微积分课件完整版

合集下载

微积分ppt课件

微积分ppt课件

和趋势。
02
微积分在机器学习中的应用
利用微积分优化算法,提高机器学习的效率和准确性。
03
微积分在金融工程中的应用
研究微积分在金融衍生品定价、风险管理等领域的应用,推动金融工程
的发展。
THANKS
感谢观看
用微积分解决经济学问题
总结词
微积分在经济学中用于研究经济现象的变化规律和优 化资源配置。
详细描述
在经济学中,微积分被用于分析边际成本、边际收益、 边际效用等问题,以及研究经济增长、通货膨胀、供需 关系等经济现象的变化规律。此外,微积分还可以用于 优化生产和分配资源,提高经济效率。
06
微积分的未来发展与展望
微积分与其他学科的交叉研究
微积分与物理学的交叉
01
研究微积分在解决物理问题中的应用,如流体力学、电磁学等
领域的数学模型。
微积分与经济学的交叉
02
探讨微积分在经济学理论和应用方面的作用,如最优控制理论
、动态规划等。
微积分与计算机科学的交叉
03
研究微积分在算法设计、数据科学、人工智能等领域的应用。
微积分的未来发展方向
上的整体性质,如求面积、体积等。
微积分提供了研究函数和解决实际问题的有效工具, 是高等数学的重要基础。
微积分的发展历史
17世纪,牛顿和莱布尼茨分别独立地创立了微 积分学,为微积分的发展奠定了基础。
19世纪,柯西、黎曼等数学家对微积分的概念和基 础进行了深入的研究和探讨,进一步完善了微积分理
论。
微积分的发展经历了漫长的过程,最早可以追 溯到古代数学家对面积、体积等问题的研究。
1 2
微积分的理论深化
进一步探索微积分的数学原理,发展新的理论和 方法。

大学微积分课件(PPT幻灯片版)pptx

大学微积分课件(PPT幻灯片版)pptx

高阶导数计算
高阶导数的计算一般采用归纳法 或莱布尼茨公式等方法进行求解。 需要注意的是,在计算过程中要 遵循求导法则和运算顺序。
应用举例
高阶导数在物理学、工程学等领 域有着广泛的应用。例如,在物 理学中,加速度是速度的一阶导 数,而速度是位移的一阶导数; 在工程学中,梁的挠度是荷载的 一阶导数等。
03 一元函数积分学
VS
几何意义
函数$y = f(x)$在点$x_0$处的导数 $f'(x_0)$在几何上表示曲线$y = f(x)$在点 $(x_0, f(x_0))$处的切线的斜率。
求导法则与技巧总结
基本求导法则
包括常数的导数、幂函数的导数、指数函数的导数、对数函数的导 数、三角函数的导数、反三角函数的导数等。
求导技巧
连续性与可微性关系
连续性
函数在某一点连续意味着函数在 该点有定义,且左右极限相等并 等于函数值。连续性是函数的基 本性质之一。
可微性
函数在某一点可微意味着函数在 该点的切线斜率存在,即函数在 该点有导数。可微性反映了函数 局部变化的快慢程度。
连续性与可微性关

连续不一定可微,但可微一定连 续。即函数的连续性是可微性的 必要条件,但不是充分条件。
历史发展
微积分起源于17世纪,由牛顿和莱布尼 茨独立发展。经过数百年的完善,已成 为现代数学的重要基础。
极限思想与运算规则
极限思想
极限是微积分的基本概念,表示函数在某一点或无穷远处的变 化趋势。通过极限思想,可以研究函数的局部和全局性质。
运算规则
极限的运算包括极限的四则运算、复合函数的极限、无穷小量 与无穷大量的比较等。这些规则为求解复杂函数的极限提供了 有效方法。

高等数学(微积分)ppt课件

高等数学(微积分)ppt课件
,且f'(x0)=0,则可通过二阶导数 f''(x0)的符号来判断f(x)在x0处取得极大值还是极小值。
曲线的凹凸性与拐点
凹凸性
若函数f(x)在区间I上二阶可导,且 f''(x)>0(或<0),则称曲线y=f(x)在 I上是凹的(或凸的)。
拐点
拐点的判定
若函数f(x)在点x0处二阶可导,且 f''(x0)=0,则可通过三阶导数f'''(x0) 的符号来判断点(x0,f(x0))是否为曲线 的拐点。
THANKS
感谢观看
非线性微分方程
通过变量替换、积分等方法求解,或 利用数值方法近似求解
级数的概念与性质
级数的定义 无穷序列的部分和序列
级数的性质 加法、减法、乘法、除法、重排等性

