2016-2017年安徽省亳州市涡阳四中高二上学期期末数学试卷(文科)与解析
高二上学期期末考试数学(文)试题及答案 (4)
学年第一学期阶段性考试 高二数学(文科)试卷第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每小题给出的四个选项中,只有一项符合题目要求. 1.已知命题2015log ,:2=∈∀x R x p ,则p ⌝为( )A .2015log ,2=∉∀x R xB .2015log ,2≠∈∀x R xC .2015log ,020=∈∃x R xD .2015log ,020≠∈∃x R x2.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用系统抽样方法确定所选取的5袋奶粉的编号可能是( )A .5,10,15,20,25B .2,4,8,16,32C .5,6,7,8,9D .6,16,26,36,46 3.如果一个家庭有两个小孩,则两个孩子是一男一女的概率为( ) A .14 B .13 C .12 D .234.双曲线1222=-y x 的渐近线方程为( ) A. 02=±y x B. 02=±y x C .02=±y x D .02=±y x5.甲、乙两名学生五次数学测验成绩(百分制)如图所示. ①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分与乙同学的平均分相等; ③甲同学成绩的方差大于乙同学成绩的方差. 以上说法正确的是( ) A .①②B .②③C .①③D .①②③6.用秦九韶算法求多项式7234)(234++++=x x x x x f 的值,则)2(f 的值为( ) A .98 B .105 C .112 D .119 7.运行如右图的程序后,输出的结果为( ) A .6053 B .54 C .65 D .76 8.已知椭圆221164x y +=过点)1,2(-P 作弦且弦被P 平分,则此弦 所在的直线方程为( )7 90 1 38 90 1 289甲乙ENDS PRINT WEND i i i i S S i WHILE S i 1))1(/(1601+=+*+=<==A .032=--y xB .012=--y xC .042=--y xD .042=+-y x9.已知)(x g 为函数)0(1232)(23≠--=a ax ax ax x f 的导函数,则它们的图象可能是( )A .B .C .D .10.已知倾斜角为︒45的直线l 过抛物线x y 42=的焦点,且与抛物线交于B A ,两点,则OAB ∆(其中O 为坐标原点)的面积为( ) A .2B .22C .23D .811.已知(),()f x g x 都是定义在R 上的函数,且满足以下条件:①()()xf x ag x =⋅(0,a >1)a ≠且;②()0g x ≠;③)(')()()('x g x f x g x f ⋅<⋅. 若(1)(1)5(1)(1)2f fg g -+=-,则实数a 的值为 ( )A .21 B .2 C .45 D .2或21 12.如图,直线m x =与抛物线y x 42=交于点A ,与圆4)1(22=+-x y 的实线部分(即在抛物线开口内 的圆弧)交于点B ,F 为抛物线的焦点,则ABF ∆的 周长的取值范围是( ) A .()4,2 B .()6,4 C .[]4,2 D . []6,4第Ⅱ卷二、填空题:本大题共四小题,每小题5分.13.将十进制数)10(2016化为八进制数为 . 14.已知变量x 与y 的取值如下表:x 23 5 6y 7a -8 a +9 12从散点图可以看出y 对x 呈现线性相关关系,则y 与x 的线性回归直线方程a bx y+=ˆ必经过的定点为 .15.已知P 为圆4)2(:22=++y x M 上的动点,)0,2(N ,线段PN 的垂直平分线与直线PM 的交点为Q ,点Q 的轨迹方程为 .16.已知函数xxe x f =)(,现有下列五种说法:①函数)(x f 为奇函数;②函数)(x f 的减区间为()-1∞,,增区间为()1+∞,;频率组距50 55 60 65 70 75 80体重(kg)O0.070.060.050.040.030.020.01③函数)(x f 的图象在0x =处的切线的斜率为1; ④函数)(x f 的最小值为1e-. 其中说法正确的序号是_______________(请写出所有正确说法的序号).三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设命题p :12>-x ;命题q :0)1()12(2≥+++-a a x a x .若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围.18.(本小题满分12分)某校对高二年段的男生进行体检,现将高二男生的体重()kg 数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组[)65,60的人数为200.根据一般标准,高二男生体重超过65kg 属于偏胖,低于55kg 属于偏瘦.观察图形的信息,回答下列问题:(1)求体重在[)6560,内的频率,并补全频率分布直方图;(2)用分层抽样的方法从偏胖的学生中抽取6人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.19. (本小题满分12分)(1)执行如图所示的程序框图,如果输入的[]3,1-∈t ,若输出的s 的取值范围记为集合A ,求集合A ;(2)命题p :A a ∈,其中集合A 为第(1)题中的s 的取值范围;命题q :函数a x ax x x f +++=2331)(有极值; 若q p ∧为真命题,求实数a 的取值范围.20.(本小题满分12分)已知双曲线C :)00(12222>>=-,b a by a x .(1)有一枚质地均匀的正四面体玩具,玩具的各个面上分别写着数字1,2,3,4.若先后两次投掷玩具,将朝下的面上的数字依次记为b a ,,求双曲线C 的离心率小于5的概率;(2)在区间[]61,内取两个数依次记为b a ,,求双曲线C 的离心率小于5的概率.21.(本小题满分12分)已知椭圆C:)0(12222>>=+b a by a x 的中心在坐标原点O ,对称轴在坐标轴上,椭圆的上顶点与两个焦点构成边长为2的正三角形. (1)求椭圆C 的标准方程;(2)若斜率为k 的直线l 经过点)0,4(M ,与椭圆C 相交于A ,B 两点,且21>⋅OB OA ,求k 的取值范围.22. (本小题满分12分)已知函数)(2ln )(2R a x xa x a x f ∈++-=. (1)当1=a 时,求曲线)(x f y =在点))1(,1(f 处的切线方程;(2)当0>a 时,若函数()f x 在[1,]e 上的最小值记为)(a g ,请写出)(a g 的函数表达式.高二数学(文科)试卷参考答案一、DDCD BBCD ABAB二、13.)8(3740 14.()9,4 15.)0(1322<=-x y x 16.③④ 三、17.解:由p :12>-x 解得1<x 或3>x .……………………………… 3分由q :0)1()12(2≥+++-a a x a x 得[]0)1()(≥+--a x a x ,解得a x ≤或1+≥a x .……………………………… 6分∵p ⌝是q ⌝的必要不充分条件,∴p 是q 的充分不必要条件. …………………… 8分 ∴⎩⎨⎧≤+≥311a a ,则21≤≤a .∴实数a 的取值范围是[]21,.……………………………… 10分 18.解:(1)体重在[)65,60内的频率2.05)01.002.003.007.003.0(1=⨯++++-=04.052.0==组距频率 补全的频率分布直方图如图所示. ……………4分 (2)设男生总人数为n ,由2.0200=n,可得1000=n 体重超过kg 65的总人数为30010005)01.002.003.0(=⨯⨯++在[)70,65的人数为1501000503.0=⨯⨯,应抽取的人数为33001506=⨯, 在[)70,65的人数为1001000502.0=⨯⨯,应抽取的人数为23001006=⨯, 在[)80,75的人数为501000501.0=⨯⨯,应抽取的人数为1300506=⨯. 所以在[)70,65 ,[)75,70,[]80,75三段人数分别为3,2,1.…………………… 8分 (3)中位数为60kg 平均数为(52.50.0357.50.0762.50.0467.50.0372.50.0277.50.01)561.75⨯+⨯+⨯+⨯+⨯+⨯⨯=(kg)…12分19.解:(1)由程序框图可知,当11<≤-t 时,t s 2=,则[)2,2-∈s . 当31≤≤t 时,()322+--=t s组距kg)O0.0.0.0.0.0.0.∵该函数的对称轴为2=t ,∴该函数在[]21,上单调递增,在[]3,2上单调递减. ∴2,3min max ==s s ∴[]3,2∈s综上知,[]3,2-∈s ,集合[]3,2-=A ……………………………… 4分 (1)函数a x ax x x f +++=2331)(有极值,且12)(2'++=ax x x f , 0)('=x f 有两个不相等的实数根,即04)2(2>-=∆a 解得1-<a 或1>a即命题p :1-<a 或1>a .……………………………… 8分q p ∧为真命题,则⎩⎨⎧≤≤->-<3211a a 或a ,解得3112≤<-<≤-a 或a ;∴实数a 的取值范围是[)(]2,113--⋃,.……………………………… 12分20.解:双曲线的离心率22221ab ac a c e +===. 因为5e <a b ab 20422<<∴<∴.……………………………… 2分 (1) 因玩具枚质地是均匀的,各面朝下的可能性相等,所以基本事件),(b a 共有16个:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).设“双曲线C 的离心率小于5”为事件A ,则事件A 所包含的基本事件为(1,1),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共有12个. 故双曲线C 的离心率小于5的概率为431612)(==A P .…………………………… 7分(2) ∵[][]6,1,6,1∈∈b a∴⎪⎩⎪⎨⎧<<≤≤≤≤a b b a 206161 所以以a 为横轴,以b 为纵轴建立直角坐标系,如图所示,21422155=⨯⨯-⨯=阴影S ,由几何概型可知,双曲线C 的离心率小于5的概率为2521=P .……………………………… 12分21.解:(1)∵椭圆的上顶点与两个焦点构成边长为2的正三角形,32,22222=-=∴==∴c a b a c∴椭圆C 的标准方程为13422=+y x .……………………………… 4分 (2) 设直线l 的方程为)4(-=x k y ,设A (x 1,y 1),B (x 2,y 2)联立⎩⎨⎧=+-=1243)4(22y x x k y ,消去y 可得(0126432)43(2222=-+-+k x k x k∵直线l 与椭圆C 相交于A ,B 两点,∴0>∆由0)1264)(43(4)32(2222>-+-=∆k k k 解得412<k 设),(11y x A ,),(22y x B则34322221+=+k k x x ,3412642221+-=k k x x ……………………………… 7分211643324431264)1(16)(4)1()4()4(2222222221221221212121>++-+-+=++-+=--+=+=⋅k k k k k k k k x x k x x k x k x k x x y y x x OB OA解得196272>k ∴41196272<<k所以k 的取值范围是211433143321<<-<<-k 或k .……………………………… 12分22.解:(1)∵)(2ln )(2R a x x a x a x f ∈++-=,∴12)(22'+--=xa x a x f 当1=a 时,121)(,2ln )(2'+--=++-=xx x f x x x x f 2)1(,3)1('-===f k f曲线)(x f y =在点))1(,1(f 处的切线方程为)1(23--=-x y 即052=-+y x .……………………………… 3分(2)222222'))(2(212)(x a x a x x a ax x x a x a x f +-=--=+--=0,0>>x a ,由0)('>x f 得a x 2>,由0)('<x f 得a x 20<<)(x f ∴在(]a 2,0上为减函数,在()+∞,2a 上为增函数.……………………………… 5分①当210120≤<≤<a 即a 时,)(x f 在[]e ,1上为增函数. 12)1()(2+==∴a f a g 在(]a 2,0上为减函数,在()+∞,2a 上为增函数.…………… 7分②当22121ea e 即a <<<<时,)(x f 在[]a 2,1上为减函数,在(]e a ,2上为增函数. a a a a f a g 3)2ln()2()(+-==∴……………………………… 9分③当22ea e 即a ≥≥时,)(x f 在[]e ,1上为减函数. e ea a e f a g ++-==∴22)()(……………………………… 11分综上所述,⎪⎪⎪⎩⎪⎪⎪⎨⎧≥++-<<+-≤<+=)2(2)221(3)2ln()210(12)(22e a e e a a e a a a a a a a g ……………………………… 12分。
安徽省亳州市数学高二上学期文数期末考试试卷
安徽省亳州市数学高二上学期文数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分) (2019高二上·黄陵期中) 命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A . 若x+y不是偶数,则x,y都不是偶数B . 若x+y是偶数,则x,y不都是偶数C . 若x+y是偶数,则x,y都不是偶数D . 若x+y不是偶数,则x,y不都是偶数2. (1分)(2018·成都模拟) 已知直线和平面,若,则“ ”是“ ”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件3. (1分)运行如图所示的程序框图,则输出的数是5的倍数的概率为()A .B .C .D .4. (1分)设随机变量,且则P等于()A . 0.1B . 0.2C . 0.3D . 0.45. (1分)(2017·衡阳模拟) 曲线x=|y﹣1|与y=2x﹣5围成封闭区域(含边界)为Ω,直线y=3x+b与区域Ω有公共点,则b的最小值为()A . 1B . ﹣1C . ﹣7D . ﹣116. (1分)已知函数的两个极值点分别为x1 , x2 ,且x1∈(﹣∞,﹣1),x2∈(﹣1,0),点P(a,b)表示的平面区域为D,若函数y=logm(x+2)(m>0,m≠1)的图象经过区域D,则实数m的取值范围是()A . (3,+∞)B . [3,+∞)C . (1,3)D . (1,3]7. (1分)椭圆的左右焦点分别为、,点是椭圆上任意一点,则的取值范围是()A .B .C .D .8. (1分)过点(1,﹣2)的抛物线的标准方程是()A . y2=4x或x2=yB . y2=4xC . y2=4x或x2=﹣yD . x2=﹣y9. (1分)(2018·淮南模拟) 运行如图所示的程序框图,当输入时,输出的x为()A .B . 2C .D .10. (1分) (2017高一下·宿州期末) 从学号为1~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是()A . 3,11,19,27,35B . 5,15,25,35,46C . 2,12,22,32,42D . 4,11,18,25,3211. (1分)如图,是函数y=f(x)的导函数f′(x)的图象,则下面判断正确的是()A . 在区间(﹣3,﹣2)内f(x)是增函数B . 在(1,3)内f(x)是增函数C . 当x=4时,f(x)取极大值D . 