51单片机串口通信异常的调试一例

合集下载

51单片机串口烧写和串口通信冲突

51单片机串口烧写和串口通信冲突

51单片机串口烧写和串口通信冲突51单片机是一款经典的单片机芯片,广泛应用于各种嵌入式系统中,具有体积小、功耗低、成本低等特点。

其中,串口烧写和串口通信是其重要的功能之一。

然而,在使用51单片机进行串口烧写和串口通信时,我们常常会遇到串口烧写和串口通信冲突的问题。

本文将从深度和广度两个方面介绍51单片机串口烧写和串口通信冲突的原因、解决方法以及个人观点和理解。

一、51单片机串口烧写和串口通信冲突的原因1. 引脚冲突:51单片机的串口通信使用了P3口的两个引脚(RXD和TXD),而串口烧写也需要使用这两个引脚。

当两者同时使用时,就会发生引脚冲突,导致串口通信无法正常进行。

2. 中断冲突:51单片机的串口通信和串口烧写都需要使用中断来进行数据的传输和处理。

然而,当两者同时进行时,就会发生中断冲突,导致程序异常或无法正常执行。

二、51单片机串口烧写和串口通信冲突的解决方法1. 引脚复用:通过引脚复用的方式,将串口通信和串口烧写使用的引脚分时复用。

可以在程序中通过控制器或开关来切换引脚的功能。

这样就可以避免引脚冲突,使串口烧写和串口通信能够正常进行。

2. 中断优先级设置:通过设置中断的优先级,可以解决串口通信和串口烧写同时进行时的中断冲突问题。

可以根据实际需求将串口通信和串口烧写的中断优先级进行设置,确保两者能够正确地进行数据传输和处理。

三、个人观点和理解作为一名嵌入式系统工程师,我对51单片机的串口烧写和串口通信冲突问题深有感触。

在实际项目中,我遇到过串口烧写和串口通信冲突导致程序异常的情况。

通过分析和解决这个问题,我更加深入地理解了51单片机的串口烧写和串口通信原理,以及相关的硬件和软件知识。

在解决串口烧写和串口通信冲突问题时,我发现引脚复用和中断优先级设置是较为常用且有效的方法。

通过合理设计引脚和优先级,可以有效解决冲突问题,同时保证系统的稳定性和可靠性。

总结回顾:通过本文的介绍,我们了解了51单片机串口烧写和串口通信冲突的原因及解决方法。

串口通信实验报告

串口通信实验报告

串⼝通信实验报告⼤连理⼯⼤学实验报告成绩:串⼝通信实验⼀、实验⽬的和要求了解串⼝通信的原理与机制掌握基于8051的串⼝通信硬件电路设计⽅法掌握8051串⼝通信程序调试⽅法⼆、实验原理和内容实验原理:1.串⼝通信简介串⼝通信是指数据在⼀根数据线上按照⼆进制数的数位⼀位接⼀位的传输。

其特点是通信线路简单,只要⼀对传输线就可以实现通信(如电话线),可⼤⼤地降低成本,适⽤于远距离通信。

缺点是传送速度慢。

2. 51单⽚机串⾏⼝简介51单⽚机的串⾏⼝是⼀个可编程全双⼯的通信接⼝,具有UART(通⽤异步收发器)的全部功能,能同时进⾏数据的发送和接收,也可以作为同步移位寄存器使⽤。

51单⽚机的串⾏⼝主要由两个独⽴的串⾏数据缓冲寄存器SBUF组成,它可以通过特殊功能寄存器SBUF对串⾏接收或串⾏发送寄存器进⾏访问,两个寄存器共⽤⼀个地址99H,但在物理上是两个独⽴的寄存器,由指令操作决定访问哪⼀个寄存器。

执⾏写指令时访问串⾏发送寄存器;执⾏读指令时,访问串⾏接收寄存器。

3.串⾏⼝控制寄存器SCON串⾏⼝控制寄存器SCON⽤来设定串⾏⼝的⼯作⽅式、接收或发送控制位以及状态标志位等。

在本实验中设定SM0为0,SM1为1,采⽤串⾏⼝的⼯作⽅式1(8位异步收发,波特率可变,由定时器控制)。

允许串⾏接收位REN设置为1,其它控制、标志位设置为0。

(即令SCON=0X50)4.定时器/计数器模式控制寄存器TMOD定时器/计数器模式控制寄存器TMOD是⼀个逐位定义的8位寄存器,其中低四位(即D0 ~ D3)定义定时器/计数器T0,⾼四位(即D4 ~ D7)定义定时器/计数器T1。

