双级压缩制冷循环原理

合集下载

双级压缩和复叠式制冷原理

双级压缩和复叠式制冷原理
2.氟利昂制冷系统:pk/p0 ≥ 10; 最低蒸发温度=-37℃
三、双级压缩工作原理
压缩过程分两阶段进行:
低压级压缩
高压级压缩
蒸发压力
中间压力
冷凝压力
三、双级压缩工作原理
➢ 双级压缩分两阶段进行:
低压级压缩
高压级压缩
蒸发压力
中间压力
冷凝压力
➢ 双级压缩工作过程:
1.来自蒸发器的低温制冷剂蒸气(压力为Po)先进入低
六、工作参数的确定
1. 中间温度和中间压力的确定 制冷系数最大的原则——最佳中间压力 常用方法:公式法、图解法、容积比插入法
公式法
①比例中项公式法(适用于初步估算)
pm p0 pk
R717:φ=0.95 ~ 1; R22: φ=0.9 ~ 0.95;
六、工作参数的确定
公式法
②拉塞经验公式法:
tm=0.4 tk + 0.6 t0 + 3 适用于:
-40~ 40℃,R717、R40等制冷剂
六、工作参数的确定
2. 高压级压缩机吸气温度和节流前制冷剂液体温 度的确定
• 中间完全冷却,吸气温度即为中间温度 • 中间不完全冷却,吸气温度≤-15℃过热蒸气 • 制冷剂液体从中间冷却器出液温度比中间温度
压级压缩机,在其中压缩到中间压力Pm
2.经过中间冷却器冷却(分为两种情况--中间完全冷 却为饱和蒸气和中间不完全冷却为过热蒸气)
3.再进入高压级压缩机,将其压缩为冷凝压力Pk,排入 冷凝器中
四、双级压缩类型
1、按压缩机
双机双级:两台压缩机,分别为高压级和低压级。
(配组式双级系统)
单机双级:一台压缩机,气缸一部分为高压级,一部分为低压级