当x=2时,f(x)取极大值12. (1分) (2016高二上·河北期中) 已知F1 , F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是正三角形,则这个椭圆的离心率是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2018高一上·营口期中) 若不等式与关于x不等式<0的解集相同,则=________14. (1分) F1 , F2是双曲线的两个焦点,B是虚轴的一个端点,若△F1BF2是一个底角为30°的等腰三角形,则该双曲线的离心率是________15. (1分)向面积为S的三角形△ABC内投一点P,则的面积小于的概率是________.16. (1分) (2017高二上·靖江期中) 已知f(x)=ax+ ,g(x)=ex﹣3ax,a>0,若对∀x1∈(0,1),存在x2∈(1,+∞),使得方程f(x1)=g(x2)总有解,则实数a的取值范围为________.三、解答题 (共6题;共12分)17. (2分)直线l1经过点A(m,1),B(-3,4),直线l2经过点C(1,m),D(-1,m+1),当l1∥l2或l1⊥l2时,分别求实数m的值.18. (2分) (2016高二上·徐水期中) 某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x:y1:12:13:44:519. (2分) (2016高二上·宁阳期中) 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)= (0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式.(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.20. (2分) (2017高二下·扶余期末) 为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间(单位:小时)与当天投篮命中率之间的关系:时间12345命中率0.40.50.60.60.4小李这5天的平均投篮命中率;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率.附:线性回归方程中系数计算公式,,21. (2分) (2016高二下·红河开学考) 设F1 , F2分别是椭圆E:x2+ =1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.22. (2分) (2017高二下·湖北期中) 已知函数f(x)=ax﹣1﹣lnx(a∈R).(Ⅰ)讨论函数f(x)在定义域内的极值点的个数;(Ⅱ)若函数f(x)在x=1处取得极值,对∀x∈(0,+∞),f(x)≥bx﹣2恒成立,求实数b的取值范围;(Ⅲ)当0<x<y<e2且x≠e时,试比较的大小.参考答案一、单选题 (共12题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共12分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、21-1、22-1、。
2016-2017年高二数学(文)期末试卷及答案
2016/2017学年度(上)高二期末考试数学试卷(文科)一、选择题(每小题5分,共60分) 1.抛物线241x y =的准线方程是( )A .1-=yB .1=yC .161-=xD .161=x2.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 ( ) A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)3.若双曲线E :116922=-y x 的左、右焦点分别为F 1、F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于 ( ) A .11B .9C .5D .3或94.已知条件p :1-x <2,条件q :2x -5x -6<0,则p 是q 的 A .充分必要条件 B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件5.一动圆P 过定点M (-4,0),且与已知圆N :(x -4)2+y 2=16相切,则动圆圆心P 的轨迹方程是 ( ) A .)2(112422≥=-x y xB .)2(112422≤=-x y xC .112422=-y xD .112422=-x y 6.设P 为曲线f (x )=x 3+x -2上的点,且曲线在P 处的切线平行于直线y =4x -1,则P 点的坐标为( ) A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)7.已知椭圆E 的中心为坐标原点,离心率为21,E 的右焦点与抛物线C :y 2=8x 的焦点重合,点A 、B 是C 的准线与E 的两个交点,则|AB |= ( ) A .3B .6C .9D .128.若ab ≠0,则ax -y +b =0和bx 2+ay 2=ab 所表示的曲线只可能是下图中的 ( )9.抛物线y =x 2到直线 2x -y =4距离最近的点的坐标是 ( ) A .)45,23(B .(1,1)C .)49,23(D .(2,4) 10. 函数x e y x =在区间⎥⎦⎤⎢⎣⎡221,上的最小值为 ( )A .e 2B .221e C .e1D .e11.已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为 ( ) A .43 B .23 C .1 D .212.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,C 与过原点的直线相交于A 、B 两点,连接AF 、BF . 若|AB |=10,|BF |=8,cos ∠ABF =45,则C 的离心率为 ( ) A.35B.57 C.45D.67二、填空题(每小题5分,共20分)13.若抛物线y ²=-2px (p >0)上有一点M ,其横坐标为-9,它到焦点的距离为10,则点M 的坐标为________. 14.已知函数f (x )=31x 3+ax 2+x +1有两个极值点,则实数a 的取值范围是 . 15.过椭圆22154x y +=的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,则△OAB 的面积为__________.16.双曲线)0,0(12222>>=-b a by a x 的右焦点为F ,左、右顶点为A 1、A 2,过F 作A 1A 2的垂线与双曲线交于B 、C 两点,若A 1B ⊥A 2C ,则该双曲线的渐近线斜率为__________. 三、解答题(共70分) 17. (本小题满分10分)(1)是否存在实数m ,使2x +m <0是x 2-2x -3>0的充分条件?(2)是否存在实数m ,使2x +m <0是x 2-2x -3>0的必要条件?18. (本小题满分12分)已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另外一条切线,且l 1⊥l 2. (1)求直线l 2的方程.(2)求由直线l 1,l 2和x 轴围成的三角形的面积.19. (本小题满分12分)双曲线C 的中心在原点,右焦点为⎪⎪⎭⎫⎝⎛0,332F ,渐近线方程为x y 3±=. (1)求双曲线C 的方程;(2)设点P 是双曲线上任一点,该点到两渐近线的距离分别为m 、n .证明n m ⋅是定值.20. (本小题满分12分)已知抛物线C 的顶点在坐标原点O ,对称轴为x 轴,焦点为F ,抛物线上一点A 的横坐标为2,且10=⋅OA FA .(1)求此抛物线C 的方程.(2)过点(4,0)作直线l 交抛物线C 于M 、N 两点,求证:OM ⊥ON21. (本小题满分12分)已知函数),()(23R b a bx ax x x f ∈++=,若函数)(x f 在1=x 处有极值4-.(1)求)(x f 的单调递增区间;(2)求函数)(x f 在[]2,1-上的最大值和最小值.22. (本小题满分12分)已知椭圆2222:1(0)x yC a ba b+=>>的一个顶点为A(2,0),离心率为22.直线y=k(x-1)与椭圆C交于不同的两点M、N.(1)求椭圆C的方程.(2)当△AMN的面积为310时,求k的值.高二期末数学(文科)试卷答案一.选择题(每小题5分,共60分) 1-6ADBBCC 7-12BCBDDB 二.填空题(每小题5分,共20分)13 (-9,6)或(-9,-6) 14 ()()∞+⋃-∞-,11, 15 3516 1± 二.解答题(共70分) 17. (1)欲使得是的充分条件, 则只要或,则只要即,故存在实数时, 使是的充分条件.(2)欲使是的必要条件,则只要或,则这是不可能的,故不存在实数m 时, 使是的必要条件.18. (1)由题意得y′=2x+1.因为直线l 1为曲线y=x 2+x-2在点(1,0)处的切线, 直线l 1的方程为y=3x-3.设直线l 2过曲线y=x 2+x-2上的点B (b ,b 2+b-2),则l 2的方程为y-(b 2+b-2)=(2b+1)(x-b). 因为l 1⊥l 2,则有k 2=2b+1=-,b=-,所以直线l 2的方程为y=-x-.(2)解方程组得.所以直线l 1、l 2的交点坐标为(,-).l 1、l 2与x 轴交点的坐标分别为(1,0)、(-,0).所以所求三角形的面积为S=××|-|=.19. (1)易知 双曲线的方程是1322=-y x . (2)设P ()00,y x ,已知渐近线的方程为:x y 3±= 该点到一条渐近线的距离为:13300+-=y x m到另一条渐近线的距离为13300++=y x n412232020=⨯-=⋅y x n m 是定值.20.(1)根据题意,设抛物线的方程为(),因为抛物线上一点的横坐标为,设,因此有, ......1分因为,所以,因此,......3分解得,所以抛物线的方程为; ......5分(2)当直线的斜率不存在时,此时的方程是:,因此M,N,因此NO M O⋅,所以OM ⊥ON ; ......7分当直线的斜率存在时,设直线的方程是,因此,得,设M,N,则,,, ......9分所以NO M O⋅,所以OM ⊥ON 。
安徽省亳州市涡阳四中2016-2017学年高二上学期期末数学试卷(文科) Word版含解析
2016-2017学年安徽省亳州市涡阳四中高二(上)期末数学试卷(文科)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若∠C=90°,则△ABC是直角三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是()A.0 B.1 C.2 D.32.设a,b是非零实数,若a<b,则下列不等式成立的是()A.a2<b2B.ab2<a2b C.D.3.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2等于()A.﹣4 B.﹣6 C.﹣8 D.﹣104.“p∨q为真”是“¬p为假”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.在△ABC中,若﹣sinAsinB<sin2A+sin2B﹣sin2C<﹣sinAsinB,则△ABC的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定6.已知x>0,y>0且x+y=xy,则x+y的取值范围是()A.(0,1]B.[2,+∞)C.(0,4]D.[4,+∞)7.抛物线y2=2px上一点Q(6,y0),且知Q点到焦点的距离为10,则焦点到准线的距离是()A.4 B.8 C.12 D.168.已知命题p:∃x∈R,使得x+<2,命题q:∀x∈R,x2+x+1>0,下列命题为真的是()A.p∧q B.(¬p)∧q C.p∧(¬q)D.(¬p)∧(¬q)9.在等差数列{a n}中,已知a3+a8>0,且S9<0,则S1、S2、…S9中最小的是()A.S4B.S5C.S6D.S710.在三角形ABC中,已知A=60°,b=1,其面积为,则为()A.B.C.D.11.若变量x,y满足约束条件,则ω=的取值范围是()A.[﹣,2)B.[﹣,]C.[﹣1,]D.[﹣,+∞)12.双曲线(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率为()A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)13.不等式组表示的平面区域的面积为14.若不等式|ax+2|<6的解集为(﹣1,2),则实数a等于.15.如果数列{a n}的前n项之和为S n=3+2n,那么=.16.已知(m2+4m﹣5)x2﹣4(m﹣1)x+3>0对一切实数x恒成立,求实数m 的范围.三.解答题(共70分)17.设命题p:方程4x2+4(a﹣2)x+1=0无实数根;命题q:函数y=ln(x2+ax+1)的值域是R.如果命题p或q为真命题,p且q为假命题,求实数a的取值范围.18.在△ABC中,角A、B、C的对边分别为a、b、c,且a=,b2+c2﹣bc=3.(1)求角A;(2)设cosB=,求边c的大小.19.已知函数f(x)=x2﹣(a+)x+1,(1)若a>0,解关于x的不等式f(x)≤0;(2)若对于任意x∈(1,3),f(x)+x>﹣3恒成立,求a的取值范围.20.经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度υ(千米/小时)之间的函数关系为:y=(υ>0).(1)在该时段内,当汽车的平均速度υ为多少时,车流量最大?最大车流量为多少?(保留分数形式)(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?21.已知等差数列{a n}的公差大于0,且a3,a5是方程x2﹣14x+45=0的两根,数列{b n}的前n项的和为S n,且.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记c n=a n•b n,求数列{c n}的前n项和T n.22.已知椭圆经过点A(2,1),离心率为.过点B (3,0)的直线l与椭圆C交于不同的两点M,N.(Ⅰ)求椭圆C的方程;(Ⅱ)求的取值范围;(Ⅲ)设直线AM和直线AN的斜率分别为k AM和k AN,求证:k AM+k AN为定值.2016-2017学年安徽省亳州市涡阳四中高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若∠C=90°,则△ABC是直角三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是()A.0 B.1 C.2 D.3【考点】四种命题的真假关系.【分析】直接判断原命题真假,写出原命题的逆命题,判断其真假,然后结合原命题的逆命题与否命题互为逆否命题,再根据互为逆否命题的两个命题共真假加以判断.【解答】解:命题“若∠C=90°,则△ABC是直角三角形”是真命题,∴其逆否命题也为真命题.原命题的逆命题为:“若△ABC是直角三角形,则∠C=90°”是假命题(△ABC是直角三角形不一定角C为直角),∴原命题的否命题也是假命题.∴真命题的个数是2.故选:C.2.设a,b是非零实数,若a<b,则下列不等式成立的是()A.a2<b2B.ab2<a2b C.D.【考点】一元二次不等式的应用;不等关系与不等式.【分析】由不等式的相关性质,对四个选项逐一判断,由于a,b为非零实数,故可利用特例进行讨论得出正确选项【解答】解:A选项不正确,因为a=﹣2,b=1时,不等式就不成立;B选项不正确,因为a=1,b=2时,不等式就不成立;C选项正确,因为⇔a<b,故当a<b时一定有;D选项不正确,因为a=1,b=2时,不等式就不成立;选项正确,因为y=2x是一个增函数,故当a>b时一定有2a>2b,故选C.3.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2等于()A.﹣4 B.﹣6 C.﹣8 D.﹣10【考点】等差数列的性质.【分析】利用等差数列{a n}的公差为2,a1,a3,a4成等比数列,求出a1,即可求出a2.【解答】解:∵等差数列{a n}的公差为2,a1,a3,a4成等比数列,∴(a1+4)2=a1(a1+6),∴a1=﹣8,∴a2=﹣6.故选:B.4.“p∨q为真”是“¬p为假”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断;复合命题的真假.【分析】由“p∨q为真”可知,p、q至少一个为真,从而可判断.【解答】解:因为“¬p为假”,所以p为真,所以“p∨q为真”,反之“p∨q为真”可知,p、q至少一个为真,即“¬p为假”不一定为真,故选B.5.