级数的收敛与发散 部分和序列有极限则级数收敛,否则 发散
常见级数及其敛散性 等差级数、等比级数、调和级数、交 错级数等,通过比较法、比值法、根 值法等方法判断其敛散性
VS
极限的性质
唯一性、局部有界性、保号性、保不等式 性、迫敛性等。
极限的运算法则
极限的四则运算法则
若两个函数的极限存在,则它们的和、差、积、商(分母不为零)的极限也存在,且等于这两 个函数极限的和、差、积、商。
复合函数的极限运算法则
设函数$y=f[g(x)]$是由函数$u=g(x)$与函数$y=f(u)$复合而成,若$lim_{x
无穷小量的定义
如果函数$f(x)$当$x to x_0$(或$x to infty$)时的极限为零,那么称函数$f(x)$为当$x to x_0$(或$x to infty$)时 的无穷小量。

2024版大学微积分课件(ppt版)

2024版大学微积分课件(ppt版)

大学微积分课件(ppt 版)目录•微积分概述•极限与连续•导数与微分•积分学•微分方程•微积分在实际问题中的应用PART01微积分概述微积分的定义与发展微积分的定义微积分是研究函数的微分与积分的数学分支,微分研究函数在某一点的变化率,而积分则是研究函数在一定区间上的累积效应。

微积分的发展微积分起源于17世纪的物理学和几何学问题,经过牛顿、莱布尼兹等数学家的努力,逐渐发展成为一门独立的数学学科。

微积分的研究对象与意义研究对象微积分的研究对象是函数,包括一元函数和多元函数,主要研究函数的性质、图像、变化率以及函数间的相互关系等。

研究意义微积分在自然科学、工程技术、社会科学等领域有着广泛的应用,如求解物理问题、优化工程设计、分析经济数据等。

微积分的基本思想与方法基本思想微积分的基本思想是通过局部近似来研究函数的整体性质,即“以直代曲”、“以不变应万变”。

基本方法微积分的基本方法包括微分法和积分法。

微分法是通过求导数来研究函数的局部性质,如单调性、极值等;积分法则是通过求原函数来研究函数的整体性质,如面积、体积等。

PART02极限与连续极限的概念与性质01极限的定义:描述函数在某一点或无穷远处的变化趋势。

02极限的性质:唯一性、局部有界性、保号性、四则运算法则。

03无穷小量与无穷大量:定义、性质及比较。

极限的运算法则与存在准则极限的四则运算法则加法、减法、乘法、除法。

极限存在准则夹逼准则、单调有界准则。

连续函数的概念与性质连续函数的定义函数在某一点连续的定义及性质。

间断点及其分类第一类间断点(可去间断点、跳跃间断点)、第二类间断点。

连续函数的性质局部性质(局部有界性、局部保号性)、整体性质(有界性、最值定理、介值定理)。

连续函数的四则运算加法、减法、乘法、除法。

初等函数基本初等函数及其性质,初等函数的连续性。

复合函数的连续性复合函数连续性的判断及证明。

连续函数的运算与初等函数PART03导数与微分导数的概念与几何意义导数的定义导数的几何意义可导与连续的关系描述函数图像在某一点处的局部变化率。

高等数学微积分第一章函数及其图形(共44张PPT)

高等数学微积分第一章函数及其图形(共44张PPT)