双级压缩制冷循环原理

双级压缩制冷循环原理

双级压缩制冷循环原理引言:双级压缩制冷循环是一种高效的制冷循环系统,通过将压缩机分为两级,可以提高制冷系统的性能和效率。

本文将详细介绍双级压缩制冷循环的原理、工作过程以及优点。

一、双级压缩制冷循环的原理双级压缩制冷循环是基于传统的压缩制冷循环的改进。

传统的压缩制冷循环由压缩机、冷凝器、膨胀阀和蒸发器四个主要组件组成。

而双级压缩制冷循环则在传统循环的基础上增加了一个中间冷却器。

双级压缩制冷循环的工作原理如下:1. 第一级压缩:制冷剂从蒸发器进入第一级压缩机,被压缩为高温高压气体。

2. 中间冷却:高温高压气体进入中间冷却器,在此过程中,部分热量被冷却掉,使制冷剂降温。

3. 第二级压缩:冷却后的制冷剂进入第二级压缩机,再次被压缩为更高温高压气体。

4. 冷凝:高温高压气体进入冷凝器,通过散热的方式释放热量,变为高压液体。

5. 膨胀:高压液体通过膨胀阀进入蒸发器,压力迅速降低,使制冷剂蒸发为低温低压的气体。

6. 蒸发:低温低压气体吸收周围热量,实现制冷效果,并再次进入第一级压缩机,循环往复。

二、双级压缩制冷循环的工作过程双级压缩制冷循环的工作过程可以分为两个阶段:高温阶段和低温阶段。

1. 高温阶段:在高温阶段,制冷剂在第一级压缩机中被压缩,变为高温高压气体。

然后,通过中间冷却器的冷却作用,一部分热量被排出。

之后,制冷剂再次进入第二级压缩机,被再次压缩为更高温高压气体。

最后,高温高压气体进入冷凝器,通过散热的方式释放热量,变为高压液体。

2. 低温阶段:在低温阶段,高压液体通过膨胀阀进入蒸发器,压力迅速降低,使制冷剂蒸发为低温低压的气体。

低温低压气体吸收周围热量,实现制冷效果。

然后,制冷剂再次进入第一级压缩机,循环往复。

三、双级压缩制冷循环的优点双级压缩制冷循环相比传统的压缩制冷循环具有以下优点:1. 高效能:通过增加中间冷却器,可以减少制冷机组的功耗,提高制冷系统的效率。

2. 节能:利用中间冷却器的冷却作用,可以减少能量的损失,从而达到节能的目的。

04.两级压缩和复叠式制冷循环讲解

04.两级压缩和复叠式制冷循环讲解
根据制冷系数最大这一原则去选取最佳中间压力。
(1)按几何比例中项确定中间压力:
根据确定的冷凝压力Pk、和蒸发压力Po,按下式确定:
(2)按拉塞(A.Rasl)公式确定中间温度:
根据确定的冷凝温度Tk、和蒸发温度To,按下式确定:
(3)按诺模图确定中间温度: 诺模根据拉塞公式制作了 诺模图,可以很方便地查找中 间温度。 值得注意的是:诺模图和 拉塞公式一般只适用于氨为制 冷剂的系统。实际循环的制源自系数为实际循环的制冷系数为:
冷凝器热负荷:
根据计算出来的qvhG、qvhD选配合适的压缩机,并据Qo和Qk选配蒸发器 和冷凝器—称之为设计性计算; 对于已有的两级制冷机可根据它的qvhG、qvhD数值,计算出它的实际制 冷量Qo
两级压缩氨制冷机在冷库制冷装置中的实际系统图
4. 2.2 一级节流、中间不完全冷却的两级压缩循环
高压压缩机的吸气状态参数点4 的比焓可由两部分蒸气混合 过程的热平衡关系式求得。
两级压缩SD2-4F10A氟里昂制冷机在制冷装置中 实际系统图
4.3 两级压缩制冷机的热力计算 和温度变动时的特性
4. 3. 1两级压缩制冷机的热力计算
*两级压缩制冷机应使用R717、R22、R290等中温制冷剂,为的是 低温下系统中蒸发压力不会太低、常温下冷凝压力又不会且易于液化。 *对采用回热有利的制冷剂—R22、R290等应选用一级节流中间不完 全冷却循环方式; *对采用回热不利的制冷剂—R717等应选用一级节流中间完全冷却 循环方式。 *两级压缩制冷的热力计算方法与单级压缩制冷的热力计算方法基 本一样。
4. 3. 2 两级压缩制冷机中间压力的确定
1.校核计算:
高、低压级压缩机已定,通过热力计算去确定中间压力。 按一定间隔选择若干个中间温度,按所选温度分别进行循环的 热力计算,求出不同中间温度下的理论输气量的比值,与给定的高、 低压压缩机的理论输气量比值进行比较,用试凑法来确定中间压力。

制冷原理与设备(第4章两级压缩制冷循环)

制冷原理与设备(第4章两级压缩制冷循环)

qmg
(h2
h3) (h5 h3
h7 ) (h3 h6
h6 )
qmd
h2 h3
h7 h6
qmd
中冷器热平衡方程
因为 h5=h6 h7=h8
制冷原理及设备
4 双级压缩和复叠式制冷循环
高压级吸入的质量流量:
qmg
(h3
h2 h7 h6 )(h1
h7 )
Q0
3)系统的总耗功率
Pth = Pthd
4.2.1一级节流、中间完全冷却的双级压缩制冷循环
1、流程和特点 (多了压缩机,节流阀和中间冷却器)
1)由冷凝器流出的液体分为两路:
a.经膨胀阀1节流至Pm进入中冷器, 利用它的吸热来冷却低压级排气 和盘管中高压液体。蒸发了的蒸 汽同低压压缩机排气一起进入高 压级;
b.液体在中冷器盘管中被冷 却后,经膨胀阀2节流到P0, 在蒸发器中蒸发制冷。
2).制冷剂To↓Po↓,如R12 to=-67℃, Po=0.149bar 空气易渗入 系统,破坏循环正常运行。
3)Po↓V1↑qv↓,势必要求压缩机体积流量很大。
2、.使用条件
4)对制冷循环压力比的限制 5)受活塞式压缩机阀门结构特性的 限制
-60~-80℃ -80~-100℃ -100~-130℃
度和蒸发温度,单位均为℃。
– 上式不只适用于氨,在-40~40℃温度范围 内,对于R12也能得到满意的结果。
制冷原理及设备
4 双级压缩和复叠式制冷循环
• 4.3.3 温度变动时制冷机特性
• 双级蒸气压缩式制冷循环的比较分析
– (1)中间不完全冷却循环的制冷系数要比中间完全冷却循环 的制冷系数小
– (2)在相同的冷却条件下,一级节流循环要比二级节流循环 的制冷系数小 • 1)一级节流可依靠高压制冷剂本身的压力供液到较远的 用冷场所,适用于大型制冷装置。 • 2)盘管中的高压制冷剂液体不与中间冷却器中的制冷剂 相接触,减少了润滑油进入蒸发器的机会,可提高热交换 设备的换热效果。 • 3)蒸发器和中间冷却器分别供液,便于操作控制,有利 于制冷系统的安全运行

两级压缩以及复叠式制冷原理

两级压缩以及复叠式制冷原理

一级节流中间不完全冷却循环
4
冷凝器
中间 冷却器
膨胀阀 5'
4' 膨胀阀
5
1
蒸发器
T 3
高压 Tk
压缩机
2'
T0
2
低压 压缩机
k
4
4' 5'
6
5
3' wc
q0
pk 3
pk' 2 2' p0
1
S
Pm = Pk P0
图7示出的SD2-4F10A型两级压缩氟里昂制冷机系统
就是按图4-4a所示的一级节流中间不完全冷却循环所
《制冷原理与技术》讲义
第七讲 两级压缩及复 叠式制冷原理
陈江平 上海交通大学制冷研究所
1、采用两级压缩的原因
单级压缩压缩比为10时最低蒸发温度
制冷剂
冷凝 温度 (°C)
30
35
40
45
50
R717 -30.5 -27.3 -24.4
R12
-37.2 -34.2 -31.5
R22
-36.8 -33.8 -31.1 -28.3 -25.4
图7 SD2-4F10A两级压缩氟里昂制冷系统图 A-低压压缩机;B-高压压缩机;C1、C2-油分离器;D-冷凝器;E-过滤干燥器;F-中间冷却器;
G-蒸发器;H-气液分离器;I1、I2-热力膨胀机;J1、J2-电磁阀
3、两级压缩的热力计算
两级压缩制冷机进行循环的热力计算时,首先要对制冷工质及循环型式加 以选择,然后 确定循环的工作参数,按上节所述方法进行具体的计算。 两级压缩制冷机应使用中温制冷剂,这是因为受到在低温时系统中蒸发压力不能太低 ,在常温下冷凝压力又不允许过高及应能够液化的限制。通常应用较为广泛的是R717、 R22、R290等。 中间冷却的方式是与选用的制冷剂的种类密切相关的。对采用回热有利的制冷剂如 R290等采用中间不完全冷却循环型式,同样可使循环的制冷系数有所提高。但为了降低高 压级的排气温度,也可选用中间完全冷却的循环型式。对采用回热循环不利的制冷剂如氨 等,则应采用中间完全冷却的循环型式。 对于蒸发温度较低的两级压缩循环,通常都增加回热器,其目的并不在于提高制冷系 数,而是为了提高低压级压缩机的吸气温度,改善压缩机的工作条件。 两级压缩循环工作参数的确定与单级压缩循环是相似的,即根据环境介质的温度和被 冷却物体要求的温度,考虑选取一定的传热温差,即可确定循环的冷凝温度和蒸发温度。 至于中间温度(或中间压力)如何确定是两级压缩循环的特有问题,中间压力选择是否恰 当,不仅影响到经济性,而且对压缩机的安全运行也有直接关系。

