有限元分析网格划分
机械设计中有限元分析的几个关键问题
机械设计中有限元分析的几个关键问题在机械设计中,有限元分析是一种常用的分析方法,可以用于预测和评估机械结构的性能。
在进行有限元分析时,存在一些关键问题需要考虑和解决。
本文将介绍机械设计中有限元分析的几个关键问题。
1. 网格划分问题:有限元分析是基于网格(或称为离散)模型进行的,因此网格的划分对分析结果的准确性有很大影响。
合理的网格划分应该满足以下要求:在关键区域(如应力集中区域)的网格密度要足够高,以捕捉局部应力的变化;在结构的稳定区域的网格密度可以适当减小,以提高计算效率。
对于复杂结构和多尺度问题,网格划分更加复杂,需要综合考虑精度和计算效率的权衡。
2. 材料参数问题:有限元分析需要提供材料的力学参数,如弹性模量、泊松比、屈服强度等。
这些参数的准确性对分析结果有很大影响。
实际材料的力学参数通常会受到环境条件、缺陷、制造过程等多种因素的影响,如何选择合适的材料参数是一个关键问题。
在实际应用中,可以借助实验测试、材料数据库以及经验公式等方法来确定合适的材料参数。
3. 边界条件问题:有限元分析需要指定结构的边界条件,如约束条件和加载条件。
边界条件的选择对分析结果也有很大影响。
约束条件应该与实际情况相符,以反映结构的实际受力情况。
加载条件需要根据设计要求和实际工况来指定,以保证分析结果的准确性。
在边界条件的选择过程中,需要综合考虑结构的实际使用情况、安全性要求等因素。
4. 模型简化问题:有限元分析中,构建准确的模型需要考虑很多细节,如零件的精确几何形状、连接方式等。
在实际应用中,有时需要根据实际情况对模型进行简化。
模型简化的目的是为了减少计算复杂度和提高计算效率。
模型简化也可能引入误差,因此需要在精度和计算效率之间进行平衡。
对于复杂结构和多尺度问题,如何进行合理的模型简化是一个具有挑战性的问题。
5. 结果解释问题:有限元分析得到的结果是一系列的位移、应力、应变等数据,如何对这些数据进行解释和分析是另一个关键问题。
ANSYS 18.0有限元分析基础与实例教程课件第3章
四边形网络(默认)
三角形网络
图3-4 四边形单元形状的退化
图3-5 默认单元尺寸
2. 选择自由或映射网格划分
单元形状(MSHAPE)和网格划分类型(MSHEKEY)的设置共同影
响网格的生成,表3-2列出了ANSYS程序支持的单元形状和网格划分
类型。
表3-2 ANSYS程序支持的单元形状和网格划分类型
4.在节点处定义不同的厚度 可以利用下列方式对壳单元在节点处定义不同的厚度:
命令:RTHICK。 GUI:Main Menu > Preprocessor > Real Constants > Thickness Func 。
下面用一个实例来详细说明该过程,该实例的模型为10×10的矩形 板,用0.5×0.5的方形SHELL63单元划分网格。现在ANSYS程序里输 入如下命令流:
Main Menu > Preprocessor > Meshing > Mesh Attributes > All Volumes(Picked Volumes)
2.分配默认属性 可以通过指向属性表的不同条目来分配默认的属性,在开始划分网格 时,ANSYS程序会自动将默认属性分配给模型。直接分配给模型的单 元属性将取代上述默认属性,而且,当清除实体模型图元的节点和单 元时,其默认的单元属性也将被删除。
1
自由网格和映射网格示意图如图3-1所示。 ELEMENTS
SEP 16 2004
1
12:44:54
ELEMENTS
SEP 16 2004 12:45:40
Y ZX
Y ZX
图3-1 自由网格和映射网格示意图
3.2 设定单元属性
在生成节点和单元网格之前,必须定义合适的单元属性,包括如
有限元分析网格划分的关键技巧
网格规模和分辨率的选择是有限元分析网格划分中的重要环节。以下是选择 合理的网格规模和分辨率时需要考虑的几个因素:
1、分析精度:网格规模和分辨率越大,分析精度越高,但同时也会增加计 算成本。因此,需要在精度和成本之间找到平衡点。
2、计算资源:网格规模和分辨率越大,需要的计算资源越多,需要考虑计 算机硬件的性能和应用场景的需求。
4、三角形单元:适用于不规则区域和复杂结构的模拟,如表面模型等。
5、四边形单元:适用于规则区域和简单结构的模拟,如立方体、圆柱等。
6、高阶单元:高阶单元具有更高的计算精度,但同时也需要更多的计算资 源。
在选择合适的单元类型和阶次时,需要考虑以下因素:
1、分析精度:根据分析目标和实际需求,选择能够满足精度要求的单元类 型和阶次。
4、施加边界条件和载荷:对计算域的边界和加载条件进行定义,以模拟实 际工况。
5、进行有限元分析和求解:利用有限元分析软件进行计算,得到各节点处 的响应和位移等结果。
6、结果后处理:对分析结果进行可视化处理,如云图、动画等,以便更好 地理解和评估仿真结果。
技巧2:如何选择合适的单元类 型和阶次
5、经验准则:根据类似问题的经验和网格划分准则,可以指导网格规模和 分辨率的选择。例如,对于结构分析,通常建议最大单元尺寸不大于最小特征尺 寸的1/10。
技巧4:如何使用有限元分析软件自动划分网格
随着有限元分析软件的发展,越来越多的软件提供了自动划分网格的功能。 使用这些功能可以大大简化网格划分的过程,提高分析效率。下面介绍两种常见 的自动划分网格方法:
2、计算效率:在保证精度的前提下,尽量选择计算效率较高的单元类型和 阶次。
3、单元特性:了解各种单元类型的适用范围和局限性,以便在分析过程中 更好地满足实际需求。
有限元网格剖分与网格质量判定指标
