ω2的大小关系决定.图578(1)若F n =mr ω2(或m v 2r)即“提供”满足“需要”,物体做圆周运动.(2)若F n>mrω2(或m v2r)即“提供”大于“需要”,物体做半径变小的近心运动.(3)若F n<mrω2(或m v2r)即“提供”不足,物体做离心运动.由以上关系进一步分析可知:原来做圆周运动的物体,若速率不变,所受向心力减少(或向心力不变,速率变大)物体将做离心运动;若速度大小不变,所受向心力增大(或向心力不变,速率减小)物体将做近心运动.知识点七.竖直平面的圆周运动1.“绳模型”如上图所示,小球在竖直平面内做圆周运动过最高点情况。
匀速圆周运动知识点
匀速圆周运动知识点总结:匀速圆周运动知识点一、基本概念:1.匀速圆周运动的定义:质点沿圆周运动,如果在相等的时间内通过的弧长相等,就称质点作匀速圆周运动。
2.匀速圆周运动的条件:a。
有一定的初速度b。
受到一个大小不变方向始终垂直于速度的力的作用(即向心力)3.匀速圆周运动的特点:速度大小不变,方向时刻改变。
4.描述匀速圆周运动的物理量:a。
线速度:大小不变,方向时刻改变,单位是m/s,是矢量。
b。
角速度:恒定不变,是矢量,单位是rad/s。
c。
周期:标量,单位是s。
d。
转速:①单位时间物体转过的圈数②标量,符号为n③单位:r/s或r/mine。
频率:①质点在单位时间内完成圆周运动的周数②标量,符号为f③单位:Hz5.注意:a。
匀速圆周运动是非匀变速曲线运动。
b。
“匀速”应理解为“匀速率”,不能理解为“匀速度”。
c。
合力不为零,不能称作平衡状态。
二、向心力:1.向心力的定义:做匀速圆周运动的物体所受到的合力指向圆心,叫向心力。
2.向心力的特点:指向圆心,大小不变,方向时刻改变,是变力。
3.向心力的作用:只改变速度大小,不改变方向。
4.注意:a。
向心力是一种效果力,它可以由重力、弹力、摩擦力等单独提供,也可以由它们的合力提供。
b。
“向心力”只是说明做圆周运动的物体需要一个指向圆心方向的力,而并非物体又受到一个“新的性质”的力。
即在受力分析时,向心力不能单独作为一种力。
c。
变速圆周运动的向心力不等于合力,合力也不一定指向圆心。
三、向心加速度:1.向心加速度的定义:由向心力产生的加速度。
2.向心加速度的特点:指向圆心,大小不变,方向时刻改变,是矢量。
3.提供的向心力:通过受力分析求出来的,沿半径方向指向圆心的力,匀速圆周运动中需提供。
4.需要的向心力:根据物体实际运动时的质量m、半径r、线速度v(或角速度w)求出的向心力F提=mrw2=mrv2/r。
四、离心现象:1.做圆周运动物体的运动特点:由于本身的惯性,做圆周运动的物体总有沿圆周切线飞出的倾向。
(完整版)圆周运动讲义
圆周运动讲义【知识点】1.匀速圆周运动:质点沿圆周运动,如果在相等的时间里通过的圆弧的长度相等,这种运动叫做匀速圆周运动。
匀速圆周运动是一种变加速曲线运动,虽然匀速圆周运动的速度大小不变,但它的速度的方向时刻在发生变化,所以匀速圆周运动不是匀速圆周运动,而是匀速率圆周运动。
2.线速度v①物理意义:描述物体做圆周运动快慢的物理量;②定义:质点沿圆周运动通过的弧长s 和所以时间t 的比值叫做线速度 ③大小:v =s/t ,单位:m/s④矢量,它的方向是质点在圆周上某点沿圆周上的切线方向。
实际上就是该点的瞬时速度。
3.角速度①物理意义:描述质点转过的圆心角的快慢②定义:在匀速圆周运动中,连接运动质点和圆心的半径转过的角度跟所用时间t 的比值,就是质点运动的角速度。
③大小:=/t ,单位:rad/s④匀速圆周运动是角速度不变的圆周运动。
4.周期T 、频率f 和转速n①周期T :在匀速圆周运动中,物体沿圆周转过一周所用的时间叫做匀速圆周运动的周期。
在国际单位制中,单位是秒(s )。
匀速圆周运动是一种周期性的运动。
②频率f :每秒钟完成圆周运动的转数。
在国际单位制中,单位是赫兹(Hz )。
③转速n:单位时间内做匀速圆周运动的物体转过的转数。
在国际单位制中,单位是转/秒(n/s). 匀速圆周运动的T 、f 和n 均不变。
5.描述匀速圆周运动的物理量之间的关系①线速度和角速度间的关系: ②线速度和周期的关系: ③角速度和周期的关系: ④周期和频率之间的关系: 6。
