平面向量总复习48802ppt课件

合集下载

平面向量复习课课件

平面向量复习课课件
是指将两个向量相加得到一个新的向量。减法是加法的逆操 作。学习了解平面向量的加减法,将帮助我们更好地理解向量的运算法则。
平面向量的数量积和向量积
数量积(点积)和向量积(叉积)是平面向量的两种重要运算。数量积用来计算向量的夹角和向量之间 的投影,而向量积则得到两个向量构成的新向量。让我们研究它们的性质和应用。
平面向量复习课ppt课件
欢迎来到平面向量复习课ppt课件!本课程将介绍平面向量的定义、表示、运 算和应用,以及与向量相关的数学概念。让我们开始学习吧!
什么是平面向量
平面向量是具有大小和方向的量,可以用箭头或有向线段表示。它们在物理、工程和几何中具有广泛的 应用。让我们深入了解平面向量的定义和基本概念。
平面向量的线性相关和线性无关性质
向量的线性相关性描述了向量之间的依赖关系,线性无关性表示没有一组向量可以由其他向量线性表示。 了解这些性质将帮助我们分析向量的维度和空间关系。
平面向量的基底和坐标
基底是向量空间中的一组线性无关的向量,坐标表示一个向量在基底上的投 影。通过基底和坐标,我们可以更好地描述向量和进行向量运算。
平面向量的向量方程
向量方程将一组向量相加得到等于零的表达式,这可以用来解决线性方程组和求解几何问题。学习向量 方程将提供更灵活的分析和数学工具。
向量的模、单位向量和方向角
向量的模指向量的长度或大小,单位向量是模等于1的向量。方向角描述了向 量相对于某一方向的偏离程度。学习这些概念将帮助我们准确表示和操作向 量。
平面向量的投影和正交分解
向量的投影是指一个向量在另一个向量上的映射,正交分解将一个向量拆分为在另一个向量上的投影和 与之正交的部分。这些概念有助于我们理解向量的复杂性质。

高一数学平面向量知识点复习课件.ppt

高一数学平面向量知识点复习课件.ppt
P1P PP2,则
x
x1 x2 1
y
y1 y2 1
1
x
x1
x2 2
中点公式
y
y1 y2 2
2、平移公式
如果点P(x1,y2)按向量 a (h, k)
平移至 P(x, y),则
x x h
y
y
k
例5 设P1(2,-1),P2(0,5),且P在直线
P1P2上使
,求点P 的坐标。
例3 设 a (3,2),b (,7),c (2, ),若
a 2b c,求,的值。
解:由已知条件,得:
a 2b =(3,2)-2(λ,7)
=(3-2λ,-12) =(-2,μ) ∴ 3-2λ=-2 μ=-12
∴ λ= 5 ,μ=-12 2
三、两个重要定理
1、向量共线充要条件
一个向实量数λb,与使非得零向量 a 共线的充要条件是有且只有
(2)当 k a b 与 a 3b平行时,存在唯一实数λ, 使 k a b=λ (a 3b,) 由(k-3,2k+2)= λ(10,-4)
k 3 10 2k 2 4
解得 k 1 , 1
3
3
反向
五、两个重要公式
1、定比分点坐标公式
设P(x,y),P1(x1,y1),P2(x2,y2),且
一、向量及其有关概念
有向线段
向量的几何表示 向量的模 零向量 单位向量 平行向量 向 共线向量 量 相等向量 相反向量
二、向量的运算
几 加法 何 减法 方 实数与向量的积
向法


运 算
坐 标
加法 减法 实数与向量的积
方 平面向量数量积

几何方法:

平面向量的应用复习精选教学PPT课件

平面向量的应用复习精选教学PPT课件

【解析】由A→B2-A→C2=D→B2-D→C2, 得(A→B+A→C)·(A→B-A→C)=(D→B+D→C)·(D→B-D→C). 设 BC 的中点为 M,则 2A→M·C→B=2D→M·C→B, 所以(A→M-D→M)·C→B=0,所以A→D·C→B=0, 所以A→D⊥C→B,所以所成角为 90°.
【点评】本题运用平面向量的相关知识,实现形到数的转化, 巧妙地将平面向量、数列和解析几何等知识融合在一起.
素材3
求函数 y=x-3+ 10-9x2的最大值.
【解析】原函数可变为 y=-3+13×3x+ 10-9x2. 设 f(x)=31×3x+ 10-9x2. 因为(3x)2+( 10-9x2)2=10, 所以构造向量 a=(13,1),b=(3x, 10-9x2).
【点评】向量与三角函数的交汇,向量常常作为载体,将所求 或题中的已知条件转化为三角函数式,再通过三角变换求解.
素材2
设 a=(1+cosα,sinα),b=(1-cosβ,sinβ),c=(1,0),其 中 α∈(0,π),β∈(π,2π),a 与 c 的夹角为 θ1,b 与 c 的夹角 为 θ2,且 θ1-θ2=π6,求 sinα-4 β的值.
向量或其运算转化化归为代数问题分析、探 究.
2.向量的工具性作用
线段的长,直线的夹角,有向线段的分点位
置,图形的平移变换均可用向量形式表示,从
而向量具有工具性作用.可以用向量来研究几
何问题,利用其运算可以研究代数问题.
5
3.向量载体的意义 函数、三角函数、数列、解析几何 问题常常由向量形式给出,即以向量为 载体,通过向量的坐标运算转化化归为 相应的函数、三角函数、数列、解析几 何问题,这就是向量载体的意义.这类问 题情境新颖,处在知识的交汇点,需要 综合应用向量、函数、三角函数、数列、 解析几何知识分析、解决问题.

平面向量复习课件

平面向量复习课件

平面向量复习基本知识点与经典结论总结1、向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。

向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。

(2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±);(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。

提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线;(6)相反向量:长度相等方向相反的向量叫做相反向量。

a 的相反向量是-a 。

2、向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。

如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。

3.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。

4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:()()1,2a a λλ=当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反,当λ=0时,0a λ=,注意:λa ≠0。

高一数学平面向量复习课件

高一数学平面向量复习课件
详细描述
向量数量积的几何意义在于它表示了两个向量的长度和它们之间的夹角之间的关系。具体来说,当两个非零向量 的夹角为锐角时,它们的数量积为正;当夹角为直角时,数量积为零;当夹角为钝角时,数量积为负。
向量数量积的运算律
总结词
掌握向量数量积的运算律,包括 交换律、结合律和分配律。
详细描述
向量数量积满足交换律,即 a·b=b·a;结合律,即 (a+b)·c=a·c+b·c;分配律,即 (λa)·b=λ(a·b),其中λ是标量。
向量积的性质
向量积的性质
1. 向量积的方向与两个向量的夹角和大小有 关,其方向垂直于两个给定向量所确定的平 面;2. 向量积的模长为|a×b|=|a||b|sinθ; 3. 向量积满足结合律但不满足交换律;4. 向量积可以用来表示向量的旋转关系。
性质的应用
在解析几何中,向量积可以用来解决与旋转 、速度和加速度有关的问题;在物理中,向 量积可以用来描述力矩、角速度等物理量。 通过理解这些性质和应用,学生可以更好地
向量积的运算律
向量积的运算律
交换律a×b=-b×a,分配律 (a+b)×c=a×c+b×c。这些运算律与标量积 的运算律类似,但要注意向量积不满足结合 律。
运算律的理解
交换律表明向量积的方向与夹角有关,而分 配律表明向量积与向量的线性组合是可分配 的。这些运算律对于理解向量积的性质和计 算非常重要。
混合积的性质
非负性
向量a、b、c的混合积为非负数,当且仅当a、b、c三个 向量共面时取值为0。
线性性质
混合积满足线性性质,即对于任意标量m和n,有 $(mvec{a} + nvec{b}) cdot vec{c} = mvec{a} cdot vec{c} + nvec{b} cdot vec{c}$。