双级压缩机

双级压缩机

一、采用两级压缩的原因制冷系统的冷凝温度(或冷凝压力)决定于冷却剂(或环境)的温度,而蒸发温度(或蒸发压力)取决于制冷要求。

由于生产的发展,对制冷温度的要求越来越低,因此,在很多制冷实际应用中,压缩机要在高压端压力(冷凝压力)对低压端压力(蒸发压力)的比值(即压缩比)很高的条件下进行工作。

由理想气体的状态方程Pv/T≡C可知,此时若采用单级压缩制冷循环,则压缩终了过热蒸气的温度必然会很高(V一定,P↑→T↑),于是就会产生以下许多问题。

1.压缩机的输气系数λ大大降低,且当压缩比≥20时,λ=0 。

2.压缩机的单位制冷量和单位容积制冷量都大为降低。

3.压缩机的功耗增加,制冷系数下降。

4.必须采用高着火点的润滑油,因为润滑油的粘度随温度升高而降低。

5.被高温过热蒸气带出的润滑油增多,增加了分油器的负荷,且降低了冷凝器的传热性能。

总上所述,当压缩比过高时,采用单级压缩循环,不仅是不经济的,而且甚至是不可能的。

为了解决上述问题,满足生产要求,实际中常采用带有中间冷却器的双级压缩制冷循环。

但是,双级压缩制冷循环所需的设备投资较单级压缩大的多,且操作也较复杂。

因此,采用双级压缩制冷循环并非在任何情况下都是有利的,一般当压缩比≥8时,采用双级压缩较为经济合理。

二、双级压缩制冷循环的组成及常见形式两级压缩制冷循环,是指来自蒸发器的制冷剂蒸气要经过低压与高压压缩机两次压缩后,才进入冷凝器。

并在两次压缩中间设置中间冷却器。

两级压缩制冷循环系统可以是由两台压缩机组成的双机(其中一台为低压级压缩机,另一台为高压级压缩机)两级系统,也可以是由一台压缩机组成的单机两级系统,其中一个或两个汽缸作为高压缸,其余几个汽缸作为低压缸,其高、低压汽缸数量比一般为1:3或1:2 。

两级压缩制冷循环由于节流方式和中间冷却程度不同而有不同的循环方式,通常分为:两次节流中间完全冷却、两次节流中间不完全冷却、一次节流中间完全冷却和一次节流中间不完全冷却四种两级压缩制冷循环方式。

4.两级压缩和复叠式制冷循环

4.两级压缩和复叠式制冷循环

4. 3. 2 两级压缩制冷机中间压力的确定
1.校核计算:
高、低压级压缩机已定,通过热力计算去确定中间压力。 按一定间隔选择若干个中间温度,按所选温度分别进行循环的 热力计算,求出不同中间温度下的理论输气量的比值,与给定的高、 低压压缩机的理论输气量比值进行比较,用试凑法来确定中间压力。
2.设计计算:
复叠式制冷循环原理
例如:R13为低温级制冷剂,
或R22为高温级制冷剂,低温 级蒸发温度为-80℃,冷凝温
T
度为-30℃;高温级冷凝温度
为35℃。 冷凝蒸发器中的传热温差一
R22
Pk
30 ℃
-30 ℃ Po -80 ℃
般取5—10℃。
R13
S
23
复叠式制冷循环的几个问题:
1.应用温度范围: 当蒸发温度低于-80℃时,应采用复叠式制冷。当蒸发温度为 -60—-80℃时,复叠式制冷和双级压缩都可以采用。 2.制冷剂的选择: 高温部分可选用R22、R717、R502、丙烷、丙烯;低温部分可 选用R13、CO2、R14、乙烷、乙烯、甲烷等,根据制冷装置的用途 配对选用。 3.热力计算: 复叠式制冷的热力计算可分别对高温部分及低温部分单独进行 计算。计算方法与单级或两级压缩制冷循环的热力计算相同。计算 中注意高温部分的制冷量等于低温部分的冷凝热负荷加上冷损失。
实际循环的制冷系数为
实际循环的制冷系数为:
冷凝器热负荷:
根据计算出来的qvhG、qvhD选配合适的压缩机,并据Qo和Qk选配蒸发器 和冷凝器—称之为设计性计算; 对于已有的两级制冷机可根据它的qvhG、qvhD数值,计算出它的实际制 冷量Qo
两级压缩氨制冷机在冷库制冷装置中的实际系统图
4. 2.2 一级节流、中间不完全冷却的两级压缩循环

