第6章 发酵动力学
合集下载
6发酵动力学
第 2节
发酵动力学分类
1. 根据细胞生长与产物形成有否偶联进行分类 细胞浓度(x)或产物浓度对时间作图时 , 细胞浓度 或产物浓度对时间作图时, 或产物浓度对时间作图时 两者密切平行, 两者密切平行 , 其最大的比生长速率和 最大的产物合成比速率出现在同一时刻. 最大的产物合成比速率出现在同一时刻 . 一般来说在这种类型的发酵生产中, 控 一般来说在这种类型的发酵生产中 , 制好最佳生长条件就可获得产物合成的 最适条件. 最适条件.
(3) 分段反应型 其营养成分在转化为产物之前 全部转变为中间物, 全部转变为中间物,或营养成分以优先顺序选 择性地转化为产物. 择性地转化为产物.反应过程是由两个简单反 应段组成,这两段反应由酶诱导调节. 应段组成,这两段反应由酶诱导调节. (4) 串联反应型 是指在形成产物之前积累一 定 程度的中间物的反应 (5) 复合型 大多数发酵过程是一个联合反应, 大多数发酵过程是一个联合反应, 它们的联合可能相当复杂. 它们的联合可能相当复杂.
型发酵〗 〖 Ⅲ型发酵〗 产物的形成和菌体的生长非偶联
p x
2. 根据产物形成与基质消耗的关系分类
(1) 类型Ⅰ 类型Ⅰ
产物的形成直接与基质(糖类 的消耗有关 产物的形成直接与基质 糖类)的消耗有关,产 糖类 的消耗有关, 物合成与利用糖类存在化学计量关系, 物合成与利用糖类存在化学计量关系,糖提供 了生长所需的能量. 了生长所需的能量. 糖耗速度与产物合成速度的变化是平行的,如 糖耗速度与产物合成速度的变化是平行的, 利用酵母菌的酒精发酵和酵母菌的好气生长. 利用酵母菌的酒精发酵和酵母菌的好气生长. 在厌氧条件下, 在厌氧条件下,酵母菌生长和产物合成是平行 的过程;在通气条件下培养酵母时, 的过程;在通气条件下培养酵母时,底物消耗 的速度和菌体细胞合成的速度是平行的. 的速度和菌体细胞合成的速度是平行的.这种 形式也叫做有生长联系的培养. 形式也叫做有生长联系的培养.
6第六章 发酵动力学
dc(S) dt = 0
2.随着时间的延长,培养液中微生物细胞的 量c’(X)增加,但细胞的浓度却保持不变,即
dc(X) dt
= 0
3.因而µ≌D
这种微生物细胞的培养状态称为 ——“准恒定状态”
在“ቤተ መጻሕፍቲ ባይዱ恒定状态”下
c(S) ≈ DKs µm - D (4)
c’(X) = c0’(X) + F · Yx/s · c ’0 (S) · t 补料液浓度
动力学方程
c0(S)——开始时培养基中限制性基质的浓度 g/L F——培养基的流速 L/h V——培养基的体积 L F/V=D——稀释率 c0(X)——刚接种时培养液中的微生物细胞浓度 g/L c(X)——某一瞬间培养液中微生物细胞浓度 g/L c(X) = c0(X) + Yx/s [c0 (S) -c (S)]
v =
µ
YG
v =
+ m +
Qp Yp
+
(6)
µ Yx/s
(5)
少量的其他代谢产物和其他忽略 1 Yx/s 1 m + µ (7)
=
YG
YG和m很难直接测定,只要得出细胞在不同 比生长速率下的Yx/s,可根据(7)式用作图法 求出YG和m值。 YG和m值用于衡量发酵时限制性营养基质的 起始最低浓度。
µ µm
b µm/2
c
µ =
a
µm c(S)
Ks + c(S)
c(S)
Ks
Ks的物理意义
Ks的大小表示了微生物对营养物质的吸收亲 和力大小 Ks越大,表示微生物对营养物质的吸收亲 和力越小; Ks越小,表示微生物对营养物质的吸收亲 和力越大
2.随着时间的延长,培养液中微生物细胞的 量c’(X)增加,但细胞的浓度却保持不变,即
dc(X) dt
= 0
3.因而µ≌D
这种微生物细胞的培养状态称为 ——“准恒定状态”
在“ቤተ መጻሕፍቲ ባይዱ恒定状态”下
c(S) ≈ DKs µm - D (4)
c’(X) = c0’(X) + F · Yx/s · c ’0 (S) · t 补料液浓度
动力学方程
c0(S)——开始时培养基中限制性基质的浓度 g/L F——培养基的流速 L/h V——培养基的体积 L F/V=D——稀释率 c0(X)——刚接种时培养液中的微生物细胞浓度 g/L c(X)——某一瞬间培养液中微生物细胞浓度 g/L c(X) = c0(X) + Yx/s [c0 (S) -c (S)]
v =
µ
YG
v =
+ m +
Qp Yp
+
(6)
µ Yx/s
(5)
少量的其他代谢产物和其他忽略 1 Yx/s 1 m + µ (7)
=
YG
YG和m很难直接测定,只要得出细胞在不同 比生长速率下的Yx/s,可根据(7)式用作图法 求出YG和m值。 YG和m值用于衡量发酵时限制性营养基质的 起始最低浓度。
µ µm
b µm/2
c
µ =
a
µm c(S)
Ks + c(S)
c(S)
Ks
Ks的物理意义
Ks的大小表示了微生物对营养物质的吸收亲 和力大小 Ks越大,表示微生物对营养物质的吸收亲 和力越小; Ks越小,表示微生物对营养物质的吸收亲 和力越大
第六章发酵动力学
发酵装置-细胞回流式
F Se
(1 ) F X
F Xe
F , cX
细胞回流的单级连续发酵示意图
a: 再循环比率(回流比) c: 浓缩因子
2.2连续发酵动力学-理论
2.2.1单级恒化器连续发酵