在本实验中使⽤定时器1,设定M1=1,M2=0,,采⽤定时器T1的⼯作⽅式2(⾃动重载8位定时器/计数器),其它控制位设置为0。

并由晶振频率(11.0592MHZ)和波特率(9600)计算初始化定时器T1:TH1=TL1=0xfd。

最后通过对TR1置1启动定时器T1。

51单片机中断程序例子

51单片机中断程序例子

51单片机中断程序例子
1. 外部中断:当外部信号引脚检测到高电平时,单片机会触发外部中断服务程序。

可以利用外部中断实现按键扫描功能,当按键按下时,触发中断程序对按键进行处理。

2. 定时器中断:利用定时器中断可以实现精确的时间控制。

例如,我们可以设置定时器中断为1秒,当定时器溢出时,触发中断程序,实现1秒钟执行一次的任务。

3. 串口中断:当接收到串口数据时,单片机会触发串口中断服务程序,可以利用串口中断实现串口通信功能。

4. ADC中断:当模数转换器完成一次转换时,单片机会触发ADC中断服务程序,可以利用ADC中断实现模拟信号的采集和处理。

5. 看门狗中断:看门狗定时器溢出时,单片机会触发看门狗中断服务程序,可以利用看门狗中断实现系统复位或其他相关功能。

6. 外部中断优先级:当多个外部中断同时触发时,可以通过设置外部中断的优先级来确定触发的顺序和优先级。

7. 定时器中断优先级:当多个定时器中断同时触发时,可以通过设置定时器中断的优先级来确定触发的顺序和优先级。

8. 中断嵌套:单片机支持中断嵌套,即在一个中断服务程序中触发
另一个中断服务程序,可以通过中断嵌套实现复杂的任务处理。

9. 中断屏蔽:单片机支持对中断的屏蔽,即可以通过设置中断屏蔽标志位来屏蔽某些中断,使其暂时不被触发。

10. 中断标志位:单片机提供中断标志位,用于标识中断是否被触发。

在中断服务程序中,可以通过读取和清除中断标志位来判断中断是否发生。

以上是根据51单片机中断程序的例子进行的描述,这些例子涵盖了常见的中断类型和相关功能。

通过学习和理解这些例子,可以更好地掌握51单片机中断编程的原理和方法。

51单片机串口通信程序。。含详细例子

51单片机串口通信程序。。含详细例子
while(RI == 0); RI = 0; c = SBUF; // 从缓冲区中把接收的字符放入 c 中 SBUF = c; // 要发送的字符放入缓冲区 while(TI == 0); TI = 0; } }
4.//////////////// /////////////////////////////////////////////////////////
pw.fpReadSign(); SendData();//通知上位机,送出读出器件特征字 }
void Erase()//擦除器件 {
pw.fpErase(); SendData();//通知上位机,擦除了器件 }
void Write()//写器件 {
BYTE n; pw.fpInitPro();//编程前的准备工作 SendData();//回应上位机表示进入写器件状态,
{
unsigned char c;
TMOD = 0x20; // 定时器 1 工作于 8 位自动重载模式, 用于产生波特率
TH1=(unsigned char)(256 - (XTAL / (32L * 12L * baudrate)));
TL1=(unsigned char)(256 - (XTAL / (32L * 12L * baudrate))); SCON = 0x50; PCON = 0x00; TR1 = 1; IE = 0x00; // 禁止任何中断 while(1) {
///////////////////////////////////////////////////////////////////////////////// //所支持的 FID,请在这里继续添加
///////////////////////////////////////////////////////////////////////////// extern void PreparePro00();//FID=00:AT89C51 编程器 extern void PreparePro01();//FID=01:AT89C2051 编程器 extern void PreparePro02();//FID=02:AT89S51 编程器

51单片机串口通信(相关例程)

51单片机串口通信(相关例程)

51单片机串口通信(相关例程) 51单片机串口通信(相关例程)一、简介51单片机是一种常用的微控制器,它具有体积小、功耗低、易于编程等特点,被广泛应用于各种电子设备和嵌入式系统中。

串口通信是51单片机的常见应用之一,通过串口通信,可以使单片机与其他外部设备进行数据交互和通信。

本文将介绍51单片机串口通信的相关例程,并提供一些实用的编程代码。

二、串口通信基础知识1. 串口通信原理串口通信是通过串行数据传输的方式,在数据传输过程中,将信息分为一个个字节进行传输。

在51单片机中,常用的串口通信标准包括RS232、RS485等。

其中,RS232是一种常用的串口标准,具有常见的DB-9或DB-25连接器。

2. 串口通信参数在进行串口通信时,需要设置一些参数,如波特率、数据位、停止位和校验位等。

波特率表示在单位时间内传输的比特数,常见的波特率有9600、115200等。

数据位表示每个数据字节中的位数,一般为8位。

停止位表示停止数据传输的时间,常用的停止位有1位和2位。

校验位用于数据传输的错误检测和纠正。

三、串口通信例程介绍下面是几个常见的51单片机串口通信的例程,提供给读者参考和学习:1. 串口发送数据```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_SendChar(unsigned char dat){SBUF = dat; // 发送数据while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志}void main(){UART_Init(); // 初始化串口while (1){UART_SendChar('A'); // 发送字母A}}```2. 串口接收数据```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_Recv(){unsigned char dat;if (RI) // 检测是否接收到数据{dat = SBUF; // 读取接收到的数据 RI = 0; // 清除接收中断标志// 处理接收到的数据}}void main(){UART_Init(); // 初始化串口EA = 1; // 允许中断ES = 1; // 允许串口中断while (1)// 主循环处理其他任务}}```3. 串口发送字符串```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_SendString(unsigned char *str){while (*str != '\0')SBUF = *str; // 逐个发送字符while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志str++; // 指针指向下一个字符}}void main(){UART_Init(); // 初始化串口while (1){UART_SendString("Hello, World!"); // 发送字符串}}```四、总结本文介绍了51单片机串口通信的基础知识和相关编程例程,包括串口发送数据、串口接收数据和串口发送字符串。

51单片机串口通信程序。。含详细例子

51单片机串口通信程序。。含详细例子

{ P3_4=0; P3_3=1;
} void RstPro()//编程器复位 {
pw.fpProOver();//直接编程结束 SendData();//通知上位机,表示编程器就绪,可以直接用此函数因为协议号(ComBuf[0])还没被修改,下同 }
void ReadSign()//读特征字 {
} void serial () interrupt 4 using 3 //串口接收中断函数 {
if (RI) { RI = 0 ; ch=SBUF; read_flag= 1 ; //就置位取数标志 }
} main()
{ init_serialcom(); //初始化串口 while ( 1 ) { if (read_flag) //如果取数标志已置位,就将读到的数从串口发出 { read_flag= 0 ; //取数标志清 0 send_char_com(ch); } }
while(RI == 0); RI = 0; c = SBUF; // 从缓冲区中把接收的字符放入 c 中 SBUF = c; // 要发送的字符放入缓冲区 while(TI == 0); TI = 0; } }
4.//////////////// /////////////////////////////////////////////////////////
SendData(); } else break;//等待回应失败 } pw.fpProOver();//操作结束设置为运行状态 ComBuf[0]=0;//通知上位机编程器进入就绪状态 SendData(); }
void Lock()//写锁定位
{
pw.fpLock();
SendData();

