NMR各种谱图

合集下载

核磁谱图NMR常见溶剂峰杂质峰分析中文版

核磁谱图NMR常见溶剂峰杂质峰分析中文版

测试核磁的样品一般要求比较纯,并且能够溶解在氘代试剂中,这样才能测得高分辨率的图谱。

为不干扰谱图,所用溶剂分子中的氢都应被氘取代,但难免有氢的残余(1%左右),这样就会产生溶剂峰;除了残存的质子峰外,溶剂中有时会有微量的H2O而产生水峰,而且这个H2O峰的位置也会因溶剂的不同而不同;另外,在样品(或制备过程)中,也难免会残留一些杂质,在图谱上就会有杂质峰,应注意识别。

常用氘代溶剂和杂质峰在1H谱中的化学位移? ?单位:ppm溶剂? ? —?? CDCl3?? (CD3)2CO? (CD3)2SO? C6D6?? ?CD3CN?? CD3OH?? D2O溶剂峰—7.26 2.05 2.49 7.16 1.94 3.31 4.80水峰— 1.56 2.84 3.33 0.40 2.13 4.87 —乙酸— 2.10 1.96 1.91 1.55 1.96 1.99 2.08丙酮— 2.17 2.09 2.09 1.55 2.08 2.15 2.22乙腈— 2.10 2.05 2.07 1.55 1.96 2.03 2.06苯—7.36 7.36 7.37 7.15 7.37 7.33 —叔丁醇CH3 1.28 1.18 1.11 1.05 1.16 1.40 1.24OH —— 4.19 1.55 2.18 ——叔丁基甲醚CCH3 1.19 1.13 1.11 1.07 1.14 1.15 1.21OCH3 3.22 3.13 3.08 3.04 3.13 3.20 3.22 氯仿—7.26 8.02 8.32 6.15 7.58 7.90 —环己烷— 1.43 1.43 1.40 1.40 1.44 1.45 —1,2-二氯甲烷 3.73 3.87 3.90 2.90 3.81 3.78 —二氯甲烷— 5.30 5.63 5.76 4.27 5.44 5.49 —乙醚 CH3(t) 1.21 1.11 1.09 1.11 1.12 1.18 1.17CH2(q) 3.48 3.41 3.38 3.26 3.42 3.49 3.56 二甲基甲酰胺CH 8.02 7.96 7.95 7.63 7.92 7.79 7.92CH3 2.96 2.94 2.89 2.36 2.89 2.99 3.01CH3 2.88 2.78 2.73 1.86 2.77 2.86 2.85二甲基亚砜— 2.62 2.52 2.54 1.68 2.50 2.65 2.71 二氧杂环— 3.71 3.59 3.57 3.35 3.60 3.66 3.75 乙醇 CH3(t) 1.25 1.12 1.06 0.96 1.12 1.19 1.17 CH2(q) 3.72 3.57 3.44 3.34 3.54 3.60 3.65OH(s) 1.32 3.39 3.63 — 2.47 ——乙酸乙酯CH3CO 2.05 1.97 1.99 1.65 1.97 2.01 2.07 OCH2(q) 4.12 4.05 4.03 3.89 4.06 4.09 4.14CH3(t) 1.26 1.20 1.17 0.92 1.20 1.24 1.24甲乙酮CH3CO 2.14 2.07 2.07 1.58 2.06 2.12 2.19 CH2(q) 2.46 2.45 2.43 1.81 2.43 2.50 3.18CH3(t) 1.06 0.96 0.91 0.85 0.96 1.01 1.26乙二醇— 3.76 3.28 3.34 3.41 3.51 3.59 3.65润滑脂 CH3(m) 0.86 0.87 —0.92 0.86 0.88 —CH2(br) 1.26 1.29 — 1.36 1.27 1.29 —正己烷CH3(t) 0.88 0.88 0.86 0.89 0.89 0.90 —CH2 (m) 1.26 1.28 1.25 1.24 1.28 1.29 —甲醇CH3 3.49 3.31 3.16 3.07 3.28 3.34 3.34 OH 1.09 3.12 4.01 2.16 ——正戊烷 CH3(t) 0.88 0.88 0.86 0.87 0.89 0.90 —CH2(m) 1.27 1.27 1.27 1.23 1.29 1.29 —异丙醇CH3(d) 1.22 1.10 1.04 0.95 1.09 1.50 1.17 CH 4.04 3.90 3.78 3.67 3.87 3.92 4.02 硅脂—0.07 0.13 —0.29 0.08 0.10 —四氢呋喃 CH2 1.85 1.79 1.76 1.40 1.80 1.87 1.88 CH2O 3.76 3.63 3.60 3.57 3.64 3.71 3.74 甲苯 CH3 2.36 2.32 2.30 2.11 2.33 2.32 —CH(o/p)7.17 7.20 7.18 7.02 7.30 7.16 —CH(m) 7.25 7.20 7.25 7.13 7.30 7.16 —三乙基胺 CH3 1.03 0.96 0.93 0.96 0.96 1.05 0.99 CH2 2.53 2.45 2.43 2.40 2.45 2.58 2.57石油醚—0.5-1.5 0.6-1.9 —————。

有机化合物波谱解析第三章 核磁共振(NMR)