定义: ① 稀释率 将单位时间内连续流入发酵罐中的新鲜培养基体积与 发酵罐内的培养液总体积的比值 D=F/V (h-1) F—流量(m3/h) V—培养液体积(m3) ② 理论停留时间
μ
残留的限制性底物浓度对微生物
比生长率的影响
Ks—底物亲和常数,速度 等于处于1/2μm时的底物浓 度,表征微生物对底物的亲 和力,两者成反比。
酶促反应动力学-米氏方程:
Vm [ s ] v K m [ s]
受单一底物酶促反应限制的微生物 生长动力学方程-Monod方程:
m s
Ks s
克P和每个有效电子所生成的细胞克数; ③ Yx/ATP:消耗每克分子的三磷酸腺苷生成的细胞克数。
基质消耗动力学 产物得率系数:
Yp/s , YP / O2 , YATP / s , YCO2 / s
:
消耗每克营养物(s)或每克分 子 氧 (O2) 生 成 的 产 物 (P) 、 ATP 或
CO2的克数。
细胞生长动力学
Decline(开始出现一种底物不足的限制):
若不存在抑制物时
Monod 模型:
m s
Ks s
m s
Ks s
t
ln x ln x0
t
x x0e
细胞生长动力学
式中: S—限制性基质浓度,mol/m3 Ks—底物亲和常数(也称半饱和速度常数),表示微生 物对底物的亲和力 , mol/m3 ; Ks越大,亲和力越 小, µ 越小。
第六章 典型发酵过程动力学及模型
rX/rX rS/rX rP/rX
二、微生物生长动力学
1. 细胞反应的得率系数
对底物的细胞得率:
YX / S
生 成 细 胞 的 质 量 消 耗 底 物 的 质 量
rX rX0 Dm X = DmS rs0 rs
Dm X = DmO
对氧的细胞得率:
YX / O
生 成 细 胞 的 质 量 消 耗 氧 的 质 量
摄氧率 与 呼吸强度
四、
代谢产物生成动力学
相关型
部分相关型
非相关型
四、
代谢产物生成动力学
1)偶联型 也叫产物形成与细胞生长关联模式(相关模型),产物的形成和菌体 生长是平行的。在该模式中,产物形成速度与生长速度的关系 可表示为: rP = YP/X rx = YP/XμX = αμX qP = αμ
μ= μmS/(KsX+S) μ=KsSn
菌体生长,基质消耗
1959
1963 1972
Dabes等
尺田等 Bailey
S=Aμ+Bμ/(μm+μ)
μ2/K-(Ks+S)μ-μmS=0 μ= μmS/(Ks+S)-D 微生物维持代谢
1973
1975 1977
二、微生物生长动力学
5、无抑制、多种基质限制下的细胞生长动力学
一、 数字拟合法 根据小型试验、中型试验或生产装置上实测的数据,利用 现代辨识技术,找出个参量之间的函数关系而建立数学模 型的方法。
1.4 1.2 1 0.8 0.6 0.4 0.2 0 1 2 3 4 5 y = 3.5348e
细胞生长
微生物生化反应动力学
产物生成
发酵过程反应的描述
第六章 发酵动力学
率的上升而增加,而实际产物得率YP/S随的上升而减少。
发酵过程的化学计量式 质量平衡 能量平衡
1、分批发酵时生产菌的生长周期三个时期
三个时期:
菌体生长期 产物合成期 菌体自溶期
2、发酵的操作方式 三种:
分批发酵 补料分批发酵 连续发酵
第二节 分批发酵
分批培养 所谓分批培养的是一次投料, 一次接种,一次收获的间歇 培养方式。这种培养方式操 作简单,发酵液中的细胞浓 度、基质浓度和产物浓度均 随时间而不断变化。就细胞 的浓度X的变化而言,在分批 培养中要经历延迟期、对数 生长期、减速期、稳定期和 衷亡期各阶段。
X
X(菌体) + P(产物)
S1 菌体 (Biomass)
维持消耗(m) :
指维持细胞最低活性所需消 耗的能量,一般来讲,单位 重量的细胞在单位时间内用 于维持消耗所需的基质的量 是一个常数。
S
S2 S3
产物 (Products) 维持(Maintain)
S(底物)
X
X(菌体) + P(产物)+维持
(一)维持因数
“维持”是指细胞群体没有实质性的生长(更确切地说是 生长和死亡处于动态平衡状态)和没有胞外代谢产物 合成情况下的生命活动,如细胞的运动、细胞内外各 种物质的交换、细胞物质的转运和更新等,所需能量 由细胞物质的氧化或降解产生。 “维持”的物质代谢称为维持代谢,也叫内源代谢,代谢 释放的能叫维持能。
细胞 营养物→ → →新细胞+代谢产物
一、细胞反应的元素衡算
如果细胞的代谢产物就是细胞、CO2和水时, Meteles根据细胞的主要元素组成,提出了预测 发酵过程中微生物需要氧数量的计算公式: 32 C + 8 H + 16 O - 1 .34 Q= Y ·M
6.发酵动力学课件
同步培养: 使许多细胞在相同菌令下同步生长的培养方法, 指所有细胞同时开始 分裂, 齐步成长, 并同时结束。同步培养法所得到的培养物为同步培养物。 均衡生长: 随着细胞质量的增加, 菌体组分(蛋白质, RNA, DNA,胞内H2O等….)也 以相同比例增加。 非均衡生长:储存物质的积蓄 (糖原, 油脂等) 使细胞质量增加, 非实质性生长。 生长速率: rX (g /L・h)单位体积培养液中单位时间内生成的干菌体量, 与菌体浓 度X成正比。 rX =μ・ X 或 μ = rX /X 在废水处理中 rX表示污泥生成速率, X表示混合液悬浮物 (MLSS)浓度; 比生长速率 (h - 1) :μ 为比生长速率 (h - 1) --------- (g/g・h) 表示相对单位质量干菌体在单位时间内增加的干菌体质量。 在分批培养的对数期μ一般为常数。生物种的遗传基因是决定比生长速率大小 的决定因素。细胞包含的遗传信息越复杂,细胞越大,即越是高等生物,μ越小,生 长也就越慢。
