传热学-第二章2
中文版传热学-第二章
19
In-Class Problems
在任意直角坐标系下,对于以下两种关于第三类边界条件的表 达形式,你认为哪个对?简述理由。
t x
tw
h(t f t w )
w
tf
t x h(t w t f )
w
2019/1/14
20
Quick Review:
1 重要概念:温度场、温度梯度、导热系数及其性质、 导温系数(热扩散率)定义及性质;
体的导热
2-4 通过肋片的导热
2-5 具有内热源的导热及多维导热
2019/1/14 22
§2-3 通过平壁,圆筒壁,球壳和其它变截面物体的导热
本节将针对一维、稳态、常物性、无内热源情况,考察平板和 圆柱内的导热。 直角坐标系:
c
t t t t ( ) ( ) ( ) Φ x x y y z z
2 导热微分方程式的理论基础及推导过程
3 导热微分方程式的一般形式、组成、及在推导给定条 件下的具体形式;
4 灵活运用导热微分方程,如温度的空间分布通过导热 方程与时间分布建立联系等 5 定解条件?边界条件?三类边界条件的数学表达式?
2019/1/14 21
第二章 导热基本定律及稳态导热
2-1 导热基本定律 2-2 导热微分方程式及定解条件 2-3 通过平壁、圆筒壁、球壳和其它变截面物
Φxdx
dy
Φ y dy Φ y
Φ z dz
t ( )dxdydz y y
y o x
t Φz ( )dxdydz z z
Φy
dx
Eout
2019/1/14
t t t Ein ( ) ( ) ( ) dxdydz x x y y z z
传热学第二章 第二节 导热微分方程式
∂t ∂z
)
+
qv
第二节 导热微分方程式
若物性参数 λ、c 和 ρ 均为常数:
∂t ∂τ
=
a(
∂2t ∂x2
+ ∂2t ∂y2
+
∂2t ∂z2
)
+
qv ; ρc
or
∂t = a∇2t + qv
∂τ
ρc
a = λ — 热扩散率(导温系数) [m2 s] ρc (Thermal diffusivity)
dxdydz ⋅ dτ
[J]
第二节 导热微分方程式
[导入与导出净热量]:
[1] = [dQ x − dQ x+ dx ] + [dQ y − dQ y + dy ] + [dQ z − dQ z + dz ]
[1] = − ( ∂ q x + ∂ q y + ∂ q z ) d x d y d z d τ
qw
=
−
λ
(
∂t ∂n
)n
−
(
∂t ∂n
)
n
=
qw λ
第二类边界条件相当于已知任何时刻物体边界面 法向的温度梯度值
稳态导热: qw = const (恒热流边界条件)
非稳态导热: q w = f (τ )
第二节 导热微分方程式 特例:绝热边界面: 绝热边界条件
qw
=
−λ
⎛ ⎜⎝
∂t ∂n
⎞ ⎟⎠w
=
对特定的导热过程:需要得到满足该过程的补充 说明条件的唯一解
单值性条件:确定唯一解的附加补充说明条件
完整数学描述:导热微分方程 + 单值性条件 单值性条件包括四项:几何、物理、时间、边界
传热学第二章(2)精品PPT课件
t2
tf2
三层平壁的稳态导热
1-8
10.10.2020
Department of Thermal Energy Engineering
有内热源时的导热
电机绕组线圈和输电线、电缆的冷却,核电站中核燃料元件的释 热,水泥的固化,微波加热食品以及半透热介质对辐射的吸收 等. 特点:通过有内热源物体中各等温面的热流量不再处处保持相等, 而是从绝热面到边界面具有一种累加的效果.
q(x)V x
Heat and Mass Transfer
1-11
10.10.2020
Department of Thermal Energy Engineering
变导热系数问题
实际工程问题的需要. 材料的导热系数一般随温度呈非线性变化。但只要温度范围不 很大,可以近似视为线性. 通常表示为:
0(1b)t
图2.4 复合平壁导热与等效热网络
• 温度场和热流场很难 继续保持严格的一维;
• 只要并排两种材料的导 热系数相近,仍按一维问 题处理不失为一种合 的假设和简化处理方法.
Heat and Mass Transfer
1-6
10.10.2020
Department of Thermal Energy Engineering
1-7
10.10.2020
Department of Thermal Energy Engineering
多层、第三类边界条件
q
1 h1
tf1 tf 2
n
i1
i i
1 h2
单位:
W m 2
tf1 h1
t2
t3
h2
tf2
传热系数?