在△ABC中,若﹣sinAsinB<sin2A+sin2B﹣sin2C<﹣sinAsinB,则△ABC的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定【考点】余弦定理.【分析】已知不等式利用正弦定理化简,再利用余弦定理化简,求出cosC的范围,进而确定出C为钝角,即可做出判断.【解答】解:将﹣sinAsinB<sin2A+sin2B﹣sin2C<﹣sinAsinB,利用正弦定理化简得:﹣ab<a2+b2﹣c2<﹣ab,由余弦定理得:cosC=,即a2+b2﹣c2=2abcosC,可得:﹣ab<2abcosC<﹣ab,∵ab≠0,∴﹣<2cosC<﹣1,即﹣<cosC<﹣,∴C为钝角,则△ABC为钝角三角形,故选:A.6.已知x>0,y>0且x+y=xy,则x+y的取值范围是()A.(0,1]B.[2,+∞)C.(0,4]D.[4,+∞)【考点】基本不等式.【分析】由题意可得x+y=xy≤,即(x+y)2﹣4(x+y)≥0,解值即可.【解答】解:由x>0,y>0且x+y=xy,可得x+y=xy≤,化简可得(x+y)2﹣4(x+y)≥0,解得x+y≤0(舍去),或x+y≥4,故x+y的取值范围是[4,+∞),故选D7.抛物线y2=2px上一点Q(6,y0),且知Q点到焦点的距离为10,则焦点到准线的距离是()A.4 B.8 C.12 D.16【考点】抛物线的简单性质.【分析】由于Q点到焦点的距离为10,利用弦长公式可得,解得p.即为焦点到准线的距离.【解答】解:∵Q点到焦点的距离为10,∴,解得p=8.∴焦点到准线的距离=p=8.故选:B.8.已知命题p:∃x∈R,使得x+<2,命题q:∀x∈R,x2+x+1>0,下列命题为真的是()A.p∧q B.(¬p)∧q C.p∧(¬q)D.(¬p)∧(¬q)【考点】复合命题的真假.【分析】本题的关键是判定命题p:∃x∈R,使得,命题的真假,在利用复合命题的真假判定.【解答】解:对于命题p:∃x∈R,使得,当x<0时,命题p成立,命题p为真命题,显然,命题q为真∴根据复合命题的真假判定,p∧q为真,(¬p)∧q为假,p∧(¬q)为假,(¬p)∧(¬q)为假9.在等差数列{a n}中,已知a3+a8>0,且S9<0,则S1、S2、…S9中最小的是()A.S4B.S5C.S6D.S7【考点】等差数列的前n项和.【分析】a3+a8>0,且S9<0,利用等差数列的性质可得:a5+a6=a3+a8>0,S9==9a5<0,即可得出.【解答】解:等差数列{a n}中,∵a3+a8>0,且S9<0,∴a5+a6=a3+a8>0,S9==9a5<0,∴a5<0,a6>0.∴S1、S2、…S9中最小的是S5.故选:B.10.在三角形ABC中,已知A=60°,b=1,其面积为,则为()A.B.C.D.【考点】正弦定理.【分析】由题意和三角形的面积公式列出方程求出c,由条件和余弦定理求出a,由正弦定理求出的值.【解答】解:∵A=60°,b=1,其面积为,∴,解得c=4,由余弦定理得,a2=b2+c2﹣2bccosA=1+16﹣2×=13,则a=,由正弦定理得,==,故选D.11.若变量x,y满足约束条件,则ω=的取值范围是()A.[﹣,2)B.[﹣,]C.[﹣1,]D.[﹣,+∞)【考点】简单线性规划.【分析】作出不等式组对应的平面区域,ω=的几何意义为动点(x,y)到点(﹣1,1)的斜率,利用数形结合即可得到结论.【解答】解:ω=的几何意义为动点P(x,y)到点D(﹣1,1)的斜率,作出不等式组对应的平面区域如图(阴影部分):由图象可知当P位于点A(1,0)时,AD的斜率最小,此时ω===,当过D的直线和2x﹣y﹣2=0平行时,此时斜率最大为2,但取不到,故ω∈[﹣,2),故选:A.12.双曲线(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】先在Rt△MF1F2中,利用∠MF1F2和F1F2求得MF1和MF2,进而根据双曲线的定义求得a,最后根据a和c求得离心率.【解答】解:如图在Rt△MF1F2中,∠MF1F2=30°,F1F2=2c∴,∴∴,故选B.二、填空题(本题共4小题,每小题5分,共20分)13.不等式组表示的平面区域的面积为36【考点】简单线性规划.【分析】本题主要考查线性规划的基本知识,先画出约束条件的可行域,并由图形选择合适的公式求解面积.【解答】解:满足约束条件的可行域如下图示:由图可得,图中阴影部分面积为:S=×12×6=36,故答案为:36.14.若不等式|ax+2|<6的解集为(﹣1,2),则实数a等于﹣4.【考点】绝对值不等式.【分析】利用不等式的解集与方程解的关系,建立方程组,即可求实数a的值.【解答】解:∵不等式|ax+2|<6的解集为(﹣1,2),∴∴a=﹣4故答案为:﹣415.如果数列{a n}的前n项之和为S n=3+2n,那么=.【考点】数列的求和.【分析】利用已知条件求出数列是前两项,然后判断所求数列的特征,利用求和公式转化求解前n项和即可.【解答】解:因为数列{a n}的前n项之和为S n=3+2n,a1=5,a2=2,a n=S n﹣S n,n≥2,又S n=2n+3,﹣1所以a n=2n﹣2n﹣1=2n﹣1所以,a n2=4n﹣1是从第二项起是等比数列;设A n=a12+a22+a32+…+a n2,由等比数列前n项和a12+a22+a32+…+a n2=a12+,q=4.解得a12+a22+a32+…+a n2=25+=.故答案为:.16.已知(m2+4m﹣5)x2﹣4(m﹣1)x+3>0对一切实数x恒成立,求实数m 的范围.【考点】二次函数的性质.【分析】此题要分两种情况:①当m2+4m﹣5=0时,解出m的值,进行验证;②当m2+4m﹣5=0时,根据二次函数的性质,要求二次函数的开口向上,与x轴无交点,即△<0,综合①②两种情况求出实数m的范围.【解答】解:①当m2+4m﹣5=0时,得m=1或m=﹣5,∵m=1时,原式可化为3>0,恒成立,符合题意当m=﹣5时,原式可化为:24x+3>0,对一切实数x不恒成立,故舍去;∴m=1;②m2+4m﹣5≠0时即m≠1,且m≠﹣5,∵(m2+4m﹣5)x2﹣4(m﹣1)x+3>0对一切实数x恒成立∴有解得1<m<19…综上得1≤m<19…三.解答题(共70分)17.设命题p:方程4x2+4(a﹣2)x+1=0无实数根;命题q:函数y=ln(x2+ax+1)的值域是R.如果命题p或q为真命题,p且q为假命题,求实数a的取值范围.【考点】一元二次方程的根的分布与系数的关系;复合命题的真假;对数函数的值域与最值.【分析】先分别求得p为真命题,q为真命题时,a的范围,再根据命题p或q 为真命题,p且q为假命题,可得p和q有且只有一个是真命题,从而分p真q 假,p假q真,分别求得a的范围,最后求出它们的并集即可.【解答】解:若p为真命题,则△=16(a﹣2)2﹣16=16(a﹣1)(a﹣3)<0恒成立…解得1<a<3 …若q为真命题,则△=a2﹣4≥0恒成立,…解得a≤﹣2或a≥2 …又由题意知命题p或q为真命题,p且q为假命题∴p和q有且只有一个是真命题,若p真q假,∴,∴a的范围为:1<a<2…若p假q真,∴,a的范围为:a≤﹣2或a≥3 …综上所述:a∈(﹣∞,﹣2]∪(1,2)∪[3,+∞)…18.在△ABC中,角A、B、C的对边分别为a、b、c,且a=,b2+c2﹣bc=3.(1)求角A;(2)设cosB=,求边c的大小.【考点】余弦定理的应用;正弦定理的应用.【分析】(1)利用题设中的条件求得b2+c2=a2+bc,根据余弦定理进而求得cosA,进而求得A.(2)利用cosB,求得sinB,进而根据正弦的两角和公式求得sinC,最后根据正弦定理求得c.【解答】解:(1)∵a=,由b2+c2﹣bc=3得:b2+c2=a2+bc,∴cosA===,∴A=.(2)由cosB=>0,知B为锐角,所以sinB=.∴sinC=sin(A+B)=sinAcosB+cosAsinB=×+×=.由正弦定理得:c==.19.已知函数f(x)=x2﹣(a+)x+1,(1)若a>0,解关于x的不等式f(x)≤0;(2)若对于任意x∈(1,3),f(x)+x>﹣3恒成立,求a的取值范围.【考点】函数恒成立问题;一元二次不等式的解法.【分析】(1)通过讨论a的范围,求出不等式的解集即可;(2)问题转化为,x∈(1,3),求出函数的最小值即可.【解答】解:(1)∵不等式,a>0,当0<a<1时,有,∴不等式的解集为;当a>1时,有,∴不等式的解集为;当a=1时,不等式的解集为x∈{1}.(2)任意x∈(1,3),>﹣3恒成立,即x2﹣ax+4>0恒成立,即恒成立,所以,x∈(1,3),所以a<4.20.经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度υ(千米/小时)之间的函数关系为:y=(υ>0).(1)在该时段内,当汽车的平均速度υ为多少时,车流量最大?最大车流量为多少?(保留分数形式)(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?【考点】基本不等式在最值问题中的应用.【分析】(1)根据基本不等式性质可知y==≤,进而求得y的最大值.根据等号成立的条件求得此时的平均速度.(2)在该时间段内车流量超过10千辆/小时时,解不等式即可求出v的范围.【解答】解:(1)依题意,y==≤,当且仅当v=,即v=40时,上式等号成立,∴y max=(千辆/时).∴如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25km/h且小于64km/h.当v=40km/h时,车流量最大,最大车流量约为千辆/时;(2)由条件得>10,整理得v2﹣89v+1600<0,即(v﹣25)(v﹣64)<0.解得25<v<64.21.已知等差数列{a n}的公差大于0,且a3,a5是方程x2﹣14x+45=0的两根,数列{b n}的前n项的和为S n,且.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记c n=a n•b n,求数列{c n}的前n项和T n.【考点】数列的求和;等差数列的通项公式;等比数列的通项公式.【分析】(Ⅰ)由已知可得,且a5>a3,联立方程解得a5,a3,进一步求出数列{a n}通项,数列{b n}中,利用递推公式(Ⅱ)用错位相减求数列{c n}的前n和【解答】解:(Ⅰ)∵a3,a5是方程x2﹣14x+45=0的两根,且数列{a n}的公差d >0,∴a3=5,a5=9,公差.∴a n=a5+(n﹣5)d=2n﹣1.又当n=1时,有∴当,∴.∴数列{b n}是首项,公比等比数列,∴.(Ⅱ)由(Ⅰ)知,则(1)∴=(2)(1)﹣(2)得:=化简得:22.已知椭圆经过点A(2,1),离心率为.过点B (3,0)的直线l与椭圆C交于不同的两点M,N.(Ⅰ)求椭圆C的方程;(Ⅱ)求的取值范围;(Ⅲ)设直线AM和直线AN的斜率分别为k AM和k AN,求证:k AM+k AN为定值.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)根据离心率和(2,1)点代入椭圆方程可求得a和c,进而求得b,方程可得.(Ⅱ)由题意显然直线l的斜率存在,设直线l方程为y=k(x﹣3),联立直线与椭圆的方程,消去y得(1+2k2)x2﹣12k2x+18k2﹣6=0.因为直线l与椭圆C交于不同的两点M,N,所以△>0,可得﹣1<k<1.再用坐标表示出即可求的取值范围.(Ⅲ)由(Ⅱ)用坐标表示出k AM+k AN化简即可.【解答】解:(Ⅰ)由题意得,解得,.故椭圆C的方程为.(Ⅱ)由题意显然直线l的斜率存在,设直线l方程为y=k(x﹣3),由得(1+2k2)x2﹣12k2x+18k2﹣6=0.因为直线l与椭圆C交于不同的两点M,N,所以△=144k4﹣4(1+2k2)(18k2﹣6)=24(1﹣k2)>0,解得﹣1<k<1.设M,N的坐标分别为(x1,y1),(x2,y2),则,,y1=k(x1﹣3),y2=k(x2﹣3).所以=(1+k2)[x1x2﹣3(x1+x2)+9]==.因为﹣1<k<1,所以.故的取值范围为(2,3].(Ⅲ)由(Ⅱ)得k AM+k AN=====.所以k AM+k AN为定值﹣2.2017年2月22日。
安徽省皖北联盟2016-2017学年高二上学期期末联考数学(文)试题扫描版含答案
高二期末文科数学太和卷参考答案1. C.2.D.3. A 【解析】.8136045===圆阴影S S P 4.A 【解析】 将两个圆的方程相减得,.03,062=+=+y x y x5.C 【解析】由正弦定理知.1sin sin B A b a B A b a >⇔>⇔>= 所以p 是q 的充分必要条件.6. D 【解析】 直角△ABC 的斜边长是,108622=+则球心到平面ABC 的距离是.1251322=- 7.C 【解析】08622=+++x y x 的圆心为)0,3(-,半径为1,与x 轴的交点是)0,2(),0,4(--. 因此准线是2-=x 或4-=x ,即22-=-p 或42-=-p ,所以4=p 或.8=p 8. D9.B 【解析】如图,设.,,c AG b AF a AE === 则.,,222222a c GE c b FG b a EF +=+=+=在EFG ∆中,,0222cos 2222222>⋅=⋅--+++=∠GEEF a GE EF c b a c b a FEG 所以FEG ∠是锐角. 同理得到,FGE EFG ∠∠,是锐角.10.A 【解析】如图,因为三角形的面积只与底边长和高有关系,又2AB =为定值,所以在圆上只要找到最高点即可. 又因为圆心坐标为(3, 4) ,半径为2 ,所以点Q 的横坐标为3, 纵坐标为4+2=6. 于是.66221=⨯⨯=∆ABQ S11. D 【解析】直观图是将一个边长为2的正方体截去一个角其中1==KE HG ,则其表面积是.2322152111212212262=⨯-⨯+⨯⨯-⨯⋅⨯-⨯ 12. A 【解析】 .101683-=⇒+-=k kk 双曲线方程是.118622=-y x 将3=x 代入得, ,1186920=-y 解得.30±=y 所以平行四边形P QF F 21的面积是.612364212=⨯⨯⨯13.8【解析】∵610.72018ln ≈,∴ 20188>e ∴8=i 时,符合.2018≥a ∴输出的结果.8=i14. 92【解析】因为)0,7(,7,791612-==-=F c c . 将7-=x 代入椭圆方程191622=+y x 中,得到49,191672±==+y y . 所以线段AB 的长是.29492=⨯ 15. 257 【解析】若,0=a 则1,0=b ;若,9=a 则9,8=b ;若8,,3,2,1⋅⋅⋅=a ,则b 都有3种取值。
高二数学上学期期末试卷(文科含解析)
高二数学上学期期末试卷(文科含解析)单元练习题是所有考生最大的需求点,只有这样才能保证答题的准确率和效率,以下是店铺为您整理的关于高二数学上学期期末试卷(文科含解析)的相关资料,供您阅读。