有机化合物波谱解析第三章  核磁共振(NMR)
第三章 核磁共振(NMR)
• 目的要求 • 1. 掌握核的能级跃迁与电子屏蔽效应的关系以及
影响化学位移的主要因素,能根据化学位移值初步 推断氢或碳核的类型 • 2. 掌握磁不等同的氢或碳核、1H-NMR谱裂分情况、 偶合常数
• 3. 掌握低级偶合中相邻基团的结构特征,并能初 步识别高级偶合系统
• 4. 掌握常见13C-NMR谱的类型及其特征 • 5. 熟悉发生核磁共振的必要条件及其用于有机化
合物结构测定的基本原理
• 6. 了解脉冲傅立叶变换核磁共振测定方法的原理 • 7. 了解1H-NMR及13C-NMR的测定条件以及简化图谱
的方法,并能综合应用图谱提供的各种信息初步判 断化合物的正确结构
主要内容
• 1. 核磁共振原理 • 2. 核磁共振仪器 • 3. 氢核磁共振(1H-NMR) • 碳核磁共振(13C-NMR) •
然而,要给出尖锐的NMR峰,以提高分 辨率,需要驰豫时间长,互相矛盾,最佳 半衰期范围在0.1-1秒,相应的谱线宽度为 1cps。
4)核的进动与核的共振
质子在外加磁场作用下,产生怎样的动力方式呢? E=μHB0
ΔE0
E=-μHB0 HB00 陀螺在与重力作用方向吸偏差时,就产生摇头动力, 称为进动。核磁矩在静磁场环境中围绕B0以ω角频 率进动,称之为拉摩尔(Larmor)进动.
• BN = B0 - ·B0
• BN = B0·(1 - ) • 氢核外围电子云密度的大小,与其相邻
原子或原子团的亲电能力有关,与化学 键 子 高 ·B的 云 场0亦类密;小C型度H;有大3-共关,O,振。·氢吸B如0核收大CH外出,3-围现共Si电振在,子吸低氢云收场核密出。外度现围小在电,
B0
二、产生核磁共振的必要条件

NMR培训之DEPT谱

NMR培训之DEPT谱
DEPT谱
DEPT谱(Distortionless Enhancement by Polarization Transfer),又称为无畸变极 化转移技术,是一种碳谱核磁共振谱中的 一种检测技术,主要用于区分碳谱图中的 伯碳、仲碳、叔碳和季碳。
DEPT谱是在NMR中用来区分伯仲叔季碳的一种谱图。信号强度仅仅与脉冲倾倒角 θ 有关, ; ; 。 为了区分不同的碳,一般要做三次实验,分别为不同的角度,其中季碳不出峰: θ =135度的DEPT谱图:甲基,次甲基的峰向上(即信号为正),亚甲基为倒峰 (即信号为负)。 θ =90度的DEPT谱图:只能看到次甲基向上的峰。 θ =45度的DEPT谱图:所有的次甲基、亚甲基、 甲基的峰都向上(不常用,因为无法达到区分的 目的)。 通过135度和90度谱图即可区分出伯碳、仲碳、 叔碳,由于季碳在所有的DEPT谱图中都没有信 号,因此只要和全谱比较,就很容易的得到季碳。
下面是以4-甲基-2-戊酮为例所测的核磁氢谱、 碳谱及DEPT谱的谱图。
5 2 1 3 4 6 -3 4—5+6
1-2
此张谱图出现了错误,正常的90°应该只有CH 出正峰,其他C不出峰。这是我们仪器的故障, 咨询了布鲁克的工程师,他们暂时也不能解决, 有待下次核磁维修时解决。虽然C都出了正峰, 但通过峰高也可以判断出,最高的峰一定

核磁共振波谱法(NMR)

核磁共振波谱法(NMR)

振实验时,所用的磁强强度越高,发生核磁共振所
需的射频频率也越高。
讨论:
(1)磁场固定时( B0一定),不同的核具有不同的共振频率, 共振频率取决于核本身,大的核,发生共振所需的照射频率也大; 反之,则小。 (2)同样的核(一定),外加磁场B0越大,共振频率越大。 (3)若共振频率一定, 越大, B0越小。 例:外磁场B0=4.69T(特斯拉,法定计量单位) 1H 和13C的共振 频率为
样品,溶剂CDCl3, CD2Cl2, THF, etc.
当B = B0 +δB,使ν恰好等于照射样品的固定无线电波
频率ν0,样品中的氢原子核发生自旋能级跃迁。 B0 为核磁共振仪电磁铁的磁场强度,δB为扫描线圈产
生的磁场增量,5-10mG· min-1。
要满足核磁共振条件,可通过二种方法来实现
1. I=0 的原子核O(16);C(12);S(32)等 ,无自旋, 无磁性,称为非磁性核,这类核不会发生核磁共振。不产生 共振吸收。
2. I=1 或 I>0的原子核: I=1 : 2H,14N, I=3/2: 11B,35Cl,79Br,81Br I=5/2: 17O,127I
这类原子核的核电荷分布可看作一个椭圆体,电荷分布 不均匀,共振吸收复杂,研究应用较少;
频率扫描(扫频):固定磁场强度,改变射频频率 磁场扫描(扫场):固定射频频率,改变磁场强度 各种核的共振条件不同,如:在1.4092特斯拉的磁场,各 种核的共振频率为:
1H 13C 19F 31P
60.000 15.086 56.444 24.288
MHZ MHZ MHZ MHZ
磁场强度 0.9400 特斯拉 1.4092 2.3500 4.7000 7.1000 11.7500