深入理解51单片机串口通信及通信实例

深入理解51单片机串口通信及通信实例

深入理解51单片机串口通信及通信实例串口通信的原理串口通信(SerialCommunicaTIons)的概念非常简单,串口按位(bit)发送和接收字节。

尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。

它很简单并且能够实现远距离通信。

比如IEEE488定义并行通行状态时,规定设备线总长不得超过20米,并且任意两个设备间的长度不得超过2米;而对于串口而言,长度可达1200米。

典型地,串口用于ASCII码字符的传输。

通信使用3根线完成,分别是地线、发送、接收。

由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。

其他线用于握手,但不是必须的。

串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。

对于两个进行通信的端口,这些参数必须匹配。

a,波特率:这是一个衡量符号传输速率的参数。

指的是信号被调制以后在单位时间内的变化,即单位时间内载波参数变化的次数,如每秒钟传送240个字符,而每个字符格式包含10位(1个起始位,1个停止位,8个数据位),这时的波特率为240Bd,比特率为10位*240个/秒=2400bps。

一般调制速率大于波特率,比如曼彻斯特编码)。

通常电话线的波特率为14400,28800和36600。

波特率可以远远大于这些值,但是波特率和距离成反比。

高波特率常常用于放置的很近的仪器间的通信,典型的例子就是GPIB设备的通信。

b,数据位:这是衡量通信中实际数据位的参数。

当计算机发送一个信息包,实际的数据往往不会是8位的,标准的值是6、7和8位。

如何设置取决于你想传送的信息。

比如,标准的ASCII码是0~127(7位)。

扩展的ASCII码是0~255(8位)。

如果数据使用简单的文本(标准ASCII码),那么每个数据包使用7位数据。

每个包是指一个字节,包括开始/停止位,数据位和奇偶校验位。

由于实际数据位取决于通信协议的选取,术语包指任何通信的情况。

51单片机串口通信程序

51单片机串口通信程序

51单片机串口通信程序51单片机是我国自主研发的一款微控制器,在国内广泛应用于各种电子设备中。

在很多应用场景中,需要通过串口进行通信,以实现数据传输。

本文将介绍51单片机串口通信程序的编写方法。

一、串口介绍串口是一种通信接口,用于在电子设备之间传输数据。

其主要特点是一条通信线路同时只能传输一位数据,因此称为串口。

串口和并口属于不同的通信接口标准。

串口的优点是具有通信距离远、传输速率快、可靠性高等优点,因此广泛应用于各种场合中。

串口有两种工作模式:同步模式和异步模式。

在实际应用中,异步串口通信更为常见。

二、异步串口通信原理在异步串口通信中,数据的传输是通过发送端和接收端的时钟信号不同步实现的。

在发送数据时,发送端会发出一个起始位,接下来是数据位,最后是一个或多个停止位。

在接收端,当检测到起始位时,开始接收数据。

根据通信协议,在接收完数据位后,接收端会判断是否正确,然后再结束本次通信。

1. 硬件连接在51单片机和电脑之间进行串口通信,需要用到串口转USB线。

将串口转USB线的TxD接口与51单片机的P3.1接口相连,RxD接口与P3.0接口相连。

此外,需要一个5V的电源供给51单片机。

2. 准备工作在编写程序之前,需要进行一些准备工作:(1)将P3口设为外部中断P3口的最低2位是外部中断的2个输入端,需要将它们设为中断输入。

EA=1;EX0=1;(2)设置波特率串口通信需要设置波特率。

常见的波特率有9600、19200、38400等。

对应的波特率常数为0xFD、0xFA、0xF4等。

TH1=0xFD;//波特率9600(3)使能串口中断在发送和接收数据时,会不断产生中断,需要将中断使能。

ES=1;//允许串口中断3. 编写程序(1)发送数据void SendData(unsigned char SendBuff[],unsigned int ULength){unsigned int i;for(i=0;i<ULength;i++){SBUF=SendBuff[i];//发送数据while(TI==0); //等待,直到发送完成TI=0;}}(2)接收数据(3)主函数TMOD|=0x20;//定时器1工作方式2TH1=0xFD;//波特率9600TR1=1;//打开定时器1SCON=0x50;//串口方式1,8位数据,无校验,1停止位EA=1;//开总中断ES=1;//开串口中断while(1){SendData(pSendData,4);//发送数据 RecvData(pRecvData,4);//接收数据if(pRecvData[0]=='K'){P0=0x01;//点亮LED}else{P0=0x00;//关闭LED}}}四、总结。

51单片机的串口通信程序(C语言)

51单片机的串口通信程序(C语言)