双级压缩制冷循环原理图文稿

双级压缩制冷循环原理图文稿

双级压缩制冷循环原理集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)双级压缩制冷循环原理一、萨震两级压缩采用的原因制冷系统的冷凝温度(或冷凝压力)决定于冷却剂(或环境)的温度,而蒸发温度(或蒸发压力)取决于制冷要求。

由于生产的发展,对制冷温度的要求越来越低,因此,在很多制冷实际应用中,要在高压端压力(冷凝压力)对低压端压力(蒸发压力)的比值(即压缩比)很高的条件下进行工作。

由理想气体的状态方程Pv/T≡C可知,此时若采用单级压缩制冷循环,则压缩终了过热蒸气的温度必然会很高(V一定,P↑→T↑),于是就会产生以下许多问题。

1.压缩机的输气系数λ大大降低,且当压缩比≥20时,λ=0 。

2.压缩机的单位制冷量和单位容积制冷量都大为降低。

3.压缩机的功耗增加,制冷系数下降。

4.必须采用高着火点的润滑油,因为润滑油的粘度随温度升高而降低。

5.被高温过热蒸气带出的润滑油增多,增加了分油器的负荷,且降低了的传热性能。

总上所述,当压缩比过高时,采用单级压缩循环,不仅是不经济的,而且甚至是不可能的。

为了解决上述问题,满足生产要求,实际中常采用带有中间冷却器的制冷循环。

但是,双级压缩制冷循环所需的设备投资较单级压缩大的多,且操作也较复杂。

因此,采用双级压缩制冷循环并非在任何情况下都是有利的,一般当压缩比≥8时,采用双级压缩较为经济合理。

二、双级压缩制冷循环的组成及常见形式两级压缩制冷循环,是指来自的蒸气要经过低压与高压压缩机两次压缩后,才进入冷凝器。

并在两次压缩中间设置中间冷却器。

两级压缩制冷循环系统可以是由两台压缩机组成的双机(其中一台为低压级压缩机,另一台为高压级压缩机)两级系统,也可以是由一台压缩机组成的单机两级系统,其中一个或两个汽缸作为高压缸,其余几个汽缸作为低压缸,其高、低压汽缸数量比一般为1:3或1:2 。

两级压缩制冷循环由于节流方式和中间冷却程度不同而有不同的循环方式,通常分为:两次节流中间完全冷却、两次节流中间不完全冷却、一次节流中间完全冷却和一次节流中间不完全冷却四种两级压缩制冷循环方式。