核磁共振图谱解析解析NMR

核磁共振图谱解析解析NMR

同核J-偶合(Homonuclear J-Coupling)
多重峰出现的规则: 1. 某一原子核与N个相邻的核相互偶合将给出(n+1)重峰. 2. 等价组合具有相同的共振频率.其强度与等价组合数有关. 3. 磁等价的核之间偶合作用不出现在谱图中. 4. 偶合具有相加性. 例如: observed spin coupled spin intensity
JCH JCH
H C
p-pulse on H
H C
这相当于使用一系列1800脉冲快速照射氢核。 pH pH
C-H
+J/2
C-H
-J/2
C-H
+J/2
pH
C-H
-J/2
pH
C-H
+J/2
pH
C-H
-J/2
Fig. 4-2.5 The proton-decoupled 13C spectrum of 1-propanol
H-12C H-13C H-13C x100
105 Hz
proton-coupled spectra (nondecoupled spectra)
Quartet, J=127 Hz
Proton-coupled spectra for large molecules are often difficult to interpret. The multiplets from different C commonly overlap because the 13C-H coupling constants are frequently larger than the chemical differences of the C in the spectrum. 原子核间的偶合导致谱图 的复杂化(―精细裂分”), 灵敏度下降。 Fig. 4-2.4 Ethyl phenylacetate. (a) The proton-coupled 13C spectrum. (b) The proton-decoupled 13C spectrum

核磁共振波谱法(NMR)

核磁共振波谱法(NMR)

1H
60.000 MHZ
13C
15.086 MHZ
19F
56.444 MHZ
31P
24.288 MHZ
对于1H 核,不同的频率对应的磁场强度:
射频 40 MHz 磁场强度 0.9400 特斯拉
60
1.4092
100
2.3500
200
4.7000
300
7.1000
500
11.7500
核磁共振仪
分类: 按磁场源分:永久磁铁、电磁铁、超导磁场 按交变频率分:40 ,60 ,90 ,100 , 200 ,500,--, 800 MHz(兆赫兹),频率越高,分辨率越高 按射频源和扫描方式不同分: 连续波NMR谱仪(CW-NMR) 脉冲傅立叶变换NMR谱仪(FT-NMR)
奇数 奇数或偶数 1/ 2
自旋球体

1H, 13C, 15N, 19F, 31P
奇数 奇数或偶数 3/2, 5/2,--- 自旋惰球体

11B,17O,33S,35Cl,79Br,127I
偶数 奇数
1, 2, 3, --- 自旋惰球体

2H, 10B, 14N
1. I=0 的原子核O(16);C(12);S(32)等 ,无自旋, 无磁性,称为非磁性核,这类核不会发生核磁共振。不产生 共振吸收。
CD3COCD3 CDCl3 CD2Cl2 CD3CN C6D6 D2O (CD3CD2)2O (CD3)2O (CD3)2NCDO CD3SOCD3 CD3CD2OD CD3OD C4D8O C6D5CD3 C5D5N C6H12
核磁共振波谱主要参数
用于结构分析的主要参数有化学位移, 自旋偶合常数,信号强度(峰面积)。

核磁共振谱(NMR)v3_1

核磁共振谱(NMR)v3_1

• 有机化合物分子中,与不同基团相连的H周围电子云密度不一样,在 外加磁场中产生的抗磁的感应磁场大小不同,因此,发生共振所需的 外加磁场强度或射电频率也就不同.
Cl 例: Cl-CH2-C-CH3 1,2,2-三氯丙烷
Cl
质子周围电 子云密度越 高,屏蔽作 用就越大, 该质子信号 就要在越高 的磁场下获 得。
收峰出现在低场。
质子周围电子云密度↑ ,感应磁场↑ ,屏蔽效应↑在高场共振,δ值 质子周围电子云密度↓ ,感应磁场↓ ,屏蔽效应↓在低场共振,δ值
n 各种典型的质子化学位移
2 PDF 文件使用 "pdfFactory Pro" 试用版本创建 ÿ
(3) 峰的裂分和自旋偶合
乙烷1HNMR图
环已烷的1HNMR图
1,2-二溴乙烷的1HNMR图
对二甲苯1HNMR图
4 PDF 文件使用 "pdfFactory Pro" 试用版本创建 ÿ
乙苯
1,1-二溴乙烷
2-甲基-1-丁烯
2-溴丙烷
二乙胺
核磁共振氢谱实例分析
C6H5CH2CH2OOCCH3
ab c
d
a
d
c
b
5 PDF 文件使用 "pdfFactory Pro" 试用版本创建 ú
• 实例分析
b a
b
a
d
e
c
a cb d
p-ClC6H4COCH3
a b c~e
CH3CH2I
6 PDF 文件使用 "pdfFactory Pro" 试用版本创建 ÿ
H。
第一种自旋组合:等于在Ha周围增加两个小磁场,其方向与外加磁场相同。 在扫描时,外加磁场强度比H。略小时,即发生能级的跃迁。 第二种组合:等于增加了两个方向相反,强度相等的小磁场,对Ha周围的磁 场强度等于没有影响。

NMR,VU,IR,MS四大图谱解析

NMR,VU,IR,MS四大图谱解析

13C-NMR谱图解析13C-NMR谱图解析流程1.分于式的确定2.由宽带去偶语的谱线数L与分子式中破原子数m比较,判断分子的对称性.若L=m,每一个碳原子的化学位移都不相同,表示分子没有对称性;若L<m,表示分子有一定的对称性,L值越小,分子的对称性越高。

3.标出各谙线的化学位移Qc,确定谙线的归属在结构鉴定中,常用的13C-NMR技术是宽带去偶和偏共振去偶。

根据宽带去偶谱测定的化学位移,偏共振去偶谱中各类碳的偶合谱线数,以及峰高相对和对称状况,对各谱线作大体归属,从而辨别碳核的类型和可能的官能团。

结构比较复杂的化合物,根据上述方法对13C-NMR谱线归属碰到困难时,可借助测定T1值作进一步的辨别,特别在归属不同季碳的谱线时,T1值的测定更有其实用价值。

另外,在1H-NMR谱线归属明确的情况下,还可采用质子选择去偶技术来归属难以辨认的13C-NMR 谱线。

在偏共振去偶时出现的虚假远程偶合现象也可以为归属某些特殊结构单元提供有用的信息,1H谱与13C谱相结合,有利于彼此信号归属。

各类碳核的化学位移范围如下图所示:表1基团类型Qc/ppm烷0-60炔60-90烯,芳香环90-160羰基1604.组合可能的结构式在谱线归属明确的基础上,列出所有的结构单元,并合理地组合成一个或几个可能的工作结构。