有限元网格剖分与网格质量判定指标有限元网格剖分与网格质量判定指标一、引言有限元法是一种常用的数值分析方法,广泛应用于工程、力学等领域。
在有限元方法中,对于复杂的几何体,需要将其分割成多个简单的几何单元,称为有限元。
而有限元的形状和尺寸对计算结果的精度和稳定性有重要影响。
因此,有限元网格剖分和网格质量判定指标的选择和优化是提高有限元方法计算精度和效率的关键。
二、有限元网格剖分的基本原则和方法有限元网格剖分的基本原则是要确保网格足够细密,以捕捉几何体的细节和特征。
一般来说,有限元网格剖分可以分为以下几个步骤:1. 几何体建模:根据实际问题建立几何体模型,可以使用CAD软件进行建模。
2. 离散化:将几何体分割成简单的几何单元,如三角形、四边形或六面体等。
3. 网格生成:根据几何单元的尺寸和形状要求生成网格。
一般可采用三角形剖分算法或四边形剖分算法进行网格生成。
4. 网格平滑:对生成的网格进行平滑处理,以提高网格的质量。
三、网格质量判定指标网格质量判定指标是用来评价和衡量网格质量好坏的指标。
一个好的网格是指网格单元形状较正、网格单元之间大小相近、网格单元的边界规则等。
常用的网格质量判定指标包括:1. 网格单元形状度:用于评价网格单元的形状正交性和变形。
常用的形状度指标有内角度、调和平均内角度和狄利克雷三角形剖分等。
2. 网格单元尺寸误差:用于评价网格单元尺寸与理想尺寸之间的差异。
常用的尺寸误差指标有网格单元长度标准差、最大和最小网格单元尺寸比等。
3. 网格单元的四边形度:用于评价四边形网格的形状规则性。
常用的四边形度指标有圆度、直角度和Skewness等。
四、网格质量优化方法为了改善有限元网格质量,可以采用以下方法:1. 网格加密:通过将大尺寸网格单元划分为小尺寸网格单元,提高网格的细密度。
2. 网格平滑:通过对矩阵约束或拉普拉斯平滑等方法对网格进行平滑处理,改善网格单元的形状。
3. 网格优化:通过对网格单元的拓扑结构和形状进行优化,提高网格的质量。
机械设计中有限元分析的几个关键问题
机械设计中有限元分析的几个关键问题在机械设计中,有限元分析是一种常用的工具和方法。
它可以帮助工程师们对机械结构进行仿真和分析,评估其性能和可靠性,优化设计方案,减少试验成本和开发周期。
在进行有限元分析时,也存在一些关键问题需要注意和解决。
下面将介绍几个常见的有限元分析的关键问题。
1. 网格划分:网格划分是有限元分析的第一步,也是最关键的一步。
合理的网格划分对于结果的准确性和计算效率至关重要。
过于粗糙的网格会导致计算结果不精确,而过于细密的网格则会增加计算量。
需要根据设计要求和边界条件合理划分网格,尽量在重要的应力集中区域和位移较大的区域细化网格,以获得更准确的结果。
2. 材料本构模型:材料本构模型是用来描述材料力学性质的数学模型,对有限元分析结果的准确性和可靠性有重要影响。
选择合适的本构模型需要考虑材料的性质、应变应力关系和加载条件等因素。
常用的本构模型有弹性模型、塑性模型、粘弹性模型等。
在选择本构模型时,需要根据具体应用场景和加载条件进行合理选择,并进行验证和校准。
3. 边界条件:边界条件是有限元分析中非常重要的一个因素。
它直接影响着模型的应力分布和位移结果。
在设置边界条件时,需要根据实际问题的要求进行准确的设置。
一般包括固支边界、强制位移边界、加载边界等。
在实际应用中,边界条件的设置需要考虑结构的约束和外部加载的作用,并进行合理的假设和简化。
4. 模型验证:模型验证是确保有限元分析结果准确性和可靠性的关键环节。
在进行有限元分析前,可以进行一些简化模型或者理论计算,对部分区域或者特定加载情况进行验证。
验证的方法可以包括理论计算、试验验证、实际工程应用等。
验证的目的是检验有限元模型的准确性和可靠性,进一步提高分析结果的精确性。
5. 结果后处理:有限元分析的结果后处理是对分析结果进行展示和进一步分析的过程。
合适的结果后处理可以帮助工程师们更好地理解分析结果,发现问题和优化设计。
常用的结果后处理方法包括应力和位移的分布图、应变云图、动态变化曲线等。
结构有限元分析中的网格划分技术及其应用实例
结构有限元分析中的网格划分技术及其应用实例一、前言有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。
网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。
从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。
同理,平面应力和平面应变情况设计的单元求解方程也不相同。
在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。
辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。
由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。
CAD软件中流行的实体建模包括基于特征的参数化建模和空间自由曲面混合造型两种方法。
Pro/E和SoildWorks是特征参数化造型的代表,而CATIA与Unigraphics等则将特征参数化和空间自由曲面混合造型有机的结合起来。
现有CAD软件对表面形态的表示法已经大大超过了CAE软件,因此,在将CAD实体模型导入CAE软件的过程中,必须将CAD模型中其他表示法的表面形态转换到CAE软件的表示法上,转换精度的高低取决于接口程序的好坏。