如果A,B互相包含,即A B且B A,则称A与B相等,记为A=B。
如果把 y看作自变量,x 看作因变量,按照函数的定义就得到一个新的函数,这个新函数称为函数y=f(x)的反函数,记作 x=j(y)。
解: 要使函数有意义,必须x 0,且x2-4³0。
如果A,B互相包含,即A B且B A,则称A与B相等,记为A=B。
1
O
x
3.对数函数
指数函数y=ax的反函数叫做对数函数,记为
y=logax(a>0,a 1). 对数函数的定义域是区间(0,+ ).
单调性:
若a>1,则logax单调增加; 若0<a<1,则logax单调减少.
性质见书P34
y y=ax
1
O
y=logxax
a>1
4.三角函数
U(a)。 设>0,则称区间(a-, a+)为点a 的邻域,记作U(a, ),
即 U(a, ) ={x|a-<x<a+} ={x| |x-a|<}。
其中点 a 称为邻域的中心, 称为邻域的半径。
O a-
a+ x
去心邻域:
U
(a,)
={x
|0<|
x-a
|<}。
O a- a a+ x
左(右)邻域、M领域的概念见书中第七页。
bx
[a, b]={x|axb}称为闭区间。
[a, b]
Oa
bx
[a, b)={x|ax<b}及 (a, b]={x|a<xb}称为
半开区间。 [a, b)
Oa
bx
(a, b]
Oa
bx

大学微积分课件(PPT版)

大学微积分课件(PPT版)
微分方程是包含未知函数及其导数的等式。
微分方程的解
满足微分方程的函数称为微分方程的解。
一阶微分方程
一阶线性微分方程
形如y'=f(x)y' = f(x)y'=f(x)y=f(x)的一阶微 分方程,可以通过分离变量法求解。
一阶非线性微分方程
形如y'=f(y/x)y' = f(y/x)y'=f(y/x)的一阶微 分方程,可以通过变量代换法求解。
定积分的计算
计算方法与技巧
定积分的计算是微积分中的重要技能。常用的计算方法包括换元法、分部积分法、牛顿-莱布尼兹公 式等。通过这些方法,可以将复杂的定积分转化为易于计算的形式。
反常积分
概念与计算方法
VS
反常积分分为无穷积分和瑕积分两种 类型。对于无穷积分,需要讨论其在 有限的区间上收敛的情况;对于瑕积 分,需要讨论其在某一点附近的收敛 情况。反常积分的计算方法与定积分 的计算方法类似,但需要注意收敛的 条件。
极限与连续性
极限的定义与性质
极限的定义
极限是描述函数在某点附近的变化趋势 的一种数学工具。对于函数$f(x)$,如果 当$x$趋近于$a$时,$f(x)$的值趋近于 某个确定的常数$L$,则称$L$为函数 $f(x)$在点$a$处的极限。
极限的性质
极限具有唯一性、有界性、保序性和 局部有界性等性质。这些性质有助于 我们更好地理解极限的概念和应用。
连续函数的图像
连续函数的图像是连续不断的曲线。在微积分中,我们经常需要研究连续函数的性质和 变化规律,以便更好地解决实际问题。
03
导数与微分
导数的定义与性质
要点一
导数的定义
导数是函数在某一点的变化率,表示函数在该点的切线斜 率。

《微积分》PPT课件

《微积分》PPT课件

公式.
微积分Ⅰ
第九章
重积分
10
说明: ① 使用公式 (1) 必须是 X- 型域, 使用公式 (2) 必 须是 Y - 型域. ② 若积分区域既是 X - 型区域又是 Y- 型区域,
则有
f ( x, y ) d x d y
dx
a
d
y
y 2 ( x)
D b
x 1 ( y)
微积分Ⅰ
第九章
重积分
6
在 [a, b] 上任意取定一点 x0, 作平行于 yOz 面的平
面 x = x0, 则该平面截曲顶柱体所得的截面是一个以区 间 [ 1 (x0), 2 (x0) ] 为底、曲线 z = f (x0 , y) 为曲边的 曲边梯形.
z
z f ( x, y)
y
A( x0 )
2
R
它的底为 D {( x, y ) | 0 y R2 x 2 , 0 x R},
微积分Ⅰ
第九章
重积分
23
∴所求体积为
8
R
0
R 2 x 2 dx
R2 x 2
0
dy
8 ( R 2 x 2 )dx
0
R
16 3 R . 3
微积分Ⅰ
第九章
重积分
24
1 x
y x

1
微积分Ⅰ
第九章
重积分
21
说明: ① 计算二重积分时, 选择积分次序是比较重要的 一步, 积分次序选择不当, 可能会使计算繁琐, 甚至无
法计算. 一般地, 既要考虑积分区域 D 的形状, 又要考
虑被积函数 f (x, y) 的特性. ② 应遵循 “能积分, 少分快, 计算简” 的原则.