5.确定结构式用全部光谱材料和化学位移经验计算公式验证并确定惟一的或可能性最大的结构式,或与标准谱图和数据表进行核对。

经常使用的标准谱图和数据表有:经验计算参数1.烷烃及其衍生物的化学位移一般烷烃灸值可用Lindeman-Adams经验公式近似地计算:∑Qc5.2=nA-+式中:一2.5为甲烷碳的化学位移九值;A为附加位移参数,列于下表,为具有某同一附加参数的碳原子数。

表2注:1(3).1(4)为分别与三级碳、四级碳相连的一级碳;2(3)为与三级碳相连的二级碳,依此类推。

取代烷烃的Qc为烷烃的取代基效应位移参数的加和。

核磁共振一维二维谱图

核磁共振一维二维谱图

A. HSQC (获得1JH-, n ≥ 2之关系)
4. 总相关谱
TOCSY (获得所有J偶合关系)
5. NOESY谱
NOESY (获得分子内质子空间关系)
NOESY (获得分子内质子空间关系)
测样须知
一、送样前:
必须熟知样品的溶解性; 样品必须干燥,纯度不得低于90%,不得含磁性物质; 测试用核磁管可自行购置或到核磁实验室领取(支/12元),核
• 三、本实验室只满足谱图处理、打印等要求,不 回答有关样品解析具体问题,工作站上不解析谱 图,请谅解。
• 建议自己处理谱图,常用软件:MestReNova, Nuts,Topspin等。
磁管必须干燥干净,无裂痕;
样品溶于氘代试剂(0.5ml)后须呈透明均一相,若有固体微粒 必须首先过滤,溶解后样品在核磁管中高度不得低于4 cm。
标签请勿粘贴,套在核磁管上即可。 样品量:1H 谱约3——10 mg样品/0.5 mL氘代试剂; 13C 谱>15 mg样品/0.5 mL氘代试剂,13C 谱样品浓度要尽可能
1. 二维J分辨谱
A.
(获得偶合常数)
B. 异核J-resolved (获得偶合常数)
2. 同核化学位移相关谱
A. COSY (获得3JH-H耦合关系)
A1. COSY90 (获得3JH-H耦合关系)
B. INADEQUATE (获得1JC-C之关系)
3. 异核化学位移相关谱
A. HMQC (获得1JH-C之关系)
13------15a, 12, 14 15a-----15b, 14, 16
1D NOE
5、其他一维谱图及其应用
• T1(弛豫时间) • 变温NMR • 其他适合测定NMR杂核(19F,31P,15N,

核磁共振氢谱及碳谱(NMR)

核磁共振氢谱及碳谱(NMR)

O
CH2 C O CH2 127-134 41 171 精品课件61
CH3 14
影响碳谱化学位移的因素
• 2p电子密度的影响 2p轨道电子密度增加,则轨道扩大,<r-3>2p减 小,|p|减小,dC减小。
• 如电子体系:电子密度r与dC有一个线性关

dC = 160r + 287.5 (ppm)
即电子密度r越大,化学位移越小
精品课件 180.1
H2C
OH
17 0.4 OH
12 7.2
O
CH 19 0 .7
O
C CH3 19 5.7
O
C OH 17 3.5
烷烃中C的化学位移
• d 的近似计算
C (k) 1.3 2 3 Z ki(R i)Z ki'(R i')S
i
i
Zi—取代基增值;s—邻位位阻;kj—g取代基构象角度
7 7 .5 3 5 .7 3 2 .9
其中:
DE——电子的激发能
r ——2p电子与核的距离
Q——为分子轨道理论中的键级:QAA为A核的2p轨道电子数目的
贡献,
为与A相15.39.2 连14.033.8 14.6的45.5 核的贡献,二者之和为键级的贡献
注意其中的负号。 26.9 I 21.5 Br 18.7 Cl
CH4 CH3X CH2X2 CHX3 CX4 X=Cl -2.3 23.8 52.8 77.7 95.5
X=I
-21.8 -55.1 -141.0 -
292.5
精品课件
烷烃中C的化学位移
d.超共轭效应 N、O、F的取代,使g-C原子高场位移比烷基取代 更明显。

核磁共振光谱NMR光谱

核磁共振光谱NMR光谱
可见,弛豫决定处于高能级核寿命。而弛豫时间长,核磁共振信号 窄;反之,谱线宽。
弛豫可分为纵向弛豫和横向弛豫。
32
纵向弛豫:
处于高能级的核将其能量及时转移给周围分子骨架(晶格)
中的其它核,从而使自己返回到低能态的现象。又称自旋
-晶格弛豫。
其半衰期用T1表示
横向弛豫: 当两个相邻的核处于不同能级,但进动频率相同时,高 能级核与低能级核通过自旋状态的交换而实现能量转移 所发生的弛豫现象。又称自旋-自旋弛豫。
N NH i N NL
j
E
h
e kT e kT
通 过 计 算 , 在 常 温 下 , 1H 处 于 B0 为 2.3488T的磁场中,处于低能级的1H 核数目仅比高能级的核数目多出百万 分之十六!
会造成什么后果?
27
随实验进行,低能级核越来越少,最后高、低能级上的 核数目相等--------饱和-----从低到高与从高到低能级的 跃迁的数目相同---体系净吸收为0-----共振信号消失!
问世,NMR开始广泛应用
4
第二阶段 70年代:Fourier Transform的应用
13C-NMR技术(碳骨架) (GC,TLC,HPLC技术的发展) 第三阶段 80年代:Two-dimensional (2D) NMR诞生 (COSY,碳骨架连接顺序,非键原 子间距离,生物大分子结构,……)
5
这个过程称之弛豫过程(Relaxation),即 高能态的核以非辐射的形式放出能量回到 低能态重建Boltzmann分布。
30
两种弛豫过程:
N
h
Relaxation
N+
31
谱线宽度
据Heisenberg测不准原理,激发能量E与体系处于激发态的平均时 间(寿命)成反比,与谱线变宽成正比,即:

【课件】核磁共振(NMR)的原理和一些图谱分析的技巧

【课件】核磁共振(NMR)的原理和一些图谱分析的技巧
1H-NMR的讯号依靠这些微弱过剩,低能态核吸收电 磁辐射跃迁到高能级而产生信号。
如果高能态核无法返回到低能态,那末随着跃迁的 不断进行,这种微弱的优势将进一步减弱直至消失, 处于低能态的1H核数目与处于高能态1H核数目相等, 与此同步,NMR的讯号也会逐渐减弱直至最后消失。 上述这种现象称为饱和。
实际上多用后者。
对于1H 核,不同的频率对应的磁场强度:
射频(MHZ)
磁场强度(特斯拉)
60
1.4092
100
2.3500
200
4.7000
300
7.1000
500
11.7500
饱和与弛豫
饱和: 在外磁场作用下,1H 倾向于与外磁场相同取向的排 列。处于低能态的核数目多,由于能级差很小,只 占微弱的优势。
化学位移用表示,以前也用表示, 与的关系为: = 10 -
例:在60MHz的仪器上,测得CHCl3与TMS间吸收 频率之差为437Hz,则CHCl3中1H的化学位移为:
n样 - n品 0n标 样 16= 064 0 13 60 7 16= 07.28
3.4 核磁共振波谱的测定
自旋核在B0场中的进动
当自旋核处在外磁场B0中时,除自旋外(自旋轴的方 向与 一致),还会绕B0进动,称Larmor进动,类似
于陀螺在重力场中的进动。
旋进轨道
自旋轴
自旋的质子
H 0 BO
回旋轴
B0
B0
核磁距 自旋轴
回旋轴
自旋轴 核磁距
I = 1/2
I =1/2
自旋核在BO场中的进动
脉冲傅立叶变换核磁共振仪 — 固定磁场:超导磁体(含铌合金在液氮温度下
的超导性质。 — 脉冲方波 (强而短的频带,一个脉冲中同时

核磁谱图NMR常见溶剂峰杂质峰分析_(中文版)

核磁谱图NMR常见溶剂峰杂质峰分析_(中文版)

之阳早格格创做尝试核磁的样品普遍央供比较杂,而且不妨溶解正在氘代试剂中,那样才搞测得下辨别率的图谱.为没有搞扰谱图,所用溶剂分子中的氢皆应被氘与代,但是易免有氢的残存(1%安排),那样便会爆收溶剂峰;除了残存的量子峰中,溶剂中偶尔会有微量的H2O而爆收火峰,而且那个H2O峰的位子也会果溶剂的分歧而分歧;其余,正在样品(或者造备历程)中,也易免会残留一些杂量,正在图谱上便会有杂量峰,应注意辨别.时常使用氘代溶剂战杂量峰正在1H谱中的化教位移单位:ppm溶剂—CDCl3 (CD3)2CO (CD3)2SO C6D6 CD3CN CD3OH D2 O火峰—1.562.843.33 0.40 2.134.87 —苯—7.36 7.36 7.37 7.15 7.37 7.33 —OH —— 4.19 1.55 2.18 ——叔丁基甲醚氯仿—7.26 8.02 8.32 6.15 7.58 7.90 —环己烷—1.43 1.43 1.40 1.40 1.44 1.45 —1,2-两氯甲烷 3.73 3.87 3.90 2.90 3.81 3.78 —两氯甲烷—5.30 5.63 5.76 4.27 5.44 5.49 —两甲基甲酰胺OH(s) 1.32 3.39 3.63 —2.47 ——润滑脂 CH3(m) 0.86 0.87 —0.92 0.86 0.88 —CH2(br) 1.26 1.29 —1.36 1.27 1.29 —正己烷CH3(t) 0.88 0.88 0.86 0.89 0.89 0.90 —CH2(m) 1.26 1.28 1.25 1.24 1.28 1.29 —OH 1.09 3.12 4.01 2.16 ——正戊烷 CH3(t) 0.88 0.88 0.86 0.87 0.89 0.90 —CH2(m) 1.27 1.27 1.27 1.23 1.29 1.29 —硅脂— 0.07 0.13 —0.29 0.08 0.10 —甲苯 CH3 2.36 2.32 2.30 2.11 2.33 2.3 2 —CH(o/p)7.17 7.20 7.18 7.02 7.30 7.16 —CH(m) 7.25 7.20 7.25 7.13 7.30 7.16 —石油醚— 0.5-1.5 0.6-1.9 —————。