在转换过程中,程序需要解决好几何图形(曲线与曲面的空间位置)和拓扑关系(各图形数据的逻辑关系)两个关键问题。
其中几何图形的传递相对容易实现,而图形间的拓扑关系容易出现传递失败的情况。
数据传递面临的一个重大挑战是,将导入CAE程序的CAD模型改造成适合有限元分析的网格模型。
在很多情况下,导入CAE程序的模型可能包含许多设计细节,如细小的孔、狭窄的槽,甚至是建模过程中形成的小曲面等。
这些细节往往不是基于结构的考虑,保留这些细节,单元数量势必增加,甚至会掩盖问题的主要矛盾,对分析结果造成负面影响。
机械设计中有限元分析的几个关键问题
机械设计中有限元分析的几个关键问题机械设计中的有限元分析是一种常用的分析工具,可以用来评估和优化机械结构的性能和可靠性。
进行有限元分析时需要注意一些关键问题,以确保分析的准确性和可靠性。
下面将介绍几个与有限元分析相关的关键问题。
是网格划分的问题。
有限元分析是基于将待分析的结构离散化为小的有限元单元来进行的,因此网格划分对于分析的准确性和计算效率起着至关重要的作用。
在进行网格划分时,需要注意保持单元之间的一致性和连续性,合理安排单元尺寸,尽量减少网格的畸变和奇异性。
对于复杂结构,还需要注意在关键部位增加足够的单元,以保证准确分析该部位的应力和变形。
是边界条件的设定问题。
在进行有限元分析时,需要明确定义结构的边界条件,即结构与外界的约束关系。
边界条件的设定直接影响分析的结果,因此需要根据实际情况合理设定。
对于静态问题,边界条件通常包括结构的约束和外载荷,需要根据结构的实际约束情况确定。
而对于动态问题,还需要考虑结构的初始条件和动态载荷,以及与结构相连接的其他部件的相互作用。
第三个关键问题是材料力学性质的模型选择。
有限元分析中常用的材料力学模型有线性弹性模型、非线性弹性模型、塑性流动模型等。
在选择材料模型时,需要根据材料的实际性质来确定。
对于大变形、高强度和高温等情况,可能需要采用非线性模型。
而对于金属材料的塑性分析,可能需要采用塑性流动模型。
选择合适的材料模型可以提高分析的准确性和可靠性。
另外一个关键问题是质量检查和网格收敛性分析。
质量检查是指对网格进行质量评估,主要包括网格形状、单元质量、网格畸变等方面的评估。
合理的网格质量对于分析的准确性起着重要的作用,因此在进行有限元分析之前,需要对网格进行质量检查,修复低质量的单元或进行网格优化。
还需要对分析结果进行网格收敛性分析,即通过逐步细化网格,观察分析结果是否收敛。
只有在分析结果收敛时才能认为分析是可靠的。
最后一个关键问题是结果的解释和验证。
有限元分析得到的结果需要进行解释和验证,以确保分析结果的可靠性。
ANSYS有限元分析中的网格划分
ANSYS有限元分析中的网格划分有限元分析中的网格划分好坏直接关系到模型计算的准确性。
本文简述了网格划分应用的基本理论,并以ANSYS限元分析中的网格划分为实例对象,详细讲述了网格划分基本理论及其在工程中的实际应用,具有一定的指导意义。
作者: 张洪才关键字: CAE ANSYS 网格划分有限元1 引言ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。
网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。
从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。
同理,平面应力和平面应变情况设计的单元求解方程也不相同。
在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。
辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。
由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。
2 ANSYS网格划分的指导思想ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。
在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。
为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。
利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。
有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。
有限元分析实例
有限元分析实例引言有限元分析(Finite Element Analysis,简称FEA)是一种工程分析方法,能够将连续体结构分割成有限个小单元,通过在每个小单元内建立方程模型,最终求解整个结构的力学行为。
本文将以一个实例来介绍有限元分析的基本过程和步骤。
实例背景我们将以一个简单的杆件弯曲问题为例来进行有限元分析。
假设有一根长度为L、截面积为A的杆件,材料的弹性模量为E,截面的转动惯性矩为I。
我们希望通过有限元分析来计算杆件在一定加载条件下的弯曲变形。
有限元网格的划分首先,我们需要将杆件划分成有限个小单元,即有限元网格。
常用的网格划分方法有三角形划分、四边形单元划分等。
根据具体问题的要求和复杂度,选择合适的划分方法。
单元的建立划分好网格后,我们需要在每个小单元内建立方程模型。
在弯曲问题中,常见的单元模型有梁单元、壳单元等。
在本实例中,我们选择梁单元作为杆件的单元模型。
对于梁单元,我们需要定义每个节点的位移和约束条件。