对这种运动规律的影响。发酵动力学主要包括: 化学热力学 ----- 研究反应的方向; 化学动力学 ----- 研究反应的速度; 酶反应动力学 ----- 发酵是活细胞产生的酶催化的化学反应; 有几个层次; 1) 细胞生长和死亡动力学; 2) 基质消耗动力学; 3) 氧消耗动力学; 4) 二氧化碳生成动力学; 5) 产物合成和降解动力学; 6) 代谢热生成动力学。
葡萄糖作为能源时某些微生物的维持系数---教科书 P105
3. N源的消耗速率以及C/N
氮源的消耗仅次于碳源,可定义氮源的比消耗速率Q N为: QN = rN/X 培养基中碳源与氮源的含量之比,称为碳氮比,记作C/N。C/N对微生物代 谢过程有很大影响,C/N可定量表示为碳源和氮源的消耗速率之比,即: C/N = rc/rN = Qc /QN Qc和 QN分别表示碳原子和氮原子的比消耗速率。C/N高, 有时表示与氮 源相比, 菌体摄取过量的碳源作为储存性物质积累在细胞内。相反, 若使用如 蛋白胨类蛋白质碳源, 则C/N比过低, 这时有可能反应中产生副产物NH4使培 养液的pH上升。可见, C/N比是决定微生物反应状况的一个重要参数。
发酵动力学
延迟期长短与菌种的种龄有关,年轻的种 子延迟期短,年龄老的种子延迟期长。对于相 同种龄的种子,接种量愈大延迟期愈短。
dX 0 dt
对数期
在对数期,培养基中营养物质较充分, 细胞的生长不受限制,细胞浓度随时间呈指 数生长,比生长速率μ维持不变。
两边积分
dX X
dt
x dX
t
dt
x0 X
0
可得
第二节 分批发酵动力学
分批发酵的特点
在发酵过程中,要经历接种、生长繁殖、 菌体衰老、发酵结束(放罐)等过程。 随着底物不断被消耗、产物逐渐生成,反 应体系在不断变化。 分批发酵过程中,细胞经历停滞期、对数 期、静止期和衰亡期四个阶段。
分批发酵动力学的研究内容
细胞生长动力学 底物消耗动力学 产物生成动力学
细胞生长动力学:研究影响细胞生长速率 的各种因素及其影响规律。 重点:Monod方程 底物消耗动力学 以C源为例 产物生成动力学 考虑产物生成速率与细胞生长速率相关
发酵动力学分类
根据产物形成与底物消耗的关系
Ⅰ型:产物形成直接与底物消耗有关(酒精发酵、乳酸发酵) Ⅱ型:产物形成与底物消耗间接有关(柠檬酸、谷氨酸发酵) Ⅲ型:产物形成与底物消耗无关(青霉素发酵、核黄素发酵)
分批发酵法
底物一次性装入反应器内,在适宜条件下进行 反应, 经过一定时间后将反应物全部取出。
补料分批发酵法
先将一定量底物装入反应器,在适宜条件下反 应,在反应过程中,间歇或连续地进行补加新鲜 培养基,反应终止时将全部反应物取出。
连续发酵法
反应过程中,一方面把底物连续加入反应器, 同时又把反应液连续不断地取出,使反应过程始 终处于稳定状态。
X X 0 exp( t)
可以看出:菌体浓度呈指数增加
dX 0 dt
对数期
在对数期,培养基中营养物质较充分, 细胞的生长不受限制,细胞浓度随时间呈指 数生长,比生长速率μ维持不变。
两边积分
dX X
dt
x dX
t
dt
x0 X
0
可得
第二节 分批发酵动力学
分批发酵的特点
在发酵过程中,要经历接种、生长繁殖、 菌体衰老、发酵结束(放罐)等过程。 随着底物不断被消耗、产物逐渐生成,反 应体系在不断变化。 分批发酵过程中,细胞经历停滞期、对数 期、静止期和衰亡期四个阶段。
分批发酵动力学的研究内容
细胞生长动力学 底物消耗动力学 产物生成动力学
细胞生长动力学:研究影响细胞生长速率 的各种因素及其影响规律。 重点:Monod方程 底物消耗动力学 以C源为例 产物生成动力学 考虑产物生成速率与细胞生长速率相关
发酵动力学分类
根据产物形成与底物消耗的关系
Ⅰ型:产物形成直接与底物消耗有关(酒精发酵、乳酸发酵) Ⅱ型:产物形成与底物消耗间接有关(柠檬酸、谷氨酸发酵) Ⅲ型:产物形成与底物消耗无关(青霉素发酵、核黄素发酵)
分批发酵法
底物一次性装入反应器内,在适宜条件下进行 反应, 经过一定时间后将反应物全部取出。
补料分批发酵法
先将一定量底物装入反应器,在适宜条件下反 应,在反应过程中,间歇或连续地进行补加新鲜 培养基,反应终止时将全部反应物取出。
连续发酵法
反应过程中,一方面把底物连续加入反应器, 同时又把反应液连续不断地取出,使反应过程始 终处于稳定状态。
X X 0 exp( t)
可以看出:菌体浓度呈指数增加
发酵动力学
减速期: d 0
dt
静止期: dx 0
dt
; X Xmax
衰亡期: dx 0
dt
二、微生物的生长动力学、Monod方程
微生物的生长速度:
μ=f(s,p,T,pH,……,)
在一定条件下(基质限制):
μ=f(S)
Monod研究了基质浓度与生长速度的关系 ———Monod方程(1949)
1.2 V1m
td=ln2/ μmax=0.64 h
基质消耗动力学的基本概念
S1 菌体
维持消耗(m) :
S
S2 产物
指维持细胞最低活性所 需消耗的能量,一般来
讲,单位重量的细胞在
S3 维持