描述圆周运动的动力学物理量———向心力(1)向心力来源:向心力是根据力的作用效果命名的,不是一种特殊的性质力。
向心力可以是某一个性质力,也可以是某一个性质力的分力或某几个性质力的合力。
做匀速圆周运动的物体向心力是所受外力的合力做非匀速圆周运动的物体,其向心力为沿半径方向的外力的合力,而不是物体所受合外力。
(2)向心力大小:根据牛顿第二定律和向心加速度公式可知,向心力大小为:22224T r m r m r v m F πω=== 其中r 为圆运动半径。
匀速圆周运动知识归纳
匀速圆周运动知识归纳圆周运动是高中物体中一种常见的运动,也是高中物理的一个重要知识点.以下就这部分内容需要重点掌握的知识进行归纳.一.知识整理1. 匀速圆周运动的定义:质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动.2. 描述匀速圆周运动的物理量(1)线速度:v s t=(s 是物体在时间t 内通过的圆弧长),方向沿圆弧上该点处的切线方向,它是描述物体做匀速圆周运动快慢的物理量.(2)角速度:ωθθ=t(是物体在时间t 内绕圆心转过的角度),单位是弧度每秒,符号是rad/s ,它是描述物体做匀速圆周运动快慢的物理量.(3)周期T 和频率f :做匀速圆周运动的物体运动一周所用的时间叫周期,周期的倒数叫频率.转速是指做匀速圆周运动的物体每秒转过的圈数,用n 表示,单位是转每秒,符号是r/s .它们都是描述物体做匀速圆周运动快慢的物理量.(4)线速度、角速度、周期和频率以及转速间的关系: ①v r r Trf rn ====ωπππ222 ②ωπππ===222Tf n ③T f n==11. (5)向心加速度:描述线速度方向变化快慢的物理量. 大小:a v r r r Tf r n r n =====22222222444ωπππ 方向:总是沿着半径指向圆心,所以方向时刻在变化,是一个变的加速度.(6)向心力大小:F ma mv r m r rm Tf rm n rm n n ======22222222444ωπππ 方向:总是沿着半径指向圆心,所以时刻在变化,向心力是一个变力.3. 匀速圆周运动的特点:线速度大小恒定,角速度、周期和频率及转速都是恒定不变的,向心力和向心加速度的大小也都是恒定不变的,但线速度、向心力和向心加速度的方向都时刻在变化.所以匀速圆周运动是一种变加速曲线运动.4. 物体做匀速圆周运动的条件:合外力的大小不变,方向始终与速度方向垂直且指向圆心.即合外力提供向心力,且时刻等于向心力时,物体就做匀速圆周运动.做圆周运动的物体,若实际提供的向心力小于它所需的向心力时,物体将逐渐远离圆心,做离心运动.做圆周运动的物体,若实际提供的向心力大于它所需的向心力时,物体将逐渐向圆心运动,做逐渐靠近圆心的运动.5. 向心力的来源:在匀速圆周运动中,向心力是由物体受到的合外力来提供,且与合外力相等.在非匀速圆周运动中,向心力是由物体受到的合外力在指向圆心方向的分力来提供,且与合外力的这个分力相等,而这个分力只改变物体的速度方向;合外力在切线方向上的另一个分力改变了物体的速度大小.二.典型例题赏析例:如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则( )A. 球A 的线速度必定大于球B 的线速度B. 球A 的角速度必定小于球B 的角速度C. 球A 的运动周期必定小于球B 的运动周期D. 球A 对筒壁的压力必定大于球B 对筒壁的压力解析:对A 、B 球进行受力分析可知,A 、B 两球受力一样,它们均受重力mg 和支持力N ,则重力和支持力的合力提供向心力,受力图如图3所示.则可知筒壁对小球的弹力N mg =sin θ,而重力和弹力的合力F mgctg =θ,由牛顿第二定律可得:mgctg mr m v r m r T θωπ===22224. 则可得:ωθθπθθ====gctg r v grctg T r gctg N mg ,,,2sin 由于A 球运动的半径大于B 球运动的半径,由ωθ=gctg r 可知球A 的角速度必定小于球B 的角速度;由v grctg =θ可知球A 的线速度必定大于球B 的线速度;由T r gctg =2πθ可知球A 的运动周期必定大于球B 的运动周期;由N mg =sin θ可知球A 对筒壁的压力一定等于球B 对筒壁的压力.故正确的答案为A 、B .。