高二数学上学期期末试卷(文科含解析)数学试卷(文科)一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数3.已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为( )A.2B.3C.5D.74.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q5.若双曲线的离心率为,则其渐近线的斜率为( )A.±2B.C.D.6.曲线在点M( ,0)处的切线的斜率为( )A. B. C. D.7.若椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为( )A.( ,0)B.( ,0)C.(0, )D.(0, )8.设z1,z2是复数,则下列命题中的假命题是( )A.若|z1|=|z2|,则B.若,则C.若|z1|=|z2|,则D.若|z1﹣z2|=0,则9.已知命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=ex﹣mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题10.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件11.设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为,则P到曲线y=f(x)对称轴距离的取值范围为( )A. B. C. D.12.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1A.3B.4C.5D.6二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么z• 等于.14.f(x)=x3﹣3x2+2在区间上的最大值是.15.函数f(x)=lnx﹣f′(1)x2+5x﹣4,则f(1)= .16.过抛物线x2=2py(p>0)的焦点F作倾斜角为45°的直线,与抛物线分别交于A、B两点(A在y轴左侧),则 = .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z是复数,z+2i和均为实数(i为虚数单位).(Ⅰ)求复数z;(Ⅱ)求的模.18.已知集合A={x|(ax﹣1)(ax+2)≤0},集合B={x|﹣2≤x≤4}.若x∈B是x∈A的充分不必要条件,求实数a的取值范围.19.设椭圆的方程为,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M在线段AB上且满足|BM|=2|MA|,直线OM的斜率为 .(Ⅰ)求椭圆的离心率;(Ⅱ)设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥A B.20.设函数,其中a为实数.(1)已知函数f(x)在x=1处取得极值,求a的值;(2)已知不等式f′(x)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.21.已知椭圆C1:的离心率为,且椭圆上点到椭圆C1左焦点距离的最小值为﹣1.(1)求C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l 的方程.22.已知函数f(x)=lnx﹣a(x﹣1)2﹣(x﹣1)(其中常数a∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,1)时,f(x)<0,求实数a的取值范围.高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先根据mn>0看能否得出方程mx2+ny2=1的曲线是椭圆;这里可以利用举出特值的方法来验证,再看方程mx2+ny2=1的曲线是椭圆,根据椭圆的方程的定义,可以得出mn>0,即可得到结论.【解答】解:当mn>0时,方程mx2+ny2=1的曲线不一定是椭圆,例如:当m=n=1时,方程mx2+ny2=1的曲线不是椭圆而是圆;或者是m,n都是负数,曲线表示的也不是椭圆;故前者不是后者的充分条件;当方程mx2+ny2=1的曲线是椭圆时,应有m,n都大于0,且两个量不相等,得到mn>0;由上可得:“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的必要不充分条件.故选B.2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【考点】命题的否定.【分析】根据已知我们可得命题“所有能被2整除的数都是偶数”的否定应该是一个特称命题,根据全称命题的否定方法,我们易得到结论.【解答】解:命题“所有能被2整除的数都是偶数”是一个全称命题其否定一定是一个特称命题,故排除A,B结合全称命题的否定方法,我们易得命题“所有能被2整除的数都是偶数”的否定应为“存在一个能被2整除的整数不是偶数”故选:D3.已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为( )A.2B.3C.5D.7【考点】椭圆的简单性质.【分析】由椭圆方程找出a的值,根据椭圆的定义可知椭圆上的点到两焦点的距离之和为常数2a,把a的值代入即可求出常数的值得到P到两焦点的距离之和,由P到一个焦点的距离为7,求出P到另一焦点的距离即可.【解答】解:由椭圆,得a=5,则2a=10,且点P到椭圆一焦点的距离为7,由定义得点P到另一焦点的距离为2a﹣3=10﹣7=3.故选B4.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q【考点】四种命题间的逆否关系.【分析】由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.【解答】解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选A.5.若双曲线的离心率为,则其渐近线的斜率为( )A.±2B.C.D.【考点】双曲线的简单性质.【分析】由双曲线的离心率为,可得,解得即可.【解答】解:∵双曲线的离心率为,∴ ,解得 .∴其渐近线的斜率为 .故选:B.6.曲线在点M( ,0)处的切线的斜率为( )A. B. C. D.【考点】利用导数研究曲线上某点切线方程.【分析】先求出导函数,然后根据导数的几何意义求出函数f(x)在x= 处的导数,从而求出切线的斜率.【解答】解:∵∴y'==y'|x= = |x= =故选B.7.若椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为( )A.( ,0)B.( ,0)C.(0, )D.(0, )【考点】双曲线的简单性质;椭圆的简单性质;抛物线的简单性质.【分析】根据椭圆 (a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,得到a,b的关系式;再将抛物线ay=bx2的方程化为标准方程后,根据抛物线的性质,即可得到其焦点坐标.【解答】解:∵椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点∴2a2﹣2b2=a2+b2,即a2=3b2, = .抛物线ay=bx2的方程可化为:x2= y,即x2= y,其焦点坐标为:(0, ).故选D.8.设z1,z2是复数,则下列命题中的假命题是( )A.若|z1|=|z2|,则B.若,则C.若|z1|=|z2|,则D.若|z1﹣z2|=0,则【考点】复数代数形式的乘除运算;命题的真假判断与应用.【分析】利用特例判断A的正误;复数的基本运算判断B的正误;复数的运算法则判断C的正误;利用复数的模的运算法则判断D的正误.【解答】解:若|z1|=|z2|,例如|1|=|i|,显然不正确,A错误.B,C,D满足复数的运算法则,故选:A.9.已知命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=ex﹣mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题【考点】四种命题间的逆否关系.【分析】先利用导数知识,确定原命题为真命题,从而逆否命题为真命题,即可得到结论.【解答】解:∵f(x)=e x﹣mx,∴f′(x)=ex﹣m∵函数f(x)=ex﹣mx在(0,+∞)上是增函数∴ex﹣m≥0在(0,+∞)上恒成立∴m≤ex在(0,+∞)上恒成立∴m≤1∴命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,是真命题,∴逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题∵m≤1时,f′(x)=ex﹣m≥0在(0,+∞)上不恒成立,即函数f(x)=ex﹣mx在(0,+∞)上不一定是增函数,∴逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是真命题,即B不正确故选D.10.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】因为“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.再据命题的真假与条件的关系判定出“不便宜”是“好货”的必要条件.【解答】解:“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.所以“好货”⇒“不便宜”,所以“不便宜”是“好货”的必要条件,故选B11.设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为,则P到曲线y=f(x)对称轴距离的取值范围为( )A. B. C. D.【考点】直线的图象特征与倾斜角、斜率的关系.【分析】先由导数的几何意义,得到x0的范围,再求出其到对称轴的范围.【解答】解:∵过P(x0,f(x0))的切线的倾斜角的取值范围是,∴f′(x0)=2ax0+b∈,∴P到曲线y=f(x)对称轴x=﹣的距离d=x0﹣(﹣ )=x0+∴x0∈[ ,].∴d=x0+ ∈.故选:B.12.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1A.3B.4C.5D.6【考点】利用导数研究函数的极值;根的存在性及根的个数判断.【分析】由函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,可得f′(x)=3x2+2ax+b=0有两个不相等的实数根,必有△=4a2﹣12b>0.而方程3(f(x))2+2af(x)+b=0的△1=△>0,可知此方程有两解且f(x)=x1或x2.再分别讨论利用平移变换即可解出方程f(x)=x1或f(x)=x2解得个数.【解答】解:∵函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,∴f′(x)=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得 = .∵x1∴ , .而方程3(f(x))2+2af(x)+b=0的△1=△>0,∴此方程有两解且f(x)=x1或x2.不妨取00.①把y=f(x)向下平移x1个单位即可得到y=f(x)﹣x1的图象,∵f(x1)=x1,可知方程f(x)=x1有两解.②把y=f(x)向下平移x2个单位即可得到y=f(x)﹣x2的图象,∵f(x1)=x1,∴f(x1)﹣x2<0,可知方程f(x)=x2只有一解.综上①②可知:方程f(x)=x1或f(x)=x2.只有3个实数解.即关于x 的方程3(f(x))2+2af(x)+b=0的只有3不同实根.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么z• 等于 1 .【考点】复数代数形式的乘除运算.【分析】直接利用复数的代数形式的混合运算化简求解即可.【解答】解:复数,那么z• = = =1.故答案为:1.14.f(x)=x3﹣3x2+2在区间上的最大值是 2 .【考点】利用导数求闭区间上函数的最值.【分析】求出函数的导函数,令导函数为0,求出根,判断根是否在定义域内,判断根左右两边的导函数符号,求出最值.【解答】解:f′(x)=3x2﹣6x=3x(x﹣2)令f′(x)=0得x=0或x=2(舍)当﹣10;当0所以当x=0时,函数取得极大值即最大值所以f(x)的最大值为2故答案为215.函数f(x)=lnx﹣f′(1)x2+5x﹣4,则f(1)= ﹣1 .【考点】导数的运算.【分析】先求出f′(1)的值,代入解析式计算即可.【解答】解:∵f(x)=lnx﹣f′(1)x2+5x﹣4,∴f′(x)= ﹣2f′(1)x+5,∴f′(1)=6﹣2f′(1),解得f′(1)=2.∴f(x)=lnx﹣2x2+5x﹣4,∴f(1)=﹣1.故答案为:﹣1.16.过抛物线x2=2py(p>0)的焦点F作倾斜角为45°的直线,与抛物线分别交于A、B两点(A在y轴左侧),则 = .【考点】抛物线的简单性质.【分析】点斜式设出直线l的方程,代入抛物线方程,求出A,B 两点的纵坐标,利用抛物线的定义得出 = ,即可得出结论.【解答】解:设直线l的方程为:x=y﹣,A(x1,y1),B(x2,y2),由x=y﹣,代入x2=2py,可得y2﹣3py+ p2=0,∴y1= p,y2= p,从而, = = .故答案为: .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z是复数,z+2i和均为实数(i为虚数单位).(Ⅰ)求复数z;(Ⅱ)求的模.【考点】复数求模;复数的基本概念.【分析】(Ⅰ)设z=a+bi,分别代入z+2i和,化简后由虚部为0求得b,a的值,则复数z可求;(Ⅱ)把z代入,利用复数代数形式的乘除运算化简,代入模的公式得答案.【解答】解:(Ⅰ)设z=a+bi,∴z+2i=a+(b+2)i,由a+(b+2)i为实数,可得b=﹣2,又∵ 为实数,∴a=4,则z=4﹣2i;(Ⅱ) ,∴ 的模为 .18.已知集合A={x|(ax﹣1)(ax+2)≤0},集合B={x|﹣2≤x≤4}.若x∈B是x∈A的充分不必要条件,求实数a的取值范围.【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义,转化为集合的关系进行求解.【解答】解:(1)a>0时,,若x∈B是x∈A的充分不必要条件,所以,,检验符合题意;┅┅┅┅┅┅┅(2)a=0时,A=R,符合题意;┅┅┅┅┅┅┅(3)a<0时,,若x∈B是x∈A的充分不必要条件,所以,,检验不符合题意.综上.┅┅┅┅┅┅┅19.设椭圆的方程为,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M在线段AB上且满足|BM|=2|MA|,直线OM的斜率为 .(Ⅰ)求椭圆的离心率;(Ⅱ)设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥AB.【考点】椭圆的简单性质.【分析】(1)通过题意,利用 =2 ,可得点M坐标,利用直线OM 的斜率为,计算即得结论;(2)通过中点坐标公式解得点N坐标,利用×( )=﹣1,即得结论.【解答】(Ⅰ)解:设M(x,y),已知A(a,0),B(0,b),由|BM|=2|MA|,所以 =2 ,即(x﹣0,y﹣b)=2(a﹣x,0﹣y),解得x= a,y= b,即可得,┅┅┅┅┅┅┅所以,所以椭圆离心率;┅┅┅┅┅┅┅(Ⅱ)证明:因为C(0,﹣b),所以N ,MN斜率为,┅┅┅┅┅┅┅又AB斜率为,所以×( )=﹣1,所以MN⊥AB.┅┅┅┅┅┅┅20.设函数,其中a为实数.(1)已知函数f(x)在x=1处取得极值,求a的值;(2)已知不等式f′(x)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.【考点】利用导数研究函数的极值.【分析】(1)求出f′(x),因为函数在x=1时取极值,得到f′(1)=0,代入求出a值即可;(2)把f(x)的解析式代入到不等式中,化简得到,因为a>0,不等式恒成立即要,求出x的解集即可.【解答】解:(1)f′(x)=ax2﹣3x+(a+1)由于函数f(x)在x=1时取得极值,所以f′(1)=0即a﹣3+a+1=0,∴a=1(2)由题设知:ax2﹣3x+(a+1)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立即a(x2+2)﹣x2﹣2x>0对任意a∈(0,+∞)都成立于是对任意a∈(0,+∞)都成立,即∴﹣2≤x≤0于是x的取值范围是{x|﹣2≤x≤0}.21.已知椭圆C1:的离心率为,且椭圆上点到椭圆C1左焦点距离的最小值为﹣1.(1)求C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l 的方程.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率和最小距离a﹣c,解方程可得a= ,c=1,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)设出直线y=kx+m,联立椭圆和抛物线方程,运用判别式为0,解方程可得k,m,进而得到所求直线的方程.【解答】解:(1)由题意可得e= = ,由椭圆的性质可得,a﹣c= ﹣1,解方程可得a= ,c=1,则b= =1,即有椭圆的方程为 +y2=1;(2)直线l的斜率显然存在,可设直线l:y=kx+m,由,可得(1+2k2)x2+4kmx+2m2﹣2=0,由直线和椭圆相切,可得△=16k2m2﹣4(1+2k2)(2m2﹣2)=0,即为m2=1+2k2,①由,可得k2x2+(2km﹣4)x+m2=0,由直线和抛物线相切,可得△=(2km﹣4)2﹣4k2m2=0,即为km=1,②由①②可得或,即有直线l的方程为y= x+ 或y=﹣ x﹣ .22.已知函数f(x)=lnx﹣a(x﹣1)2﹣(x﹣1)(其中常数a∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,1)时,f(x)<0,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;(Ⅱ)根据(Ⅰ)通过讨论a的范围,确定出满足条件的a的范围即可.【解答】解:(Ⅰ)f(x)=lnx﹣a(x﹣1)2﹣(x﹣1),(x>0),f′(x)=﹣,①a<﹣时,0<﹣ <1,令f′(x)<0,解得:x>1或00,解得:﹣∴f(x)在递减,在递增;②﹣﹣或00,解得:1∴f(x)在递减,在递增;③ ,f′(x)=﹣≤0,f(x)在(0,1),(1+∞)递减;④a≥0时,2ax+1>0,令f′(x)>0,解得:01,∴f(x)在(0,1)递增,在(1,+∞)递减;(Ⅱ)函数恒过(1,0),由(Ⅰ)得:a≥﹣时,符合题意,a<﹣时,f(x)在(0,﹣ )递减,在递增,不合题意,故a≥﹣ .。