NMR自旋系统及图谱分类

NMR自旋系统及图谱分类

c.若系统内有 3 组核,其中每组内各核的化学位移接 近,而 2 组核间的化学位移差都比较大(Δν>>J), 则第 1 组用A、B、C…,第 2 组用 K、L、M…,第 3 组用X、Y、Z…表示; d.若系统中某种核有几个磁全同的,可在其符号右 下角附加数字表示。如: CH2F2 为 A2X2 系统,而 Cl-CH2-CH2-COOH中的两个 CH2 为 A2B2 系统; e.分子中化学等价而磁不等价的核用同一字母表示, 只在其中之一的右上角加撇,如 CH2=CF2 为AA`XX` 系统。
X---2条(强度比为4:4)。三重峰和双峰的裂距相同, 即为JAX,各组峰的中心为化学位移。如1,2,2-三氯乙 烷。
4.AB2系统 AB2系统中两组核干扰较强,最多可观察到9条谱
线。其中 1~4 条为 A 组,5~8 条为 B 组,第 9 条为 综合峰,强度较弱,往往观察不到。第 5 和第 6 条 谱线相距很近,往往合并为一条谱线,成为谱图中 较突出的峰。
2.根据每个(组)峰的δ值,推断H核的种类。 3.从积分曲线算出各组信号的相对面积,以确定图 中各峰所对应的氢原子的数目。 4.考察偶合情况,确定相邻1H数及基团间关系,给 出分子片段。 5.综合上述信息,给出可能的结构。 6.对推出的结构进行“指认”,以确定其正确性, 如各组信号的δ和J。
三、图谱解析示例 例1.某未知物分子式为C5H12O,其1HNMR如下图所 示。δ4.1ppm处的宽峰经重水交换后消失。从低场到高 场,三个峰积分高度比为1:2:9。试给出其化学结构。
第 3 条谱线的位置为νA,第 5 条和第 7 条谱线之 中点为 νB。
谱线间的距离有如下规律: [1-2]=[3-4]=[6-7] [1-3]=[2-4]=[5-8] [3-6]=[4-7]=[8-9] [1-4]+[6-8]= 3JAB

核磁共振谱(NMR)

核磁共振谱(NMR)

样品

TMS

223 134 100 10 60 10 240 400 60 10 100 10
6 6
10
6
相对于TMS的化学位移 CH3CCl2CH2Cl(1,2,2-三氯丙烷) 60MHz 100MHz δ(ppm) CH3 134Hz 223Hz 2.23 CH2 240Hz 400Hz 4.00
质子环境 δ(ppm) 氢键受纯度、浓度、 4、特征质子的化学位移值 低场← 大δ小→高场 温度等影响。 0.9 CH3-H -C-H (烷) 0.9~1.5 X-C-H-I -O-H (羟) 2.2~4 1~5.5 √ 2.2 CH3 ≡C-H (炔) 2~3 -O-C-H -N-H (胺) 1~5 √ 2.7 CH3-Br 3.4~4 =C-H (烯) 5~6 O=C-C-H O=C-H-Cl 2~2.7 9~10 3.1 CH3 (醛) =C-H (芳) 6~8 HOOC-C-H 10~12 RCOO-H(酸) 2~2.6 4.3 CH3-F
2 (H H )
伯 仲 氢 氢

22
羟 基 氢

0 感应
HH 0 有效
2
H 0 (1 )
屏蔽 常数
共振条件 H核周围电子云密度越大,屏蔽效应越大。 产生共振吸收所需要的H0越高,信号向高场移动
2、化学位移如何表示? ——采用相对数值表示法δ 存在两个问题:①化学位移的绝对值很小; ② 频率、H0不同,位移值也不同。 δ小→高场 选择(CH3)4Si(TMS)为标准,δ= 0 δ大→低场 ①TMS结构对称,只有一种氢 为什么选TMS作标准? ②屏蔽效应高,在高场吸收
1HNMR可测各种氢的比例 ——计算峰面积

2021年-核磁谱图NMR常见溶剂峰杂质峰分析

2021年-核磁谱图NMR常见溶剂峰杂质峰分析

测试核磁的样品一般要求比较纯,并且能够溶解在氘代试剂中,这样才能测得高分辨率的图谱。

为不干扰谱图,所用溶剂分子中的氢都应被氘取代,但难免有氢的残余(1% 左右),这样就会产生溶剂峰;除了残存的质子峰外,溶剂中有时会有微量的H2O而产生水峰,而且这个H2O峰的位置也会因溶剂的不同而不同;另外,在样品(或制备过程)中,也难免会残留一些杂质,在图谱上就会有杂质峰,应注意识别。