2传热学-第二章
假设:1) 所研究的物体是各向同性的连续介质 2) 热导率、比热容和密度均为已知 3) 物体内具有内热源;强度 W/m3;内热源均
匀分布; 表示单位体积的导热体在单位时间
内放出的热量
步骤:
1)根据物体的形状选择坐标系, 选取物体中的微元体作为研 究对象;
2)根据能量守恒, 建立微元体的热平衡方程式;
q q cos
温度梯度和热流密度的方向都是在等温面的法线方向。由于 热流是从高温处流向低温处,因而温度梯度和热流密度的方 向正好相反。
n
t+Δ t
t
dA
t
t-Δ t
d
判断:空间某点的温度梯度和热流密度的方向相同 (×)
5 导热基本定律(Fourier’s law)
1822年,法国数学家傅里叶(Fourier)在实验研究 基础,发现导热基本规律 —— 傅里叶定律
导热机理:由于分子的热运动和相互碰撞时发生的能量传递
气体分子运动理论:常温常压下气体热导率可表示为:
1 3
u lcv
u :气体分子运动的均方根速度 l :气体分子运动的平均自由程 :气体的密度; c v :气体的定容比热
气体的压力升高时:气体的密度增大、平均自由行程减小、 而两者的乘积保持不变。除非压力很低或很高,在 2.67×10-3MPa ~ 2.0×103MPa范围内,气体的热导率基本 不随压力变化 气体的温度升高时:气体分子运动速度和定容比热随T升高
Φ A
Φ A
dt dx
dt dx
W
W 2 m
q
文字表述:在导热现象中,单位 时间内通过给定截面的热流量, 正比于该截面方向上的温度变化 率和截面面积,而热量传递的方 向则与温度升高的方向相反。
传热学 第2章 稳态导热
t t t t c Φ x x y y z z
3、常物性且稳态:
2t 2t 2t Φ a 2 2 2 0 x y z c
如果边界面上的热流密度保持为常数,则 q | w 常数 当边界上的热流密度为零时,称为绝热边界条件
t t qw 0 0 n w n w
18
(3)第三类边界条件 给出了物体在边界上与和它直接接触的流体之 间的换热状况。 根据能量守恒,有:
返回
2.1.1 各类物体的导热机理
气体:气体分子不规则热运动时相互碰撞的结果,高温的气体分子运 动的动能更大 固体:自由电子和晶格振动 对于导电固体,自由电子的运动在导热中起着重要的作用,电的良导 体也是热的良导体 对于非导电固体,导热是通过晶格结构的振动,即原子、分子在其平 衡位置附近的振动来实现的
返回
2.2.2 定解条件
导热微分方程式是能量守恒定律在导热过程中的应用,是一切导热 过程的共性,是通用表达式。 完整数学描述:导热微分方程 + 定解条件 定解条件包括初始条件和边界条件两大类,稳态问题无初始条件 初始条件:初始时刻的状态表示为: =0,t =f (x,y,z)
边界条件: 给出了物体在边界上与外界环境之间在换热上的联系或相互作用
2、推导基本方法:傅里叶定律 + 能量守恒定律 在导热体中取一微元体
进入微元体的总能量+微元体内热源产生的能量-离开微元体的总能量= 微元体内储存能的增加
11
Ein Eg Eout Es
d 时间段内:
Ein Φx Φy Φz d Eiout Φxdx Φy dy Φz dz d
传热学第2章
根据第一类边界条件时的结果:
dt tw1 tw2 1
(此时壁温tw1和tw2为未知)
dr
ln r1 r
r2
与以上两个边界条件共三式变形后
相加,可消去tw1和tw2,得:
单层圆筒壁的单位管长热流量:
ql
tf1 tf2 1 1 ln r2 1
tf1 tf 2
1 1 ln d 2 1
h1 2r1 2 r1 h2 2r2 h1d1 2 d1 h2d 2
x h2 t x t f 2
根据第一类边界条件时的结果: (此时壁温tw1和tw2为未知)
q dt tw1 tw2 dx
与以上两个边界条件共三式变形后 相加,可消去tw1和tw2,得:
单层平壁的热流密度:
q
tf1 tf2
1 1
k tf1 tf2
h1 h2
多层平壁的热流密度:
接触热阻的定义:
Rc
tc
接触热阻的影响因素: 粗糙度
挤压压力 硬度匹配情形 空隙中介质的性质
减小接触热阻的措施: 表面尽量平整 增加挤压压力
两表面一软一硬 涂导热姆
第七节 二维稳态导热
应用领域:房间墙角,地下埋管,矩形保温层,短肋片
二维稳态导热微分方程:
2t x2
2t y 2
0
解析法
二维稳态导热问题的研究手段:
几种导热过程的形状因子
第二章重点:
1.各种稳态导热问题的数学模型 和求解方法
2.临界热绝缘直径问题
3.肋片性能分析
请同学们思考一个问题:
肋高越大,肋的散热面积越大,因而采用 增加肋高的方法可以增加肋的散热量。这 种方法在实际换热器设计中是否可行?若 可行,是否会有某些局限性?