大学微积分课件(PPT幻灯片版)

大学微积分课件(PPT幻灯片版)

0
1
2
n1
n
把区间[a, b]分成n个小区间,各小区间的长度依次

一x点i i (xii xi1x,i )(i,作1,乘2,积)f,(在i 各小(区i 间1上,2任,取)
)xi n
并作和S
记 x max{i1x1
,f(x2 ,i), xxin,},
积分下限
被 积 函 数
被 积
积 分
[a,b] 积分区间


达 式

注意:
(1) 积分值仅与被积函数及积分区间有关,
而与积分变量的字母无关.
b
b
b
a f ( x)dx a f (t)dt a f (u)du
(2)定义中区间的分法和 i 的取法是任意的.
(3)当函数 f ( x) 在区间[a, b]上的定积分存在时
)
x max{x1, x2 , xn }
趋近于零 ( x 0或者 n0) 时,
曲边梯形面积为 A lim0 i1 f (i )xi
实例2 (求变速直线运动的路程 ) 设某物体作直线运动,已知速度v v(t )是
时 间 间 隔 [T1 ,T2 ] 上 t 的 一 个 连 续 函 数 , 且 v(t) 0,求物体在这段时间内所经过的路程
b
k a f ( x)dx.
性质3 假设a c b
b
a
f
( x)dx

b
c
f
( x)dx .
补充:不论 a,b,c的相对位置如何, 上式总成立.
例 若 a b c,
c
a
f ( x)dx

b
c

微积分PPT课件

微积分PPT课件
故F ( x)在(0,)内为单调增加函数.
4.2 微积分基本定理(79)
10
例 3 设 f ( x)在[0,1]上连续,且 f ( x) 1.证明
x
2x f (t )dt 1在 (0,1) 内只有一个解. 0


F(x) 2x
x
f (t)dt 1,
0
f ( x) 1, F ( x) 2 f ( x) 0,

T2 v(t)dt
T1
s(T2 ) s(T1),
其中 s(t) v(t).
4.2 微积分基本定理(79)
3
2、积分上限函数
设函数 f ( x)在区间[a, b]上连续,并且设 x为 [a, b]上的一点, 考察定积分
x
x
a f ( x)dx a f (t)dt.
如果上限 x在区间[a, b]上任意变动,则对每个取
F ( x) d b( x)
dx a( x)
f (t)dt
f b( x)b( x)
f a( x)a( x)

0
F(x)
b( x)
f (t )dt f (t)dt
a( x)
0
b( x)
a( x)
f (t)dt f (t)dt,
0
0
F ( x) f b( x)b( x) f a( x)a( x)
F ( x)
0
x
2
,
0 f (t)dt
x
f ( x) 0, ( x 0) f (t)dt 0, 0
又( x t) f (t) 0, 且不恒为0,0 t x,

微积分讲解ppt课件

微积分讲解ppt课件

3.2.1 原函数和不定积分的概念
一、案例 二、概念和公式的引出
一、案例[路程函数]
已知物体的运动方程为 s(t) t2 ,则其速度为 v(t) s(t) (t 2 ) 2t
这里速度2t是路程t2的导数,反过来,路程t2又称为速 度2t的什么函数呢?若已知物体运动的速度v(t),又如 何求物体的运动方程s(t)呢?
f xdx f x C 或 df x f x C
3.2.2 基本积分表
一、案例 二、概念和公式的引出
一、案例[幂函数的不定积分]
因为

x 1

1

x
x 1
1 是 x 的一个原函数
于是
x dx x 1 C
32微积分基本公式321原函数和不定积分的概念322基本积分表323微积分基本公式321原函数和不定积分的概念一案例二概念和公式的引出一案例路程函数已知物体的运动方程为又称为速度2t的什么函数呢
3.2 微积分基本公式
3.2.1 原函数和不定积分的概念 3.2.2 基本积分表 3.2.3 微积分基本公式
1
1
类似地, 由基本初等函数的求导公式,可以写出与之对应的不定积分公式.
二、概念和公式的引出
1.基本积分表
(1)
kdx kx C ( k 为常数)
(2) x dx x 1 C
1
1
(3)