双级压缩机原理

双级压缩机原理

双级压缩机原理
双级压缩机是一种常用的压缩机类型,它由两个压缩级别组成。

每个级别都包括一个压缩机,其工作原理类似于单级压缩机。

在第一个级别,气体通过进气口进入压缩机。

压缩机内部的活塞或螺杆会将气体压缩并推送到第二个级别。

在这个过程中,气体的压力和温度将增加。

进入第二个级别后,气体将再次被压缩,从而增加其压力和温度。

在两个级别内,压缩机通过减少气体空间的体积来增加气体的压力。

最终,经过第二个级别后,气体被排出压缩机,同时具有更高的压力和温度。

这样的高压气体可以进一步被用于其他应用,例如供给工业设备或进一步处理。

双级压缩机的优点在于,它可以实现更高的压缩比。

通过将气体在两个级别内进行压缩,压力可以显著提高。

这对于压缩需要更高压力的气体非常有用。

然而,双级压缩机也存在一些局限性。

首先,它的构造较为复杂,需要两个独立的压缩机来实现。

其次,由于两个级别都会增加气体的温度,所以需要进行冷却以确保压缩机正常运行。

总的来说,双级压缩机是一种能够实现更高压缩比的设备。

通过使用两个级别的压缩,气体的压力可以显著增加,从而满足一些特殊应用的需求。

双级压缩原理

双级压缩原理

双级压缩原理
双级压缩原理是指将气体在高压下进行一次压缩,然后在更高压力下进行第二次压缩的过程。

这一过程可以将气体的密度和压力大幅度提高,从而实现更高效的气体储存和使用。

双级压缩原理主要应用于高压气体储存和输送领域,比如工业气体、医用气体、航空航天领域等。

在这些应用中,气体的压力和密度要求非常高,而双级压缩可以实现更高的压力和密度,从而提高气体的储存和使用效率。

双级压缩系统由两个压缩机和中间的冷却器组成。

第一级压缩机将气体压缩到较高的压力,然后将气体送入冷却器冷却。

冷却后的气体再进入第二级压缩机进行第二次压缩,从而实现更高的压力和密度。

双级压缩原理的优点在于可以实现更高效的气体储存和使用。

同时,由于气体在第一级压缩时已经被预处理,因此第二级压缩机的工作负荷也会较小,从而提高了整个系统的稳定性和寿命。

不过,双级压缩系统的成本相对较高,需要更多的设备和空间来实现。

- 1 -。

2.4双级压缩和复叠式制冷解析

2.4双级压缩和复叠式制冷解析
4.吸排气阀门动作困难,这些阀门一般是弹簧片结构,它们 的动作实际也依赖一个微小的压力差,但是吸气压力过低 时练这个条件也很难满足,造成阀片动作困难,无法吸气。
5.临界温度限制。如果使用低温制冷剂,则上述问题可以解 决,但是低温制冷剂临界温度太低,无法在常温下液化。
六、复叠式制冷循环原理
复叠式制冷一般使用两个制冷系统,在高 温系统里使用沸点温度高的制冷剂,在低 温系统里使用沸点温度低的制冷剂,高温 系统中制冷剂的蒸发是为了吸收低温系统 中制冷剂冷凝放出的热量,只有低温系统 中制冷剂蒸发向被冷却对象吸热。这种系 统叫做复叠式制冷系统,它既可以获得较 低的蒸发温度和合适的蒸发压力,又可以 向环境放热。
⑶压力比的增大将导致压缩机排气温度升高, 汽缸壁的温度随之升高。这一方面会使吸 入的制冷剂蒸气温度升高,比体积增大, 减少了压缩机吸气量;另一方面排气温度 和汽缸温度过高,会使得润滑油变稀甚至 部分碳化,导致压缩机润滑状况恶化,严 重影响压缩机正常运行。
由于以上原因,单级压缩机压缩比不宜过大。 一般使用氨作为制冷剂的活塞式压缩机压缩 比最大为8,使用氟利昂作为制冷剂的螺杆 式压缩机压缩比最大不能超过10,而使用离 心式压缩机时,压缩比最大不能超过4。这 样的话,在冷凝温度跟环境温度差不多的情 况下,单级压缩机可以达到的蒸发温度通常 为-20℃~-30℃,最多不超过-40℃.主要的原 因是考虑多方面因素,其中最关键的因素是 系统压缩过程不是绝热过程,当压缩比过大 的情况下,势必出现压力值变大现象,而这 个时候温度也会突生,在温度高的状态下, 对压缩机的冷冻油以及冷媒有分解,炭化的 问题,所以为了保证系统安全与可靠,系统 运行过程中的压缩比不能超过10.
4)采用多级压缩制冷循环,可提高制冷循环 中的节流效应,减少节流损失,提高制冷效 率。

第四章双级压缩式和复叠式制冷循环

第四章双级压缩式和复叠式制冷循环
1)降低了压缩机的排气温度。 2)降低了压缩机的增压比。 3)减少了节流损失(由于膨胀阀之前的制冷剂已充分过冷,节流后制冷剂湿 饱和蒸气的于度较小)。
五.带有经济器(省功器)的压缩制冷循环
在螺杆式和离心式压缩机制冷循环中,为了获得较低的蒸发温度或提高循 环的制冷系数,常常使用经济器(省功器),其与双级压缩制冷循环具有类 似的效果。 (1)带有经济器的螺杆式压缩机制冷循环 利用螺杆式压缩机结构上的特点, 在气缸的适当位置开设补气孔口,在同一个气缸中进行两次吸气过程,与 设置在机组上的经济器相连,组成带有经济器的螺杆式压缩机制冷系统, 螺杆式压缩机的压缩过程增加中间补气后,单级压缩变成了双级压缩。
qVd
Q0 v1 qmd v1 h1 h9
Q0 v1 d h1 h9 d qVd
4、低压级压缩机的理论输气量(m3/s)为
qVthd
5、低压级压缩机所消耗的轴功率Ped(kW)为
Ped
qmd w0 d
kd
Q0 h2 h1 h1 h9 kd
如上图所示,假设中间冷却器外壳具有良好的绝热性能,不考虑中间冷却 器与外界的传热,则
一级节流中间不完全冷却的双级压缩氟利昂制冷系统
三.两级节流中间不完全冷却的双级压缩制冷循环
两级节流、中间不完全冷却的两级压缩制冷循环 ( a ) 流程图 ( b ) lgp-h图
1、制冷量为Qo(kW或kJ/s)时,低压压缩机的质量流量(kg/s)为
q md
Q0 Q0 q0 h1 h9
12、冷凝器热负荷
Qk qmg (h5 h6 )
13、理论循环制冷系数 0
Q0 q md w0 d q mg wog h1 h9 h8 h9 h2 h1 (h5 h4 ) h8 h6

两级压缩制冷循环

两级压缩制冷循环

的热平衡关系计算出来。由图2可知:
qmdh2+qmd(h5-h7)+ (qmG + qmd)h5= qmG h3 • 从而可求出
• qmG =qmd(h2-h7)/(h3-h5)
• = (h2-h7)/(h3-h5) * Q0 /(h1-h7) kg/s
(8)

• 因此高压压缩机所需要的轴功率是 Peg= qmg* w0g/ ŋkg
• 式中λd ----- 低压压缩机的输气系数,其 数值可以按相同压缩比时单级压缩机的 输气系数的90%考虑。
• 为了在低温下制得冷量Q0,除了低压压缩机消
耗能量外,高压压缩机也要消耗一定的能量。
高压压缩机消耗的单位理论功是
w0g=h4-h3
(7)
高压压缩机的制冷剂流量qmg 大于低压压缩
机的制冷剂流量qmd ,它可以根据中间冷却器
• 单级压缩的最低蒸发温度不仅受到容积系数为零的 限制,随着压力比的增大,除了引起制冷量下降,功耗 增加、制冷系数下降、经济性降低外,排气温度的限制 也是选择压缩机级数的另一个重要原因。
• 排气温度过高,它将使润滑油变稀,润滑条件恶化,甚 至会引起润滑油的碳化和出现拉缸等现象。当冷凝温度 为40℃,蒸发温度为-30℃时,单级氨压缩机即使在等 熵压缩的情况下,排气温度已高达160℃,显然它已超 过了规的最高排气温度为150℃的限制。
• q0=h1-h8=h1-h7 kj/kg
(1)
低压压缩机每压缩1kg蒸气所消耗的理论 功是
w0d =h2-h1 k0kw ,则低压压缩机
的流量是
qmd =Q0/q=Q0/(h1-h8)= Q0/(h1-h7) kg/s (3) 从而可算出低压压缩机所需的功率