传热学第2章2
NCEPU
矩形、 矩形 、 三角形直肋及矩形环肋的肋片效率见书中 41、42页图 页图2 14、 15。 第41、42页图2-14、2-15。
Φs
Department of Power Engineering, North China Electric Power University (Beijing 102206) 杨立军 知识产权与使用权归华北电力大学能源与动力工程学院所有
NCEPU
代入导热微分方程式, 代入导热微分方程式,得
d 2t hP − ( t − t∞ ) = 0 2 dx λ Ac
sinh ( mH ) = Aλ mθ 0 cosh ( mH ) x =0
NCEPU
肋片效率定义: 肋片效率定义: 肋片的实际散热量 Φ 与假设整个肋 片都具有肋基温度时的理想散热量Φ0之比
2. 肋片效率
式中t 式中tm、θm分别为肋面的平均温度和平均过余温度, t0、 分别为肋面的平均温度和平均过余温度, θ0分别为肋基温度与肋基过余温度。 分别为肋基温度与肋基过余温度。 小于1 由于θm< θ0 ,所以肋片效率ηf 小于1。 因为假设肋表面各处h都相等, 因为假设肋表面各处 h都相等 , 所以等截面直肋的 平均过余温度可按下式计算: 平均过余温度可按下式计算: L L cosh m ( H − x ) 1 1 dx = θ 0 tanh ( mH ) θ m = ∫ θ dx = ∫ θ 0 H 0 cosh ( mH ) mH H 0 tanh ( mH ) 可见,肋片效率是mH的函数 的函数。 可见,肋片效率是mH的函数。 ηf = mH NCEPU
传热学第二章
习题平板2-1 用平底锅烧开水,与水相接触的锅底温度为111℃,热流密度为424002/m W 。
使用一段时间后,锅底结了一层平均厚度为3mm 的水垢。
假设此时与水相接触的水垢的表面温度及热流密度分别等于原来的值,试计算水垢与金属锅底接触面的温度。
水垢的导热系数取为1W/(m.K)。
解:由题意得424001003.0111=-=w t q =w/m 2所以t=238.2℃2-2 一冷藏室的墙由钢皮矿渣棉及石棉板三层叠合构成,各层的厚度依次为0.794mm.,152mm 及9.5mm ,导热系数分别为45)./(K m W ,0. 07)./(K m W 及0.1)./(K m W 。
冷藏室的有效换热面积为37.22m ,室内外气温分别为-2℃及30℃,室内外壁面的表面传热系数可分别按1.5)./(2K m W 及2.5)./(2K m W 计算。
为维持冷藏室温度恒定,试确定冷藏室内的冷却排管每小时需带走的热量。
解:由题意得332211212111λδλδλδ++++-⨯=Φh h t t A =2.371.00095.007.0152.045000794.05.215.11)2(30⨯++++--=357.14W357.14×3600=1285.6KJ2-3有一厚为20mm 的平板墙,导热系数为1.3)./(K m W 。
为使每平方米墙的热损失不超过1500W,在外表面上覆盖了一层导热系数为0.12)./(K m W 的保温材料。
已知复合壁两侧的温度分别为750℃及55℃,试确定此时保温层的厚度。
解:依据题意,有150012.03.1020.0557502221121≤+-=+-=δλδλδt t q ,解得:m 05375.02≥δ 2-4 一烘箱的炉门由两种保温材料A 及B 组成,且B A δδ2=(见附图)。
已知)./(1.0K m W A =λ,)./(06.0K m W B =λ,烘箱内空气温度4001=f t ℃,内壁面的总表面传热系数)./(501K m W h =。
传热学第二章--稳态导热精选全文
t
无内热源,λ为常数,并已知平 t1
壁的壁厚为,两个表面温度分别 维持均匀而恒定的温度t1和t2
t2
c t ( t ) Φ x x
d 2t dx2
0
o
x 0,
x ,
t t
t1 t2
x
直接积分,得:
dt dx
c1
t c1x c2
2024/11/6
35
带入边界条件:
c1
t2
t1
c t
1 r2
r 2
r
t r
1
r 2 sin
sin
t
r2
1
sin 2
t
Φ
2024/11/6
26
6 定解条件 导热微分方程式的理论基础:傅里叶定律+能 量守恒。 它描写物体的温度随时间和空间变化的关系; 没有涉及具体、特定的导热过程。通用表达式。
完整数学描述:导热微分方程 + 单值性条件
4
2 等温面与等温线
①定义
等温面:温度场中同一瞬间同温度各点连成的 面。 等温线:在二维情况下等温面为一等温曲线。
t+Δt t
t-Δt
2024/11/6
5
②特点
t+Δt t
t-Δt
a) 温度不同的等温面或等温线彼此不能相交
b)在连续的温度场中,等温面或等温线不会中
止,它们或者是物体中完全封闭的曲面(曲
它反映了物质微观粒子传递热量的特性。
不同物质的导热性能不同:
固体 液体 气体
金属 非金属
金属 12~418 W (m C) 非金属 0.025 ~ 3W/(mC)
合金 纯金属
传热学第2章稳态热传导
(2)该平壁热力学能的变化速率;
λсρ
(3)x=0m和x=0.5m两处温度 随时间的变化速率。
t w1 t=450-320x-160x2
ΦV
t w2
0 δ 0.5 x
2.3 典型一维稳态导热问题的分析解
2.3.1 通过平壁的导热
h (8 ~ 10)
1. 第一类边界条件下单层平壁的导热
假设;大平壁λ= 常数,表面积A,厚度δ,
无内热源,平壁两侧维持均匀恒定
温度 tw1, tw2,且tw1> tw2。
t
A
λ
确定(1)平壁内的温度分布;