根据杆件的几何尺寸和材料属性,可以利用应变能量原理和几何相似原理,得到每个节点的位移和约束条件。
材料特性和加载条件的定义在进行有限元分析之前,我们需要定义材料的特性和加载条件。
对于本实例中的杆件,我们需要定义弹性模量E、截面积A和转动惯性矩I。
加载条件可以包括集中力、均布力、弯矩等。
在本实例中,假设杆件受到均布力,即沿杆件轴向的受力分布是均匀的。
单元方程的建立和求解在定义了材料特性和加载条件之后,我们可以根据每个梁单元的位移和约束条件,建立每个单元的方程模型。
常见的方程模型有刚度矩阵方法、位移法等。
根据所选的单元模型,选择合适的方程模型进行计算。
通过对每个单元的方程模型进行组装,我们可以得到整个结构的方程模型。
将加载条件带入,可以求解出整个结构在给定加载条件下的位移、应力等参数。
结果分析根据求解得到的位移信息,我们可以绘制出结构的变形图。
通过变形图,可以直观地观察到结构在弯曲条件下的变形情况。
《2024年有限元网格剖分与网格质量判定指标》范文
《有限元网格剖分与网格质量判定指标》篇一一、引言有限元法是一种广泛应用于工程和科学计算中的数值分析方法。
其核心步骤之一是进行网格剖分,即将求解域划分为一系列小的、相互连接的子域或元素。
网格的质量直接影响到有限元分析的准确性和效率。
因此,本文将重点讨论有限元网格剖分的方法以及网格质量的判定指标。
二、有限元网格剖分1. 网格剖分的基本原则有限元网格剖分应遵循以下基本原则:一是尽可能保持单元的规则性,如六面体单元;二是确保网格的连续性和兼容性;三是考虑网格的适应性,以适应求解域的几何形状和边界条件;四是尽可能减少单元的数量,以节省计算资源。
2. 常见的网格剖分方法(1)自动剖分法:利用计算机程序自动进行网格剖分,如基于Delaunay三角化的剖分方法。
(2)映射法:将求解域映射到参数空间进行剖分,再映射回原空间得到网格。
(3)手动剖分法:根据求解域的几何形状和边界条件,手动进行网格剖分。
三、网格质量判定指标1. 单元形态指标(1)扭曲度(Skewness):用于衡量单元的形状与理想形状的偏差程度,扭曲度越大,单元的形状越不规则,影响计算的精度和效率。
(2)内角分布:单元的内角应尽可能接近标准值(如四边形单元为90度),内角分布的均匀性可以反映单元的规则性。
(3)面积/体积变化率:用于衡量单元尺寸变化对整体网格的影响,变化率越小,网格质量越好。
2. 连接性指标(1)节点连接数:每个节点的连接单元数应适中,过多或过少的连接都可能导致计算误差。
(2)相邻单元的协调性:相邻单元在公共边界上应具有良好的协调性,避免出现不连续或重复的单元边界。
3. 整体性指标(1)网格均匀性:整体网格的尺寸和密度应保持均匀,避免出现过大或过小的单元。
(2)边界拟合度:网格应尽可能贴合求解域的边界,提高边界条件的准确性。
四、结论有限元网格剖分是有限元法的重要步骤之一,而网格质量直接影响到有限元分析的准确性和效率。
本文介绍了有限元网格剖分的基本原则和常见方法,以及网格质量的判定指标。
有限元计算与强度分析-(二)几何建模及网格划分
1.2 ANSYS Workbench建模技术
1.2.10 激活新平面
• New Sketch :在激活平面上新建草图。 • 新草图放在树形目录中,且在相关平面的下方。 • 通过树形目录或下拉列表操作草图(激活)。 • 注意:下拉列表仅显示以当前激活平面为参照的草图(示例如下)。
激活XY平面
下拉列表中仅显示XY平面内 的草图
关注于一个点
“Sphere of Influence” (红色 显示) 已经定义。球体内所关 注实体的单元大小是给定的平 均单元大小。
关注于两个面
1.4 划分网格
1.4.2.2 局部网格控制
刷新单元)。 • 需要更新:数据一改变单元的输出也要相应的更新。 • 最新的。 • 发生输入变动: 单元是局部时新的,但上行数据发生变
化也可能导致其发生改变。
1.2 ANSYS Workbench建模技术
1.2.1 DesignModeler概述 – DesignModeler (DM) 是ANSYS Workbench的一个组成, 类似CAD的建模器,具有参数建模能力:
1.1.1启动Workbench
• 两种方式启动Workbench:
– 从windows开始菜单启动:
– 从其支持的CAD系统中启动
1.1 ANSYS Workbench概述
1.1.2Workbench的图形用户界面
• Workbench 的图形用户界面主要分成工具箱和项目概图 两部分:
工具箱
项目概图
1.4 划分网格
1.4.2.1 网格划分方法
• Sweep(扫掠划分):
– 扫掠划分单元(六面体,也可能是楔形体),否则就是四面体。 – 在mesh上点击鼠标右键选择Show Sweepable Bodies。 – Type :扫掠方向上的划分数目或单元大小。 – Sweep Bias Type: 扫掠方向上的间隔比例 – Src/Trg Selection:
网格划分方法
Total number of elements:197
电子科技大第7学页机/共械48电页 子工程学院
2013,10
有限元分析与建模 Finite Element Analysis and Modeling
电子科技大第8学页机/共械48电页 子工程学院
2013,10
有限元分析与建模 Finite Element Analysis and Modeling
有限元分析与建模 Finite Element Analysis and Modeling
第16章 网 格 划 分 方 法
第一节 网格划分原则
划分什么样的网格?
