电抗器和电磁干扰滤波器应用技术

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

電抗器與電磁干擾濾波器

1.输入电抗器

通用变频器的整流部分采用了二极管不可控桥式整流电路,中间滤波部分采用大电解电容作为滤波器,所以整流器的输入电流实际上是电容器的充电电流,呈较为陡峻的脉冲波,其谐波分量较大。为了消除谐波,可采用以下对策:

1.1增加变频器供电电源内阻抗

通常情况下,电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用。这种内阻抗就是变压器的短路阻抗。当电源容量相对变频器容量越小时,则内阻抗值相对越大,谐波含量越小;电源容量相对变频器容量越大时,则内阻抗值相对越小,谐波含量越大。当电源内阻为4%时,可以起到很好的谐波抑制作用。所以选择变频器供电电源变压器时,最好选择短路阻抗大的变压器。

1.2安装电抗器

安装电抗器实际上是从外部增加变频器供电电源的内阻抗。在变频器的交流侧安装输入电抗器,抑制谐波电流,提高功率因数以及削弱输入电路中的浪涌电压、电流对变频器的冲击,削弱电源电压不平衡的影响,一般情况下,都必须加进线电抗器。交流电抗器的结构是在三相铁心上绕上三相线圈,实物外形如图4所示。由于电抗器是长期接入电路的,故导线截面积应足够大,应能允许长时间流过变频器的额定电流。

图4三相交流电抗器(AC REACTOR)实物图

其实,大多数变频器说明书中的选配件连接图上,往往都有加装输入电抗器这一部分的,如图5所示。但在实际安装过程中,用户的要求是价格低、满足使用要求就行了,使得技术人员在安装中也往往将输入电抗器“省略”掉了,虽然安装初期并无异常现象。殊不知,这样给日后的运行带来无尽的后患。

图5 输入电抗器和直流电抗器连接示意图

例如,在某地安装了一台小功率变频器,先后出现了烧毁三相整流桥的故障。变频器为2.2 kW,所配电机为1.1 kW,且负载较轻,运行电流不到2 A,电源电压在380 V左右,很稳定。因而现场看不出什么异常。但先后更换了三台变频器,运行时间均不足二个月,检查都是三相整流桥烧毁,原因何在?赴现场全面检查,发现在同一车间、同一供电线路上还安装了另两台大功率变频器,三台变频器既有同时运行、也有不同时起/停的可能。根据现场分析后认为,大功率变频器的运行与起停,就是小功率变频器损坏的根源所在。这是为什么?流入两台大功率变频器的非线性电流,使得电源侧电压(电流)波型的畸变分量大大增加(相当于在现场安装

了两台电容补偿柜,因而形成了动荡的电容投切电流),但对于大功率变频器而言,由于其内部空间较大,输入电路的绝缘处理易于加强,所以不易造成过压击穿,但小功率变频器,因内部空间较小,绝缘耐压是个薄弱环节,电源侧的浪涌电压冲击,便使其在劫难逃了。

另外,相对于电源容量而言,小功率变频器的功率显然太不匹配。当变频器的功率容量数倍小于电源容量时,变频器输入侧的谐波分量则大为增强,这种能量,即是危及变频器内三相整流桥的一个不容忽视的因素。

又如,某化工厂安装了数台进口变频器,工作电流和运行状态都正常,但也屡次出现炸毁整流桥的故障,往往在运行中毫无征兆地就爆裂了。现场勘测和分析:该厂为补偿无功功耗,在电控室安装了数台电容补偿柜。大容量电容器的投、切在电网中形成了幅值极高的浪涌电压和浪涌电流。观察电容补偿柜中的电容进线,并未按常规要求加装浪涌抑制电抗器,此电抗器的作用实质上不但抑制了进入电容器的浪涌电流,也同时改善了整个电网内的浪涌冲击。

当生产线进行了变频改造后,补偿电容的投、切(充、放电)电流与变频器整流造成的谐波电流互相作用,在电网系统中形成了瞬时的动荡的电压尖峰,该电压尖峰远远超过了电源电压,击穿变频器中的整流模块也就顺理成章了。

综合起来看,以上三个问题其实只是一个问题,即电网电压波形的畸变形成了电压尖峰,使电器设备不堪其冲击而损坏,因而处理的措施也很简单,即在变频器输入端接入电抗器。

通过上面事例可以看出,输入端接电抗器是为了防止电网谐波变化引起干扰,在三相进线电压严重不平衡或该电网内有电容补偿器或可控硅负载的场合,输入电抗器的优势就明显体现出来。它主要保护电源对整流桥和充电电阻的冲击。对于小功率(7.5 kW以下),单独用输入电抗器要比用直流电抗器的效果好得多。

综合上述,在以下情况中必须加入输入电抗器:

a.变频器所用之处的电源容量与变频器容量之比为10:1以上;

b.同一电源上接有可控硅负载或带有开关控制的功率因数补偿装置;

c.三相电源的电压不平衡度大于3%。

在电源与变频器输入侧之间串联交流电抗器,这样可使整流阻抗增大来有效抑制高次谐波电流,减少电源浪涌对变频器的冲击,改善三相电源的不平衡性,提高输入电源的功率因数(提高到0.75~0.85),这样进线电流的波形畸变大约降低30%~50%,是不加电抗器谐波电流的一半左右。

电抗器分为输入电抗器和输出电抗器,他们的作用各不相同(电抗器型号中,I表示进线,O表示出线)。那么,输出端的电抗器又有什么作用?

2.输出电抗器

变频器接输出电抗器是为了隔离变频器对其他设备的干扰。

当变频器输出到电机的电缆长度大于产品规定值时,应加输出电抗器来补偿电机长电缆运行时的耦合电容的充放电影响,避免变频器过流。并能抑制变频器输出的谐波,起到减小变频器噪声的作用。加装输出电抗器后还可以钝化变频器输出电压(开关频率)的陡度,减少逆变器中的功率元件的扰动和冲击。输出电抗器有两种类型,一种输出电抗器是铁心式电抗器,当变频器的载波频率小于3 kHz时采用;另一种输出电抗器是铁氧体式,当变频器的载波频率小于6 kHz时采用。变频器输出端增加输出电抗器的作用还可以增加变频器到电动机的导线距离,输出电抗器可以有效抑制变频器的IGBT开关时产生的瞬间高电压,减少此电压对电缆绝缘和电机的不良影响。同时为了增加变频器到电机之间的距离可以适当加粗电缆,增加电缆的绝缘强度,尽量选用非屏蔽电缆。

有的变频器厂商出于对产品宣传的需要,称变频器与电机之间的距离较远时才建议加输出电抗器。考虑到现场的实际情况及电缆铺设情况,根据本人的工作经验,认为在50 m以上最好加输出电抗器。

此外还应根据变频器的容量进行设计,大容量的变频器建议都加上输入、输出电抗器。对变频器运行状况和自身可靠性都有很大好处。

2.1关于变频器电抗器的选择问题

2.1.1额定交流电流的选择

额定交流电流是从发热方面设计电抗器的长期工作电流,同时应该考虑足够的高次谐波分量。即输出电抗器实际流过的电流是变频器电机负载的工作电流。

2.1.2电压降

相关文档
最新文档