tw1
(2)通过此平壁的热流密度。
tw2 ф
0 x dx δ x
导热数学描述(导热微分方程+边界条件)
d 2t dx2
0
B.C x 0 t tw1
t
A
λ
tw1
x t tw2
tw2
求解微分方程,得通解:
dx
t
A
λ
tw1
tw2 ф
0 x dx δ x
大小和方向
结论
t
tw1
tw1
tw2
x
q tw1 tw2
✓ 当λ= 常数时,平壁内温度分布呈线性分布,
且与λ无关。
t
✓ 通过平壁内任何一个等温面的
A tw1
λ
热流密度均相等,与坐标x无关。
✓ 导热热阻(Conductive resistance)
1. 定义:温度场描述了各个时刻物体内所有各点 的温度分布。
t f ( x, y, z, )
2. 分类:
按温度场是否随时间变化
• 稳态温度场: t 0
《传热学》第2章-稳态导热
控制方程
边界条件
x , t tw 2
t
dt 1 2 0 ( 1 bt ) c1 0 ( t bt ) c1 x c2 tw1 dx 2
代入边界条件,得:
1 1 2 2 ( t bt ) c 0 c , ( t bt 1 2 0 w2 w 2 ) c1 c 2 0 w1 2 w1 2 1 2 c ( t bt 2 0 w1 w1 ) 2 t w1 t w 2 1 c [ 1 b( t w1 t w 2 )] 0 1 2
tw 2 tw3
2
tw3 tw4
3
tw1 tw4 tw1 tw4 3 相加可得: q R ,1 R ,2 R ,3 R ,i
i 1
例2-1:有一锅炉炉墙,三层,内层为230mm的耐火 砖层,中间为50mm厚的保温层,外层为240mm的 红砖层,导热系数分别为1.10 W/(m.K) ,0.072 W/(m.K) ,0.58W/(m.K),已知炉墙内外表面温度 为500℃与50℃,求炉墙的导热热流密度和红砖墙的 最高温度。
第二章 稳态导热
Steady-State Conduction —— One Dimension
主要内容
掌握稳态导热。
§2-1 §2-2 §2-3 §2-4 §2-5 §2-6
通过平壁的导热 通过复合平壁的导热 通过圆筒壁的导热 具有内热源的平壁导热 通过肋片的导热 通过接触面的导热
对各层直接应用单层大平壁的热量计算式 tw1 tw 2 tw1 tw 2 第一层平壁 : q1 , 变换 : q1 R ,1 t w1 t w 2 1 R ,1
传热学 第二章 对流换热
δtt
tw
第一节 对流换热分析及牛顿冷却定律 一、边界层概念
在层流边界层中, 在层流边界层中,热量的传递只能依靠流体层与层间的 导热作用,此时对流换热较弱。在紊流边界层中, 导热作用,此时对流换热较弱。在紊流边界层中,层流底 层的热量传递方式仍是导热, 层的热量传递方式仍是导热,但在层流底层以外存在着对 因而对流换热较强。 流,因而对流换热较强。所以对流换热实际上是包括流体 层流的导热和层流以外的对流共同作用的综合传热过程。 层流的导热和层流以外的对流共同作用的综合传热过程。 若同一流体在相同的温度下流过同一壁面时, 若同一流体在相同的温度下流过同一壁面时,则层流底层 越薄,对流换热越强烈。 越薄,对流换热越强烈。
第一节 对流换热分析及牛顿冷却定律 一、边界层概念
(一)速度边界层 当粘性流体流过固体壁面时, 当粘性流体流过固体壁面时,若用仪器测出沿壁面法线方 方向不同点的速度u,将得到如图所示的速度分布图。 向Y方向不同点的速度 ,将得到如图所示的速度分布图。 方向不同点的速度 它表明从y=0处u=0开始,速度u随着 方向离壁面的距离 它表明从 处 开始,速度 随着y方向离壁面的距离 开始 随着 的增加而迅速增大,经过厚度为δ的薄层 的薄层, 接近达到主流 的增加而迅速增大,经过厚度为 的薄层,u接近达到主流 速度u ,这个y= 的薄层即为速度边界层 的薄层即为速度边界层, 为边界层厚 速度 ∞,这个 δ的薄层即为速度边界层, δ为边界层厚 度。边界层厚度理论上应等于由壁面到流体达到主流速度 点之间的距离,但这个点的位置难于准确确定, 点之间的距离,但这个点的位置难于准确确定,故通常把 u/ u∞=0.99处离壁面的垂直距离定义为边界层厚度。实验 处离壁面的垂直距离定义为边界层厚度。 处离壁面的垂直距离定义为边界层厚度 表明δ与壁面尺寸 相比是一个极小的量。 与壁面尺寸L相比是一个极小的量 表明 与壁面尺寸 相比是一个极小的量。
传热学-第2章
在导热体中取一微元体 热力学第一定律:
Q U W
W 0, Q U
d 时间内微元体中: [导入与导出净热量]+ [内热源发热量] = [热力学能的增加]
1、导入与导出微元体的净热量 d 时间内、沿 x 轴方向、经 x 表面导入的热量:
dQx qx dydz d
t t1
n i
x
i 1
t tn1
t1 t2 t3 t4
热阻:
r1
1 , , rn n 1 n
第二章 稳态热传导
三层平壁的稳态导热
30
q
t1 t n 1
由热阻分析法:
ri
i 1
n
t1 t n 1
i i 1 i
n
问:现在已经知道了q,如何计算其中第 i 层的右侧壁温?
第一章复习
(1) 导热
傅里叶定律:
(2) 对流换热 牛顿冷却公式: (3) 热辐射
斯忒藩-玻耳兹曼定律 :
dt Φ A dx
Aht
A T 4
(4) 传热过程
(t f 1 t f 2 ) (t f 1 t f 2 ) Φ 1 1 Rh1 R Rh 2 Ah1 A Ah2
多层、第三类边条
tf1
q
tf1 tf 2 1 n i 1 h1 i 1 i h2
h1 t2 t3
h2 tf2
W 单位: 2 m
传热系数? tf1
?