双级压缩制冷循环原理

双级压缩制冷循环原理

双级压缩制冷循环原理一、两级压缩采用的原因制冷系统的冷凝温度(或冷凝压力)决定于冷却剂(或环境)的温度,而蒸发温度(或蒸发压力)取决于制冷要求。

由于生产的发展,对制冷温度的要求越来越低,因此,在很多制冷实际应用中,压缩机要在高压端压力(冷凝压力)对低压端压力(蒸发压力)的比值(即压缩比)很高的条件下进行工作。

由理想气体的状态方程Pv/T≡C可知,此时若采用单级压缩制冷循环,则压缩终了过热蒸气的温度必然会很高(V一定,P↑→T↑),于是就会产生以下许多问题。

1.压缩机的输气系数λ大大降低,且当压缩比≥20时,λ=0 。

2.压缩机的单位制冷量和单位容积制冷量都大为降低。

3.压缩机的功耗增加,制冷系数下降。

4.必须采用高着火点的润滑油,因为润滑油的粘度随温度升高而降低。

5.被高温过热蒸气带出的润滑油增多,增加了分油器的负荷,且降低了冷凝器的传热性能。

总上所述,当压缩比过高时,采用单级压缩循环,不仅是不经济的,而且甚至是不可能的。

为了解决上述问题,满足生产要求,实际中常采用带有中间冷却器的双级压缩制冷循环。

但是,双级压缩制冷循环所需的设备投资较单级压缩大的多,且操作也较复杂。

因此,采用双级压缩制冷循环并非在任何情况下都是有利的,一般当压缩比≥8时,采用双级压缩较为经济合理。

二、双级压缩制冷循环的组成及常见形式两级压缩制冷循环,是指来自蒸发器的制冷剂蒸气要经过低压与高压压缩机两次压缩后,才进入冷凝器。

并在两次压缩中间设置中间冷却器。

两级压缩制冷循环系统可以是由两台压缩机组成的双机(其中一台为低压级压缩机,另一台为高压级压缩机)两级系统,也可以是由一台压缩机组成的单机两级系统,其中一个或两个汽缸作为高压缸,其余几个汽缸作为低压缸,其高、低压汽缸数量比一般为1:3或1:2 。

两级压缩制冷循环由于节流方式和中间冷却程度不同而有不同的循环方式,通常分为:两次节流中间完全冷却、两次节流中间不完全冷却、一次节流中间完全冷却和一次节流中间不完全冷却四种两级压缩制冷循环方式。

双级压缩式制冷循环

双级压缩式制冷循环

双级压缩式制冷循环2.5两级压缩及复叠式制冷原理 2.5.1采用两级压缩的原因单级压缩在选用合适的制冷剂时,其蒸发温度只能到达-25~-35℃,原因是压缩比0p p k不能再提高了。

因为: 〔1〕↑↓↓→↓→00p p p T ko ,压缩机输气量↓→制冷量↓ 〔2〕↑→0p p k压缩机排气温度↑(↑=↑RT pv )→汽缸壁温↑→吸入蒸汽温度↑→↑v →吸气量↓例如:当蒸发温度-30℃,冷凝温度40℃时,单级氨压缩机排气温度可达160℃以上。

必须作如下限制:① 单级氨压缩机排气温度<140℃ ② 单级氟压缩机〔R12〕排气温度<100℃ ③ 单级氟压缩机〔R22〕排气温度<115℃ 〔3〕↑→0p p k偏离理想等熵压缩机过程的程度↑→压缩机效率↓ 我国规定:R717:0p p k ≤8 R12、R22:0p p k≤10 〔P38表2-3〕 要获得-30~-65℃的蒸发温度,又要符合合适的压缩比,则需要两级压缩制冷。

2.5.2两级压缩制冷循环 1.两级压缩制冷循环的类型k m p p p p 压缩压缩(中间冷却器冷却后)→→→0201总压缩比0201p p p p km •=每一级压缩比≤8~10以下 可分为⎩⎨⎧一级节流两级节流 ⎩⎨⎧中间不完全冷却中间完全冷却* 两级节流:冷凝压力k p 节流到m p 中间压力,再节流到蒸发压力0p* 一级节流:冷凝压力k p 节流到蒸发压力0p ,容易调节,实际生产中常用一级节流。