第二节 网格划分方法
怎样划分网格?
电子科技大第1学页机/共械48电页 子工程学院
2013,10
有限元分析与建模 Finite Element Analysis and Modeling
2013,10
有限元分析与建模 Finite Element Analysis and Modeling
二、网格疏密 ( relative density)
(a) 一阶振型
(b) 二阶振型
电子科(c) 三技阶振第型大1学5页机/共械48电页(d)子四阶工振型程学院
2013,10
有限元分析与建模 Finite Element Analysis and Modeling
电子科技大第3学页机/共械48电页 子工程学院
2013,10
有限元分析与建模 Finite Element Analysis and Modeling 在相同网格数量下,位移计算精度高于应力计算精度
电子科技大第4学页机/共械48电页 子工程学院
2013,10
有限元分析与建模
有限元分析中圆、圆柱面以及圆柱体的网格划分
有限元分析中圆、圆柱面以及圆柱体的网格划分简介:有限元分析中网格划分质量决定分析准确性,分析用时,甚至分析对错,掌握经典的几何体的划分是学习有限元的必经之路,本文对圆、圆柱体和圆柱面的网格划分方法给与简介,并给出ANSYS LS-DYNA的例题代码。
关键词:有限元分析;ANSYS;LS-DYNA;网格划分;圆柱体网格划分;圆柱面网格划分在网上找到ANSYS的圆、圆柱面以及柱划分方法,做了一点修改,改为ANSYS LS-DYNA的划分方法,进行发布。
1圆圆的划分思路是先将圆切分为四份,然后进行划分,划分结果如图1所示:图1 圆的网格划分结果代码如下:finish $ /clear $ /prep7et,1,plane82 $ r0=10 ! 定义单元类型和圆半径参数cyl4,,,r0 $ cyl4,3*r0,,,,r0 ! 创建两个圆面 A 和 B,拟分别进行不同的网格划分wprota,,90 $ asbw,all ! 将圆面水平切分wprota,,,90 $ asbw,all ! 将圆面 A 竖向切分wpoff,,,3*r0 $ asbw,all ! 移动工作平面,将圆面 B 竖向切分wpcsys,-1 ! 工作平面复位但不改变视图方向asel,s,loc,x,-r0,r0 ! 选择圆面 A 的所有面lsla,s ! 选择与圆面 A 相关的所有线lesize,all,,,8 ! 对上述线设置网格划分个数为 8(三条边时相等且为偶数)mshape,0,2d $ mshkey,1 ! 设置四边形单元、映射网格划分amesh,all ! 圆面 A 划分网格asel,s,loc,x,2*r0,4*r0 ! 选择圆面B的所有面lsla,s ! 选择与圆面 B 相关的所有线lesize,all,,,8 ! 对上述线设置网格划分个数为 8 lsel,r,length,,r0 ! 选择上述线中长度为半径的线lesize,all,,,8,0.1,1 ! 设置这些线的网格划分数和间隔比amesh,all $ allsel ! 圆面 B 划分网格2圆柱面圆柱面的划分结果如图2所示图2 圆柱面的网格划分结果finish/clear/prep7r0=10 !定义圆半径h0=50 !定义圆的高度et,1,shell163 !定义单元类型cyl4,,,r0adele,1 !删除面cm,l1cm,line !将几何元素分组形成组元k,50 !定义关键点k,51,,,h0l,50,51 !利用关键点定义线adrag,l1cm,,,,,,5 !沿线拉伸成面lsel,s,loc,z,0 !选择Z=0线lesize,all,,,6 !对线指定网格尺寸lsel,s,length,,h0 !选择线lesize,all,,,8mshape,0,2d !指定划分单元的形状mshkey,1 !指定映射网格划分amesh,all !在面中划分节点或线单元3圆柱体4圆柱用结构化网格划分的思路是将圆柱切分为四份,如图3所示,然后在进行划分,划分效果如图4所示。
不同网格划分对机体有限元模态分析结果的影响
万方数据70小型内燃机与摩托车第38卷([K]一∞2[M]){西}={0}(4)求解以上方程就可以确定系统从小到大的几个固有频率值∞i和与之对应的固有模态咖。
(i=1,2,3…,凡)。
在自由振动时,结构中各结点振幅{咖}不全为零,因此式(4)中括号内矩阵的行列式之值必为零,由此得到结构自振频率方程,即:I[K]一∞2[肼]I-0(5)结构刚度矩阵[K]和质量刚度矩阵[M]都是n阶方阵,其中凡是结点自由度的数目,所以式(5)是关于∞2的n次代数方程,由此可求得n个固有频率∞i(i=l,2,3…,n),对于每个固有频率∞。