平面向量复习课PPT课件

平面向量复习课PPT课件

二、基 本 知 识
1. 向量的概念
为平行向量,记作 a // b. 因为向量可以进行任意平移,平行向量总可以平移到 同一直线上,故又称共线向量.
2. 向量的运算
(1)向量的加法: 平行四边形法则;三角形法则(首尾相接). 坐标表示: a + b = (x1+ x2,y1+ y2). 运算律:交换律;结合律。 → → → 重要结论: AB + BC = AC. (2)向量的减法: 三角形法则(指向被减数). 坐标表示: a - b = (x1- x2, y1- y2). → → → → → 重要结论: a – b = a +(– b), AB =– BA,PB – PC = CB. (3)实数与向量的积: λ a. 规定: 1) |λ a| =|λ ||a| ; 2) λ >0时与a同向; λ <0时与a反向; λ =0时, λ a = 0. 坐标表示: λ a = (λ x,λ y). 运算律:λ (μ a ) = (λ μ )a ; (λ +μ )a = λ a +μ a ; λ (a + b ) = λ a +λ b. (4)两个向量的数量积: a • b = |a | | b| cosθ= x1 x2 + y1 y2. 重要性质及运算律:见课本 P119.
→ →

x’ = x + h, y’ = y + k.
(6)正弦定理、余弦定理: (略)
例1. 已知a = (1, 2), b = ( 3, 2), 当 k 为何值时, (1) ka + b与 a 3 b垂直; (2) ka + b与 a 3 b平行, 平行时它们是同向还是反向? 分析: ka + b = ( k 3, 2k + 2 ), a 3 b = (10, 4 ). (1) 当(ka + b )•(a 3 b ) = 0时, 两向量互相垂直; (2) 存在唯一的实数λ, 使 ( ka + b ) = λ( a 3 b )

高中数学 第二章 平面向量复习课课件 新人教A版必修4

高中数学 第二章 平面向量复习课课件 新人教A版必修4
第四章 平面向量复习
完整版ppt
1
(二) 要点概述 1.平面向量的有关概念:相等向量 相反向量 平行向量 共线向量 2.平面向量的运算:加法 减法 数乘 数量积 3.平面向量基本定理与共线向量定理 4.平面向量的坐标运算 5.平面向量的应用:平行 垂直 模 夹角 6.平面向量与三角、物理等知识的融合
完整版ppt
2
四、典型题归纳: (一)向量的基本概念和运算律
完整版ppt
3
(二)向量的坐标运算
完整版ppt
4
(三)向量与函数的交汇 (四)平面向量与三角的交汇
完整版ppt
5
(五)平面向量的判断题
完整版ppt
6
[作业精选,巩固提高]
• 复习参考题:A组2,3,5
完整版pห้องสมุดไป่ตู้t
7

平面向量的概念PPT课件

平面向量的概念PPT课件

04
平面向量数量积概念及性 质
数量积定义及几何意义
数量积定义
两个向量的数量积是一个标量,等于它们模长的乘积与它们夹 角余弦的乘积。
几何意义
数量积反映了两个向量的相对位置和角度关系,正值表示同向, 负值表示反向,零表示垂直。
数量积性质及运算规律
性质
满足交换律、分配律、结合律,与标量乘法相容等。
运算规律
向量坐标与点坐标关系
向量坐标
向量坐标是由起点指向终点的有 向线段,在直角坐标系中可以用
两个坐标值表示。
点坐标
点坐标是直角坐标系中点的位置表 示,同样可以用两个坐标值表示。
关系
向量坐标与点坐标密切相关,向量 的起点和终点坐标可以决定向量的 坐标,而点的坐标可以用来表示向 量的起点或终点。
向量运算坐标表示法
坐标法求解向量问题
求解向量坐标
通过已知点的坐标和向量的关系,可以 求解向量的坐标。
求解向量模长
通过向量的坐标可以计算向量的模长, 进而求解与模长相关的问题。
求解向量夹角
通过向量的坐标可以计算向量的夹角, 进而求解与夹角相关的问题。
求解向量运算结果
通过向量的坐标表示法可以求解向量的 加法、减法和数乘运算结果。
向量运算满足基本定律
加法结合律
(a + b) + c = a + (b + c)
数乘结合律
(kl)a = k(la)
加法交换律
a+b=b+a
数乘分配律
k(a + b) = ka + kb
向量共线定理,使得b = λa
03
平面向量坐标表示法
直角坐标系中向量表示方法