* 两级压缩采用中间冷却的目的是降低高压级的排气温度,降低压缩机功耗。

① 中间完全冷却——低压级排气温度〔过热蒸汽〕被冷却成m p 中间压力下的干饱和蒸汽温度。

〔氨压缩机〕② 中间不完全冷却——低压级排气温度〔过热蒸汽〕被冷却降低了温度,来到达m p 中间压力下的干饱和蒸汽温度。

〔氟压缩机〕2.一级节流中间完全冷却循环这种循环形式被大多数的两级压缩氨制冷系统所采用。

如下图:从压缩机高压级排出的高压高温过热蒸汽4,进入冷凝器后被冷却成饱和液体5;从冷凝器出来的液体分为两路,一路经膨胀阀A 进行节流,节流后降温为6,然后进入中间冷却器吸热,使中间冷却器中来自低压级的排气2充分冷却,6与2混合后的气体3为中间压力m p 下的饱和温度m t ,3作为高压级的吸气经高压级压缩后变成过热蒸汽4,至此构成一个高压级的循环回路;另一路饱和液体5经中间冷却器过冷后变成过冷液7,经膨胀阀B 进行节流后变成低压液体8,进入蒸发器汽化制冷,然后变成饱和蒸汽1,在低压级压缩后变成过热蒸汽2,在中间冷却器冷却并与在中间冷却器汽化的蒸汽混合,变成饱和蒸汽了,作为高压级的吸气经压缩后变成高压级排气4,形成另一个循环,这是实现低温制冷的主循环。

两级压缩与复叠式制冷方式的比较

两级压缩与复叠式制冷方式的比较

0. 6355
- 13
- 18
- 24
- 65 低温 高温
0. 0407 0. 0379
0. 4478 0. 0909
21. 098 18. 913
62. 894 32. 301
0. 7253 0. 7498
0. 4431 0. 6133
0. 5817 0. 7325
0. 4399 0. 6396
4. 33
第 3 期 程有凯等 :两级压缩与复叠式制冷方式的比较 · 6 9 ·
4. 08
0. 853
1. 2497
0. 5252
- 15
- 20
- 27
- 70 低温 高温
0. 0576 0. 0612
1. 2283 0. 1213
25. 422 23. 968
108. 299 43. 836
0. 6614 0. 6925
0. 2212 0. 5529
0. 5620 0. 6746
0
- 28
- 33
- 36
- 80 低温 高温
0. 1685 0. 1126
0
0
37. 980 34. 284
0
0
0. 4621 0. 5298
0
0
0. 4675 0. 5979
0
0
2. 93 2. 81
0
0. 6919
Байду номын сангаас
0
- 32
- 37
- 40
© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved.

双级压缩

双级压缩

节流级数 单级
⒈ 双级压缩氨制冷循环 1.1.1双级节流中间完全冷却循环
MG
MG
MG MG
MD
MD
M1 MD
MD
两级节流中间完全冷却原理图
两级节流中间完全冷却lgP-h图
1.2.1 一次节流中间完全冷却循环
MG
M1 MD M1 MG
MD
MD
一次节流中间完全冷却双级压缩系统图
一次节流中间完全冷却双级压缩lgP-h图
M1
MD
1.2.3 一次节流中间完全冷却双级压缩氨制冷系统
MG
M1
MD MD
一次节流中间完全冷却双级压缩氨制冷系统图
1.3.1 一次节流中间不完全冷却制冷循环
(双级压缩氟利昂制冷循环)
MG
M1 M1 MD MD MG M1 MD
一次节流中间不完全冷却原理图
一次节流中间不完全冷却LgP-h图
MG
M1 MD
用于氟利昂系统节流级数采用两个节流阀制冷剂经过两次节流采用一个节流阀制冷剂经过一次节流两级节流中间完全冷却原理图两级节流中间完全冷却lgph图双级压缩氨制冷循环111双级节流中间完全冷却循环121一次节流中间完全冷却循环一次节流中间完全冷却双级压缩系统图一次节流中间完全冷却双级压缩lgph图123一次节流中间完全冷却双级压缩氨制冷系统一次节流中间完全冷却双级压缩氨制冷系统图131一次节流中间不完全冷却制冷循环双级压缩氟利昂制冷循环一次节流中间不完全冷却原理图一次节流中间压缩制冷循环仅压缩过程为两级压缩,其他与单级相同:
低温低 压制冷 剂蒸气 双级制冷 系统组成
低压级com 中间压 中间冷却器 过热蒸 高压级com 力下过 气被冷 热蒸气 却 两台压缩机 一台压缩机, 高、低压气缸 中间完全 冷却 双机双级系统
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双级压缩制冷循环原理
一、两级压缩采用得原因
制冷系统得冷凝温度(或冷凝压力)决定于冷却剂(或环境)得温度,而蒸发温度(或蒸发压力)取决于制冷要求、由于生产得发展,对制冷温度得要求越来越低,因此,在很多制冷实际应用中,压缩机要在高压端压力(冷凝压力)对低压端压力(蒸发压力)得比值(即压缩比)很高得条件下进行工作、由理想气体得状态方程Pv/T≡C可知,此时若采用单级压缩制冷循环,则压缩终了过热蒸气得温度必然会很高(V一定,P↑→T↑),于就是就会产生以下许多问题。