t1 t2 t3 t2
? tf2
32
三层平壁的稳态导热
第二章 稳态热传导
一台锅炉的炉墙由三层材料叠合而成.最里面的是耐火黏土砖,厚 115MM;中间是B级硅藻土砖,厚125MM;最外层为石棉板,厚 70MM.已知炉墙内外表面温度分别为485℃ 和60 ℃ , 试求每平方 米炉墙的热损失及耐火黏土砖和硅藻土砖分界面上的温度。 解:各层的导热系数可根据估计的平均温度从手册中查出。第一 次估计的平均温度不一定正确,待算得分界面温度时,如发现不 对,可重新假定每层的平均温度。经几次试算,逐步逼近,可得 合理的数值。这里列出的是几次试算后的结果: W 3 0.116 /(m K ) W 1 1.12W /(m K ) 2 0.116 /(m K )
传热学讲义—第二章
第二章 稳态导热本章重点:具备利用导热微分方程式建立不同边界条件下稳态导热问题的数学模型的能力第一节 通过平壁的导热1-1 第一类边界条件 研究的问题:(1)几何条件:设有一单层平壁,厚度为δ,其宽度、高度远大于其厚度(宽度、高度是厚度的10倍以上)。
这时可认为沿高度与宽度两个方向的温度变化率很小,温度只沿厚度方向发生变化。
(属一维导热问题)(2)物理条件:无内热源,材料的导热系数λ为常数。
(3) 边界条件:假设平壁两侧表面分别保持均匀稳定的温度1w t 和2w t ,21w w t t >。
(为第一类边界条件,同时说明过程是稳态的)求:平壁的温度分布及通过平壁的热流密度值。
方法1 导热微分方程:采用直角坐标系,这是一个常物性、无内热源、一维稳态导热问题(温度只在 x 方向变化)。
导热微分方程式为:022=dxtd (2-1)边界条件为:10w x t t == , 2w x t t ==δ (2-2)对式(2-1)连续积分两次,得其通解: 21c x c t += (2-3)这里1c 、2c 为常数,由边界条件确定 ,解得:⎪⎩⎪⎨⎧=-=11221ww w t c t t c δ (2-4)最后得单层平壁内的温度分布为: x t t t t w w w δ211--= (2-5)由于δ 、1w t 、2w t 均为定值。
所以温度分布成线性关系,即温度分布曲线的斜率是常数(温度梯度),const t t dx dt w w =-=δ12 (2-6)热流密度为:)(21w w t t dx dt q -=-=δλλ2/m W (2-7) 若表面积为 A, 在此条件下 , 通过平壁的导热热流量则为 :t A qA ∆==Φδλ W (2-8)考虑导热系数随温度变化的情况:对于导热系数随温度线形变化,即)1(0bt +=λλ,此时导热微分方程为:0=⎪⎭⎫⎝⎛dx dt dx d λ 解这个方程,最后得:⎥⎦⎤⎢⎣⎡++-+⎪⎭⎫ ⎝⎛+=+)(211212121121122w w w w w w t t b x t t bt t bt t δ 或 x tt t t b b t b t w w w w w δ12211)(21122-⎥⎦⎤⎢⎣⎡+++⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+说明:壁内温度不再是直线规律,而是按曲线变化。
传热学-第二章2
h1 h2
= ql
r2
= 2πr2h2 (tw2 − t f 2 )
tf1 −tf 2 ql = r2 1 1 1 + ln + h 2πr 2πλ r h2 2πr2 1 1 1 = t f1 −t f 2 Rl
[W m]
通过单位长度圆筒壁传热过程的 热阻 [mK/W]
(1) 单层圆筒壁 思考:温度分布应如何求出? 思考:温度分布应如何求出? (2) 多层圆筒壁
q 第二层: 第二层: =
λ1 δ (t1 − t 2 ) ⇒ t2 = t1 − q 1 δ1 λ1
λ2 δ (t 2 − t3 ) ⇒ t3 = t2 − q 2 δ2 λ2
M
第i
q 层: =
M
λi δ (ti − ti +11 ) ⇒ ti +1 = ti − q i δi λi
多层、 多层、第三类边条
1
t2 − t1
=−
∫ t λ(t)
t2
1
t2 − t1
x2
1
(t2 − t1 )
λ=
∫t λ ( t ) dt
t 2 − t1
⇒
Φ =
λ ( t1 − t 2 )
∫x
dx A( x)
随温度呈线性分布时, 当 λ 随温度呈线性分布时,即λ = λ0+at,则 ,
t1 + t2 λ = λ0 + a 2 实际上,不论 λ 如何变化,只要能计算出平均导热系 实际上, 如何变化, 就可以利用前面讲过的所有定导热系数公式, 数,就可以利用前面讲过的所有定导热系数公式,只 是需要将λ换成平均导热系数。 是需要将λ换成平均导热系数。
s
= tw
传热学-第二章导热基本定律及稳态传热
d 时间X方向流入与流出微元体的热流量
dQx
- dQxdx
- qx x
dxdydz d
( t ) dxdydz d
x x
d 时间Y方向流入与流出微元体的热流量
dQy
- dQydy