单位时间内用于维持消 耗所需的基质的量是一
个常数。
X S(底物) ─→ X(菌体) + P(产物)+维持
X S(底物) ─→ X(菌体) + P(产物)+维持
p x
〖二类发酵〗 产物的形成和菌体的生长部分偶联
p x
〖三类发酵〗 产物的形成和菌体的生长非偶联偶联
〖Pirt方程〗
π=a + bμ
a=0、b≠0: 可表示一类发酵 a≠0、b=0: 可表示二类发酵 a≠0、b≠0:可表示三类发酵
产物的生成动力学
发酵类型Ⅰ: 发酵类型Ⅱ 发酵类型Ⅲ=
dP
dX
YP / X
dt
dt
dP dX X
dt dt
dP X
dt
Ⅱ
Ⅰ
Ⅲ
分批发酵的优缺点
➢ 优点:
操作简单、周期短、染菌机会减少、生产过程及产品 容易控制。
➢ 缺点:
不利于测定生长动力学。
第二节 连续发酵动力学
6 微生物工程 第六章 发酵动力学2
m S m
1 KS 1 1
max S max
1
1 KS
KS
斜率 max
1
max
1 S
Monod方程式双倒数图
求μm和 Ks。
解:将Monod方程变形:
1 1 Ks 1
m m S
以1/S为横坐标,1/μ为 纵坐标,得一条直线, 由直线与x轴和y轴相交, 分别求得:
分批发酵动力学-产物形成动力学
生长部分相关→生长部分偶联型:
柠檬酸、氨基酸发酵
dP dt
dX dt
X
qP
α: 与菌体生长相关的产物生成系数
β: 与菌体浓度相关的产物生成系数
产物间接由能量代谢生成,不是底物的 直接氧化产物,而是菌体内生物氧化过 程的主流产物(与初生代谢紧密关联)。
相关型
部分相关型
非相关型
产物合成相关、部分相关、非相关模型动力学示意图
分批培养中的产物形成:
Ⅰ型:生长偶联产物生成 ——菌体生长、碳源利 用和产物形成几乎在相同时间出现高峰。产物形 成直接与碳源利用有关。
Ⅱ型:生长与产物生成部分偶联——在生长开始后 并无产物生成,在生长继续进行到某一阶段才有 产物生成。产物形成间接与碳源利用有关。
分批发酵动力学-产物形成动力学
与生长不相关→无关联:抗生素发酵
dP X
dt
qp
若考虑到产物可能存在分解时,则
dP dt
X
kd P
qp X
kd P
产物生成与能量代谢不直接相关,通过细 胞进行的独特的生物合成反应而生成。
1 KS 1 1
max S max
1
1 KS
KS
斜率 max
1
max
1 S
Monod方程式双倒数图
求μm和 Ks。
解:将Monod方程变形:
1 1 Ks 1
m m S
以1/S为横坐标,1/μ为 纵坐标,得一条直线, 由直线与x轴和y轴相交, 分别求得:
分批发酵动力学-产物形成动力学
生长部分相关→生长部分偶联型:
柠檬酸、氨基酸发酵
dP dt
dX dt
X
qP
α: 与菌体生长相关的产物生成系数
β: 与菌体浓度相关的产物生成系数
产物间接由能量代谢生成,不是底物的 直接氧化产物,而是菌体内生物氧化过 程的主流产物(与初生代谢紧密关联)。
相关型
部分相关型
非相关型
产物合成相关、部分相关、非相关模型动力学示意图
分批培养中的产物形成:
Ⅰ型:生长偶联产物生成 ——菌体生长、碳源利 用和产物形成几乎在相同时间出现高峰。产物形 成直接与碳源利用有关。
Ⅱ型:生长与产物生成部分偶联——在生长开始后 并无产物生成,在生长继续进行到某一阶段才有 产物生成。产物形成间接与碳源利用有关。
分批发酵动力学-产物形成动力学
与生长不相关→无关联:抗生素发酵
dP X
dt
qp
若考虑到产物可能存在分解时,则
dP dt
X
kd P
qp X
kd P
产物生成与能量代谢不直接相关,通过细 胞进行的独特的生物合成反应而生成。
发酵工程_6发酵动力学
首先研究微生物生长和产物合成限制因子;
建立细胞生长、基质消耗、产物生成模型;
确定模型参数;
实验验证模型的可行性与适用范围;
根据模型实施最优控制。
本章主要内容
分批发酵动力学 连续发酵动力学 补料分批发酵动力学
什么是分批发酵?
分批发酵:准封闭培养,指一次性投料、接种 直到发酵结束,属典型的非稳态过程。 分批发酵过程中,微生物生长通常要经历延滞 期、对数生长期、衰减期、稳定期(静止期) 和衰亡期五个时期。
菌体浓度X t1
dx 0, 0, x xmax dt
(浓度最大)
t5
t2
t3 时间 t
t4
图6-1 分批发酵时典型的微生物生长动力学曲线
此阶段次级代谢活跃,次级代谢物大量合成。
dying:
a
(比死亡速率 ,s-1)
假定整个生长阶段无抑制物作用存在,则微生物生长动 力学可用阶段函数表示如下:
反应器层次(过程工程)
基于细胞群体生长及产物合成对外部环境综合响应
采用一系列优化反应器发酵条件的方法
针对微生物发酵的表观动力学,通过研究微生物群 体的生长、代谢,定量反映细胞群体酶促反应体 系的宏观变化速率,主要包括:
细胞生长动力学 底物消耗动力学 产物合成动力学
发酵动力学研究的基本过程
Y*X/S表示底物的细胞绝对得率,也称理论细胞得率; m为细胞维持系数
扣除细胞量的影响,
qS
将qS用µ表示,可得
1 Y
* X /S
m
YX / S
1 Y
* X /S
m
1 YX / S
《发酵工程》第6章 发酵动力学
在厌气条件下,厌氧微生物进行的是基质水平磷酸化。 以同型乳酸发酵为例:
所以,厌气发酵时,基质水平磷酸化所产生的ATP要比 当发酵过程充分供氧时氧化磷酸化产生的ATP少的多.