1、压缩机得输气系数λ大大降低,且当压缩比≥20时,λ=0 。

2。

压缩机得单位制冷量与单位容积制冷量都大为降低。

3。

压缩机得功耗增加,制冷系数下降。

4、必须采用高着火点得润滑油,因为润滑油得粘度随温度升高而降低。

5.被高温过热蒸气带出得润滑油增多,增加了分油器得负荷,且降低了冷凝器得传热性能。

总上所述,当压缩比过高时,采用单级压缩循环,不仅就是不经济得,而且甚至就是不可能得。

为了解决上述问题,满足生产要求,实际中常采用带有中间冷却器得双级压缩制冷循环。

但就是,双级压缩制冷循环所需得设备投资较单级压缩大得多,且操作也较复杂。

因此,采用双级压缩制冷循环并非在任何情况下都就是有利得,一般当压缩比≥8时,采用双级压缩较为经济合理。

二、双级压缩制冷循环得组成及常见形式
两级压缩制冷循环,就是指来自蒸发器得制冷剂蒸气要经过低压与高压压缩机两次压缩后,才进入冷凝器。

并在两次压缩中间设置中间冷却器、两级压缩制冷循环系统可以就是由两台压缩机组成得双机(其中一台为低压级压缩机,另一台为高压级压缩机)两级系统,也可以就是由一台压缩机组成得单机两级系统,其中一个或两个汽缸作为高压缸,其余几个汽缸作为低压缸,其高、低压汽缸数量比一般为1:3或1:2 。

两级压缩制冷循环由于节流方式与中间冷却程度不同而有不同得循环方式,通常分为:两次节流中间完全冷却、两次节流中间不完全冷却、一次节流中间完全冷却与一次节流中间不完全冷却四种两级压缩制冷循环方式。

其中,两次节流就是指制冷剂从冷凝器出来要先后经过两个膨胀阀再进入蒸发器,即先由冷凝压力节流到中间压力,再由中间压力节流到蒸发压力,而一次节流只经过一个膨胀阀,大部分制冷剂从冷凝压力直接节流到蒸发压力,相比之下,一次节流系统比较简单,且可以利用其较大得压力差实现远距离或高层冷库得供液。

因此实践中
采用得基本上都就是一次节流两级压缩制冷循环系统、至于采用哪一种中间冷却方式,由选用制冷剂得种类来决定、通常两级压缩氨制冷系统采用中间完全冷却,而两级压缩氟利昂制冷系统,则常采用中间不完全冷却、
1.一次节流中间完全冷却得双级循环
这个系统得特点就是采用盘管式中间冷却器。

它既有两级节流得减少节流损失效果,又起到对低压级排气完全冷却得作用。

其工作过程就是:
在蒸发器中产生得低压低温制冷剂蒸气(状态1),被低压压缩机吸入并压缩成中间压力得过热蒸气(状态2),然后进入同一压力得中间冷却器,在中冷器内被冷却成干饱与蒸气(状态3)。

中压干饱与蒸气又被高压压缩机吸入并压缩到冷凝压力得过热蒸气(状态4),随后进入冷凝器被冷凝成制冷剂液体(状态5)、然后分成两路,一路经膨胀阀F节流降压后(状态8)进入中间冷却器,大部分液体从另一路进入中间冷却器得盘管内过冷(状态6),但由于存在传热温差,故其在盘管内不可能被冷却到中间温度,而就是比中间温度一般高△t=3-5℃。

过冷后得液体再经过主膨胀阀节流降压成低温低压得过冷液(状态7),最后进入蒸发器吸热蒸发,产生冷效应、
这种循环系统只适用于R717与R22得双级制冷循环系统中、
2.一次节流中间不完全冷却得双级循环
一次节流中间不完全冷却得双级循环,主要适用于氟利昂制冷装置,采用回热循环。

如图3-4 所示得SD2、、—-4F--10A型两级压缩氟利昂制冷装置系统图,就就是按图3-3 得循环设计得。

这种循环系统得特点就是:制冷剂主流先经盘管式中间冷却器过冷,再经回热器进一步冷却;且低压压缩机得吸气有较大得过热度;此外,低压级得排气没有完全冷却到饱与状态。

其工作过程为:从蒸发器出来得蒸汽经回热器后被低压压缩机吸入,压缩到中间压力并与中冷器出来得干饱与蒸汽在管路中进行混合,使从低压机排出得过热蒸汽被冷却后再进入高压压缩机,经压缩到冷凝压力并进入冷凝器,冷凝后得高压制冷剂液体进入了中冷器得蛇形盘管进行再冷却,然后进入回热器与从蒸发器出来得低温低压蒸汽进行热交换,使从中冷器蛇形盘管中出来得过冷液体再一次得到冷却,最后经膨胀阀进入蒸发器吸热蒸发、
这种循环系统,只适用于R12或R22得双级制冷循环系统中,而决不能用于氨得制冷系统中。

这就是因为:虽然高、低压级吸入蒸汽得过热度都比较大,但就是因为氟利昂得绝热指数K值比氨要小,故压缩机得排气温度不高。

3.两次节流中间完全冷却得双级循环
这个系统得特点就是选用了闪发式中间冷却器。

它起两个作用,其一就是相当于两次节流得中间液体分离器,其二就是利用一小部分液体得吸热蒸发作用,对低压机得排气进行完全中间冷却。

这种型式得制冷循环系统,只适用于R717或R 22得双级压缩制冷循环系统中。

为了防止从中间冷却器出来得饱与液体在管路中闪发成蒸汽,通常要求中间冷却器与蒸发器之间得距离要近。

综上分析可知,采用双级压缩制冷循环,不但降低了高压机得排气温度,改善了压缩机润滑条件,而且由于各级压缩比都较小,压缩机得输汽系数大大提高。

此外,采用双级压缩循环得功耗也比单级压缩循环得功耗降低、。

相关文档
最新文档