2016-2017学年安徽省高三上学期期末考试数学文试题Word版(解析版)
2016-2017学年安徽省高三上学期期末考试数学文试题注意:本试卷分选择题和非选择题两部分,共150分,考试时间120分钟.1.答卷前,考生填、涂好学校、班级、姓名及座位号。
2.选择题用2B 铅笔作答;非选择题必须用黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,并将答题卡交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的编号用铅笔涂在答题卡.................上.。
1.已知集合A ={|x y =,集合{}2≥=x x B ,A B = A. ]3,0[ B .]3,2[C .),2[+∞ D .),3[+∞ 2.若复数z 满足,i z i 43)34(-=+,则z 的虚部为 A. 53-B .45- C .i 53- D .i 54-3.椭圆125922=+y x 上一点P 到椭圆一个焦点的距离为2,则P 到另一焦点的距离为 A. 3B .5C .7D .84.已知数列}{n a 为等差数列,若21062π=++a a a ,则)tan(93a a +的值为 A. 0 B .33C .1D .35.设a ,b 是非零向量,“a b a b ⋅=”是“//a b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.已知()f x 是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-,则函数()()1g x f x =+的零点的个数是A. 1B. 2C. 3D. 4 7.已知正三棱柱111ABC A B C -的底面边长为cm 2,高为cm 4,则一质点自点A 出发,沿着三棱柱的侧面,绕行两周到达点1A 的最短路线的长为 A. cm 104 B. cm 312 C. cm 132D. cm 138. 已知ABC ∆中,a ,b ,c 分别为内角C B A ,,所对的边长,且2,1==b a ,1tan =C ,则ABC ∆外接圆面积为 A.π21B. π31C. πD. π39.一个几何体的三视图如图所示,则这个几何体外接球的表面积为 A. 8π B. 16π C. 32π D. 64π10.如图所示,输出的n 为A. 10B. 11C. 12D. 1311.椭圆)0(1:2222>>=+b a by a x C 的左焦点为F ,若F 关于直线03=+y x 的对称点A 是椭圆C 上的点,则椭圆C 的离心率为A. 1-2B. 13-C. 25-D. 2-612.已知函数⎩⎨⎧>+≤+-=0,20),1ln()(2x x x x x x f ,若0)1()(≥+-x m x f ,则实数m的取值范围是A. ]0-,(∞B. ]1,1[-C. ]2,0[D. ),2[+∞二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷上.........。
2016-2017学年安徽省高三(上)期末数学联考试卷(文科)Word版(解析版)
2016-2017学年安徽省高三(上)期末联考试卷(文科数学)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)在复平面内,复数对应的点P位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)已知集合M={y|y=﹣x2+4},N={x|y=logx},则M∩N=()2A.[4,+∞)B.(﹣∞,4] C.(0,4)D.(0,4]3.(5分)命题“∀x∈R,x2﹣4x+4≥0”的否定是()A.∀x∈R,x2﹣4x+4<0 B.∀x∉R,x2﹣4x+4<0C. D.4.(5分)已知,,则与的夹角为()A.B.C.D.π0.99,则()5.(5分)设a=0.991.01,b=1.010.99,c=log1.01A.c<b<a B.c<a<b C.a<b<c D.a<c<b6.(5分)将长方体截去一个四棱锥后,得到的几何体的直观图如图所示,则该几何体的俯视图为()A.B.C.D.7.(5分)阅读程序框图,若输入m=4,n=6,则输出a,i分别是()A .a=12,i=3B .a=12,i=4C .a=8,i=3D .a=8,i=48.(5分)一个棱长为4的正方体涂上红色后,将其切成棱长为1的小正方体,置于一密闭容器搅拌均匀,从中任取一个,则取到两面涂红色的小正方体的概率为( ) A . B . C .D .9.(5分)若变量x 、y 满足约束条件,则z=3x ﹣y 的最小值为( )A .﹣7B .﹣1C .1D .210.(5分)设等差数列{a n }{b n }前项和为S n 、T n ,若对任意的n ∈N *,都有,则的值为( )A .B .C .D .11.(5分)已知椭圆C :=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B两点,连接AF ,BF ,若|AB|=10,|BF|=8,cos ∠ABF=,则C 的离心率为( ) A . B . C . D .12.(5分)已知x ∈R ,符号[x]表示不超过x 的最大整数,如[1.9]=1,[2.01]=2.若函数(x≥1)有且仅有三个零点,则m的取值范围是()A.B.C.D.二.填空题(本大题共4小题,每小题5分,共20分.)13.(5分)设g(x)=,则g(g())= .14.(5分)对∀x∈R,mx2+mx+1>0恒成立,则m的取值范围是.15.(5分)在△ABC中,a,b,c分别为角A,B,C所对的边,设向量=(b,c﹣a),=(b﹣c,c+a),若,则角A的大小为.16.(5分)己知y=f(x)为R上的连续可导函数,且xf′(x)+f(x)>0,则函数g(x)=xf(x)+1(x>0)的零点个数为.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知函数.若f(x)的最小正周期为4π.(1)求函数f(x)的单调递增区间;(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a﹣c)cosB=bcosC,求函数f(A)的取值范围.18.(12分)设Sn 是数列的前n项和,已知a1=3an+1=2Sn+3(n∈N*).(1)求数列{an}的通项公式;(2)令bn =(2n﹣1)an,求数列{bn}的前n项和Tn.19.(12分)孝汉城铁于12月1日开通,C5302、C5321两列车乘务组工作人员为了了解乘坐本次列车的乘客每月需求情况,分别在两个车次各随机抽取了100名旅客进行调查,下面是根据调查结果,绘制了乘车次数的频率分布直方图和频数分布表. C5321次乘客月乘坐次数频数分布表(1)若将频率视为概率,月乘车次数不低于15次的称之为“老乘客”,试问:哪一车次的“老乘客”较多,简要说明理由.(2)已知在C5321次列车随机抽到的50岁以上人员有35名,其中有10名是“老乘客”,由条件完成下面2×2列联表,并根据资料判断,是否有90%的把握认为年龄有乘车次数有关,说明理由.附:随机变量(其中n=a+b+c+d 为样本总量)20.(12分)如图,已知在棱柱ABCD﹣A1B1C1D1的底面是菱形,且AA1⊥面ABCD,∠DAB=60°,AD=AA1=1,F为棱AA1的中点,M为线段BD1的中点.(1)求证:平面D1FB⊥平面BDD1B1;(2)求三棱锥D1﹣BDF的体积.21.(12分)已知函数f(x)=x3﹣3ax﹣1,a≠0(1)求f(x)的单调区间;(2)若f(x)在x=﹣1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m 的取值范围.请考生在第(22)(23)两题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)已知直线l的极坐标方程为,曲线C的极坐标方程为ρ=4.(1)将曲线C的极坐标方程化为普通方程;(2)若直线l与曲线交于A,B两点,求线段AB 的长.[选修4-5:不等式选讲]23.已知函数f(x)=m﹣|x﹣2|,不等式f(x+2)≥0的解集为[﹣2,2].(1)求m的值;(2)若∀x∈R,f(x)≥﹣|x+6|﹣t2+t恒成立,求实数t的取值范围.2016-2017学年安徽省高三(上)期末联考试卷(文科数学)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2016秋•孝感期末)在复平面内,复数对应的点P位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】展开完全平方式,得到复数对应的点P的坐标得答案.【解答】解:∵=,∴复数对应的点P的坐标为(﹣1,﹣2),位于第三象限.故选:C.【点评】本题考查复数的代数表示法及其几何意义,是基础题.x},则M∩N=()2.(5分)(2016秋•孝感期末)已知集合M={y|y=﹣x2+4},N={x|y=log2A.[4,+∞)B.(﹣∞,4] C.(0,4)D.(0,4]【分析】先分别求出集合M和N,由此利用交集性质求出M∩N.【解答】解:∵集合M={y|y=﹣x2+4}={y|y≤4},x}={x|x>0},N={x|y=log2∴M∩N={x|0<x≤4}=(0,4].故选:D.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.3.(5分)(2016秋•孝感期末)命题“∀x∈R,x2﹣4x+4≥0”的否定是()A.∀x∈R,x2﹣4x+4<0 B.∀x∉R,x2﹣4x+4<0C. D.【分析】根据全称命题的否定是特称命题进行求解.【解答】解:全称命题的否定是特称命题,则命题的否定是:∃x0∈R,x2﹣4x+4<0,故选:C【点评】本题主要考查含有量词的命题的否定,比较基础.4.(5分)(2016秋•孝感期末)已知,,则与的夹角为()A.B.C.D.π【分析】根据平面向量数量积的定义,即可求出与的夹角大小.【解答】解:设与的夹角为θ,,,∵•(﹣)=﹣•=12﹣1×2×cosθ=3,∴cosθ=1;又θ∈[0,π],∴与的夹角为π.故选:D.【点评】本题考查了平面向量数量积的定义与应用问题,是基础题目.5.(5分)(2016秋•孝感期末)设a=0.991.01,b=1.010.99,c=log1.010.99,则()A.c<b<a B.c<a<b C.a<b<c D.a<c<b【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵a=0.991.01∈(0,1),b=1.010.99>1,c=log1.010.99<0,则c<a<b,故选:B.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.6.(5分)(2016秋•孝感期末)将长方体截去一个四棱锥后,得到的几何体的直观图如图所示,则该几何体的俯视图为()A.B.C.D.【分析】根据三视图的特点,知道俯视图从图形的上边向下边看,看到一个正方形的底面,在底面上有一条对角线,对角线是由左上角都右下角的线,得到结果.【解答】解:俯视图从图形的上边向下边看,看到一个正方形的底面,在度面上有一条对角线,对角线是由左上角到右下角的线,故选C.【点评】本题考查空间图形的三视图,考查俯视图的做法,本题是一个基础题,考查的内容比较简单,可能出现的错误是对角线的方向可能出错.7.(5分)(2015•南昌校级二模)阅读程序框图,若输入m=4,n=6,则输出a,i分别是()A.a=12,i=3 B.a=12,i=4 C.a=8,i=3 D.a=8,i=4【分析】由程序框图依次计算第一、第二、第三次运行的结果,直到满足条件满足a被6整除,结束运行,输出此时a、i的值.【解答】解:由程序框图得:第一次运行i=1,a=4;第二次运行i=2,a=8;第三次运行i=3,a=12;满足a被6整除,结束运行,输出a=12,i=3.故选A.【点评】本题考查了直到型循环结构的程序框图,解答的关键是读懂程序框图.8.(5分)(2016秋•孝感期末)一个棱长为4的正方体涂上红色后,将其切成棱长为1的小正方体,置于一密闭容器搅拌均匀,从中任取一个,则取到两面涂红色的小正方体的概率为()A.B.C.D.【分析】切割后共计43=64个正方体,两面红色的正方体数为棱数的2倍,有24个,由此能求出从中任取一个,则取到两面涂红色的小正方体的概率.【解答】解:一个棱长为4的正方体涂上红色后,将其切成棱长为1的小正方体,切割后共计43=64个正方体原来的正方体有8个角,12条棱,6个面所以三面红色的正方体数等于角数,有8个,两面红色的正方体数为棱数的2倍,有12×2=24个,∴从中任取一个,则取到两面涂红色的小正方体的概率为:p=.故选:B.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.9.(5分)(2015•湖南)若变量x、y满足约束条件,则z=3x﹣y的最小值为()A.﹣7 B.﹣1 C.1 D.2【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得C(0,﹣1).由解得A(﹣2,1),由,解得B(1,1)∴z=3x﹣y的最小值为3×(﹣2)﹣1=﹣7.故选:A.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.易错点是图形中的B点.10.(5分)(2016秋•孝感期末)设等差数列{an }{bn}前项和为Sn、Tn,若对任意的n∈N*,都有,则的值为()A.B.C.D.【分析】由等差数列的性质和求和公式可得原式=,代值计算可得.【解答】解:由等差数列的性质和求和公式可得:=====.故选C.【点评】本题考查等差数列的性质和求和公式,属基础题.11.(5分)(2016•南阳校级三模)已知椭圆C:=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF,若|AB|=10,|BF|=8,cos∠ABF=,则C的离心率为()A.B.C.D.【分析】由已知条件,利用余弦定理求出|AF|,设F′为椭圆的右焦点,连接BF′,AF′.根据对称性可得四边形AFBF′是矩形,由此能求出离心率e.【解答】解:如图所示,在△AFB中,|AB|=10,|BF|=8,cos∠ABF=,由余弦定理得|AF|2=|AB|2+|BF|2﹣2|AB||BF|cos∠ABF=100+64﹣2×10×8×=36,∴|AF|=6,∠BFA=90°,设F′为椭圆的右焦点,连接BF′,AF′.根据对称性可得四边形AFBF′是矩形.∴|BF′|=6,|FF′|=10.∴2a=8+6,2c=10,解得a=7,c=5.∴e==.故选B.【点评】本题考查椭圆的离心率的求法,是中档题,解题时要认真审题,注意余弦定理、椭圆的对称性等知识点的合理运用.12.(5分)(2016秋•孝感期末)已知x∈R,符号[x]表示不超过x的最大整数,如[1.9]=1,[2.01]=2.若函数(x≥1)有且仅有三个零点,则m的取值范围是()A.B.C.D.【分析】由f(x)=0得=m,令g(x)=,作出g(x)的图象,利用数形结合即可得到a的取值范围.【解答】解:由f(x)=﹣m=0得:=m,当1≤x<2,[x]=1,此时g(x)=x,此时1≤g(x)<2,当2≤x<3,[x]=2,此时g(x)=,此时1≤g(x)<,当3≤x<4,[x]=3,此时g(x)=,此时≤1g(x)<,当4≤x<5,[x]=4,此时g(x)=x,此时1≤g(x)<,作出函数g(x)的图象,要使函数(x≥1)有且仅有三个零点,即函数g(x)=m有且仅有三个零点,则由图象可知≤m,故选:C.【点评】本题主要考查函数零点的应用,根据函数和方程之间的关系构造函数g(x),利用数形结合是解决本题的关键.难度较大.二.