常用氘代溶剂和杂质峰在1H 谱中的化学位移单位: ppm溶剂— CDCl3(CD3)2CO(CD3)2SO C6D6CD3CN CD3OH D2O溶剂峰—7.26 2.05 2.497.16 1.94 3.31 4.80水峰— 1.56 2.84 3.330.40 2.13 4.87—乙酸— 2.10 1.96 1.91 1.55 1.96 1.99 2.08丙酮— 2.17 2.09 2.09 1.55 2.08 2.15 2.22乙腈— 2.10 2.05 2.07 1.55 1.96 2.03 2.06苯—7.367.367.377.157.377.33—叔丁醇 CH3 1.28 1.18 1.11 1.05 1.16 1.40 1.24 OH—— 4.19 1.55 2.18——叔丁基甲醚CCH3 1.19 1.13 1.11 1.07 1.14 1.15 1.21OCH3 3.22 3.13 3.08 3.04 3.13 3.20 3.22氯仿—7.268.028.32 6.157.587.90—环己烷— 1.43 1.43 1.40 1.40 1.44 1.45—1,2- 二氯甲烷 3.73 3.87 3.90 2.90 3.81 3.78—二氯甲烷— 5.30 5.63 5.76 4.27 5.44 5.49—乙醚CH3(t) 1.21 1.11 1.09 1.11 1.12 1.18 1.17 CH2(q) 3.48 3.41 3.38 3.26 3.42 3.49 3.56二甲基甲酰胺CH8.027.967.957.637.927.797.92CH3 2.96 2.94 2.89 2.36 2.89 2.99 3.01CH3 2.88 2.78 2.73 1.86 2.77 2.86 2.85二甲基亚砜— 2.62 2.52 2.54 1.68 2.50 2.65 2.71二氧杂环— 3.71 3.59 3.57 3.35 3.60 3.66 3.75乙醇CH3(t) 1.25 1.12 1.060.96 1.12 1.19 1.17 CH2(q) 3.72 3.57 3.44 3.34 3.54 3.60 3.65 OH(s) 1.32 3.39 3.63— 2.47——乙酸乙酯 CH3CO 2.05 1.97 1.99 1.65 1.97 2.01 2.07 OCH2(q) 4.12 4.05 4.03 3.89 4.06 4.09 4.14 CH3(t) 1.26 1.20 1.170.92 1.20 1.24 1.24甲乙酮 CH3CO 2.14 2.07 2.07 1.58 2.06 2.12 2.19 CH2(q) 2.46 2.45 2.43 1.81 2.43 2.50 3.18 CH3(t) 1.060.960.910.850.96 1.01 1.26乙二醇— 3.76 3.28 3.34 3.41 3.51 3.59 3.65润滑脂 CH3(m)0.860.87—0.920.860.88—CH2(br) 1.26 1.29— 1.36 1.27 1.29—正己烷 CH3(t)0.880.880.860.890.890.90—CH2 (m) 1.26 1.28 1.25 1.24 1.28 1.29—甲醇CH3 3.49 3.31 3.16 3.07 3.28 3.34 3.34 OH 1.09 3.12 4.01 2.16——正戊烷 CH3(t)0.880.880.860.870.890.90—CH2(m) 1.27 1.27 1.27 1.23 1.29 1.29—异丙醇 CH3(d) 1.22 1.10 1.040.95 1.09 1.50 1.17 CH 4.04 3.90 3.78 3.67 3.87 3.92 4.02硅脂—0.070.13—0.290.080.10—四氢呋喃 CH2 1.85 1.79 1.76 1.40 1.80 1.87 1.88 CH2O 3.76 3.63 3.60 3.57 3.64 3.71 3.74甲苯CH3 2.36 2.32 2.30 2.11 2.33 2.32—CH ( o/p)7.177.207.187.027.307.16—CH ( m) 7.257.207.257.137.307.16—三乙基胺 CH3 1.030.960.930.960.96 1.050.99 CH2 2.53 2.45 2.43 2.40 2.45 2.58 2.57石油醚—0.5-1.50.6-1.9—————。

6. NMR 各种谱图-2014.11

6. NMR 各种谱图-2014.11
阅览大量谱图, 体验各种情况: 潜手性亚甲基, 直键/平键的差异 酮式/烯醇式平衡, 酰胺的异构平衡
25 min
N H
活泼氢的观察, 活泼氢涉及耦合裂分 长链化合物的氢谱/碳谱解析与积分应用 含氟化合物 (单氟/多氟) 的碳谱/氟谱解析
其他谱图的功能
完全确定的 H/ C 谱: 完美无误的结构解析 若不确定的 H/ C 谱: 需要其他谱图协助
正确的解谱步骤: 氢谱 / 碳谱
CH2CH3 O H H OCH2CH3 CH3 结构, 分子式, 理论峰数
15 min
积分 (四舍五入), 初评信号峰 标注 abc / 123 (右到左) (活泼氢另给) 结构归属, 溶剂/未知峰标明 样品名/日期, 给 comment
NMR各种谱图介绍
DEPT, APT, 耦合 C, 反门控 C cosy, noesy, hsqc, hmbc, hetcor 1D-noe, 杂核谱 , tocsy, hoesy J-resolved_H, C, inadequate
3
30000
3. 谱图其它峰也给归属: TMS, CDCl3 4. 左方给出样品名, 时间; 中间给 comment: 峰 4/5 不确定等.
2
5
20000
1
TMS
6
CDCl3
10000
0
200 ppm (t1)
150
100
50
0
新标样_氢谱解谱步骤
O H OCH2CH3 H CH3 分子式 C6H10O2 10 个 H
gHMBC H-C 远程相关
(gradient Hydrogen Multiple Bond Correlation) pw = 6.4