3.微生物生长代谢过程中的氧平衡
有机物完全氧化最终会被分解成二氧化碳和水。根据单一碳 源培养基内微生物生长代谢的基质和产物完全氧化的需氧量, 可建立下列平衡式:
QGO:即QO2微生物生长(无非细胞产物生成)时的比耗氧率(g 或molO2·-1菌体·-l): g h 氧的消耗比速(见P134式8-10)
对于特定的菌株和特定的基质,纯生长得率是一常数,故又称 为生长得率常数。为区别于纯生长得率,可以把生长得率称为毛生 长得率。和各种培养条件下的毛生长得率相比,纯生长得率为生长 得率中的最大值,故也称为最大生长得率。这是一种理论生长得率, 是生长得率的极限值。
维持因数的大小代表细胞能量代谢效率的高低:维持因 数越大,表示能量效率越低;维持因数越小,则能量效率越 高。
对于特定的微生物菌株,在一定的培养条件和营养基质下, 维持因数是一个常数,它不因基质浓度、细胞浓度、细胞生长 速率和产物合成速率的不同而变化,
维持因数多种表示法:
基质维持因数mS:以基质消耗为基准 氧维持因数mO:以耗氧为基准 能量维持因数mkcal:以分解代谢热表示 ATP维持因数mATP:以ATP消耗表示。
S= (S)G+ (S)m+ (S)P+…
设:
YG:表示用于菌体生长的碳源对菌体的得率常数, m:表示微生物的碳源维持常数, Ym:表示碳源对代谢产物的得率常数。
则:
在以生产细胞物质为目的的发酵过程中(如面包酵母生产和 SCP),代谢产物的积累可以忽略不计,上式可简化为:
第六章 发酵过程动力学基本概念
3、发酵过程的反应动力学
是对细胞群体的动力学行为的描述。 不考虑细胞之间的差别,而是取性质上的平均值, 在此基础上建立的模型称为确定论模型,反之称 为概率论模型。 在考虑细胞组成变化的基础上建立的模型,称为 结构模型,一般选取RNA、DNA、糖类及蛋白 含量做为过程变量。菌体视为单组分的模型为非 结构模型,通过物料平衡建立关联模型。
(7-5)
qP=a + bμ
a=0、b≠0: 可表示一类发酵 a≠0、b=0: 可表示三类发酵 a≠0、b≠0:可表示二类发酵
YP/X –以生长为基准的产物得率(g产物/g细胞),即 产物相对于细胞的生成速度。
dP / dt YP / X dX / dt
dP / dt YP / X X qP YP / X
检测控制系统
原料
产物
一般生化反应过程示意图
2、生化反应动力学 生物反应过程的效率取决于: 生物催化剂的性能 反应过程的工艺控制和操作条件 反应器的性能 生化反应动力学研究生化反应过程的 速率及其影响因素,是生化反应工程学的 理论基础之一。
本征动力学(微观动力学) 宏观动力学(反应器动力学)
物料衡算:
ds ds1 ds2 ds3 dt dt dt dt
q S
YX
s
qp
s
YP
m
m: 维持消耗系数
X S(底物) ─→ X(菌体) + P(产物)+维持
YX/s: 细胞对基质的理论得率系数 YP/s: 产物对基质的理论得率系数
8
2013-04-15
分批发酵的基础理论
(7-6) (7-7) (7-8)
发酵工程第6章 发酵动力学
若
则表明通风不足,有部分电子没有传递给
氧,氧化不彻底。
第三节 细胞反应本征动力学
➢反应动力学:研究反应速度变化规律
(反应速度影响因素)的学科。包括:
➢本征动力学(反映生物催化剂内在性
能):又称微观动力学,指没有传递等
工程因素影响时,生化固有的速率。
➢宏观动力学(反映反应器特性):又称
反应器动力学,指在一定反应器内所测
葡萄糖
微生物细胞
(1)试确定计量系数a、b、c、d、e;
(2)试计算其细胞对底物的得率YX / S ;
(3)试计算呼吸商RQ。
解:(1)细胞反应的方程式系数的计算
1mol葡萄糖所含有的C元素为72g,根据题
意1mol葡萄糖转化为微生物细胞的C元素为:
g
72 2 / 3 48
则有:
48
c
(2)细胞反应的比速率:单位时间内单位
菌体消耗基质或形成产物(菌体)的量称为比速
率,是生物反应中用于描述反应速度的常用概念
(不同反应间的对比,消除细胞量的效应)在细
胞反应中主要的反应的比速率有:
① 细胞的比生长速率
1 dC X
CX
dt
(1/h)
② 底物的比消耗速率
1 dC S
qS
0.909
4.4 12
转化为CO2的C元素为:
72 48 24 g
则:
24 12e
e2
,
对N元素平衡,有:
a 0.86c 0.782
对H元素平衡,有:
,
12 3a 7.3c 2d
12 3a 7.3c
d
2
12 3 0.782 7.3 0.909
则表明通风不足,有部分电子没有传递给
氧,氧化不彻底。
第三节 细胞反应本征动力学
➢反应动力学:研究反应速度变化规律
(反应速度影响因素)的学科。包括:
➢本征动力学(反映生物催化剂内在性
能):又称微观动力学,指没有传递等
工程因素影响时,生化固有的速率。
➢宏观动力学(反映反应器特性):又称
反应器动力学,指在一定反应器内所测
葡萄糖
微生物细胞
(1)试确定计量系数a、b、c、d、e;
(2)试计算其细胞对底物的得率YX / S ;
(3)试计算呼吸商RQ。
解:(1)细胞反应的方程式系数的计算
1mol葡萄糖所含有的C元素为72g,根据题
意1mol葡萄糖转化为微生物细胞的C元素为:
g
72 2 / 3 48
则有:
48
c
(2)细胞反应的比速率:单位时间内单位
菌体消耗基质或形成产物(菌体)的量称为比速
率,是生物反应中用于描述反应速度的常用概念
(不同反应间的对比,消除细胞量的效应)在细
胞反应中主要的反应的比速率有:
① 细胞的比生长速率
1 dC X
CX
dt
(1/h)
② 底物的比消耗速率
1 dC S
qS
0.909
4.4 12
转化为CO2的C元素为:
72 48 24 g
则:
24 12e
e2
,
对N元素平衡,有:
a 0.86c 0.782
对H元素平衡,有:
,
12 3a 7.3c 2d
12 3a 7.3c
d
2
12 3 0.782 7.3 0.909
6-微生物工程-第六章-发酵动力学2