,由式(4)可确定几个结点振幅构成的一个列向量{咖}i=[咖“,咖乜,…,咖h]1,它们相互之间保持固定的比值,但绝对值可任意变化,它们构成一个向量,称为特征向量,在工程上通常称为结构振型。
到此,通过求解式(5)便可求得系统的固有频率及其对应的振型。
2机体实体模型的建立柴油机机体是一个经铸造、机加工后得到的箱体式结构,其上布有各种加强筋、凸台、轴承孔、水套和油道孔,内有气缸套和各种纵、横隔板,形状较为复杂一J。
建立模型时,在不影响机体计算精度的条件下,对机体结构进行必要的简化,以便提高有限元计算速度。
建立机体的实体模型如图l所示。
图1机体实体模型图3机体有限元模型的建立建立有限元模型包括两部分内容,即有限元模型的建立和单元的划分。
根据有限元原理,单元的选择对有限元的计算精度有很大的影响JJ。
而柴油机机体主要涉及到的实体单元,有四面体单元和六面体单元,由于六面体单元形状规则,难以适应机体结构复杂的外形,四面体恰恰相反,它弥补了六面体的不足,能较好的适应机体复杂的几何外形,经综合考虑选择四面体单元。
考虑到网格的划分密度对四面体单元的计算精度影响比较大,理论上网格越密计算精度越好,为了验证这一理论,采用智能网格划分控制的6级、7级精度来划分网格进行计算,并以此来比较计算结果的差异,网格划分结果如表1、表2、表3所示,机体有限元模型如图2所示。
有限元网格划分和收敛性
一、基本有限元网格概念1.单元概述几何体划分网格之前需要确定单元类型.单元类型的选择应该根据分析类型、形状特征、计算数据特点、精度要求和计算的硬件条件等因素综合考虑。
为适应特殊的分析对象和边界条件,一些问题需要采用多种单元进行组合建模。
2。
单元分类选择单元首先需要明确单元的类型,在结构有限元分析中主要有以下一些单元类型:平面应力单元、平面应变单元、轴对称实体单元、空间实体单元、板单元、壳单元、轴对称壳单元、杆单元、梁单元、弹簧单元、间隙单元、质量单元、摩擦单元、刚体单元和约束单元等.根据不同的分类方法,上述单元可以分成以下不同的形式.3.按照维度进行单元分类根据单元的维数特征,单元可以分为一维单元、二维单元和三维单元。
一维单元的网格为一条直线或者曲线.直线表示由两个节点确定的线性单元.曲线代表由两个以上的节点确定的高次单元,或者由具有确定形状的线性单元。
杆单元、梁单元和轴对称壳单元属于一维单元,如图1~图3所示.二维单元的网格是一个平面或者曲面,它没有厚度方向的尺寸.这类单元包括平面单元、轴对称实体单元、板单元、壳单元和复合材料壳单元等,如图4所示。
二维单元的形状通常具有三角形和四边形两种,在使用自动网格剖分时,这类单元要求的几何形状是表面模型或者实体模型的边界面。
采用薄壳单元通常具有相当好的计算效率。
三维单元的网格具有空间三个方向的尺寸,其形状具有四面体、五面体和六面体,这类单元包括空间实体单元和厚壳单元,如图5所示。
在自动网格划分时,它要求的是几何模型是实体模型(厚壳单元是曲面也可以)。
4。
按照插值函数进行单元分类根据单元插值函数多项式的最高阶数多少,单元可以分为线性单元、二次单元、三次单元和更高次的单元。
线性单元具有线性形式的插值函数,其网格通常只具有角节点而无边节点,网格边界为直线或者平面。
这类单元的优点是节点数量少,在精度要求不高或者结果数据梯度不太大的情况下,采用线性单元可以得到较小的模型规模.但是由于单元位移函数是线性的,单元内的位移呈线性变化,而应力是常数,因此会造成单元间的应力不连续,单元边界上存在着应力突变,如图6所示。
结构有限元分析答案
结构有限元分析答案结构有限元分析是一种广泛应用于工程实践中的分析方法,它适用于求解各种结构在受力条件下的变形和应力分布情况。
通过有限元分析,工程师们可以在计算机上模拟结构的实际运行状况,以此预测可能出现的问题并采取相应的措施。
但是在进行有限元分析时,工程师们需要注意一些问题,以确保分析的准确性和可靠性。
1. 网格划分问题在进行有限元分析时,网格划分是非常关键的一步。
网格的划分需要考虑结构的几何形状,同时也需要考虑到计算机的计算能力。
如果网格划分太细,则会导致计算时间变长,且计算结果可能过分精细,反而不符合实际情况。
如果网格划分太粗,则会使得计算结果的准确性受到影响。
因此,网格划分需要在精确性和计算效率之间寻求平衡。
2. 材料的力学性质在进行有限元分析时,需要使用材料的力学性质,例如弹性模量、泊松比、屈服强度等,这些参数对于计算结果有很大的影响。