填空题(本大题共4小题,每小题5分,共20分.)13.(5分)(2012•东莞一模)设g(x)=,则g(g())= .【分析】根据分段函数的解析式,先求出g()的值,再求g(g())的值.【解答】解:∵g(x)=,∴g()=ln=﹣ln2<0,∴g(g())=g(﹣ln2)=e﹣ln2==2﹣1=.故答案为:.【点评】本题考查了求分段函数的函数值的问题,解题时应对自变量进行分析,是基础题.14.(5分)(2016秋•孝感期末)对∀x∈R,mx2+mx+1>0恒成立,则m的取值范围是[0,4).【分析】分m=0和m≠0两种情况讨论,当m=0时,原不等式恒成立;当m≠0时,则需,求解不等式组得答案.【解答】解:当m=0时,不等式化为1>0恒成立;当m≠0时,要使对∀x∈R,mx2+mx+1>0恒成立,则,解得0<m<4.综上,m的取值范围是[0,4).故答案为:[0,4).【点评】本题考查命题的真假判断与应用,考查了恒成立问题的求解方法,体现了分类讨论的数学思想方法,是基础题.15.(5分)(2016秋•孝感期末)在△ABC中,a,b,c分别为角A,B,C所对的边,设向量=(b,c﹣a),=(b﹣c,c+a),若,则角A的大小为.【分析】利用向量垂直的性质推导出b2+c2﹣a2=﹣bc,由此利用余弦定理能求出角A的大小.【解答】解:∵在△ABC中,a,b,c分别为角A,B,C所对的边,向量=(b,c﹣a),=(b﹣c,c+a),,∴=b(b﹣c)+(c﹣a)(c+a)=b2+bc+c2﹣a2=0,∴b2+c2﹣a2=﹣bc,cosA===﹣,∴A=.故答案为:.【点评】本题考查角的求法,是基础题,解题时要认真审题,注意向量垂直、余弦定理的合理运用.16.(5分)(2016•广州模拟)己知y=f(x)为R上的连续可导函数,且xf′(x)+f(x)>0,则函数g(x)=xf(x)+1(x>0)的零点个数为0 .【分析】求导g′(x)=f(x)+xf′(x)>0,从而可得g(x)在其定义域上单调递增;再由g(0)=0+1=1,从而判断.【解答】解:∵g(x)=xf(x)+1,∴g′(x)=f(x)+xf′(x)>0,故g(x)在其定义域上单调递增;∵y=f(x)为R上的连续可导函数,∴函数g(x)=xf(x)+1在R上连续;又∵g(0)=0+1=1,∴函数g(x)=xf(x)+1(x>0)的零点个数为0;故答案为:0.【点评】本题考查了导数的综合应用及函数的零点的判定定理的应用.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2016秋•孝感期末)已知函数.若f(x)的最小正周期为4π.(1)求函数f(x)的单调递增区间;(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a﹣c)cosB=bcosC,求函数f(A)的取值范围.【分析】(1)利用倍角公式、和差公式可得f(x),利用周期公式、单调性即可得出.(2)(2a﹣c)cosB=bcosC,利用正弦定理可得(2sinA﹣sinC)cosB=sinBcosC,再利用和差公式可得:B,可得A∈,即可得出.【解答】解:(1)f(x)=sin(2ωx)+cos(2ωx)=,∴4π=,解得ω=.∴f(x)=sin.由+2kπ≤+≤+2kπ,解得4kπ﹣≤x≤+4kπ,k∈Z.∴函数f(x)的单调递增区间是[4kπ﹣,+4kπ],k∈Z.(2)(2a﹣c)cosB=bcosC,∴(2sinA﹣sinC)cosB=sinBcosC,∴2sinAcosB=sin(B+C)=sinA,sinA≠0,∴cosB=,B∈(0,π),∴B=.函数f(A)=sin,∵A∈,∈.∴f(A)=.【点评】本题考查了正弦定理、和差公式、三角函数的图象与性质,考查了推理能力与计算能力,属于中档题.18.(12分)(2016秋•孝感期末)设Sn 是数列的前n项和,已知a1=3an+1=2Sn+3(n∈N*).(1)求数列{an}的通项公式;(2)令bn =(2n﹣1)an,求数列{bn}的前n项和Tn.【分析】(1)利用数列的递推关系式推出数列是等比数列,然后求解通项公式.(2)化简数列的通项公式,利用错位相减法求和,求解即可.【解答】解:(1)当n≥2时,由an+1=2Sn+3,得an=2Sn﹣1+3,(1分)两式相减,得an+1﹣an=2sn﹣2sn﹣1=2an,∴an+1=3an,,(3分)当n=1时,a1=3,a2=2S1+3=9,则.∴数列{an}是以3为首项,3 为公比的等比数列,(5分)∴an=3n.(6分)(2)由(1)得bn =(2n﹣1)an=(2n﹣1)3n.∴Tn=1×3+3×32+5×33+…+(2n﹣1)3n,3Tn=1×32+3×33+5×34+…+(2n﹣1)3n+1,错位相减得:﹣2Tn=1×3+2×32+2×33+…+2×3n﹣(2n﹣1)3n+1,(9分)=﹣6﹣(2n﹣2)3n+1(11分)∴.(12分)【点评】本题考查数列的递推关系式定义域,通项公式的求法,数列求和的方法,考查计算能力.19.(12分)(2016秋•孝感期末)孝汉城铁于12月1日开通,C5302、C5321两列车乘务组工作人员为了了解乘坐本次列车的乘客每月需求情况,分别在两个车次各随机抽取了100名旅客进行调查,下面是根据调查结果,绘制了乘车次数的频率分布直方图和频数分布表.C5321次乘客月乘坐次数频数分布表(1)若将频率视为概率,月乘车次数不低于15次的称之为“老乘客”,试问:哪一车次的“老乘客”较多,简要说明理由.(2)已知在C5321次列车随机抽到的50岁以上人员有35名,其中有10名是“老乘客”,由条件完成下面2×2列联表,并根据资料判断,是否有90%的把握认为年龄有乘车次数有关,说明理由.附:随机变量(其中n=a+b+c+d为样本总量)【分析】(1)根据题意,计算对应的频率值并比较大小即可;(2)填写列联表,计算观测值,对照临界值表得出结论.【解答】解:(1)根据题意,C5302次“老乘客”的概率为P1=(0.052+0.04+0.008)×5=0.5,C5321次“老乘客”的概率为:,∵P1>P2,∴5302次老乘客较多;(6分)(2)填写列联表如下;计算观测值为k2=≈2.93≥2.706,(10分)对照临界值表得,有90%的把握认为年龄与乘车次数有关.(12分)【点评】本题考查了频率分布直方图以及独立性检验的应用问题,是基础题目.20.(12分)(2014•香坊区校级三模)如图,已知在棱柱ABCD﹣A1B1C1D1的底面是菱形,且AA1⊥面ABCD,∠DAB=60°,AD=AA1=1,F为棱AA1的中点,M为线段BD1的中点.(1)求证:平面D1FB⊥平面BDD1B1;(2)求三棱锥D 1﹣BDF 的体积.【分析】(1)由底面是菱形,证明AC ⊥面BDD 1B 1,再证MF ⊥面BDD 1B 1,即证平面D 1FB ⊥平面BDD 1B 1;(2)过点B 作BH ⊥AD 于H ,可证出BH ⊥平面ADD 1A 1,从而BH 是三棱锥B ﹣DD 1F 的高,求出△DD 1F 的面积,计算出三棱锥D 1﹣BDF 的体积. 【解答】解:(1)证明:∵底面是菱形, ∴AC ⊥BD ;又∵B 1B ⊥面ABCD ,AC ⊂面ABCD ∴AC ⊥B 1B ,BD ∩B 1B=B , ∴AC ⊥面BDD 1B 1 又∵MF ∥AC , ∴MF ⊥面BDD 1B 1; 又∵MF ⊂平面D 1FB , ∴平面D 1FB ⊥平面BDD 1B 1;(2)如图,过点B 作BH ⊥AD ,垂足为H , ∵AA 1⊥平面ABCD ,BH ⊆平面ABCD , ∴BH ⊥AA 1,∵AD 、AA 1是平面ADD 1A 1内的相交直线, ∴BH ⊥平面ADD 1A 1,在Rt △ABH 中,∠DAB=60°,AB=AD=1, ∴BH=ABsin60°=,∴三棱锥D 1﹣BDF 的体积为 V==×S △DD1F •BH=××1×1×=.【点评】点评:本题考查了空间中的垂直关系的证明问题与求锥体的条件问题,解题时应借助于几何图形进行解答,是易错题.21.(12分)(2009•陕西)已知函数f(x)=x3﹣3ax﹣1,a≠0(1)求f(x)的单调区间;(2)若f(x)在x=﹣1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m 的取值范围.【分析】(1)先确求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的区间是增区间,fˊ(x)<0的区间是减区间.(2)先根据极值点求出a,然后利用导数研究函数的单调性,求出极值以及端点的函数值,观察可知m的范围.【解答】解析:(1)f′(x)=3x2﹣3a=3(x2﹣a),当a<0时,对x∈R,有f′(x)>0,当a<0时,f(x)的单调增区间为(﹣∞,+∞)当a>0时,由f′(x)>0解得或;由f′(x)<0解得,当a>0时,f(x)的单调增区间为;f(x)的单调减区间为.(2)因为f(x)在x=﹣1处取得极大值,所以f′(﹣1)=3×(﹣1)2﹣3a=0,∴a=1.所以f(x)=x3﹣3x﹣1,f′(x)=3x2﹣3,由f′(x)=0解得x1=﹣1,x2=1.由(1)中f(x)的单调性可知,f(x)在x=﹣1处取得极大值f(﹣1)=1,在x=1处取得极小值f(1)=﹣3.因为直线y=m与函数y=f(x)的图象有三个不同的交点,结合f(x)的单调性可知,m的取值范围是(﹣3,1).【点评】本题主要考查了利用导数研究函数的极值,以及求最值和利用导数研究图象等问题,属于中档题.请考生在第(22)(23)两题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)(2016秋•孝感期末)已知直线l的极坐标方程为,曲线C的极坐标方程为ρ=4.(1)将曲线C的极坐标方程化为普通方程;(2)若直线l与曲线交于A,B两点,求线段AB 的长.【分析】(1)根据x=ρcosθ,y=ρsinθ以及ρ=x2+y2求出直线以及曲线C的普通方程即可;(2)根据点到直线的距离公式求出AB求出弦心距,从而求出弦长即可.【解答】解:(1)∵x=ρcosθ,y=ρsinθ以及ρ=x2+y2,∴直线l的直角坐标方程为曲线C的直角坐标方程为x2+y2=16(4分)(2)由(1)得:圆心(0,0)到直线的距离为,∴AB的长|AB|=(10分)【点评】本题考查了求曲线的普通方程,考查点到直线的距离公式,是一道中档题.[选修4-5:不等式选讲]23.(2016秋•孝感期末)已知函数f(x)=m﹣|x﹣2|,不等式f(x+2)≥0的解集为[﹣2,2].(1)求m的值;(2)若∀x∈R,f(x)≥﹣|x+6|﹣t2+t恒成立,求实数t的取值范围.【分析】(1)由已知函数解析式得到f(x+2),求解f(x+2)≥0的解集,结合已知不等式的解集得到m值;(2)若∀x∈R,f(x)≥﹣|x+6|﹣t2+t恒成立,转化为t2﹣t+2≥|x﹣2|﹣|x+6|对于x∈R 恒成立,利用绝对值的不等式求出|x﹣2|﹣|x+6|的最大值,然后求解关于t的一元二次不等式得答案.【解答】解:(1)∵f(x)=m﹣|x﹣2|,∴f(x+2)=m﹣|x|,则f(x+2)≥0⇔m﹣|x|≥0,即|x|≤m,∴﹣m≤x≤m,即不等式f(x+2)≥0的解集为[﹣m,m].又不等式f(x+2)≥0的解集为[﹣2,2],∴m=2;(2)∀x∈R,f(x)≥﹣|x+6|﹣t2+t恒成立,即t2﹣t+2≥|x﹣2|﹣|x+6|对于x∈R恒成立,又|x﹣2|﹣|x+6|≤|(x+6)﹣(x﹣2)|=8,当且仅当(x﹣2)(x+6)≥0时等号成立,∴t2﹣t+2≥8,解得t≤﹣2或t≥3,∴实数t的取值范围是(﹣∞,﹣2]∪[3,+∞).【点评】本题考查函数恒成立问题,考查含有绝对值不等式的解法,考查分离变量法,是中档题.。
安徽省亳州市高二数学上学期期末考试试题 文(扫描版)
安徽省亳州市2016-2017学年高二数学上学期期末考试试题文(扫描版)亳州市2016-2017学年度第一学期高二年级数学(文)学科期末统一检测试卷参考答案二、填空题13.01,2<++∈x x R x 存在 14.)3,2()1,( --∞ 15. 3 16.-4 三、解答题 17解:(1)由22430xax a -+<得(3)()0x a x a --<,又0a >,所以3a x a <<,当1a =时,1<3x <,即p 为真时实数x 的取值范围是1<3x <. 由实数x 满足023<+-x x 得32<<-x ,即q 为真时实数x 的取值范围是32<<-x .若p q ∧为真,则p 真且q 真,所以实数x 的取值范围是1<3x <. -----5分 (2)⌝q 是p ⌝的充分不必要条件,即p 是q 的充分不必要条件由0a >,及33≤a 得0<a≤1,所以实数a 的取值范围是0<a≤1.------10分 18.解:(1)当2=k 时,2412x x y -=,令0=y 舍去)得(0,821==x x .82千米时,炮的射程是=∴k -----5分(2)在221(1)(0)20y kx k x k =-+>中,令0y =,得221(1)=020kx k x -+。
由实际意义和题设条件知00x>k >,。
∴2202020===10112k x k k k≤++,当且仅当=1k 时取等号。
∴炮的最大射程是10千米。
-----12分 19.(1)证明:在ABC ∆中,由于C A C A B tan tan )tan (tan sin =+ 所以CCA A C C A AB cos sin cos sin )cos sin cos sin (sin ⋅=+ 因此C A C A C A B sin sin )sin cos cos (sin sin =+ 又π=++C B A 所以B C A sin )sin(=+因此C A B sin sin sin 2=, 由正弦定理可得ac b =2.-----6分 (2)解:因为a=2c=2,,所以a=2,c=1,2=b由余弦定理得432cos 222=-+=ac b c a B 又因为π<<B 0所以47sin =B 故ABC ∆的面积47sin 21==B ac S . -----12分 20.解:(1)∵52,a a 是方程027122=+-x x 的两根,且数列}{n a 的公差d >0,∴9,352==a a 公差22525=--=a a d ∴12)2(2-=-+=n d n a a n ………………………………………………3分又当n =1时,有)1(23111-==b S b 31=∴b当1113),(232---=∴-=-=≥n n n n n n n b b b b S S b n 时,有又031≠=b ∴数列{n b }是首项31=b ,公比3=q 的等比数列,∴nn n q b b 311==- …………………………………………………………6分 (2)由(1)知 nn n n n b a c 3)12(⋅-== ……………………………………7分n n n n n T 3)12(3)32(35333132⋅-+⋅-++⋅+⋅+=- (1)11323)12(3)32(3)52(3333+-⋅-+⋅-+⋅-++⋅+=∴n n n n n n n T (2)…………9分(1)(2)-:1323)12()333(232+⋅--++++=-∴n n n n T =31)31(323)12(3121--⋅+⋅---+n n n)33(3)12(3121++--⋅--=n n n 13)22(6+⋅-+-=n n13)1(3+⋅-+=∴n n n T …………………………………………………12分21.解:(1)设椭圆C 的方程为22221x ya b +=()0a b >>,由题意⎪⎩⎪⎨⎧-===2222242c a b c a ,得 28a =,24b =,所以椭圆C 的方程为22184x y +=. …………5分 (2)假设存在斜率为k 的直线,其垂直平分线经过点Q (0,3),设A(x 1,y 1)、B(x 2,y 2),AB 的中点为N(x 0,y 0),由22184x y y kx m ⎧+=⎪⎨⎪=+⎩得222(12)4280k x mkx m +++-=, …………………6分222222164(12)(28)648320m k k m k m ∆=-+-=-+>,所以22840k m -+>,…7分122412mkx x k +=-+,∴12022212x x mk x k +==-+,00212my kx m k=+=+, ……………8分 线段AB 的垂直平分线过点Q (0,3),∴1NQ k k ⋅=-,即0031y k x -⋅=-,∴236m k -=+,…………10分 0∆> ,整理得42362850k k ++<,显然矛盾∴不存在满足题意的k 的值。
2016-2017学年高二上学期期末数学试卷(文科) Word版含解析