- q y y
dy dxdz d
y
( t ) dxdydz d
y
2.4 导热微分方程及定解条件
影响热导率的因素:物质的种类、材料成分、温度、压力及 密度等。
2.3 导热系数
2.3.1 气体导热系数
气体导热——由于分子的无规则热运动以及分子间 的相互碰撞
1 3
vlcv
v 3RT M
V 气体分子运动的均方根 m/s L 气体分子两次碰撞之间的平均自由程 m
Cv气体的定容比热 J/kg·℃
2.3 导热系数
2.4 导热微分方程及定解条件
建立数学模型的目的:
求解温度场 t f x, y, z,
步骤: 1)根据物体的形状选择坐标系, 选取物体中的 微元体作为研究对象; 2)根据能量守恒, 建立微元体的热平衡方程式; 3)根据傅里叶定律及已知条件, 对热平衡方程式 进行归纳、整理,最后得出导热微分方程式。
通过某一微元面积dA的热流:
dA q
d
q dA
t
n
dA
t
dydz
t
dxdz
t
பைடு நூலகம்
dxdy
n
x
y
z
2.2导热的基本定律
例:判断各边界面的热流方向
2.3 导热系数
由傅里叶定律可得,导热系数数学定义的具体形式为:
q t n
传热学-第二章(二)
假设单管长度为l,圆筒壁的外半 径小于长度的1/10。 一维、稳态、无内热源、常物性:
d dt (r ) 0 dr dr
(a)
r r1时 t t w1 第一类边界条件: r r2 时 t t w 2
对上述方程(a)积分两次:
第一次积分
第二次积分 应用边界条件
dt r c1 t c1 ln r c2 dr
直接积分,得:
t t1
x
dt c1 t c1 x c2 dx
t2 t1 c 带入边界条件: 1 c2 t1
t2 o
t2 t1 t x t1 带入Fourier 定律 dt t2 t1 dx
t w1 c1 ln r1 c2 ; t w 2 c1 ln r2 c2
t w 2 t w1 ; c1 ln(r2 r1 )
获得两个系数
ln r1 c2 t w1 (t w 2 t w1 ) ln(r2 r1 )
将系数带入第二次积分结果
t 2 t1 t t1 ln(r r1 ) ln(r2 r1 )
a 几何条件:单层平板; b 物理条件:、c、 已知;无内热源 c 时间条件: 稳态导热 : t 0 d 边界条件:第一类
o
x
根据上面的条件可得:
t t c ( ) Φ x x
控制 方程
d 2t dx
2
0
边界 条件
x 0, t t w1 第一类边条: x , t t w2
通过球壳的导热自己推导
5 其它变面积或变导热系数问题 求解导热问题的主要途径分两步: (1) 求解导热微分方程,获得温度场; (2) 根据Fourier定律和已获得的温度场计算热流量; 对于稳态、无内热源、第一类边界条件下的一维导热 问题,可以不通过温度场而直接获得热流量。此时, 一维Fourier定律:
最新-传热学第二章 稳态导热-PPT文档资料
4 付里叶定律(Fourier’s Law) 第一章中给出了稳态条件下的付里叶定律,这 里可推广为更一般情况。 n dt dn t q grad t n t1 t t+dt x 热流密度在x, y, z 方向 的投影的大小分别为:
0
t2
δ
x
t t t q ;q ;q x y z x y z
第二章 稳态导热
§2-1 基本概念 §2-2 一维稳态导热
2019/4/19
1
分析传热问题基本上是遵循经典力学的研究 方法,即针对物理现象建立物理模型,而后 从基本定律导出其数学描述(常以微分方程的 形式表达,故称数学模型),接下来考虑求解 的理论分析方法。 导热问题是传热学中最易于采用此方法处理 的传热方式。
2019/4/19 7
系统中某一点所在的等温面与相邻等温面 之间的温差与其法线间的距离之比的极限 为该点的温度梯度,记为gradt。
t t t t t gradt Lim n i j k n 0 n n x y z
注:温度梯度是向量;正向朝着温度增加 的方向
2019/4/19 16
假设:(1) 所研究物体是各向同性的连续介质; (2) 热导率、比热容和密度均为已知 (3) 物体内具有内热源;强度 [W/m3]; 表示单位体积的导热体在单位时间内放出 的热量
z
dz+dz dy
dx
导入微元体的总热流量 +内热源的生成热 =导出微元体的总热流量 +内能的增量
2019/4/19
dy+dy dz
dx+dx
x
17
传热学第二章
刘彦丰华北电力大学工程应用的两个基本目的:•能准确地预测所研究系统中的温度分布;•能准确地计算所研究问题中传递的热流。
要解决的问题:温度分布如何描述和表示?温度分布和导热的热流存在什么关系?如何得到导热体内部的温度分布?第二章导热基本定律及稳态导热刘彦丰华北电力大学本章内容简介2-1 导热基本定律2-2 导热微分方程式及定解条件2-3 通过平壁、圆筒壁、球壳和其它变截面物体的导热(一维稳态导热)2-4 通过肋片的导热分析2-5 具有内热源的导热及多维导热回答问题1和2回答问题3具体的稳态导热问题刘彦丰传热学Heat Transfer 华北电力大学一、温度分布的描述和表示像重力场、速度场等一样,物体中的温度分布称为温度场。