nmr核磁谱钠谱

nmr核磁谱钠谱

nmr核磁谱钠谱
核磁共振谱(Nuclear Magnetic Resonance Spectroscopy,NMR)是一种分析无机、有机化合物结构的分析方法。

钠(Sodium)是一个广泛应用于核磁共振实验中的核,其核磁共振谱常称为钠谱。

对于钠谱的测定,常用的方法是使用钠离子(Na+)作为溶剂,将待测物溶解在钠离子溶液中进行测量。

由于钠离子本身具有一个未被成对电子屏蔽的核,因此其核磁共振谱的峰非常清晰且容易观察和定量分析。

钠谱的峰通常位于较低的化学位移处,化学位移反映了分子中氢或碳原子所处的环境。

由于钠是一个单独的原子,其核磁共振谱通常只有一个峰,并且峰的形状是对称的。

钠谱的峰形参数可以提供有关待测物分子结构、环境和化学键信息。

总之,钠谱是一种常用的核磁共振谱,用于无机、有机化合物结构的分析和表征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5
20000
2
1
6
10000
0
200
150
100
50
0
ppm (t1)
60000
54
乙基苯_碳谱范例
3
62 1
CH2CH3
good
50000
Ethylbenzene 2008.10.14
but: 4/5 uncertain 40000
1. 谱图由右往左, 依次标注 a, b, c, ....
2. 结构式中标出对应的 1, 2, 3, ..., 完成归属 30000
CH2CH3
O
H OCH2CH3
H
CH3
NMR 解谱
正确的解谱步骤: 氢谱 / 碳谱 15 min
结构, 分子式, 理论峰数 积分 (四舍五入), 初评信号峰 标注 abc / 123 (右到左) (活泼氢另给) 结构归属, 溶剂/未知峰标明 样品名/日期, 给 comment
NMR各种谱图介绍
DEPT, APT, 耦合 C, 反门控 C cosy, noesy, hsqc, hmbc, hetcor 1D-noe, 杂核谱 , tocsy, hoesy J-resolved_H, C, inadequate
4 33. 谱图其它峰也给归属: TMS, CDCl3
5
4. 左方给出样品名, 时间; 中间给 comment: 峰 4/5 不确定等. 20000
2
1
6
CDCl3
TMS
10000
0
200
150
100
50
0
ppm (t1)
新标样_氢谱解谱步骤
O H
OCH2CH3
H
CH3
分子式 C6H10O2 10 个 H
1
1 5.0
2
33
0.0
6.102 5.548 4.242 4.218 4.194 4.171 1.949 1.946 1.328 1.305 1.281
0.12
3.12 3.00
0.10 2.07
1.08 1.00 0.09
新标样_氢谱范例
O
He
ca
OCH2CH3
Hd
CH3 b
Ethyl 2-methylpropionate 2008.10.14
400
3. 结构式放谱图左上角, 给出样品名称, 时间
300
c 4. 谱图其它峰标定: TMS, H2O, 未知 ? 活泼氢另标 NH, OH
5. 给出 comment.
b
a
200
H2O
TMS
100
0
0.80 3.06 0.36 2.00
4.71
10.0 ppm (t1)
5
5.0
2
3
0.0
乙基苯_碳谱解谱步骤 60000
5
5.0
2
3
0.0
2.688 2.662 2.637 2.612 1.266 1.240 1.215
700
乙基苯_氢谱范例
600
CH2CH3
c ba
good
500
Ethylbenzene
1. 谱图由右往左, 依次标注 a, b, c, ....
2008.10.14
2. 结构式中标出对应的 a, b, c, ..., 完成归属
d, e 归属不确定. 需要 noe 确认!
CH2CH3 6种C
1. 画出结构式, 置谱图左上方
2. 判定有 6 种 C (小心对称 C)
50000
3. 谱图中找出 6 个合理的碳峰
40000
(初判断符合 170 / 120 / 70 范围)
4. 谱图由右往左, 依次标注 1, 2, 3, .... 30000
4 3
(和 H 的 abc 有别.)
25 min
大量基本/特色谱图介绍
50 min
阅览大量谱图, 体验各种情况: 潜手性亚甲基, 直键/平键的差异 酮式/烯醇式平衡, 酰胺的异构平衡
活泼氢的观察, 活泼氢涉及耦合裂分 长链化合物的氢谱/碳谱解析与积分应用 含氟化合物 (单氟/多氟) 的碳谱/氟谱解析
乙基苯_氢谱解谱步骤
700
CH2CH3
NMR 原理 NMR 概况 NMR 操作 NMR 解谱
NMR 开放管理 NMR 应用 NMR 维修 NMR 论坛
内容
正确的解谱步骤: 氢谱 / 碳谱
结构, 分子式, 理论峰数 积分 (四舍五入), 初评信号峰 标注 abc / 123 (右到左) (活泼氢另给) 结构归属, 溶剂/未知峰标明 样品名/日期, 给 comment
正确的解谱步骤 各种 NMR 检测谱图
实验室规定: 门禁/收费 培训: 各种操作/参数
基本/特色谱图介绍 谱图处理: 谱仪/商用软件
管理员提供服务: 标准匀场/标准锁场/标准谱图/参数
各种标准管
NMR 应用
NMR 在化学中的应用,
NMR 维修 NMR 论坛
各种经验: 探头/ 旋转/ 气路/ 液氮液氦/ 调谐/ 打印 内容分类 在线交流 在线会议
1. 画出结构式, 得出化学式
600
C6H10 10 个 CH
2. 有 10 个 CH (暂不理会活泼氢 NH, OH) 500
3. 信号峰的积分四舍五入: 总数符合 10 个 H
(如果数目不符: 判断加减)
400
300
200
100
0
0.80 3.06 0.36 2.00
4.71
10.0 ppm (t1)
内容
NMR 原理 NMR 概况 NMR 操作 NMR 解谱 NMR 开放管理
硬件/ 软件 参数含义
NMR 谱仪厂家 液体核磁/固体核磁
NMR 结构: 磁体/探头/气路/console/电脑
北大 NMR 情况, 搬迁 NMR 相关期刊
配样
灵敏度/分辨率, 卫星峰/旋转边带
检测: 基本 H/C 操作
基本 2D 操作 (cosy,noesy,hsqc,hmbc) 进阶操作: 杂核/变温/特殊 2D/T1/其它
NMR各种谱图介绍
DEPT, APT, 耦合 C, 反门控 C cosy, noesy, hsqc, hmbc, hetcor 1D-noe, 杂核谱 , tocsy, hoesy J-resolved_H, C, inadequate
大量基本/特色谱图介绍
阅览大量谱图, 体验各种情况: 潜手性亚甲基, 直键/平键的差异 酮式/烯醇式平衡, 酰胺的异构平衡 活泼氢的观察, 活泼氢涉及耦合裂分 长链化合物的氢谱/碳谱解析与积分应用 含氟化合物 (单氟/多氟) 的碳谱/氟谱解析:
2500
1. 画出结构式, 得出化学式
2. 有 10 个 CH 2000
3. 主信号峰的积分四舍五入: 总数符合 10 个 H
(初判: 烯烃 CH2 可能分成 2 组单 H)Байду номын сангаас
1500
ed
c
1000
b
a
500
0
0.12
3.12 3.00
0.10 2.07
1.08 1.00 0.09
10.0 ppm (t1)
相关文档
最新文档