因此,在使用这些参数时需要进行准确的测试和测量,并考虑到这些参数的变化范围,以此判断计算结果的可靠性。
3. 边界条件的选择在进行有限元分析时,需要指定结构的边界条件,例如结构的固定端、支撑点和载荷区域等。
这些边界条件的选择需要与实际情况相符,以此确保计算结果的准确性。
如果边界条件选择不合理,则会导致计算结果出现偏差,而且容易出现无解的情况。
4. 模型的简化问题在进行有限元分析时,为了降低计算难度和提高计算效率,可能会对模型进行简化。
但是,在进行模型简化时需要谨慎,以确保简化后的模型与实际情况相符。
如果简化的模型与实际情况出现偏差,则会导致计算结果出现误差,从而影响分析结论的可靠性。
5. 后处理结果的分析在完成有限元分析后,需要对计算结果进行后处理分析。
后处理分析不仅可以得到整个结构的应力分布情况,还可以分析各个局部的应力情况,以此更好地指导工程设计。
但是,在进行后处理分析时需要注意结果误差的分析,以此更好地进行结构的性能评估。
综上所述,结构有限元分析是一种重要的工程分析方法,可以应用于各种结构的分析和设计中。
有限元网格剖分原理
有限元网格剖分原理: 1. 引言有限元法是求解复杂工程问题的一种近似数值解法,现已广泛应用到力学、热学、电磁学等各个学科,主要分析工作环境下物体的线性和非线性静动态特性等性能。
有限元法求解问题的基本过程主要包括:分析对象的离散化?有限元求解?计算结果的处理三部分。
曾经有人做过统计:三个阶段所用的时间分别占总时间的40%~50%、5%及50%~55%。
也就是说,当利用有限元分析对象时,主要时间是用于对象的离散及结果的处理。
如果采用人工方法离散对象和处理计算结果,势必费力、费时且极易出错,尤其当分析模型复杂时,采用人工方法甚至很难进行,这将严重影响高级有限元分析程序的推广和使用。
因此,开展自动离散对象及结果的计算机可视化显示的研究是一项重要而紧迫的任务。
可喜的是,随着计算机及计算技术的飞速发展,出现了开发对象的自动离散及有限元分析结果的计算机可视化显示的热潮,使有限元分析的“瓶颈”现象得以逐步解决,对象的离散从手工到半自动到全自动,从简单对象的单维单一网格到复杂对象的多维多种网格单元,从单材料到多种材料,从单纯的离散到自适应离散,从对象的性能校核到自动自适应动态设计/分析,这些重大发展使有限元分析摆脱了仅为性能校核工具的原始阶段,计算结果的计算机可视化显示从简单的应力、位移和温度等场的静动态显示、彩色调色显示一跃成为对受载对象可能出现缺陷(裂纹等)的位置、形状、大小及其可能波及区域的显示等,这种从抽象数据到计算机形象化显示的飞跃是现在甚至将来计算机集成设计/分析的重要组成部分。
2. 有限元分析对网格剖分的要求有限元网格生成就是将工作环境下的物体离散成简单单元的过程,常用的简单单元包括:一维杆元及集中质量元、二维三角形、四边形元和三维四面体元、五面体元和六面体元。
他们的边界形状主要有直线型、曲线型和曲面型。
对于边界为曲线(面)型的单元,有限元分析要求各边或面上有若干点,这样,既可保证单元的形状,同时,又可提高求解精度、准确性及加快收敛速度。
有限元法的计算步骤
有限元语言及编译器(Finite Element Language And it’s Compiler,以下简称FELAC) 是中国科学院数学与系统科学研究院梁国平研究院于1983年开始研发的通用有限元软件平 台,是具有国际独创性的有限元计算软件,是PFEPG系列软件三十年成果(1983年—2013 年)的总结与提升,有限元语言语法比PFEPG更加简练,更加灵活,功能更加强大。目前 已发展到2.0版本。其核心采用元件化思想来实现有限元计算的基本工序,采用有限元语 言来书写程序的代码,为各领域,各类型的有限元问题求解提供了一个极其有力的工具。 FELAC可以在数天甚至数小时内完成通常需要一个月甚至数月才能完成的编程劳动。
有限元法的计算步骤
有限元法的计算步骤归纳为以下三个基本步骤:网格划分,单元分析,整体分析。
(1)网格划分 有限元法的基础是用有限个单元体的集合来代替原有的连续体。因此首先要对弹性体进 行必要的简化,再将弹性体划分为有限个单元组成的离散体。单元之间通过单元节点相连接。 由单元、结点、结点连线构成的集合称为网格。 (2)单元分析
附:FELAC 2.0软件简介
FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于 数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法 表达式,并由生成器解释产生完整的并行有限元计算C程序。
FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计 算的程序代码,包含串行程序和并行程序。该系统采用一种语言(有限元语言)和四种技 术(对象技术、组件技术、公式库技术生成器技术)开发而成。并且基于FELAC 1.0的用户 界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰富了文本编 辑功能,改善了用户的视觉体验,方便用户快速便捷的对脚本或程序进行编辑、编译与 调试。其中并行版在前后处理上进行了相应的改进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2.4壳单元
壳单元可以模拟平板和曲壳一类结构。壳单元比梁 单元和实体单元要复杂的多,因此,壳类单元中各种 单元的选项很多,如节点与自由度、材料、特性、退 化、协调与非协调,完全积分与减缩积分、面内刚度 选择、剪切变形、节点偏置等,应详细了解各种单元 的使用说明。
2020/10/8
2020/10/8
3.定义材料特性 定义材料特性的命令及其对应的菜单操作如下: 命令:MP、TB
GUI:Main Menu>Preprocessor>Material
Props>Material Models
4.建立梁截面 建立梁截面的命令及其对应菜单操作如下: 命令:ECTYPE、SECDATA
2020/10/8
2020/10/8
Thanks
2020/10/8
粱单元分为多种单元,分别具有不同的特性,是一 类轴向拉压、弯曲、扭转的3D单元。
2020/10/8
4.2.3二维实体单元
2D实体单元是一类平面单元,可用于平面应力、 平面应变的分析,此类单元均位于XY平面内。单元 由不同的节点组成,但每个节点的自由度均为2个(谐 结构实体单元除外),即Ux和Uy。
4.2.5三维实体单元
3D实体单元用于模拟三维实体结构,此类单元每 个节点均具有三个自由度,即Ux,Uy,Uz三个平动 自由度。
2020/10/8
目 录
4.1 网格划分的概述 4.2 单元类型 4.3 网格划分流程
4.3.1单元划分基本过程
1.选择单元类型 选择单元类型的命令及其对应的菜单操作如下: 命令:ET GUI:Main Menu>Preprocessor>Element Type>Add/Edit/Delete 用户可在单元属性数据库中选择所需的单元。 2.定义实常数组 定义实常数组的命令及其对应菜单操作如下: 命令:R GUI:Main Menu>Preprocessor>Real Constants>Add/Edit/Delete 实常数组不是必须的,其定义与否与选用的单元有关该类单 元只承受杆轴向的拉压,不承受弯矩,节点只有平动 自由度。不同的单元具有弹性、塑性、蠕变、膨胀、 大转动、大挠度(也称大变形)、大应变(也称有限 应变),应力刚化(也称几何刚度、初始应力刚度) 等功能。
2020/10/8
4.2.2梁单元
有限元与ANYSYS
有限元分析流程
前处理
模型建立 网格划分 属性定义 接触设置 边界条件
计算
求解器
后处理
结果分析 模拟动画
目 录
4.1 网格划分的概述 4.2 单元类型 4.3 网格划分流程
4.1网格划分的概述
经过几何建模后生成了由点、线、面及体组成的几 何模型,经过单元划分后才能成为由节点和单元组成 的有限元模型。 要获得可靠的分析结果,用户必须在建模之前就确 定好选用何种单元进行分析。ANSYS的每种单元及 其选项设置对应了不同物理场的数学模型,任何分析 之前首先要分析问题,找到合适的单元类型并详细了 解单元的参数及功能,再根据单元的要求建立几何模 型。 建立几何模型并添加单元类型后,还要对几何模型 进行分析,设置合适的单元尺寸及单元划分方式,确 保能够进行单元划分且划分的网格能获得可靠的分析 结果。
GUI:Main Menu>Preprocessor>Sections>Beam 此命令用于使用Beam44、Beam188或Beam189单 元的梁进行网格划分。
2020/10/8
4.3.2选择网格划分方法
2020/10/8
2020/10/8
2020/10/8
2020/10/8
目 录
4.1 网格划分的概述 4.2 单元类型 4.3 网格划分流程
4.2单元类型
ANSYS大多数单元为结构单元,用户可以根据分 析目的选择不同的单元类型进行分析。表4-1为结构 分析单元概要。
4.2单元类型
4.2.1杆单元 4.2.2梁单元 4.2.3二维实体单元 4.2.4壳单元 4.2.5三维实体单元