30
0.3~0.5
28
0.1~0.3
第18页,共91页。
关于菌龄的描述:
微生物细胞倍增时间与群体生长动力学
细菌:典型倍增时间1hr 酵母:典型倍增时间2hr 放线菌和丝状真菌:典型倍增时间4-8hr
微生物细胞群体生长动力学是反映整个群体的 生长特征,而不是单个微生物生长倍增的特征。
因此,菌龄是指一个群体的表观状态。
第3页,共91页。
研究发酵动力学的目的:
➢ 认识发酵过程的规律; ➢ 优化发酵工艺条件,确定最优发酵过程参
数,如:基质浓度、温度、pH、溶氧等; ➢ 提高发酵产量、效率和转化率等。
第4页,共91页。
发酵工程:
一条主线: 发酵工艺过程
两个重点:
发酵过程的优化与放大
三个层次:
分子、细胞、反应器
1 rO2 YX/O rX
比耗氧速率:
(6-9)
第37页,共91页。
(6-11)
(2)底物消耗动力学
产物的生成直接与能量的产生相联系
底物消耗速率:
rs
1 Y
X/S
rX
mX
(6-12)
为维持细胞结构和生命活动所需 能量的细胞维持系数:
m
YX/S 表观得率
针对底物的细胞绝对得率:
Y X/S
qS
1 Y
Monod方程:
比 生 长
mSt Ks St
素 率
表征μ与培养基中残留的生
μ
长限制性底物St的关系
限制性底物残留浓度St
残留的限制性底物浓度对 微生物比生长率的影响
Ks—底物亲和常数,等
于处于1/2μm时的底物浓 度,表征微生物对底物的
发酵工程第六章发酵动力学
与生长部分相关→生长部分偶联型:
柠檬酸、氨基酸发酵
d dP td d x tx qP
产物间接由能量代谢生成,不是底物的 直接氧化产物,而是菌体内生物氧化过程的 主流产物(与初生代谢紧密关联)。
分批发酵动力学-产物形成动力学
与生长不相关→无关联:抗生素发酵
dP x
dt
qp
若考虑到产物可能存在分解时,则
① 当S较高时,(对数期满足S>>10Ks),此时,µ= µm ② 当S较低时,(减速期, S<<10Ks),此时S↓,µ ↓
∴ 减速期, µ ↓
ms
Ks s
1949年Monod发现,细菌的比生长 速率 与单一限制性底物之间存在这样 的关系:
max
S Ks S
比 生
Monod方程:
mSt Ks St
Monod研究了基质浓度与生长速度的关系 ———Monod方程(1949)
V V
1.2
μV1m
0.8 0.6
0μV.m4/2
0.2 0
0KKms 200
400 S 600
800 1000
1.2 V1m
0.8 0.6 0V.m4/2 0.2
0 0K m 200
400 S 600
800 1000
max
研究发酵动力学的目的
➢ 认识发酵过程的规律 ➢ 优化发酵工艺条件,确定最优发酵过程参
数,如:基质浓度、温度、pH、溶氧, 等等 ➢ 提高发酵产量、效率和转化率等
发酵动力学研究的基本过程
首先研究微生物生长和产物合成限制因子; 建立细胞生长、基质消耗、产物生成模型; 确定模型参数; 实验验证模型的可行性与适用范围; 根据模型实施最优控制。
柠檬酸、氨基酸发酵
d dP td d x tx qP
产物间接由能量代谢生成,不是底物的 直接氧化产物,而是菌体内生物氧化过程的 主流产物(与初生代谢紧密关联)。
分批发酵动力学-产物形成动力学
与生长不相关→无关联:抗生素发酵
dP x
dt
qp
若考虑到产物可能存在分解时,则
① 当S较高时,(对数期满足S>>10Ks),此时,µ= µm ② 当S较低时,(减速期, S<<10Ks),此时S↓,µ ↓
∴ 减速期, µ ↓
ms
Ks s
1949年Monod发现,细菌的比生长 速率 与单一限制性底物之间存在这样 的关系:
max
S Ks S
比 生
Monod方程:
mSt Ks St
Monod研究了基质浓度与生长速度的关系 ———Monod方程(1949)
V V
1.2
μV1m
0.8 0.6
0μV.m4/2
0.2 0
0KKms 200
400 S 600
800 1000
1.2 V1m
0.8 0.6 0V.m4/2 0.2
0 0K m 200
400 S 600
800 1000
max
研究发酵动力学的目的
➢ 认识发酵过程的规律 ➢ 优化发酵工艺条件,确定最优发酵过程参
数,如:基质浓度、温度、pH、溶氧, 等等 ➢ 提高发酵产量、效率和转化率等
发酵动力学研究的基本过程
首先研究微生物生长和产物合成限制因子; 建立细胞生长、基质消耗、产物生成模型; 确定模型参数; 实验验证模型的可行性与适用范围; 根据模型实施最优控制。
发酵动力学
– 便于自动控制。
• 缺点
– 菌种发生变异的可能性较大; – 要求严格的无菌条件。
连续发酵的类型
• 恒化培养
– 使培养基中限制性基质的浓度保持恒定
• 恒浊培养
– 使培养基中菌体的浓度保持恒定
连续发酵的代谢曲线
加入新鲜培养基的同时,放出等体积的发
酵液,获得连续发酵生产过程。
分为单级和多级连续发酵
恒化器
施,延长稳定期,以积累更多的代谢产物。
(一)细胞生长动力学模型
dX dt
X
(1)
X is the concentration of biomass in the bioreactor. Biomass concentrations are typically expressed in g/l of Dry weight. µis the specific growth rate.
建了生化工程中著名的Monod方程(1942
年)。
Monod方程(Monod model ) • 温度和pH恒定时,对于某一特定培养基组分的浓 度s,Monod方程为∶ S max Ks S
• 式中: max称为最大比生长速率(h-1),Ks称为半饱 和常数(g/L) • 底物消耗速率方程对应为∶
• 代谢变化就是反映发酵过程中菌体的生长,发
酵参数(培养基,培养条件等)和产物形成速
率三者间的关系。 • 了解生产菌种在具有合适的培养基、pH、温度
和通气搅拌等环境条件下对基质的利用、细胞
的生长以及产物合成的代谢变化,有利于人们 对生产的控制。