1、温度分布的文字描述和数学表示,如:在直角坐标系中非稳态温度场),,,(τz y x f t =稳态温度场),,(z y x f t =一维温度场二维温度场三维温度场)(x f t =),(τx f t =),(y x f t =),,(τy x f t =),,(z y x f t =),,,(τz y x f t =2-1 导热基本定律刘彦丰传热学Heat Transfer华北电力大学2、温度分布的图示法传热学Heat Transfer 2、温度分布的图示法等温线传热学Heat Transfer二、导热基本定律(傅立叶定律)1822年,法国数学家傅里叶(Fourier )在实验研究基础上,发现导热基本规律——傅里叶定律.法国数学家Fourier: 法国拿破仑时代的高级官员。
曾于1798-1801追随拿破仑去埃及。
后期致力于传热理论,1807年提交了234页的论文,但直到1822年才出版。
刘彦丰华北电力大学在导热现象中,单位时间内通过给定截面的热量,正比于垂直于该截面方向上的温度梯度和截面面积,方向与温度梯度相反。
1、导热基本定律的文字表达:nntgradt q ∂∂−=−=λλ2、导热基本定律的数学表达:t+Δt tt-Δt刘彦丰华北电力大学3、意义已知物体内部的温度分布后,则由该定律求得各点的热流密度或热流量。
传热学-第二章2
x 30 20x
即可计算出沿墙壁厚度的温度 分布
温度,℃
பைடு நூலகம்3 一双层玻璃窗系由两层厚为6mm 的玻璃及其间的空气隙所 组成,空气隙厚度为 8mm。假设面向室内的玻璃表面温度 与面向室外的玻璃表面温度各为20℃及-20℃,试确定双层 玻璃窗的热损失。如果采用单层玻璃窗,其他条件不变, 其热损失是双层玻璃的多少倍?玻璃窗的尺寸为 60cm×60cm。不考虑空气间隙的自然对流。玻璃的导热系 数为0.78w/(m℃) 解:查附录可知 0℃时空气的导热系数为 0.0244w/(m℃) ,根据 多层平板导热计算公式可知,通过双层玻璃窗的热损失为
通过炉墙的热损失为
995 60 q 800.68 w / m 2 1 2 0.348 0.116 1 2 1.3061 0.1287
t1 t3
1 0.348 t 2 t1 q 995 800.68 781.67℃ 1 1.3061
t2计算值与假设不符,重新假设交界面温度为779℃
tw 1 tw 2 tw 1 tw 2 2 rlq ln( r2 r1 ) R 2 l
与r无关,表明通过圆 筒壁热流量是定值
w
长度为 l 的圆筒 壁的导热热阻
4. n层圆筒壁
由不同材料构成的多层圆筒壁,
其导热热流量可按总温差和总热阻计 算
tw 1 tw ( n 1)
d dt (r )0 dr dr
r r1, t tw1 第一类边界条件: r r2, t tw 2
对方程(a)进行两次积分:
第一次积分 第二次积分 应用边界条件 获得两个系数
dt r c1 t c1 ln r c2 dr
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i (ti ti 11) ti 1 ti q i i i
多层平壁、第三类边界条件
tf1
h1
q
tf1 tf 2 1 n i 1 h1 i 1 i h2
t2
t3
h2
tf2
W 单位: 2 m
传热系数? t f1
1/h1
t1 t2 t3 t2
双 t R玻内 R空 R玻外 20 (20) 0.006 0.008 0.006 0.6 0.6 0.78 0.6 0.6 0.0244 0.6 0.6 0.078
41.95 w
如果采用单层玻璃,则通过玻璃的热损失为
单
t R玻
=0.87w/(m℃) , 根 据 通 过
平板壁导热热流密度的计算 公式可求得
30℃ q 25℃
0.87 q t (30 25) 17.4 w/(m℃) 0.25
根据平壁导热温度分布的公式
t t1 (t1 t 2 )
31 30 29 28 27 26 25 24 0 0.05 0.1 0.15 0.2 0.25 厚度,m
r2
ql
2r2 h2 (t w 2 t f 2 )
h2
tf 1 tf 2 ql r2 1 1 1 ln h1 2r1 2 r1 h2 2r2 tf 1 tf 2 Rl
w
m
通过单位长度圆筒壁传热过程的热阻
r2 d2 1 1 1 1 1 1 Rl ln ln 2h1r1 2 r1 2h2r2 h1d1 2 d1 h2d 2
ln( r r1 ) t t w1 (t w1 t w 2 ) ln( r2 r1 )
dt t w1 t w 2 1 dr ln( r2 r1 ) r
dt t w 1 t w 2 q dr r ln(r2 r1 )
w m2
虽然是稳态情况,但 热流密度 q 与半径 r 成反比!