1 x
dx

ln
x

C
(4) a xdx a x C
即两个函数和(差)的定积分等于它们定积分的和(差). 性质1可推广到有限个函数的情形.
(2) 性质2 kf xdx k f xdx k为常数

《微积分入门》课件

《微积分入门》课件
《微积分入门》ppt课件
目录
• 微积分简介 • 极限与连续性 • 导数与微分 • 积分 • 微分方程
01
微积分简介
微积分的起源
01
微积分的起源可以追溯到古 代数学,如希腊数学家阿基 米德对面积和体积的研究。
02
微积分的发展在17世纪取得 了突破,以牛顿和莱布尼茨
的工作为基础。
03
微积分在18世纪和19世纪得 到了进一步的发展和完善, 成为现代数学的重要分支。
反常积分
反常积分的定义
反常积分又称为瑕积分,它是在一个区间上定义的,但与常规的定积分有所不同。反常 积分分为两种:一种是无穷区间上的反常积分,另一种是有限区间上无界函数的反常积
分。
反常积分的性质
反常积分也具有一些重要的性质,如可加性、区间可加性等。这些性质在处理一些特殊 函数或解决一些实际问题时非常有用。
微积分的应用
01
微积分在物理学、工程学、经济学、生物学等领域 有着广泛的应用。
02
微积分可以用来解决速度、加速度、功率、电流、 压力、密度等问题。
03
微积分在金融领域中可以用来计算股票价格、投资 回报率等。
微积分的基本概念
01
极限
极限是微积分的基本概念之一 ,它描述了函数在某一点的变
化趋势。
02
05
微分方程
微分方程的建立与求解
总结词
理解微分方程的建立过程,掌握求解微 分方程的基本方法。
VS
详细描述
微分方程是描述数学模型中变量之间变化 关系的工具,通过理解问题背景和数学模 型,可以建立微分方程。求解微分方程的 方法包括分离变量法、常数变异法、参数 变异法等,这些方法能够求解各种类型的 微分方程。

《微积分》PPT课件

《微积分》PPT课件

x x0
f (x)
f
(x0 )
何时函数f(x)在 点 处间断?
(1)f(x)在点 x0 处无定义;
(2)f(x)在点
x0 处有定义,但
时,函数f(x)以常数A为极限,记作
lim f (x) A或f (x) A(x )
x
定 义 2 . 5 : 若 对 于 任 意 给 定 的 正 数 , 总 存
在一个正数M,使得当x>M(x<-M)时,
恒 有 f (x) A< 成 立 , 则 称 当 x (x )
时,函数f(x)以常数A为极限,记作
y=arcsinx x [1,1], y [ , ]
22
y=arccos x [-1,1], y [0, ]
y=arctanx X R, y ( , ) 22
y=arccotx X R,y (0,)
1.4 初等函数(三角函数)
正弦函数和余弦函数
正切函数和余切函数
正割函数与余割函数
三角函数的基本关系式:
xx0
ua
2.4
被迫性定理 若在某个变化过程中,
恒有y≤x≤z,且 limy=limz=A,则limx=A
两个重要极限(必考)
单调有界定理
单调有界的数列
必有极限
} 单 调 增 + 有 上 界
单调减+有下界
数列收敛
定理 2.12
定义 2.9
定理 2.13
若数列 {an}满足 an an1(或an an1)(n N) 则称数列 {an}为单调增 加(或单调减少)数列。
当x 0时,等价无穷小量:
sinx~x tanx~x
arcsinx~x 1-cosx~x2