• 代谢变化是反映发酵过程中菌体的生长,
发酵参数(培养基,培养条件等)和产 物形成速率三者间的关系。
第六章 典型发酵过程动力学及模型
d x 静止期: dt ( kd ) x 0
Kd:细胞死亡速率常数
衰亡期:
d x kd x dt
9
(三)、无抑制、单一限制性基质下的细胞生 长动力学(Monod方程)
细胞生长速率是底物浓度的函数
dx f (s ) dt
细胞生长速率与单一限制性底物浓度的关系
2
3、发酵过程的反应描述及速度概念
(1)、发酵过程反应的描述
X S(底物) → X(菌体) + P(产物)
研究发酵过程的目的:最大限度发挥菌种的潜力
3
(2)、发酵过程反应速度的描述
X S(底物) → X(菌体) + P(产物)
基质的消耗速度:
ds r dt
(g· -1·-1) L s
ds / x 基质的消耗比速: dt
目前大多数模型能定量地描述发酵过程能反映主要因素的影响将细胞视为单一组成不考虑环境对细胞组成的影响非结构模型或考虑环境对细胞组成的影响结构模型认为细胞生长过程中各组分以相同比例增加即细胞均衡生长
第六章 发酵过程动力学及模型
1
一、概述
1、发酵的实质:生物化学反应。 2、发酵过程动力学主要研究各种环境因素与微 生物代谢活动间的相互作用随时间而变化的规 律。 3、研究方法 采用数学模型定量描述发酵过程中影响细胞 生长、基质利用和产物生成的各种因素。
*
s p的影响
KS D x Y X / S ( si ) max D
p YP / X X
图 6-16 P141
33
多级连续培养
1、单流多级系统 2、多流多级系统 3、带循环的多级系统
34
ห้องสมุดไป่ตู้
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态定量关系,定量描述微生物 生长 和 产物形成 过程。
主要研究:
1、发酵动力学参数特征:微生物生长速率、发酵产物合成 速率、底物消耗速率及其转化率、效率等; 2、影响发酵动力学参数的各种理化因子; 3、发酵动力学的数学模型。
研究发酵动力学的目的
认识发酵过程的规律 优化发酵工艺条件,确定最优发酵过程参数,
发酵动力学研究的基本过程
首先研究微生物生长和产物合成限制因子; 建立细胞生长、基质消耗、产物生成模型; 确定模型参数; 实验验证模型的可行性与适用范围; 根据模型实施最优控制。
第一节 发酵过程的反应描述及速度概念
发酵过程反应的描述
X S(底物) ─→ X(菌体) + P(产物)
发酵研究的内容:
菌种的来源——找到一个好的菌种 发酵过程的工艺控制——最大限度发挥菌种的潜力
发酵过程反应速度的描述
X S(底物) ─→ X(菌体) + P(产物)
基质的消耗速度: r ds dt
ds
基质的消耗比速: dt X
(g.L-1.s-1) (h-1.s-1)
单位时间内单位菌体消耗基质或形成产物(菌体)的量称为
比速,是生物反应中用于描述反应速度的常用概念
发酵过程反应速度的描述
X S(底物) ─→ X(菌体) + P(产物)
ds
基质的消耗比速: dt X
(h-1)
dx
菌体的生长比速: dt X
(h-1)
dp
产物的形成比速: dt X
(h-1)
第二节 发酵反应动力学的研究内容
研究反应速度及其影响因素并建 立反应速度与影响因素的关联
二、微生物的生长动力学、Monod方程
微生物的生长速度:
μ=f(s,p,T,pH,……,)Βιβλιοθήκη 在一定条件下(基质限制):
μ=f(S)
Monod研究了基质浓度与生长速度的关系 ———Monod方程(1949)
1.2
1.2
V1m
V1m
0.8
0.8
00V..μm46/2
0.6 0V.m4/2
0.2
菌体浓度
减速期
静止期 衰亡期
延迟期
指数生长期
时间
延迟期: dx 0
dt
指数生长期: max 倍增时间:td
减速期: d 0
dt
静止期: dx 0;
dt
X Xmax
衰亡期: dx 0
dt
什么是分批发酵?
分批发酵:准封闭培养,指一次性投料、接种直到发酵 结束,属典型的非稳态过程。
反应器层次(过程工程) 基于细胞群体生长及产物合成对外部环境综合响应 采用一系列优化反应器发酵条件的方法
课程重点:主要针对微生物发酵的表观动力学,通过研究 微生物群体的生长、代谢,定量反映细胞群体酶促反应体 系的宏观变化速率,主要包括: 细胞生长动力学 底物消耗动力学 产物合成动力学 重点定量研究底物消耗与细胞生长、产物合成的动 态关系,分析参数变化速率,优化主要影响因素。 但研究过程中将涉及三个层次的研究方法,达到认 识微生物本质特征、解决发酵工业问题的目的。
800
1000
μ:菌体的生长比速 S:限制性基质浓度 Ks:半饱和常数 μmax: 最大比生长速度
如:基质浓度、温度、pH、溶氧,等等 提高发酵产量、效率和转化率等
本章的重要性
一条主线: 发酵工艺过程
两个重点: 发酵过程的优化与放大
三个层次: 分子、细胞、反应器
四个目标: 高产、高效、高转化率、低成本
主要方法:基于发酵动力学研究来实现
动力学主要探讨反应速率问题:
生化反应: aA + bB cC + dD 如何能最快最多的获得目的产物
反应动态平衡 改变条件 破坏平衡
催化剂 温度
酸碱度 浓度
如何确定高产高效 的最佳条件?
采用反应动力学方法 进行定量研究
发酵动力学研究的几个层次(尺度)
分子层次(酶催化与生物转化) 基于关键生化反应(限速步)及其关键酶的动力学特征 及其影响因素 采用一系列分子水平的方法
细胞层次(代谢网络与细胞工厂) 基于细胞信号传导、代谢网络、细胞物质运输的系列关 键生化反应的综合表现 采用一系列细胞水平的方法,包括细胞群体行为分析
第6章 发酵动力学
本章主要内容
分批发酵动力学 连续发酵动力学 补料分批发酵动力学
发酵过程的反应描述及速度概念
发酵过程动力学研究的基本内容
菌体生长、产物形成、基质消耗动力学 的基本概念
反应动力学的应用—连续培养的操作特 性
什么是发酵动力学?