平面向量复习PPT优秀课件2

平面向量复习PPT优秀课件2

2
2
4. a a a a
(√ )
5. a b a b , 则 a // b
(√ )
6. a b a b , 则 a b
(√ )
22.05.2019
18
平面向量复习
2. 设AB=2(a+5b),BC= 2a + 8b,CD=3(a b), 求证:A、B、D 三点共线。
91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]
b
θa
A O (B1)
1A3
5、数量积的运算律:
⑴交换律: abba
⑵对数乘的结合律: (a)b(ab)a(b)
⑶分配律: (ab)cacbc
注意:数量积不满足结合律
即 :(ab)ca(bc)
22.05.2019
14
平面向量数量积的重要性质
a,b为非零向量,e为单位向量


a b a b 22.05.2019 (2) ,则四边形是什么图形 ?
9
平面向量复习
2.向量的减法运算
1)减法法则: OA-OB = BA
2)坐标运算:
O
若 a=( x1, y1 ), b=( x2, y2 ) 则a - b= (x1 - x2 , y1 - y2)
3.加法运算率
的非零向量. (4)相等向量:长度相等且方向相同的向量. (5)相反向量:长度相等且方向相反的向量.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
rr
(2)方向:

0时,
a与a同向
rr
当 0时, ar与 ar异 向
r 当 0时, a 0
2、数乘向量的坐标运算 : a ( x , y ) ( x , y )
3、数乘向ar量的运算律ar:( ) a ra ra r ( a r b r) a r b r
4、平面向量基本定理
u r u u r 如 果 e1, e2是 同 一 个 平 面 r内 的 两 个 不 共 线 向 量 , 那 么 对 于
(二)向量的减法
b a +b
1、作图 平行四边形法则:u A u B u r u A u D u r u D u u B rA a
C
b
B
C
B
2、坐标运算: 设 a ( x1, y1 ) , b ( x2, y2)
则 a b ( x1x2, y1y2)
r
(三)数乘向量 λa(R)
r
r
1、 a 的大小和方向:(1)长度: a
例5、 设|a|=|b|=1 |3a-2b|=3则|3a+b|=____
解:法1 a=(x1y1) b=(x2,y2)
x12+y12=1
x22+y22=1
3a-2b=3(x1,y1)-2(x2,y2)=(3x1-2x2,3y1-2y2)
∴9(x12+y12)+4(x12+y12)-12(x1x2+y1y2)=9
六、向量的长度
坐标表示
rr r r ( 1)ar a|a|2, | a |
r2 ar
( 2 ) 设 a ( x , y ) , 则 | a | x 2 y 2
( 七3 ) 、向A 量( x 的若 1 , 夹y 1 ) 角 B ( cox , s2 , y 2 ) | arar ||brbr | |A , | xB 1( 2xx1则 1xy 212x2) y21x y( 222y1y22y2) 2
又,(3a+b)2=9a2+b2+6a·b=12
∴|3a+b|=2 3
u ru u r
例 6 、 设 re 1 ,u e u 2 u r 为 两 u u r 个 r单 位 u u 向 r量 u u ? r且 夹 角 r为 r6 0 o ? 若 a 2 e 1 e 2 ,b 3 e 1 2 e 2? 求 a 与 b 的 夹 角 .
3、数量积的坐标运算
B
abx1x2y1y2
θ
4、运算律: (1) abba O
B1
A