高等数学(微积分学)教学课件

高等数学(微积分学)教学课件

三、两个重要极限
重要极限Ⅰ lim sin x 1 x0 x
它可以拓展为 lim sin[ f (x)] 1 f (x)0 f (x)
sin 2x
例:lim x 2x
1
1 cos x
lim
x0
x2
lim
x0
2 sin 2 x 2
4 x2 4
lim
1
sin
x 2
x0 2 x
2
2
1 2
判断:lim sin x 1
叫做因变量.
数集 D 称为这个函数的定义域.
全体函数值的集合称为函数的值域.
2. 函数的表示法
解析法(公式法):用解析表达式(或公式)表示函数关系.
y x 1
表格法:用列表的方法来表示函数关系.
x123456789 y 1 4 9 16 25 36 49 64 81
图示法:用平面直角坐标系 xoy 上的曲线来表示函数关系.
x
x
1 0
x
x
1
1
1 lim( x0 1
x
)
1 x
x
lim
x0
(1 (1
x) x
1
x) x
lim x0
(1 x) x
1 (1)
[1 (x)] x
e e1
e2
一类特殊极限
若f
(x)
a0 xm a1xm1 a2 xm2 b0 xn b1xn1 b2 xn2
am1x am bn1x bn
x 果对于定义区间的任意点 , 恒有 f (x) f (x) , 则称f (x)
为 D 内的偶函数;如果恒有 f (x) f (x) , 则称 f (x)为D

《高等数学微积分》课件

《高等数学微积分》课件

实际应用
极值问题在经济学、物理学等领域有广泛应 用,如成本最小化、利润最大化等。
曲线的长度
曲线长度公式
利用微积分计算曲线的长度。
参数方程
通过参数方程将曲线表示为参数的函数,便于计算长度。
实际应用
在工程、地理等领域,需要计算各种曲线的长度,如河流长度、 道路长度等。
面积和体积
面积和体积公式
利用微积分计算平面图形的面积和空间图形的体积。
结合律
微积分运算还具有结合律,即函数的微积分运算顺序不影响结果。
交换律
此外,微积分运算还满足交换律,即函数的微积分运算满足交换律 。
微积分运算的法则
分部积分法
分部积分法是微积分运算中的一 种重要方法,它将两个函数的乘 积的导数转化为两个函数的导数 的乘积,从而简化了计算过程。
换元法
换元法是微积分运算中的另一种 重要方法,它通过引入新的变量 来简化计算过程。
如何提高微积分的计算能力?
总结词:掌握计算方法 总结词:细心谨慎 总结词:多做练习题
详细描述:提高微积分的计算能力需要熟练掌握各种计 算方法,如极限的计算、导数的计算和积分的计算等。 掌握这些方法可以更快更准确地完成计算。
详细描述:在微积分的计算过程中,需要细心谨慎,避 免因粗心大意而导致的错误。仔细检查每一步的计算过 程,确保准确性。
微分
微分的定义与性质
微分是函数在某一点附近的小变化量,它描述了函数在该点附近的变化趋势。微分具有一些重要的性质,如线性性、 可加性和可乘性。
微分的计算方法
包括微分的四则运算法则、复合函数的微分法则、隐函数的微分法则等。这些方法可以帮助我们快速准确地计算函数 的微分。
微分的应用
微分在许多领域都有广泛的应用,如近似计算、误差估计、优化问题等。例如,在近似计算中,微分可 以用来估计函数在某一点的近似值;在优化问题中,微分可以用来寻找函数的极值点。

《微积分》课件

《微积分》课件
微分学主要研究函数在某一点附近的 局部行为,包括切线、函数的变化率 等;积分学则研究函数在某个区间上 的整体行为,包括面积、体积等。
微积分的历史背景
01
微积分的发展可以追溯到古代数 学,如希腊数学家阿基米德在求 面积和体积时已经有了积分学的 萌芽。
02
微积分的真正奠基人是牛顿和莱 布尼茨,他们分别独立地发展出 了微积分的基本理论,为后来的 数学发展奠定了基础。
《微积分》PPT课件
contents
目录
• 微积分的定义与历史 • 微积分的基本概念 • 微积分的应用 • 微积分的解题技巧 • 微积分的重点与难点解析 • 微积分的习题与答案解析
01
微积分的定义与历史
微积分的定义
微积分是研究函数、极限和连续性的 数学分支,通过微分和积分的方法来 研究函数的性质和变化规律。
极限的运算性质与法则
1 2
极限的运算性质
极限的四则运算法则、复合函数的极限运算法则 等。
极限的法则
极限的保号性、极限的局部有界性等。
3
注意事项
理解极限的运算法则和性质是解决极限问题的关 键,需要注意运算过程中的等价变换和放缩技巧 。
导数的几何意义与运算性质
导数的几何意义
切线的斜率、函数图像的变化率等。
习题一:极限的运算
$lim_{x to infty} frac{1}{x}$
判断下列叙述是否正 确,并说明理由
$lim_{x to 0} (1 + x)^{1/x}$
习题一:极限的运算
$lim_{x to 0} frac{sin x}{x} = 1$
$lim_{x to infty} frac{1}{x} = 0$
$lim_{x to 0} (1 + x)^{1/x} = e$
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分课件完整版
微积分课件完整版
微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。

