奇异值分解定理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奇异值分解定理:设,则存在m 阶正交矩阵U 和n 阶正交矩阵V ,使得

,其中为矩阵A 的全部非零奇

异值,满足0r 21>≥≥⋯≥≥,σσσ,前几个值比较大,它们包含了矩阵A 的大部分信息。U 的列向量(左奇异向量)是

的特征向量,V 的列向量(右奇异向量)是的特征

向量。

奇异值分解的性质:

1. 奇异值的稳定性

定理1:假设, A 和 B 的SVD 分别为和

,其中p =min ( m , n) ,则有。 定理1表明当矩阵A 有微小扰动时,扰动前后矩阵奇异值的变化不会大于扰动矩阵的-2范数。这个性质表明,对于存在灰度变化、噪声干扰等情况的图像,通过SVD 后,图像的特征向量不会出现大的变化。这一性质放宽了对图像预处理的要求, 并使匹配结果的准确性得到了保证。

2. 奇异值的比例不变性

因此,为了消除幅度大小对特征提取的影响,所进行的归一化处理不会从本质改变奇异值的相对大小。

3. 奇异值的旋转不变性

图像奇异值特征向量不但具有正交变换、旋转、位移、镜像映射等代数和几何上的不变性,而且具有良好的稳定性和抗噪性,广泛应用于模式识别与图像分析中。对图像进行奇异值分解的目的是:得到唯一、稳定的特征描述;降低特征空间的维数;提高抵抗干扰和噪声的能力。

欧氏距离(Euclidean distance )

欧氏距离定义:欧氏距离(Euclidean distance)是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。欧氏距离看作信号的相似程度,距离越近就越相似。

设x,y是M× N 维的两幅图像,那么其在图像空间中可以表示为:

式中为图像x,y的第(k,l)个像素点。则图像的欧氏距离定义为

根据上述定义,一幅M×N 的图像可以看作M×N 维欧氏空间中的一点,每个坐标对应于一个像素的灰度值。

特征匹配算法

采用遍历搜索法,计算特征向量两两间的欧氏距离,确定向量之间的最近邻距离(MD)第二近邻距离(SMD),并计算二者的比值:MD/ SMD。设定阈值s,当MD/ SMD

相关文档
最新文档