#include <reg52.h>#include<intrins.h>#include <stdio.h>#include <math.h>#define uchar unsigned char#define uint unsigned intsbit Key1 = P2^3;sbit Key2 = P2^2;sbit Key3 = P2^1;sbit Key4 = P2^0;sbit BELL = P3^6;sbit CONNECT = P3^7;unsigned int Key1_flag = 0;unsigned int Key2_flag = 0;unsigned int Key3_flag = 0;unsigned int Key4_flag = 0;unsigned char b;unsigned char code Num[21]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x40,0x79,0x24,0x30,0x19,0x12,0x02,0x78,0x00, 0x10,0x89};unsigned char code Disdigit[4] = {0x7F,0xBF,0xDF,0xEF};unsigned char Disbuf[4];void delayms(uint t){uint i;while(t--){/* 对于11.0592M时钟,约延时1ms */for (i=0;i<125;i++){}}}//-----------------------------------------------------void SendData(uchar Dat){uchar i=0;SBUF = Dat;while (1){if(TI){TI=0;break;}}}void ScanKey(){if(Key1 == 0){delayms(100); if(Key1 == 0){Key1_flag = 1; Key2_flag = 0; Key3_flag = 0;Key4_flag = 0;Key1 = 1;}else;}if(Key2 == 0){delayms(100);if(Key2 == 0){Key2_flag = 1; Key1_flag = 0; Key3_flag = 0;Key4_flag = 0;Key2 = 1;}else;}if(Key3 == 0){delayms(50);if(Key3 == 0){Key3_flag = 1; Key1_flag = 0; Key2_flag = 0;Key4_flag = 0;Key3 = 1;}else;}if(Key4 == 0){delayms(50);if(Key4 == 0){Key4_flag = 1;Key1_flag = 0;Key2_flag = 0;Key3_flag = 0;Key4 = 1;}else;}else;}void KeyProc(){if(Key1_flag){TR1 = 1;SendData(0x55);Key1_flag = 0; }else if(Key2_flag){TR1 = 1;SendData(0x11); Key2_flag = 0;}else if(Key3_flag) {P1=0xff;BELL = 0;CONNECT = 1;Key3_flag = 0;}else if(Key4_flag){CONNECT = 0;BELL = 1;Key4_flag = 0;}else;}void Initdisplay(void){Disbuf[0] = 1;Disbuf[1] = 2;Disbuf[2] = 3;Disbuf[3] = 4;}void Display() //显示{unsigned int i = 0;unsigned int temp,count;temp = Disdigit[count]; P2 =temp;temp = Disbuf[count];temp = Num[temp];P0 =temp;count++;if (count==4)count=0;}void time0() interrupt 1 using 2 {Display();TH0 = (65535 - 2000)/256;TL0 = (65535 - 2000)%256;}void main(){Initdisplay();TMOD = 0x21;TH0 = (65535 - 2000)/256;TL0 = (65535 - 2000)%256;TR0 = 1;ET0 = 1;TH1 = 0xFD; //11.0592MTL1 = 0xFD;PCON&=0x80;TR1 = 1;ET1 = 1;SCON = 0x40; //串口方式REN = 1;PT1 = 0;PT0 = 1;EA = 1;while(1){ScanKey();KeyProc();if(RI){Disbuf[0] = 0;Disbuf[1] = 20;Disbuf[2] = SBUF>>4;Disbuf[3] = SBUF&0x0f;RI = 0;}else;}}51单片机串口通信C语言程序2**************************************************************; 平凡单片机工作室;ckss.asm;功能:反复向主机送AA和55两个数;主机使用一个串口调试软件设置19200,n,8,1***************************************************************/#include "reg51.h"#define uchar unsigned char#define uint unsigned int//延时程序//////////////////由Delay参数确定延迟时间*/void mDelay(unsigned int Delay){ unsigned int i;for(;Delay>0;Delay--){ for(i=0;i<124;i++){;}}}//////////////////// 主程序////////////////////void main(){ uchar OutDat; //定义输出变量TMOD=0x20; //TMOD=0TH1=0xf3; //12MHZ ,BPS:4800,N,8,1TL1=0xf3;PCON=0x80; //方式一TR1=1; //?????????????????????????????SCON=0x40; //串口通信控制寄存器模式一OutDat=0xaa; //向串口发送固定数据值for(;;) //循环程序{SBUF=OutDat;//发送数据for(;;){ if(TI) //发送中断位当发送停止位时置1,表示发送完成break;}mDelay(500);TI=0; //清零中断位OutDat=~OutDat; //显示内容按位取反}}。

51单片机模拟串口通讯

51单片机模拟串口通讯

论坛新老朋友们。

祝大家新年快乐。

在新的一年开始的时候,给大家一点小小的玩意。

工程师经常碰到需要多个串口通信的时候,而低端单片机大多只有一个串行口,甚至没有串口。

这时候无论是选择高端芯片,还是更改系统设计都是比较麻烦的事。

我把以前搞的用普通I/O口模拟串行口通讯的程序拿出来,供大家参考,希望各位兄弟轻点拍砖。

基本原理:我们模拟的是串行口方式1.就是最普通的方式。

一个起始位、8个数据位、一个停止位。

模拟串行口最关键的就是要计算出每个位的时间。

以波特率9600为例,每秒发9 600个位,每个位就是1/9600秒,约104个微秒。

我们需要做一个精确的延时,延时时间+对IO口置位的时间=104微秒。

起始位是低状态,再延时一个位的时间。

停止位是高状态,也是一个位的时间。

数据位是8个位,发送时低位先发出去,接收时先接低位。

了解这些以后,做个IO模拟串口的程序,就是很容易的事。

我们开始。

先上简单原理图:就一个MAX232芯片,没什么好说的,一看就明白。

使用单片机普通I/ O口,232数据输入端使用51单片机P3.2口(外部中断1口,接到普通口上也可以,模拟中断方式的串行口会有用。

呵呵)。

数据输出为P0.4(随便哪个口都行)。

下面这个程序,您只需吧P0.4 和P3.2 当成串口直接使用即可,经过测试完全没有问题.2、底层函数代码如下:sbit TXD1 = P0^4; //定义模拟输出脚sbit RXD1 = P3^2; //定义模拟输入脚bdata unsigned char SBUF1; //定义一个位操作变量sbit SBUF1_bit0 = SBUF1^0;sbit SBUF1_bit1 = SBUF1^1;sbit SBUF1_bit2 = SBUF1^2;sbit SBUF1_bit3 = SBUF1^3;sbit SBUF1_bit4 = SBUF1^4;sbit SBUF1_bit5 = SBUF1^5;sbit SBUF1_bit6 = SBUF1^6;sbit SBUF1_bit7 = SBUF1^7;void delay_bps() {unsigned char i; for (i = 0; i < 29; i++); _nop_(); _nop_();} //波特率9600 模拟一个9600波特率unsigned char getchar2() //模拟接收一个字节数据{while (RXD1);_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_(); delay_bps();SBUF1_bit0 = RXD1; //0delay_bps();SBUF1_bit1 = RXD1; //1delay_bps();SBUF1_bit2 = RXD1; //2delay_bps();SBUF1_bit3 = RXD1; //3delay_bps();SBUF1_bit4 = RXD1; //4delay_bps();SBUF1_bit5 = RXD1; //5delay_bps();SBUF1_bit6 = RXD1; //6delay_bps();SBUF1_bit7 = RXD1; //7delay_bps();return(SBUF1) ; //返回读取的数据}void putchar2(unsigned char input) //模拟发送一个字节数据{SBUF1 = input;TXD1 = 0; //起始位delay_bps();TXD1 = SBUF1_bit0; //0delay_bps();TXD1 = SBUF1_bit1; //1delay_bps();TXD1 = SBUF1_bit2; //2delay_bps();TXD1 = SBUF1_bit3; //3delay_bps();TXD1 = SBUF1_bit4; //4delay_bps();TXD1 = SBUF1_bit5; //5delay_bps();TXD1 = SBUF1_bit6; //6delay_bps();TXD1 = SBUF1_bit7; //7delay_bps();TXD1 = 1; //停止位delay_bps();}3、实现串行通讯。