2016-2017学年高二上学期期末试卷(文科数学)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.)1.△ABC的内角A,B,C的对边分别为a,b,c,若c=,b=,B=120°,则c等于()A.B.2 C.D.2.在△ABC中,已知a2=b2+c2+bc,则角A为()A.B.C.D.或3.在等比数列{an }中,a2=8,a5=64,则公比q为()A.2 B.3 C.4 D.84.设Sn 是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于()A.13 B.49 C.35 D.635.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是()A.B.C.D.7.如果等差数列{an }中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.358.如图所示,程序据图(算法流程图)的输出结果为()A.B.C.D.9.在△ABC中,已知∠A=60°,AB:AC=8:5,面积为10,则AB=()A.8 B.6 C.5 D.1010.关于x的不等式x2+x+c>0的解集是全体实数的条件是()A.c<B.c≤C.c>D.c≥11.设变量x、y满足约束条件,则目标函数z=2x+y的最小值为()A.2 B.3 C.4 D.912.如图,测量河对岸的旗杆高AB时,选与旗杆底B在同一水平面内的两个测点C与D.测得∠BCD=75°,∠BDC=60°,CD=2米,并在点C测得旗杆顶A的仰角为60°,则旗杆高AB 为()A.10米B.2米C.米D.米二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.)13.设集合,则A∩B= .14.在﹣1和7中间插入三个数,使得这五个数成单调递增的等差数列,则这三个数为.15.在单调递增的等比数列{an }中,a1•a9=64,a3+a7=20,求a11= .16.当x>﹣1时,函数y=x+的最小值是.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.18.已知不等式ax2+bx﹣1<0的解集为{x|﹣1<x<2}.(1)计算a、b的值;(2)求解不等式x2﹣ax+b>0的解集.19.等比数列{an }中,已知a1=2,a4=16(Ⅰ)求数列{an}的通项公式;(Ⅱ)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项和Sn.20.为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(Ⅰ)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?25.动物园要建造一个长方形虎笼,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36m长网的材料,当虎笼的长、宽各设计为多少时,可使虎笼面积最大?最大面积为多少?(2)若使虎笼的面积为32m2,则虎笼的长、宽各设计为多少时,可使围成虎笼所用的钢筋网总长最小?26.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时的间频率分布表(时间单位为:分):将日将收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?2016-2017学年高二上学期期末试卷(文科数学)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.)1.△ABC的内角A,B,C的对边分别为a,b,c,若c=,b=,B=120°,则c等于()A.B.2 C.D.【考点】正弦定理.【分析】根据题意,由正弦定理可得=,变形可得c=•sinC,代入数据计算可得答案.【解答】解:根据题意,△ABC中,c=,b=,B=120°,由正弦定理可得: =,即c=•sinC=,即c=;故选:D.2.在△ABC中,已知a2=b2+c2+bc,则角A为()A.B.C.D.或【考点】余弦定理.【分析】根据余弦定理表示出cosA,然后把已知的等式代入即可求出cosA的值,由A的范围,根据特殊角的三角函数值即可得到A的度数.【解答】解:由a2=b2+c2+bc,则根据余弦定理得:cosA===﹣,因为A∈(0,π),所以A=.故选C3.在等比数列{an }中,a2=8,a5=64,则公比q为()A.2 B.3 C.4 D.8【考点】等比数列的通项公式.【分析】题目给出了a2=8,a5=64,直接利用等比数列的通项公式求解q.【解答】解:在等比数列{an }中,由,又a2=8,a5=64,所以,,所以,q=2.故选A.4.设Sn 是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于()A.13 B.49 C.35 D.63【考点】等差数列的前n项和.【分析】首先根据已知条件建立方程组求出首项与公差,进一步利用等差数列前n项和公式求出结果.【解答】解:等差数列{an }中,设首项为a1,公差为d,,解得:d=2,a1=1,所以:故选:B5.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.60【考点】频率分布直方图.【分析】由已知中的频率分布直方图,我们可以求出成绩低于60分的频率,结合已知中的低于60分的人数是15人,结合频数=频率×总体容量,即可得到总体容量. 【解答】解:∵成绩低于60分有第一、二组数据, 在频率分布直方图中,对应矩形的高分别为0.005,0.01, 每组数据的组距为20则成绩低于60分的频率P=(0.005+0.010)×20=0.3, 又∵低于60分的人数是15人,则该班的学生人数是=50.故选:B .6.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( )A .B .C .D .【考点】等可能事件的概率.【分析】从5个小球中选两个有C 52种方法,列举出取出的小球标注的数字之和为3或6的有{1,2},{1,5},{2,4}共3种,根据古典概型公式,代入数据,求出结果.本题也可以不用组合数而只通过列举得到事件总数和满足条件的事件数.【解答】解:随机取出2个小球得到的结果数有C 52=种取出的小球标注的数字之和为3或6的结果为{1,2},{1,5},{2,4}共3种,∴P=,故选A7.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7=( ) A .14 B .21 C .28 D .35【考点】等差数列的性质;等差数列的前n 项和. 【分析】由等差数列的性质求解. 【解答】解:a 3+a 4+a 5=3a 4=12,a 4=4,∴a 1+a 2+…+a 7==7a 4=28故选C8.如图所示,程序据图(算法流程图)的输出结果为()A.B.C.D.【考点】程序框图.【分析】根据所给数值执行循环语句,然后判定是否满足判断框中的条件,一旦不满足条件就退出循环,从而到结论.【解答】解:由程序框图知,循环体被执行后S的值依次为:第1次S=0+,第2次S=+,第3次S=++,此时n=8不满足选择条件n<8,退出循环,故输出的结果是S=++=.故选C.9.在△ABC中,已知∠A=60°,AB:AC=8:5,面积为10,则AB=()A.8 B.6 C.5 D.10【考点】余弦定理;正弦定理.【分析】由已知可得:AC=AB,进而利用三角形面积公式即可计算得解AB的值.【解答】解:∵AB:AC=8:5,可得:AC=AB,又∵∠A=60°,面积为10=AB•AC•sinA=AB ×AB ×,∴解得:AB=8. 故选:A .10.关于x 的不等式x 2+x+c >0的解集是全体实数的条件是( )A .c <B .c ≤C .c >D .c ≥ 【考点】二次函数的性质.【分析】由判别式小于零,求得c 的范围.【解答】解:关于x 的不等式x 2+x+c >0的解集是全体实数的条件是判别式△=1﹣4c <0,解得 c >, 故选:C .11.设变量x 、y 满足约束条件,则目标函数z=2x+y 的最小值为( )A .2B .3C .4D .9【考点】简单线性规划的应用.【分析】本题主要考查线性规划的基本知识,先画出约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数Z=2x+y 的最小值.【解答】解:设变量x 、y 满足约束条件,在坐标系中画出可行域△ABC ,A (2,0),B (1,1),C (3,3), 则目标函数z=2x+y 的最小值为3, 故选B12.如图,测量河对岸的旗杆高AB时,选与旗杆底B在同一水平面内的两个测点C与D.测得∠BCD=75°,∠BDC=60°,CD=2米,并在点C测得旗杆顶A的仰角为60°,则旗杆高AB 为()A.10米B.2米C.米D.米【考点】解三角形的实际应用.【分析】在△CBD中根据三角形的内角和定理,求出∠CBD=180°﹣∠BCD﹣∠BDC=45°,从而利用正弦定理求出BC.然后在Rt△ABC中,根据三角函数的定义加以计算,可得旗杆AB的高度.【解答】解:∵△BCD中,∠BCD=75°,∠BDC=60°,∴∠CBD=180°﹣∠BCD﹣∠BDC=45°,在△CBD中,CD=2米,根据正弦定理可得BC==米,∵Rt△ABC中,∠ACB=60°,∴AB=BC•tan∠ACB=•tan60°=3,即旗杆高,3米.故选:D.二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.)13.设集合,则A∩B= (3,4).【考点】交集及其运算.【分析】先利用解分式不等式化简集合B,再根据两个集合的交集的意义求解A∩B.【解答】解:A={x|x>3},B={x|<0}={x|1<x<4},∴A∩B=(3,4),故答案为:(3,4).14.在﹣1和7中间插入三个数,使得这五个数成单调递增的等差数列,则这三个数为1,3,5 .【考点】等差数列的通项公式.【分析】设插入的三个数为a,b,c,则﹣1,a,b,c,7五个数成单调递增的等差数列,利用等差数列的性质能求出这三个数.【解答】解:在﹣1和7中间插入三个数,使得这五个数成单调递增的等差数列,设插入的三个数为a,b,c,则﹣1,a,b,c,7五个数成单调递增的等差数列,∴a1=﹣1,a5=﹣1+4d=7,解得d=2,∴a=﹣1+2=1,b=﹣1+2×2=3,c=﹣1+2×3=5,∴这三个数为1,3,5.故答案为:1,3,5.15.在单调递增的等比数列{an }中,a1•a9=64,a3+a7=20,求a11= 64 .【考点】等比数列的通项公式.【分析】由已知得a3,a7是方程x2﹣20x+64=0的两个根,且a3<a7,从而求出a3=4,a7=16,再由等比数列通项公式列方程组求出首项和公比,由此能求出a11.【解答】解:∵单调递增的等比数列{an}中,a 1•a9=64,a3+a7=20,∴a3•a7=a1•a9=64,∴a3,a7是方程x2﹣20x+64=0的两个根,且a3<a7,解方程x2﹣20x+64=0,得a3=4,a7=16,∴,解得,∴a 11=a 1q 10=2×()10=64.故答案为:64.16.当x >﹣1时,函数y=x+的最小值是 1 .【考点】基本不等式在最值问题中的应用. 【分析】变形利用基本不等式的性质即可得出. 【解答】解:∵x >﹣1,∴函数y=x+=(x+1)+﹣1≥﹣1=1,当且仅当x+1=,且x >﹣1,即x=0时等号成立,故函数y 的最小值为1. 故答案为:1.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17.设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a=2bsinA (Ⅰ)求B 的大小;(Ⅱ)若,c=5,求b .【考点】正弦定理的应用;余弦定理的应用.【分析】(1)根据正弦定理将边的关系化为角的关系,然后即可求出角B 的正弦值,再由△ABC 为锐角三角形可得答案.(2)根据(1)中所求角B 的值,和余弦定理直接可求b 的值. 【解答】解:(Ⅰ)由a=2bsinA ,根据正弦定理得sinA=2sinBsinA ,所以,由△ABC 为锐角三角形得.(Ⅱ)根据余弦定理,得b 2=a 2+c 2﹣2accosB=27+25﹣45=7.所以,.18.已知不等式ax 2+bx ﹣1<0的解集为{x|﹣1<x <2}. (1)计算a 、b 的值;(2)求解不等式x 2﹣ax+b >0的解集. 【考点】一元二次不等式的解法.【分析】(1)根据不等式ax 2+bx ﹣1<0的解集,不等式与方程的关系求出a 、b 的值; (2)由(1)中a 、b 的值解对应不等式即可.【解答】解:(1)∵不等式ax 2+bx ﹣1<0的解集为{x|﹣1<x <2}, ∴方程ax 2+bx ﹣1=0的两个根为﹣1和2,将两个根代入方程中得,解得:a=,b=﹣;(2)由(1)得不等式为x 2﹣x ﹣>0, 即2x 2﹣x ﹣1>0,∵△=(﹣1)2﹣4×2×(﹣1)=9>0,∴方程2x 2﹣x ﹣1=0的两个实数根为:x 1=﹣,x 2=1;因而不等式x 2﹣x ﹣>0的解集是{x|x <﹣或x >1}.19.等比数列{a n }中,已知a 1=2,a 4=16 (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .【考点】等差数列与等比数列的综合.【分析】(I )由a 1=2,a 4=16直接求出公比q 再代入等比数列的通项公式即可.(Ⅱ)利用题中条件求出b 3=8,b 5=32,又由数列{b n }是等差数列求出.再代入求出通项公式及前n 项和S n .【解答】解:(I )设{a n }的公比为q 由已知得16=2q 3,解得q=2∴=2n(Ⅱ)由(I)得a3=8,a5=32,则b3=8,b5=32设{bn}的公差为d,则有解得.从而bn=﹣16+12(n﹣1)=12n﹣28所以数列{bn}的前n项和.20.为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(Ⅰ)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?【考点】众数、中位数、平均数;茎叶图.【分析】(Ⅰ)利用平均数的计算公式即可得出,据此即可判断出结论;(Ⅱ)利用已知数据和茎叶图的结构即可完成.【解答】解:(Ⅰ)设A药观测数据的平均数据的平均数为,设B药观测数据的平均数据的平均数为,则=×(0.6+1.2+2.7+1.5+2.8+1.8+2.2+2.3+3.2+3.5+2.5+2.6+1.2+2.7+1.5+2.9+3.0+3.1+2.3+2.4)=2.3.×(3.2+1.7+1.9+0.8+0.9+2.4+1.2+2.6+1.3+1.4+1.6+0.5+1.8+0.6+2.1+1.1+2.5+1.2+2.7+0.5)=1.6.由以上计算结果可知:.由此可看出A药的效果更好.(Ⅱ)根据两组数据得到下面茎叶图:从以上茎叶图可以看出,A药疗效的试验结果有的叶集中在2,3上.而B药疗效的试验结果由的叶集中在0,1上.由此可看出A药的疗效更好.25.动物园要建造一个长方形虎笼,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36m长网的材料,当虎笼的长、宽各设计为多少时,可使虎笼面积最大?最大面积为多少?(2)若使虎笼的面积为32m2,则虎笼的长、宽各设计为多少时,可使围成虎笼所用的钢筋网总长最小?【考点】基本不等式在最值问题中的应用.【分析】(1)设每间虎笼的长、宽,利用周长为36m,根据基本不等式,即可求得面积最大值时的长、宽;(2)设每间虎笼的长、宽,利用面积为32m2,根据周长的表达式,利用基本不等式,即可求得周长最小值时的长、宽.【解答】解:(1)设虎笼长为x m,宽为y m,则由条件,知x+2y=36.设每间虎笼的面积为S,则S=xy.由于x+2y≥2=2,∴2≤36,得xy≤162,即S≤162.当且仅当x=2y时等号成立.由解得故每间虎笼长为18 m,宽为9 m时,可使面积最大,面积最大为162m2.(2)由条件知S=xy=32.设钢筋网总长为l,则l=x+2y.∵x+2y≥2=2=16,∴l=x+2y≥48,当且仅当x=2y时,等号成立.由解得故每间虎笼长8m,宽4m时,可使钢筋网总长最小.26.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时的间频率分布表(时间单位为:分):将日将收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?【考点】独立性检验.【分析】(I)根据所给的频率分布直方图得出数据列出列联表,再代入公式计算得出X方,与3.841比较即可得出结论;(II)由题意,列出所有的基本事件,计算出事件“任选3人,至少有1人是女性”包含的基本事件数,即可计算出概率.【解答】解:(I)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:…3分将2×2列联表中的数据代入公式计算,得X2===≈3.03因为3.03<3.841,所以没有理由认为“体育迷”与性别有关…6分(II)由频率分布直方图知,“超级体育迷”为5人,从而一切可能结果所的基本事件空间为Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b 2),(b1,b2)}其中ai 表示男性,i=1,2,3,bi表示女性,i=1,2…9分Ω由10个基本事件组成,而且这些基本事件的出现是等可能的.用A表示事件“任选3人,至少有1人是女性”.则A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)}事件A有7个基本事件组成,因而P(A)=…12分。