发酵动力学:研究微生物生长、产物合成、底物消耗之间
分批发酵过程中,微生物生长通常要经历延滞期、对数 生长期、衰减期、稳定期(静止期)和衰亡期五个时期 。
分批发酵过程
典型的分批发酵工艺流程图
分批发酵动力学-细胞生长动力学
菌体浓度X
t1
t2 t3
t4
t5
时间 t
分批发酵时典型的微生物生长动力学曲线
分批发酵动力学
应用举例
杀假丝菌素分 批发酵中的葡 萄糖消耗、 DNA 含 量 和 杀 假丝菌素合成 的变化 。
杀假丝菌素分批发酵动力学分析
分批发酵的优缺点
优点: 操作简单、投资少 运行周期短 染菌机会减少 生产过程、产品质量较易控制
缺点: 不利于测定过程动力学,存在底物限制或抑制问题,会 出现底物分解阻遏效应?及二次生长?现象。 对底物类型及初始高浓度敏感的次级代谢物如一些抗生 素等就不适合用分批发酵(生长与合成条件差别大)。 养分会耗竭快,无法维持微生物继续生长和生产。 非生产时间长,生产率较低。
反应动力学模型
+
反应器特性
反
应
器
的
操作条件与反应结
操
果的关系,定量地
作
控制反应过程
模
型
已建立动力学模型的类型
机制模型: 根据反应机制建立
几乎没有
现象模型(经验模型):目前大多数模型
能定量地描述发酵过程 能反映主要因素的影响
第三节 微生物生长动力学的基本概念
一、微生物在一个密闭系统中的生长情况:
0.2 0 0K m 200
400 S 600
0 0K m 200
400 S 600
800 1000
800 1000
V
V
max
S Ks S
米氏方程:
S v vmax Ks S
V
1.2
V1m
0.μ8
0.6 0V.m4/2
0.2
0 0K m
200
400 S 600
max
S Ks S
主要研究:
1、发酵动力学参数特征:微生物生长速率、发酵产物合成 速率、底物消耗速率及其转化率、效率等; 2、影响发酵动力学参数的各种理化因子; 3、发酵动力学的数学模型。
研究发酵动力学的目的
认识发酵过程的规律 优化发酵工艺条件,确定最优发酵过程参数,
发酵动力学研究的基本过程
首先研究微生物生长和产物合成限制因子; 建立细胞生长、基质消耗、产物生成模型; 确定模型参数; 实验验证模型的可行性与适用范围; 根据模型实施最优控制。
第一节 发酵过程的反应描述及速度概念
发酵过程反应的描述
X S(底物) ─→ X(菌体) + P(产物)
发酵研究的内容:
菌种的来源——找到一个好的菌种 发酵过程的工艺控制——最大限度发挥菌种的潜力
发酵过程反应速度的描述
X S(底物) ─→ X(菌体) + P(产物)
基质的消耗速度: r ds dt
ds
基质的消耗比速: dt X
(g.L-1.s-1) (h-1.s-1)
单位时间内单位菌体消耗基质或形成产物(菌体)的量称为
比速,是生物反应中用于描述反应速度的常用概念
发酵过程反应速度的描述
X S(底物) ─→ X(菌体) + P(产物)
ds
基质的消耗比速: dt X
(h-1)
dx
菌体的生长比速: dt X
(h-1)
dp
产物的形成比速: dt X
(h-1)
第二节 发酵反应动力学的研究内容
研究反应速度及其影响因素并建 立反应速度与影响因素的关联
二、微生物的生长动力学、Monod方程
微生物的生长速度:
μ=f(s,p,T,pH,……,)Βιβλιοθήκη 在一定条件下(基质限制):
μ=f(S)
Monod研究了基质浓度与生长速度的关系 ———Monod方程(1949)
1.2
1.2
V1m
V1m
0.8
0.8
00V..μm46/2
0.6 0V.m4/2
0.2
菌体浓度
减速期
静止期 衰亡期
延迟期
指数生长期
时间
延迟期: dx 0
dt
指数生长期: max 倍增时间:td
减速期: d 0
dt
静止期: dx 0;
dt
X Xmax
衰亡期: dx 0
dt
什么是分批发酵?
分批发酵:准封闭培养,指一次性投料、接种直到发酵 结束,属典型的非稳态过程。
反应器层次(过程工程) 基于细胞群体生长及产物合成对外部环境综合响应 采用一系列优化反应器发酵条件的方法
课程重点:主要针对微生物发酵的表观动力学,通过研究 微生物群体的生长、代谢,定量反映细胞群体酶促反应体 系的宏观变化速率,主要包括: 细胞生长动力学 底物消耗动力学 产物合成动力学 重点定量研究底物消耗与细胞生长、产物合成的动 态关系,分析参数变化速率,优化主要影响因素。 但研究过程中将涉及三个层次的研究方法,达到认 识微生物本质特征、解决发酵工业问题的目的。
800
1000
μ:菌体的生长比速 S:限制性基质浓度 Ks:半饱和常数 μmax: 最大比生长速度
如:基质浓度、温度、pH、溶氧,等等 提高发酵产量、效率和转化率等
本章的重要性
一条主线: 发酵工艺过程
两个重点: 发酵过程的优化与放大
三个层次: 分子、细胞、反应器
四个目标: 高产、高效、高转化率、低成本
主要方法:基于发酵动力学研究来实现
动力学主要探讨反应速率问题:
生化反应: aA + bB cC + dD 如何能最快最多的获得目的产物
反应动态平衡 改变条件 破坏平衡
催化剂 温度
酸碱度 浓度
如何确定高产高效 的最佳条件?
采用反应动力学方法 进行定量研究
发酵动力学研究的几个层次(尺度)
分子层次(酶催化与生物转化) 基于关键生化反应(限速步)及其关键酶的动力学特征 及其影响因素 采用一系列分子水平的方法
细胞层次(代谢网络与细胞工厂) 基于细胞信号传导、代谢网络、细胞物质运输的系列关 键生化反应的综合表现 采用一系列细胞水平的方法,包括细胞群体行为分析
第6章 发酵动力学
本章主要内容
分批发酵动力学 连续发酵动力学 补料分批发酵动力学
发酵过程的反应描述及速度概念
发酵过程动力学研究的基本内容
菌体生长、产物形成、基质消耗动力学 的基本概念
反应动力学的应用—连续培养的操作特 性
什么是发酵动力学?
发酵动力学:研究微生物生长、产物合成、底物消耗之间
分批发酵过程中,微生物生长通常要经历延滞期、对数 生长期、衰减期、稳定期(静止期)和衰亡期五个时期 。
分批发酵过程
典型的分批发酵工艺流程图
分批发酵动力学-细胞生长动力学
菌体浓度X
t1
t2 t3
t4
t5
时间 t
分批发酵时典型的微生物生长动力学曲线
分批发酵动力学
应用举例
杀假丝菌素分 批发酵中的葡 萄糖消耗、 DNA 含 量 和 杀 假丝菌素合成 的变化 。
杀假丝菌素分批发酵动力学分析
分批发酵的优缺点
优点: 操作简单、投资少 运行周期短 染菌机会减少 生产过程、产品质量较易控制
缺点: 不利于测定过程动力学,存在底物限制或抑制问题,会 出现底物分解阻遏效应?及二次生长?现象。 对底物类型及初始高浓度敏感的次级代谢物如一些抗生 素等就不适合用分批发酵(生长与合成条件差别大)。 养分会耗竭快,无法维持微生物继续生长和生产。 非生产时间长,生产率较低。
反应动力学模型
+
反应器特性
反
应
器
的
操作条件与反应结
操
果的关系,定量地
作
控制反应过程
模
型
已建立动力学模型的类型
机制模型: 根据反应机制建立
几乎没有
现象模型(经验模型):目前大多数模型
能定量地描述发酵过程 能反映主要因素的影响
第三节 微生物生长动力学的基本概念
一、微生物在一个密闭系统中的生长情况:
0.2 0 0K m 200
400 S 600
0 0K m 200
400 S 600
800 1000
800 1000
V
V
max
S Ks S
米氏方程:
S v vmax Ks S
V
1.2
V1m
0.μ8
0.6 0V.m4/2
0.2
0 0K m
200
400 S 600
max
S Ks S