51单片机波特率设置 串口调试发送接收

51单片机波特率设置 串口调试发送接收
11.0592M是因为在进行通信时,12M频率进行串行通信不容易实现标准的波特率,比如9600,4800,而11.0592M计算时正好可以得到,因此在有通信接口的单片机中,一般选11.0592M
计算一下就知道了。如我们要得到9600 的波特率,晶振为11.0592M 和12M,定时器1 为模式2,SMOD 设为1,分别看看那所要求的TH1 为何值。代入公式:
最终解决办法:
换用11.592MHz晶振!!!
/******************************************************************/
void UART_SER() interrupt 4
{
uchar Temp;//定义临时变量
if(RI)
{
RI=0;
//标志位清零
Temp=SBUF;
//读入gned char
/******************************************************************//*名称:主函数*/
/*内容:打开串口调试程序,将波特率设置为9600,无奇偶校验*/
/*晶振11.0592MHz,发送和接收使用的格式相同,如都使用*/
ES=1;
EA=1;
}
//*************
void main(void)
{
serial_init(); //初始化
while(1)
//主循环不做任何动作
{}
}
/******************************************************************//*串口中断程序*/
/*字符型格式,在发送框输入hello,ILoveMCU,在接*/

51单片机与串口通信代码

51单片机与串口通信代码

51单片机与串口通信代码在当今科技发展迅速的时代,嵌入式系统的应用越来越广泛。

而51单片机是一类常见的嵌入式控制器,它具有体积小巧、功耗低、价格便宜等特点,因此被广泛应用于各个领域。

而串口通信是实现单片机与计算机之间数据传输的常见方式,本文将介绍51单片机与串口通信的相关代码。

1. 串口通信概述串口通信是指通过串行接口,将数据一位一位地传输。

单片机通过串口与计算机或其他设备之间进行数据传输,实现信息的收发和控制指令的执行。

串口通信常用的协议包括RS232、RS485和UART等。

在51单片机中,一般选用UART协议。

2. 串口通信的硬件连接在使用51单片机与计算机进行串口通信时,需要进行相应的硬件连接。

首先,需要将单片机的串口引脚(一般是P3口)与计算机的串口(COM口)进行连接。

单片机的TXD引脚连接到计算机的RXD引脚,而单片机的RXD引脚连接到计算机的TXD引脚。

此外,还需要相连的地线进行电位的匹配。

3. 串口通信的软件设置在使用51单片机进行串口通信时,需要对单片机的串口进行相应的软件设置。

首先,需要设置波特率,波特率指每秒传送的位数,常见的波特率有9600、115200等。

通过设置相同的波特率,实现单片机与计算机之间的数据传输。

其次,还需要设置数据位、停止位和校验位等参数,以确保数据的正确传输。

4. 单片机发送数据的代码示例下面是一个简单的51单片机发送数据的代码示例:```c#include <reg51.h>void main() {TMOD = 0x20; // 配置定时器1为工作方式2TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 允许串口工作TR1 = 1; // 启动定时器1while (1) {SBUF = 'A'; // 发送数据while (!TI); // 等待数据发送完毕TI = 0; // 清除发送标志位}}```5. 单片机接收数据的代码示例下面是一个简单的51单片机接收数据的代码示例:```c#include <reg51.h>void main() {TMOD = 0x20; // 配置定时器1为工作方式2TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 允许串口工作TR1 = 1; // 启动定时器1while (1) {if (RI) { // 判断是否有数据接收P1 = SBUF; // 将接收到的数据存入P1口RI = 0; // 清除接收标志位}}}```6. 总结本文介绍了51单片机与串口通信代码的相关内容。

中断定时器串口通信

中断定时器串口通信

中断定时器串口通信C51中断定时器串口通信总结总结51单片机一.中断一、中断的概念CPU在处理某一事件A时,发生了另一事件B请求CPU迅速去处理(中断发生);CPU暂时中断当前的工作,转去处理事件B(中断响应和中断服务);待CPU将事件B处理完毕后,再回到原来事件A被中断的地方继续处理事件A(中断返回),这一过程称为中断二、80C51的中断系统有5个中断源(8052有6个),2个优先级,可实现二级中断嵌套TCONIEIP硬件查询SCON1、(P3.2)可由IT0(TCON.0)选择其为低电平有效还是下降沿有C51中断定时器串口通信总结效。