匀速圆周运动知识点总结
匀速圆周运动知识点总结一、引言匀速圆周运动是物理学中一个重要的概念,在日常生活和科学研究中都有广泛应用。
本文将对匀速圆周运动的基本知识点进行总结,希望能为读者提供清晰的了解和认识。
二、匀速圆周运动的定义匀速圆周运动是指物体在一个固定半径的圆轨道上运动,且速度大小保持恒定,方向不断改变的运动。
这种运动常见于风力发电机的叶轮、地球围绕太阳的公转等。
三、匀速圆周运动的特点1. 周期性:匀速圆周运动的物体会按照一定的周期性循环运动,即在一个周期内,物体完成一次完整的运动,回到起始点。
2. 曲线轨道:匀速圆周运动的轨迹是一个半径固定的圆,通过物体的运动轨迹可以画出一个完整的圆。
3. 速度大小不变:与匀速直线运动不同,匀速圆周运动的速度大小是恒定的,不会随着时间的推移而改变。
4. 加速度方向变化:匀速圆周运动的物体虽然速度大小不变,但加速度方向会不断变化,因为物体在沿圆周运动的过程中会不断改变运动方向。
5. 向心力:匀速圆周运动中,物体在圆周上所受的力称为向心力,经常用F_c表示。
向心力的大小与物体质量和圆周半径有关。
四、匀速圆周运动的公式1. 周期(T):匀速圆周运动的周期是指物体完成一次完整运动所需的时间。
周期与圆周半径(r)和速度(v)之间的关系为T =2πr/v。
2. 周速度(v):匀速圆周运动的周速度是指物体在圆周上运动时,单位时间内所经过的弧长。
周速度与圆周半径(r)和周期(T)之间的关系为v = 2πr/T。
3. 角速度(ω):匀速圆周运动的角速度是指物体在圆周上偏转的角度随时间的变化率。
角速度与线速度(v)和圆周半径(r)之间的关系为v = ωr。
4. 向心加速度(a_c):向心加速度是指物体在圆周运动时向心力所产生的加速度。
向心加速度与角速度(ω)和圆周半径(r)之间的关系为a_c = ω^2r。
五、匀速圆周运动的应用1. 旋转机械:匀速圆周运动的应用最广泛的领域之一是旋转机械,如风力发电机的叶轮、汽车的轮胎、风扇的叶片等,这些设备都依靠匀速圆周运动来实现其功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
匀速圆周运动重点知识总结
一.基本概念:
1.匀速圆周运动
(1)定义:质点沿圆周运动,如果在相等
的时间内通过的弧长相等,就
称质点作匀速圆周运动
(2)条件:
a.有一定的初速度
b.受到一个大小不变方向始终跟速度
垂直的力的作用(即向心力)
(3)特点:速度大小不变,方向时刻改变(4)描述匀速圆周运动的物理量:
a.线速度:大小不变,方向时刻改变,
单位是m/s, 是矢量。
b.角速度: 恒定不变,是矢量,(方向
可由右手螺旋定则确定,高中
不要求掌握)单位rad/s
c.周期:标量,单位:s
d.转速:①单位时间物体转过的圈数
②标量,符号:n
③单位:r/s或r/min
e.频率:①质点在单位时间完成圆周运
动的周数
②标量,符号:f
③单位:Hz
(5)注意:
a.匀速圆周运动是非匀变速曲线运动
b.“匀速”应理解为“匀速率”不能理
解为“匀速度”
c.合力不为零,不能称作平衡状态
2.向心力:
(1)定义:做匀速圆周运动的物体所受到
的合力指向圆心,叫向心力。
(2)特点:指向圆心,大小不变,方向时
刻改变,是变力。
F向=F合(3)作用:只改变速度大小,不改变方向(4)注意:
a.是一种效果力,它可以由重力、弹力、
摩擦力等单独提供,也可以由它们的
合力提供。
b.“向心力”只是说明做圆周运动的物
体需要一个指向圆心方向的力,而并
非物体又受到一个“新的性质”的力。
即在受力分析时,向心力不能单独作
为一种力。
c.变速圆周运动的向心力不等于合力,
合力也不一定指向圆心。
3.向心加速度
(1)定义:由向心力产生的加速度
(2)特点:指向圆心,大小不变,方向时
刻改变,是矢量。
4.提供的向心力:
通过受力分析求出来的,沿半径方向指向圆心的力,匀速圆周运动中F需向=F合5.需要的向心力:
根据物体实际运动时的质量m、半径r、线速度v(或角速度w)求出的向心力