它是数学的一个基础学科。

内容主要包括极限、微分学、积分学及其应用。

微分学包括求导数的运算,是一套关于变化率的理论。

它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。

积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

词目释义
从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代。

整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿。

(1)运动中速度与距离的互求问题
求物体在任意时刻的速度和加速度;
反过来,已知物体的加速度表为以时间为
变量的函数公式,求速度和距离。

这类问
题是研究运动时直接出现的,困难在于,
所研究的速度和加速度是每时每刻都在变
化的。

比如,计算物体在某时刻的瞬时速度,就不能像计算平均速度那样,用移动
的距离去除运动的时间,因为在给定的瞬间,物体移动的距离和所用的时间是
是无意义的。

但是,根据物理,每个
运动的物体在它运动的每一时刻必有速度,这也是无疑的。

已知速度公式求移动距离
的问题,也遇到同样的困难。

因为速度每
时每刻都在变化,所以不能用运动的时间
乘任意时刻的速度,来得到物体移动的距离。

(2)求曲线的切线问题
这个问题本身是纯几何的,而且对于
科学应用有巨大的重要性。

由于研究天文
的需要,光学是十七世纪的一门较重要的
科学研究,透镜的设计者要研究光线通过
透镜的通道,必须知道光线入射透镜的角
度以便应用反射定律,这里重要的是光线
与曲线的法线间的夹角,而法线是垂直于
切线的,所以总是就在于求出法线或切线;另一个涉及到曲线的切线的科学问题出现
于运动的研究中,求运动物体在它的轨迹
上任一点上的运动方向,即轨迹的切线方向。

(3)求长度、面积、体积、与重心问
题等
这些问题包括,求曲线的长度(如行
星在已知时期移动的距离),曲线围成的
面积,曲面围成的体积,物体
的重心,一个相当大的物体(如行星)作用于另一物体上的引力。

实际上,关于
计算椭圆的长度的问题,就难住数学家们,以致有一段时期数学家们对这个问题的进
一步工作失败了,直到下一世纪才得到新
的结果。

又如求面积问题,早在古希腊时
期人们就用穷竭法求出了一些面积和体积,如求抛物线在区间
上与
轴和直线
所围成的面积
,他们就采用了穷竭法。

当分割的份
数越来越多时,所求得的结果就越来越接
近所求的面积的精确值。

但是,应用穷竭法,必须添上许多技艺,并且缺乏一般性,常常得不到数字解。

当阿基米德的工作在
欧洲闻名时,求长度、面积、体积和重心
的兴趣复活了。

穷竭法先是逐渐地被修改,后来由于微积分的创立而根本地修改了。

(4)求最大值和最小值问题(二次函数,属于微积分的一类)
例如炮弹在炮筒里射出,它运行的水
平距离,即射程,依赖于炮筒对地面的倾
斜角,即发射角。

一个“实际”的问题是:求
能够射出最大射程的发射角。

十七世纪初期,Galileo断定(在真空中)发射角是
时达到最大射程;他还得出炮弹从各个不同角度发射后所达到的不同的最大高度。

研究行星的运动也涉及到最大值和最小值的问题。

基本内容
数学分析
研究函数,从量的方面研究事物运动变化是微积分的基本方法。

这种方法叫做数学分析。

从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已
习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。

微积分
微积分的基本概念和内容包括微分学和积分学。

微分学的主要内容包括:极限理论、导数、微分等。

积分学的主要内容包括:定积分、不定积分等
[微积分课件完整版]相关文章:
1.《学步》课件
2.gkh的课件
3.《口技》的课件
4.authorware课件作品
5.乐高小狗课件
6.简介课件的分类
7.位置与方向的课件
8.dtnl课件ppt
9.中国戏曲课件
10.《茶馆》的课件。

相关文档
最新文档