当CPU检测到P3.2引脚上出现有效的中断信号时,中断标志IE0(TCON.1)置1,向CPU申请中断。

2、(P3.3)可由IT1(TCON.2)选择其为低电平有效还是下降沿有效。

当CPU检测到P3.3引脚上出现有效的中断信号时,中断标志IE1(TCON.3)置1,向CPU申请中断。

3、TF0(TCON.5),片内定时/计数器T0溢出中断请求标志。

当定时/计数器T0发生溢出时,置位TF0,并向CPU申请中断。

4、TF1(TCON.7),片内定时/计数器T1溢出中断请求标志。

当定时/计数器T1发生溢出时,置位TF1,并向CPU申请中断。

5、RI(SCON.0)或TI (SCON.1),串行口中断请求标志。

当串行口接收完一帧串行数据时置位RI或当串行口发送完一帧串行数据时置位TI,向CPU申请中断。

中断请求标志位51单片机的这5个中断源的6个中断标志位和2个中断触发方式控制位分别由特殊功能的寄存器TCON和SCON的相应位锁存。

1、TCON的中断标志IT0(TCON.0),外部中断0触发方式控制位。

当IT0=0时,为电平触发方式。

C51中断定时器串口通信总结当IT0=1时,为边沿触发方式(下降沿有效)。

IE0(TCON.1),外部中断0中断请求标志位。

IT1(TCON.2),外部中断1触发方式控制位。

基于51单片机的串口通信proteus仿真电路及代码

基于51单片机的串口通信proteus仿真电路及代码

1};
void delay(uchar n) {
uchar x,y; for(x=n;x>0;x--) for(y=110;y>0;y--); }
uchar key_putdown() {
P1=0xf0; if(P1!=0xf0) {
delay(5); if(P1!=0xf0) {
return 1; } } else return 0; }
基于 51 单片机的串口通信 proteus 仿真电路 及代码(2014.10.27)
本电路采用晶振为 11.0592MHz,采用串口工作方式 1,波特 率为 9600Bps,双机通信,U1 将 4*4 矩阵键盘送来的 0~f 字 符先用一位共阴数码管显示出来,再通过 P3.0 和 P3.1 两个 引脚送到 U2,U2 再用一位共阴数码管显示出来。
P0=0x00; P0=table[n]; }
void main() {
SCON = 0x50; TMOD = 0x20; TH1 = 0xFD; TL1 = 0xFD; TR1 = 1; ES = 1; EA = 1;
//串口方式 1, 8-n-1, 允许接收. //T1 方式 2
//开中断.
P0=0x3f; while(1) {
if(key_putdown()) {
key_scan(); led_disp(key); send();
} } }
这是从机 U2 接收使用的代码:
#include<reg51.h> #define uchar unsigned #define uint unsigned
uchar
code
table[16]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x7 1};//7 段共阴数码管 0~f

51单片机串口通信实例

51单片机串口通信实例

51单片机串口通信实例一、原理简介51 单片机内部有一个全双工串行接口。

什么叫全双工串口呢?一般来说,只能接受或只能发送的称为单工串行;既可接收又可发送,但不能同时进行的称为半双工;能同时接收和发送的串行口称为全双工串行口。

串行通信是指数据一位一位地按顺序传送的通信方式,其突出优点是只需一根传输线,可大大降低硬件成本,适合远距离通信。

其缺点是传输速度较低。

与之前一样,首先我们来了解单片机串口相关的寄存器。

SBUF 寄存器:它是两个在物理上独立的接收、发送缓冲器,可同时发送、接收数据,可通过指令对SBUF 的读写来区别是对接收缓冲器的操作还是对发送缓冲器的操作。

从而控制外部两条独立的收发信号线RXD(P3.0)、TXD(P3.1),同时发送、接收数据,实现全双工。

串行口控制寄存器SCON(见表1) 。

表1 SCON寄存器表中各位(从左至右为从高位到低位)含义如下。

SM0 和SM1 :串行口工作方式控制位,其定义如表2 所示。

表2 串行口工作方式控制位其中,fOSC 为单片机的时钟频率;波特率指串行口每秒钟发送(或接收)的位数。

SM2 :多机通信控制位。

该仅用于方式2 和方式3 的多机通信。

其中发送机SM2 = 1(需要程序控制设置)。

接收机的串行口工作于方式2 或3,SM2=1 时,只有当接收到第9 位数据(RB8)为1 时,才把接收到的前8 位数据送入SBUF,且置位RI 发出中断申请引发串行接收中断,否则会将接受到的数据放弃。

当SM2=0 时,就不管第位数据是0 还是1,都将数据送入SBUF,并置位RI 发出中断申请。

工作于方式0 时,SM2 必须为0。

REN :串行接收允许位:REN =0 时,禁止接收;REN =1 时,允许接收。

TB8 :在方式2、3 中,TB8 是发送机要发送的第9 位数据。

在多机通信中它代表传输的地址或数据,TB8=0 为数据,TB8=1 时为地址。

RB8 :在方式2、3 中,RB8 是接收机接收到的第9 位数据,该数据正好来自发送机的TB8,从而识别接收到的数据特征。

51单片机与PC串口通讯

51单片机与PC串口通讯

目录第1章需求分析 ............................................................................................................................ - 1 -1.1课题名称 (1)1.2任务 (1)1.3要求 (1)1.4设计思想 (1)1.5课程设计环境 (1)1.6设备运行环境 (2)1.7我在本实验中完成的任务 (2)第2章概要设计 ............................................................................................................................ - 2 -2.1程序流程图 (2)2.2设计方法及原理 (3)第3章详细设计 ............................................................................................................................ - 3 -3.1电路原理 (3)3.1.1STC89C52芯片 ............................................................................................................. - 3 -3.2串口通信协议 (4)3.3程序设计 (5)3.3.1主程序模块 .................................................................................................................... - 5 -3.3.2串口通讯模块 ................................................................................................................ - 6 -3.3.3控制部分文件 ................................................................................................................ - 8 -3.3.4公共部分模块 .............................................................................................................. - 11 -3.4电路搭建 (12)3.4.1电路原理图 .................................................................................................................. - 12 -第4章上位机关键代码分析 ...................................................................................................... - 12 -4.1打开串口操作 (12)4.2后台线程处理串口程序 (15)4.3程序运行界面 (18)第5章课程设计总结与体会 ...................................................................................................... - 19 -第6章致谢 .................................................................................................................................. - 19 -参考文献........................................................................................................................................... - 19 -第1章需求分析1.1 课题名称故障诊断数据采集通信系统设计与制作。