F提=mrw2=mrv2/r
6.离心现象
(1)做圆周运动物体的运动特点:
做圆周运动的物体由于本身的惯性,
总有沿圆周切线飞出的倾向。
(2)概念:
在所受合力突然消失或不足以提供圆
周运动所需的向心力的情况下,就会
做靛渐远离圆心的运动,这种现象称
为离心现象。
(3)特别注意:
a. 物体做离心运动并不是受到了什
么所谓的“离心力”作用(准确
讲没离心力这个概念)
b. 产生离心运动的根本原因是由于
物体的惯性。
c. 离心现象既有利又有害,要注意利
用和防止。
二.基本公式
1.线速度:2
l r
v
t T
π
∆
==
∆
n
r⋅
⋅
=π2
2.角速度:2
t T
θπ
ω
∆
==
∆
n⋅
=π2
3.转速(n)频率(f)周期三者的关系:n=f 11
T
f n
==
4.线速度与角速度、半径r的关系:v=ωr 5.向心力:
2
2
2
2
n n
v
F ma m m r m r
r T
π
ω⎛⎫
==== ⎪
⎝⎭6.向心加速度:
2
2
2
2
n
v
a r r
r T
π
ω⎛⎫
=== ⎪
⎝⎭
,
三.典型应用:
1.皮带传动问题:在皮带不打滑的情况下 (1)皮带传动的两个轮缘(即同一皮带)
上各点的线速度相等,角速度与半
径成反比,
r
r 1
22
1=ωω即大轮转的
慢,小轮转的快
(2)绕同轴转动(即同一轮上)的物体上
各个点的角速度相等,线速度与半径成正比。
r
r v
v 2
12
1=
即离轴越远转的
越快。
2.汽车过桥问题:
(1)过平桥:支持力等于重力大小
mg F =支
(2)过凸桥:最高点有失重现象。
a.
F F
mg 支向
-=
b.最大速度:
gr v
=max
c.安全速度: gr v <
(3)过凹桥:最低点有超重现象。
mg F F -=支向
3.火车转弯类问题 (1)外轨高于内轨时: a.理想速度:.
轮缘与内外轨均无侧压力,由重力与支持力的合力提供向心力时的速度,这时有:
θtan mg F
=向
θtan 0
gR v
=
b.当
θtan gR v <实
,内轨对轮
缘有侧压力。
c.当
θtan gR v
>实
,外轨对轮缘有侧压力。
(2)内外轨水平:
向心力的来源是外轨的水平弹力,所以外轨容易磨损 4.汽车转弯类问题 (1)水平路面上:
a.由静摩擦力提供向心力
f
F
静
向
=
b.最大静摩擦力提供最大速度:
gR v
μ=max
C.安全速度:
gR v
μ≤安
(2)外高内低路面上(车与路面间没
有侧向摩擦力):
a.重力与支持力合力提供向心力
θtan mg F =向
b.最大速度: θtan max
gR v =
b.安全速度:
θtan gR v
≤安
5.竖直平面内的圆周运动 (1)模型1:无支撑模型(如图)
注意:绳对小球只能产生沿绳收缩
方向的拉力
a.临界条件即小球到达最高点的最小速度:
绳子或轨道对小球没有力的作用,由重力提供向心力:
v 临界=Rg
b,能过最高点的条件:v ≥Rg
当V>Rg时,绳对球产生拉力,轨道对球产生压力.
c.不能过最高点的条件:V<V临界
(实际上球还没到最高点时就
脱离了轨道)
(2)模型2:有支撑模型(如图)
注意:杆与绳不同,杆对球既能产生
拉力,也能对球产生支持力.
a.当v=Rg时,由重力提供向心力,
杆或轨道对小球无作用力即N=0
b. 小球到达最高点的最小速度为零
即v=0,这时支持力等于重力大小
即N=mg
c. 当0<v<Rg时,杆或轨道对小
球有向外的作用力N,N随v增大
而减小,且mg>N>0
d.当v>Rg时,杆或轨道对小球有向
内的作用力N(方向指向圆心),并
N随v的增大而增大。
6.离心运动与近心(向心)运动:
如图所示:
(1)当F供=F需即F提=mRw2时,物体做
匀速圆周运动,运动半径将逐渐增
大
(2)当F供>F需即F提> mRw2时,物体
做靠近圆心的向心运动,运动半径
将逐渐减小
(3)当F供<F需即F提< mRw2时,物
体做远离圆心的曲线运动
(4)当提供的向心力突然消失即F供=0
时,物体将沿圆的切线方向飞出
四.解决匀速圆周运动的基本方法
1.选择研究对象,根据转轴确定转动圆
心,找到半径
2.受力分析,找到向心力。
3.根据向心力公式建立方和求解。