可得
tt1 测 tr
tt 2 测 tr
tt1 tt 2 测 测 tt1 tt 2 tr , tr 测 2 2 2tr
将各数值带入上式,可得
tt1 tt 2 3.56 3.60 7.16 测 200 200 287.6 2tr 2 2.49 4.98
答:被测材料的导热系数为287.6 w/mK
3. 单层圆筒壁的导热
圆柱坐标系中导热微分方程
c
t 1 t 1 t t ( r ) 2 ( ) ( ) Φ r r r r z z
假设单管长度为l,圆筒壁的外半径 小于长度的1/10。 一维、稳态、无内热源、常物性:
t1 t2
黏土 0.8 0.00058t 硅藻土 0.0477 0.0002t
假设分界面处的温度为750℃,则可算得
q
t3
黏土 0.8 0.00058 872.5 1.3061 w/(m℃) 硅藻土 0.0477 0.0002 405 0.1287 w/(m℃)
x
dt c1 t c1 x c2 dx
t2 t1 c 带入边界条件: 1 c2 t1
t2 o
t2 t1 t x t1 带入Fourier 定律 dt t 2 t1 dx
RA灰 8.62104 RA水 8.62104 39.9 、 399.1 5 5 RA钢 2.1610 RA钢 2.1610
例2 有一砖砌墙壁,厚为0.25m。已知内外壁面的温度分别为25 ℃和30℃。试计算墙壁内的温度分布和通过的热流密度。 解:从附录查得红砖的导热系数
边界条件:
r r1, t tw1 r r2, t tw 2
dt r c1 dr
2
c1 t c2 r
x 30 20x
即可计算出沿墙壁厚度的温度 分布
温度,℃
例3 一双层玻璃窗系由两层厚为6mm 的玻璃及其间的空气隙所 组成,空气隙厚度为 8mm。假设面向室内的玻璃表面温度 与面向室外的玻璃表面温度各为20℃及-20℃,试确定双层 玻璃窗的热损失。如果采用单层玻璃窗,其他条件不变, 其热损失是双层玻璃的多少倍?玻璃窗的尺寸为 60cm×60cm。不考虑空气间隙的自然对流。玻璃的导热系 数为0.78w/(m℃) 解:查附录可知 0℃时空气的导热系数为 0.0244w/(m℃) ,根据 多层平板导热计算公式可知,通过双层玻璃窗的热损失为
t1 t3
例5 如图一种用比较法测定导热系数的装置原理。将导热
系数已知的标准材料与被测材料做成相同直径的圆柱,且 标准材料的两段圆柱分别压紧置于被测材料的两端。在三 段试样上分别布置三对测定相等间距两点温差的热电偶。 试样的四周绝热良好(图中未示出)。已知试样两端的温度 分别为 th=400℃ 、 tc=300℃ 、 tr=2.49℃ 、 tt1=3.56℃ 、 tt2=3.60℃,标准材料的导热系数为=200w/mK。试确定
n
t1 t n 1
i i 1 i
n
问:现在已经知道了q,如何计算其中第 i 层的右侧壁温?
q 第一层: q 第二层:
1 (t1 t2 ) t2 t1 q 1 1 1
2 (t2 t3 ) t3 t2 q 2 2 2
第i
q 层:
• 假设各层之间接触良好,可以近似地认
为接合面上各处的温度相等 边界条件: x 0
t t1
n i
x
i 1
t tn1
t1 t2 t3 t4
热阻:
r1
1 , , rn n 1 n
三层平壁的稳态导热
由热阻分析法:
q
t1 t n 1
ri
i 1
黏土 0.8 0.00058 887 1.3145 w/(m℃) 硅藻土 0.0477 0.0002 419.5 0.1316 w/(m℃)
995 60 q 815.73 w / m 2 1 2 0.348 0.116 1 2 1.3145 0.1316 1 0.348 t 2 t1 q 995 815.73 779.04℃ 1 1.3145
§2-3 通过平壁,圆筒壁,球壳和其它变截面 物体的导热
本节将针对一维、稳态、常物性、无内热源情况,考察平
板和圆柱内的导热。
直角坐标系: c
t t t t ( ) ( ) ( ) Φ x x y y z z
1. 单层平壁的导热
a 几何条件:单层平板; b 物理条件:、c、 已知;无内热源
6. 球壳的导热
球坐标系中导热微分方程
c
t 1 t 1 t 1 t 2 (r 2 ) 2 2 ( ) 2 ( sin ) Φ r r r r sin r sin
一维、稳态、无内热源、常物性:
d 2 dt (r )0 dr dr
c 时间条件:稳态导热 t 0 d 边界条件:第一类
o
x
根据上面的条件可得:
t t c ( ) Φ x x
控制方程
d 2t dx
2
0
边界条件
x 0, t t1 第一类边条: x , t t2
直接积分,得:
t t1
线性分布
t 2 t1 t q t ( A )
r
R A
热阻分析法适用于一维、稳态、无内热源的情况
2. 多层平壁的导热
• 多层平壁:由几层不同材料组成 • 例:房屋的墙壁 — 白灰内层、水泥 沙浆层、红砖(青砖)主体层等组成 t1 t2 t3 t4
1/h2 t f2
三层平壁的稳态导热
例1
已知钢板、水垢及灰垢的导热系数各为 46.4w/(mK)、1.16 w/(mK) 及 0.116w/(mK),试比较厚为1mm的钢板、水垢及灰垢的面积热阻 。
解:根据平板壁导热热阻计算公式有
则
RA
1103 RA钢 2.16103 m 2 K/w 46.4 1103 RA水 8.62103 m 2 K/w 1.16 1103 RA灰 8.6210 2 m 2 K/w 0.116
t w2 t w1 c1 ; ln( r2 r1 )
ln r1 c2 t w1 (t w2 t w1 ) ln( r2 r1 )
将系数带入第二次积分结果
t w 2 t w1 t t w1 ln( r r1 ) ln( r2 r1 )
圆筒壁中的温度分布呈对数曲线
下面来看一下圆筒壁内部的热流密度和热流分布情况
20 (20) 1872 w 0.006 0.6 0.6 0.78
n
单 双
1872 44.6 41.95
答:双层玻璃窗的热损失41.95w
如果采用单层玻璃,则通过玻璃的热损失为双层玻璃
窗的44.6倍
例4 一台锅炉的炉墙由两层材料叠合组成。最里面的是耐火黏 土砖,厚为 348mm ;外面是 B 级硅藻土砖,厚 116mm ,已 知炉墙内外表面温度分别为 995℃和 60℃,试求每平方米 炉墙每小时的热损失及耐火黏土砖与硅藻土砖分界面上的 温度。 解: 由附录7查得两种耐火材料的导热系数
标准材料 标准材料
热 源 th=400℃
tt 1
tr
tt 2
冷 端 tc=300℃
被测材料的导热系数