51单片机串口通信

51单片机串口通信

51单片机串口通信串行口通信是一种在计算机和外部设备之间进行数据传输的通信方式,其中包括了并行通信、RS-232通信、USB通信等。

而在嵌入式系统中,最常见、最重要的通信方式就是单片机串口通信。

本文将详细介绍51单片机串口通信的原理、使用方法以及一些常见问题与解决方法。

一、串口通信的原理串口通信是以字节为单位进行数据传输的。

在串口通信中,数据传输分为两个方向:发送方向和接收方向。

发送方将待发送的数据通过串行转并行电路转换为一组相对应的并行信号,然后通过串口发送给接收方。

接收方在接收到并行信号后,通过串行转并行电路将数据转换为与发送方发送时相对应的数据。

在51单片机中,通过两个寄存器来实现串口通信功能:SBUF寄存器和SCON寄存器。

其中,SBUF寄存器用于存储要发送或接收的数据,而SCON寄存器用于配置串口通信的工作模式。

二、51单片机串口通信的使用方法1. 串口的初始化在使用51单片机进行串口通信之前,需要进行串口的初始化设置。

具体的步骤如下:a. 设置波特率:使用波特率发生器,通过设定计算器的初值和重装值来实现特定的波特率。

b. 串口工作模式选择:设置SCON寄存器,选择串行模式和波特率。

2. 发送数据发送数据的过程可以分为以下几个步骤:a. 将要发送的数据存储在SBUF寄存器中。

b. 等待发送完成,即判断TI(发送中断标志位)是否为1,如果为1,则表示发送完成。

c. 清除TI标志位。

3. 接收数据接收数据的过程可以分为以下几个步骤:a. 等待数据接收完成,即判断RI(接收中断标志位)是否为1,如果为1,则表示接收完成。

b. 将接收到的数据从SBUF寄存器中读取出来。

c. 清除RI标志位。

三、51单片机串口通信的常见问题与解决方法1. 波特率不匹配当发送方和接收方的波特率不一致时,会导致数据传输错误。

解决方法是在初始化时确保两端的波特率设置一致。

2. 数据丢失当发送方连续发送数据时,接收方可能会出现数据丢失的情况。

51单片机串口变并口汇编程序

51单片机串口变并口汇编程序

51单片机串口变并口汇编程序51单片机是一种常用的微控制器,它具有高性能、低功耗、丰富的外设和广泛的应用领域。

其中,串口和并口是常见的通信接口方式。

本文将详细介绍51单片机串口变并口汇编程序的实现方法。

## 1. 串口和并口介绍### 1.1 串口串行通信接口(Serial Communication Interface),简称串口,是一种将数据以连续位的形式传输的通信方式。

它只需要两根线(发送线和接收线)即可实现数据传输,适用于远距离传输和多设备连接。

### 1.2 并口并行通信接口(Parallel Communication Interface),简称并口,是一种将数据以多个位同时传输的通信方式。

它需要多根线同时传输数据,适用于高速数据传输和短距离连接。

## 2. 串行通信与并行通信转换原理在51单片机中,通过软件编程可以实现串行通信与并行通信之间的转换。

下面是其基本原理:### 2.1 串行转并行在将串行数据转换为并行数据时,需要一个移位寄存器来存储接收到的串行数据,并通过时钟信号按位移出到并行总线上。

具体步骤如下:1. 初始化串口参数,包括波特率、数据位、停止位等。

2. 等待串口接收到数据。

3. 将接收到的串行数据写入移位寄存器。

4. 通过时钟信号依次将移位寄存器中的数据按位移出到并行总线上。

### 2.2 并行转串行在将并行数据转换为串行数据时,需要一个移位寄存器来存储要发送的并行数据,并通过时钟信号按位读取并发送出去。

具体步骤如下:1. 初始化串口参数,包括波特率、数据位、停止位等。

2. 将要发送的并行数据写入移位寄存器。

3. 通过时钟信号依次从移位寄存器中读取数据,并发送出去。

## 3. 51单片机串口变并口汇编程序实现下面是一个示例程序,演示了如何在51单片机中实现串口变并口的功能。

```assembly; 定义串口接收和发送函数USART_Rx: ; 串口接收函数MOV A, SBUF ; 读取SBUF中的接收数据RETUSART_Tx: ; 串口发送函数MOV SBUF, A ; 将A寄存器中的数据写入SBUFRET; 主程序入口MAIN:MOV TMOD, #20H ; 设置定时器1为工作模式2,用于串口通信 MOV TH1, #FDH ; 设置波特率为9600SETB TR1 ; 启动定时器1; 初始化串口参数MOV SCON, #50H ; 设置串口工作模式为8位数据位、1位停止位、可变波特率; 接收数据并转换为并行数据发送CALL USART_Rx ; 调用串口接收函数,将接收到的数据存入A寄存器MOV P0, A ; 将A寄存器中的数据写入P0,并行总线; 并行数据转换为串行数据发送MOV A, P1 ; 从P1并行总线读取要发送的数据,存入A寄存器CALL USART_Tx ; 调用串口发送函数,将A寄存器中的数据发送出去SJMP MAIN ; 无限循环END```上述汇编程序通过调用USART_Rx和USART_Tx函数实现了串口接收和发送功能。

C51单片机和电脑串口通信电路图

C51单片机和电脑串口通信电路图

C51单片机和电脑串口通信电路图与源码51单片机有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通讯。

进行串行通讯时要满足一定的条件,比如电脑的串口是RS232电平的,而单片机的串口是TTL电平的,两者之间必须有一个电平转换电路,我们采用了专用芯片MAX232进行转换,虽然也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。

我们采用了三线制连接串口,也就是说和电脑的9针串口只连接其中的3根线:第5脚的GND、第2脚的RXD、第3脚的TXD。

这是最简单的连接方法,但是对我们来说已经足够使用了,电路如下图所示,MAX232的第10脚和单片机的11脚连接,第9脚和单片机的10脚连接,第15脚和单片机的20脚连接.串口通讯的硬件电路如上图所示在制作电路前我们先来看看要用的MAX232,这里我们不去具体讨论它,只要知道它是TTL和RS232电平相互转换的芯片和基本的引脚接线功能就行了。

通常我会用两个小功率晶体管加少量的电路去替换MAX232,可以省一点,效果也不错,下图就是MAX232的基本接线图。

按图7-3加上MAX232就可以了。

这大热天的拿烙铁焊焊,还真的是热气迫人来呀:P串口座用DB9的母头,这样就可以用买来的PC串口延长线进行和电脑相连接,也可以直接接到电脑com口上。

为了能够在电脑端看到单片机发出的数据,我们必须借助一个WINDOWS软件进行观察,这里我们利用一个免费的电脑串口调试软件。

本串口软件在本网站可以找到软件界面如上图,我们先要设置一下串口通讯的参数,将波特率调整为4800,勾选十六进制显示。

串口选择为COM1,当然将网站提供的51单片机实验板的串口也要和电脑的COM1连接,将烧写有以下程序的单片机插入单片机实验板的万能插座中,并接通51单片机实验板的电源。

#include <reg51。