( 2 )( a ) b( ab ) a( b )
( 3)a( b) cacbc
平面向量的数量积a·b的性质: ①e·a=a·e=|a|cosθ
②a⊥b a·b=0
③a,b同向a·b=|a||b|反向时a·b=-|a|·|b|
这 r一 平 u r面 内 u 的 u r任 一 向 量 a, 有 且 只 有 一 对 实 数 1 , 2使 a1e12e2
(四) 数量积
1、平面向量数量积的定义: a b | a| | b| cos
2、数量积的几何意义:
r r r r
r
等 于 a 的 长 度 | a | 与 b 在 a 方 向 上 的 投 影 | b | c o s 的 乘 积 .
x1x2+y1y2=
1 3
3a+b=3(x1,y1)+(x2,y2)=(3x1+x2,3y1+y2)
|3a+b|2=(3x1+x2)2+(3y1+y2)2
=9(x12+y12)+(x22+y22)+6(x1x2+y1y2)=12
∴(3a+b)=2 3
法2 9=9a2+4b2-12a·b
∴a·b=
1 3
特别注意:
ab0 cos0 为锐角 0 或
ab0 cos0 为钝角 或
由此,当需要判断或证明两向量夹角为锐角或钝角时,应
排除夹角为0或 的情况,也就是要进一步说明两向量不共
线。
典型例题分析:
例1 e1、e2不共线,a=e1+e2 b=3e1-3e2 a与b是否共线。
解:假设,a与b共线则 e1+e2=λ(3e1-3e2)=3λe1-3λe2 1=3λ 1=-3λ 这样λ不存在。 ∴a与b不共线。
解:c = m a+n b (7,-4)=m(3,-2)+n(-2,1) 3m-2n=7 m=1 -2m+n=-4 n=-2 c = a-2b
例4、 |a|=10 b=(3,-4)且a∥b求a
解:设a =(x,y) 则 x2+y2=100 -4x-3y=0 x=6 x=-6 y=-8 y=8 a=(6,-8)或(-6,8)
例2 设a,b是两个不共线向量。AB=2a+kb BC=a+b CD=a-2b A、B、D共线则k=_____(k∈R)
解:BD=BC+CD=a+b+a-2b=2a-b 2a+kb=λ(2a-b)=2λa-λb 2=2λ λ=-1

k=-λ k=-1 ∴k=-1
例3、 已知a=(3,-2) b=(-2,1) c=(7,-4), 用a、b表示c。
a2=a·a=|a|2(a·a= a 2 )
④cosθ= a b
|a ||b |
⑤|a·b|≤|a|·|b|
四、向量垂直的判定
( 1)abab0 向量表示 ( 2 ) a b x1x2y1y20坐标表示
五、向量平行的判定(共线向量的判定)
( 1) r a/r /bba( a0) 向r 量表示 r
( 2 ) b / / a x 1 y 2 x 2 y 1 0 , 其 中 a ( x 1 , y 1 ) , b ( x 2 , y 2 )
1、字母表示:AB或a A 2、坐标表示:
rrr axiyj (x,y)
OA(x,y)
B
y
y A (x,y) a
j
O ix
a
x
三、向量的运算
(一)向量的加法 u u u r u u u r u u u r 1、作图 三角形法则:A BB CA C a + b
平行四边形法则:
2、坐标运算: 设 a ( x1, y1 ) , b ( x2, yA2) a 则 a b ( x1x2, y1y2) D
平面向量
复习课
知识网络
向量
向量有关概念 向量的定义 单位向量及零向量
向量的运算 向量的加法 向量的减法
基本应用 平行与垂直的条件
求长度
相等向量
实数和向量的积
求角度
平行向量和共线向量 向量的数量积

一、向量的概念
向量、零向量、单位向量、共线向量(平行向量)、 相等向量、相反向量、向量的夹角等.
二、向量的表示
相关文档
最新文档