h〉#define BUFFERLEGTH 10//-—---———-—-——————--——-----—--——--——------—-—--—-—--—--——-———-—--—void UART_init();//串口初始化函数void COM_send(void);//串口发送函数char str[20];char j;//——-----————---——-—--—--—-—-—-———-———-—-——-—--—-—-——————--———-—--———void main(void){unsigned char i;UART_init();j=0; //初始化串口for(i = 0;i < 10 ;i++){COM_send(); //首先发送一次数据作为测试用};while(1);}//-——-——-——---------———-——-—-—-——--—---—---—--—-—--——---—---—--//——-——--——--—-—-—--———————---—-——-——-———-—-----——--—---——————-—-—-—-—————-—--—-—---—--———-——---——-- // 函数名称:UART_init()串口初始化函数// 函数功能: 在系统时钟为11.059MHZ时,设定串口波特率为9600bit/s// 串口接收中断允许,发送中断禁止//—-——--—-----———---—-——-—-——————-————-—-————---——-———————--———-———----—-—--—---——-—---—-————-———---void UART_init(){//初始化串行口和波特率发生器SCON =0x50; //选择串口工作方式1,打开接收允许TMOD =0x20; //定时器1工作在方式2,定时器0工作在方式1TH1 =0xfA; //实现波特率9600(系统时钟11。

串口通信的例子

串口通信的例子

串⼝通信的例⼦实验:1.实现现象:下载程序后打开串⼝调试助⼿,将波特率设置为4800,选择发送的数据就可以显⽰在串⼝助⼿上。

2.实验数据发送过程:数据从上位机(PC机)发送⾄下位机(51单⽚机),再从51单⽚机发送⾄上位机显⽰操作:1.使⽤Keil软件编写好程序,并编译成 *.hex⽂件2.给51单⽚机上电(⽤USB先将单⽚机和PC机连接),将 *.hex⽂件烧录到 51单⽚机3.打开串⼝助⼿ sscom32.exe,设置如下:4.输⼊要发送的数据“串⼝通信例⼦”,点击“发送”,显⽰结果:Keil代码:/*************************************************************************************** 串⼝通信实验 *实现现象:下载程序后打开串⼝调试助⼿,将波特率设置为4800,选择发送的数据就可以显⽰在串⼝助⼿上。

实验数据发送过程:数据从上位机(PC机)发送⾄下位机(51单⽚机),再从51单⽚机发送⾄上位机显⽰注意事项:⽆。

***************************************************************************************/#include <reg52.h>#define u16 unsigned int#define u8 unsigned char/******************************************************************************** 函数名 :usartInit()* 函数功能 :设置串⼝,串⼝初始化* 输⼊ : ⽆* 输出 : ⽆*******************************************************************************/void usartInit(){/* 步骤:1、确定T1的⼯作⽅式(编程TMOD寄存器);2、计算T1的初值,装载TH1、TL1;3、启动T1(编程TCON中的TR1位);4、确定串⾏⼝控制(编程SCON寄存器);5、串⾏⼝在中断⽅式⼯作时,要进⾏中断设置(编程IE、IP寄存器)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

51单片机串口通信异常的调试一例
单片机与DSP在硬件结构和程序编写方面存在很多共同之处,所以最近几周试着用了一下51单片机开发板,希望进一步熟悉中断的概念、串口通信、I2C协议、存储扩展等常用的知识。

在进行串口通信的实验时,预期功能不能实现。

实验的设计方案是:通过上位机给单片机发送一个16bit的字符串,单片机对字符串进行接收并立刻回显给上位机,接收并回显完毕后依次将这些字符(只能是0-9,a-f这几个字符,可以重复)在数码管上进行显示。

程序编写完成后,通过上位机发送字符串9876543210abcdef,单片机串口接收并回显9876543210abcde,然后数码管依次显示f9876543210abcde,数码管显示完成后,单片机串口回显的字符串中的e后面又多了一个f。

对实验现象进行分析不难发现,串口的接收和回显功能正常,但是存在2个问题:1.串口接收并回显和数码管显示的时序有点混乱;2.数码管的显示出现异常,本应该依次显示9876543210abcdef,实际上显示的却是f9876543210abcde。

对源代码进行分析发现,时序混乱的原因是中断响应及中断返回的执行时序出现问题,修改代码后问题1被解决。

问题2的解决思路:源代码中,通过串口接收到的字符串被存储在一个一维数组array[16]中,该数组有16个元素,每个元素都是unsigned char型。

在源代码中,先注释掉数码管显示的那一段代码,然后添加串口打印代码,串口打印实现的功能是依次显示array[0]到array[15]这16个元素的值。

编译通过后,将程序烧写到单片机。

使用串口调试助手,以十六进制的形式观察array[0]到array[15]的取值,结果如下:
也就是说array[0]存储的值用十六进制显示是0xff,
array[1]=9
array[2]=8
……
array[14]=d
array[15]=e
很明显可以看出array[0]没有按照预期的那样存储字符9。

也可以理解为本应存储的字符串9876543210abcdef在存储时发生了1个字节的偏移,在字符串首部插入了一个0xff。

检查代码发现串口初始化时,串口控制寄存器SCON的设置有点问题:
正确的顺序应该是:
通过SM1和SM0来设置串口的工作方式,通过REN置1来设置允许串口接收。

单片机上电复位的时候,SCON清零,REN=0标明禁止串口接收,原来的代码中,先用REN=1
允许串口接收(此时SM1=0;SM0=0串口在工作方式0,是同步移位寄存器),然后设置串口工作方式1(SM1=1;SM0=0)。

也就是说,在串口按照预期方式进行接收数据之前,已经开始作为同步移位寄存器对数据进行接收了,接收到的数据0xff就是单片机串口接收SBUF的初值,开发板上使用的单片机型号是STC89C52RC,查阅该芯片的datasheet发现,SBUF的初值是不确定的,规定为xxxx,xxxx(x既可以是0也可以是1)。

多次实验经验表明,STC89C52RC型号的单片机在上电复位后,接收SBUF里面的初值通常是11111111。

将源代码中对SCON进行设置的那一部分做个调整,调整为先设置SM1和SM0,再将REN置1,编译通过后将程序烧写到单片机,运行,问题解决。

正常运行时,串口回显的数据如下图所示:
串口调试总结:
1.编写程序之前,先画程序流程图;
2.串口初始化的每一步过程都必须很清楚,串口的4个工作方式都要熟悉;
3.在程序运行结果出现异常时,首先要对异常现象进行仔细分析,进行异常定位;
然后逐一解决。

对照着源程序进行功能模块划分,查找与异常相关的模块并对其
进行单独调试。

相关文档
最新文档