安徽省涡阳县第四中学2016_2017学年高二数学上学期期末考试试题理
安徽省涡阳县第四中学2016-2017学年高二数学上学期期末考试试题 理第Ⅰ卷(选择题,共60分)一.选择题:(本大题共12小题,每题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的) 1.已知集合A ={x ∈R|4281<<x },B ={x ∈R|42≤<-x },则A ∩B 等于 ( )A. ()2,2-B. ()4,2-C. ⎪⎭⎫⎝⎛2,81D. ⎪⎭⎫ ⎝⎛4,812、等差数列{}n a 的前n 项和为n S ,且63=S ,03=a ,则公差d 等于 ( ) A -2 B -1 C 1 D 23、若0>>b a ,0<<d c ,则一定有 ( ) A d b c a > B c b d a < C d b c a < D cb d a >4.下列说法正确的是 ( ) A. 命题p :“2cos sin ,≤+∈∀x x R x ”,则⌝p 是真命题B.“1-=x ”是“0232=++x x ”的必要不充分条件C. 命题“,R x ∈∃使得0322<++x x ”的否定是:“,R x ∈∀0322>++x x ”D. “1>a ”是“()log (01)(0)a f x x a a =>≠+∞,在,上为增函数”的充要条件5. 设,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )A. 7-B. 6-C. 5-D. 3- 6.在ABC ∆中,80,100,45a b A ︒===,则此三角形解的情况是( ) A.一解 B.两解 C.一解或两解 D.无解 7、已知条件p :0432≤--x x ,条件q :09622≤-+-m x x 。
若p 是q 的充分不必要条件,则m 的取值范围是( )A []1,1-B []4,4-C (][)+∞-∞-,41,D (][)+∞-∞-,44,8、若直线02=+-by ax ()0,0>>b a 被圆014422=--++y x y x 所截得的弦长为6,则ba 32+的最小值为 ( ) A 10 B 3+26 C 4+26 D 5+26 9.数列{}n a 满足11a =且1122--=-n n n n a a a a()2≥n 则n a =( ) A.21n + B. 22n + C. 2()3n D. 12()3n - 10.在长方体ABCD-A 1B 1C 1D 1中,B 1C 和C 1D 与底面所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为( )A .46 B .36C.62 D.32 11.ABC △的三个内角为A B C 、、,若关于x 的方程22cos cos cos 02Cx x A B --=有一根为1, 则ABC △一定是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形12、设数列{}n a 的前n 项和为n S ,且121==a a ,(){}n n a n nS 2++为等差数列,则=n a( )A 121++n nB 1212--nn C 1211++-n n D 12-n n第Ⅱ卷(非选择题,共90分)二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在题中横线上). 13. 不等式21131x x ->+的解集是 .14、设数列{}n a 的通项公式2cosπn n a n =,前n 项和为n S ,则=2016S . 15. 已知a 、b 、c 分别为△ABC 三个内角A 、B 、C 的对边,若a=2,且C b c B A b sin )()sin )(sin 2-=-+(,则△ABC 面积的最大值为16.已知正方体ABCD ﹣A 1B 1C 1D 1棱长为1,点M 是BC 1的中点,P 是BB 1一动点,则(AP+MP )2的最小值为 .三、解答题(本大题共6小题,其中第17题10分,其余每题12分) 17、(本小题满分10分)已知a x ax x f -+=2)(,R a ∈ (Ⅰ)若1=a ,解不等式1)(≥x f ; (Ⅱ)若0<a ,解不等式1)(>x f18.(本小题满分12分)已知数列),(1x f ),(2x f ),(n x f 是公差为2的等差数列,且21a x = 其中函数x x f a log )(=(1,0≠>a a a 为常数且)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年安徽省亳州市涡阳四中高二(上)期末数学试卷(文科)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)命题“若∠C=90°,则△ABC是直角三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是()A.0B.1C.2D.32.(5分)设a,b是非零实数,若a<b,则下列不等式成立的是()A.a2<b2B.ab2<a2bC.D.3.(5分)已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2等于()A.﹣4B.﹣6C.﹣8D.﹣104.(5分)“p∨q为真”是“¬p为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)在△ABC中,若﹣sinAsinB<sin2A+sin2B﹣sin2C<﹣sinAsinB,则△ABC的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定6.(5分)已知x>0,y>0且x+y=xy,则x+y的取值范围是()A.(0,1]B.[2,+∞)C.(0,4]D.[4,+∞)7.(5分)抛物线y2=2px上一点Q(6,y0),且知Q点到焦点的距离为10,则焦点到准线的距离是()A.4B.8C.12D.168.(5分)已知命题p:∃x∈R,使得x+<2,命题q:∀x∈R,x2+x+1>0,下列命题为真的是()A.(¬p)∧q B.(¬p)∧(¬q)C.p∧(¬q)D.p∧q9.(5分)在等差数列{a n}中,已知a3+a8>0,且S9<0,则S1、S2、…S9中最小的是()A.S4B.S5C.S6D.S710.(5分)在△ABC中,A=60°,b=1,△ABC面积为,则的值为()A.B.C.D.211.(5分)若变量x,y满足约束条件,则ω=的取值范围是()A.[﹣,2)B.[﹣,]C.[﹣1,]D.[﹣,+∞)12.(5分)双曲线(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率为()A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)13.(5分)不等式组表示的平面区域的面积为.14.(5分)若不等式|ax+2|<6的解集为(﹣1,2),则实数a等于.15.(5分)如果数列{a n}的前n项之和为S n=3+2n,那么a12+a22+a32+…+a n2=.16.(5分)已知(m2+4m﹣5)x2﹣4(m﹣1)x+3>0对一切实数x恒成立,求实数m的范围.三.解答题(共70分)17.(10分)设命题p:方程4x2+4(a﹣2)x+1=0无实数根;命题q:函数y=ln (x2+ax+1)的值域是R.如果命题p或q为真命题,p且q为假命题,求实数a的取值范围.18.(10分)在△ABC中,角A、B、C的对边分别为a、b、c,且a=,b2+c2﹣bc=3.(1)求角A;(2)设cosB=,求边c的大小.19.(12分)已知函数f(x)=x2﹣(a+)x+1,(1)若a>0,解关于x的不等式f(x)≤0;(2)若对于任意x∈(1,3),f(x)+x>﹣3恒成立,求a的取值范围.20.(12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度υ(千米/小时)之间的函数关系为:y=(υ>0).(1)在该时段内,当汽车的平均速度υ为多少时,车流量最大?最大车流量为多少?(保留分数形式)(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?21.(12分)已知等差数列{a n}的公差大于0,且a3,a5是方程x2﹣14x+45=0的两根,数列{b n}的前n项的和为S n,且.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记c n=a n•b n,求数列{c n}的前n项和T n.22.(14分)已知椭圆经过点A(2,1),离心率为.过点B(3,0)的直线l与椭圆C交于不同的两点M,N.(Ⅰ)求椭圆C的方程;(Ⅱ)求的取值范围;(Ⅲ)设直线AM和直线AN的斜率分别为k AM和k AN,求证:k AM+k AN为定值.2016-2017学年安徽省亳州市涡阳四中高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)命题“若∠C=90°,则△ABC是直角三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是()A.0B.1C.2D.3【解答】解:命题“若∠C=90°,则△ABC是直角三角形”是真命题,∴其逆否命题也为真命题.原命题的逆命题为:“若△ABC是直角三角形,则∠C=90°”是假命题(△ABC是直角三角形不一定角C为直角),∴原命题的否命题也是假命题.∴真命题的个数是2.故选:C.2.(5分)设a,b是非零实数,若a<b,则下列不等式成立的是()A.a2<b2B.ab2<a2bC.D.【解答】解:A选项不正确,因为a=﹣2,b=1时,不等式就不成立;B选项不正确,因为a=1,b=2时,不等式就不成立;C选项正确,因为⇔a<b,故当a<b时一定有;D选项不正确,因为a=1,b=2时,不等式就不成立;选项正确,因为y=2x是一个增函数,故当a>b时一定有2a>2b,故选:C.3.(5分)已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2等于()A.﹣4B.﹣6C.﹣8D.﹣10【解答】解:∵等差数列{a n}的公差为2,a1,a3,a4成等比数列,∴(a1+4)2=a1(a1+6),∴a1=﹣8,∴a2=﹣6.故选:B.4.(5分)“p∨q为真”是“¬p为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:因为“¬p为假”,所以p为真,所以“p∨q为真”,反之“p∨q为真”可知,p、q至少一个为真,即“¬p为假”不一定为真,故选:B.5.(5分)在△ABC中,若﹣sinAsinB<sin2A+sin2B﹣sin2C<﹣sinAsinB,则△ABC的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定【解答】解:将﹣sinAsinB<sin2A+sin2B﹣sin2C<﹣sinAsinB,利用正弦定理化简得:﹣ab<a2+b2﹣c2<﹣ab,由余弦定理得:cosC=,即a2+b2﹣c2=2abcosC,可得:﹣ab<2abcosC<﹣ab,∵ab≠0,∴﹣<2cosC<﹣1,即﹣<cosC<﹣,∴C为钝角,则△ABC为钝角三角形,故选:A.6.(5分)已知x>0,y>0且x+y=xy,则x+y的取值范围是()A.(0,1]B.[2,+∞)C.(0,4]D.[4,+∞)【解答】解:由x>0,y>0且x+y=xy,可得x+y=xy≤,化简可得(x+y)2﹣4(x+y)≥0,解得x+y≤0(舍去),或x+y≥4,故x+y的取值范围是[4,+∞),故选:D.7.(5分)抛物线y2=2px上一点Q(6,y0),且知Q点到焦点的距离为10,则焦点到准线的距离是()A.4B.8C.12D.16【解答】解:∵Q点到焦点的距离为10,∴,解得p=8.∴焦点到准线的距离=p=8.故选:B.8.(5分)已知命题p:∃x∈R,使得x+<2,命题q:∀x∈R,x2+x+1>0,下列命题为真的是()A.(¬p)∧q B.(¬p)∧(¬q)C.p∧(¬q)D.p∧q【解答】解:对于命题p:∃x∈R,使得,当x<0时,命题p成立,命题p为真命题,显然,命题q为真∴根据复合命题的真假判定,p∧q为真,(¬p)∧q为假,p∧(¬q)为假,(¬p)∧(¬q)为假9.(5分)在等差数列{a n}中,已知a3+a8>0,且S9<0,则S1、S2、…S9中最小的是()A.S4B.S5C.S6D.S7【解答】解:等差数列{a n}中,∵a3+a8>0,且S9<0,∴a5+a6=a3+a8>0,S9==9a5<0,∴a5<0,a6>0.∴S1、S2、…S9中最小的是S5.故选:B.10.(5分)在△ABC中,A=60°,b=1,△ABC面积为,则的值为()A.B.C.D.2【解答】解:∵S=bcsinA=×1×c×=△ABC∴c=4根据余弦定理有:a2=b2+c2﹣2bccosA=1+16﹣2×1×4×=13所以,a=根据正弦定理==,则:==故选:A.11.(5分)若变量x,y满足约束条件,则ω=的取值范围是()A.[﹣,2)B.[﹣,]C.[﹣1,]D.[﹣,+∞)【解答】解:ω=的几何意义为动点P(x,y)到点D(﹣1,1)的斜率,作出不等式组对应的平面区域如图(阴影部分):由图象可知当P位于点A(1,0)时,AD的斜率最小,此时ω===,当过D的直线和2x﹣y﹣2=0平行时,此时斜率最大为2,但取不到,故ω∈[﹣,2),故选:A.12.(5分)双曲线(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率为()A.B.C.D.【解答】解:如图在Rt△MF1F2中,∠MF1F2=30°,F1F2=2c∴,∴∴,故选:B.二、填空题(本题共4小题,每小题5分,共20分)13.(5分)不等式组表示的平面区域的面积为36.【解答】解:满足约束条件的可行域如下图示:由图可得,图中阴影部分面积为:S=×12×6=36,故答案为:36.14.(5分)若不等式|ax+2|<6的解集为(﹣1,2),则实数a等于﹣4.【解答】解:∵不等式|ax+2|<6的解集为(﹣1,2),∴∴a=﹣4故答案为:﹣415.(5分)如果数列{a n}的前n项之和为S n=3+2n,那么a12+a22+a32+…+a n2=.【解答】解:因为数列{a n}的前n项之和为S n=3+2n,a1=5,a2=2,a n=S n﹣S n﹣1,n≥2,又S n=2n+3,所以a n=2n﹣2n﹣1=2n﹣1所以,a n2=4n﹣1是从第二项起是等比数列;设A n=a12+a22+a32+…+a n2,由等比数列前n项和a12+a22+a32+…+a n2=a12+,q=4.解得a12+a22+a32+…+a n2=25+=.故答案为:.16.(5分)已知(m2+4m﹣5)x2﹣4(m﹣1)x+3>0对一切实数x恒成立,求实数m的范围.【解答】解:①当m2+4m﹣5=0时,得m=1或m=﹣5,∵m=1时,原式可化为3>0,恒成立,符合题意当m=﹣5时,原式可化为:24x+3>0,对一切实数x不恒成立,故舍去;∴m=1;②m2+4m﹣5≠0时即m≠1,且m≠﹣5,∵(m2+4m﹣5)x2﹣4(m﹣1)x+3>0对一切实数x恒成立∴有解得1<m<19…(5分)综上得1≤m<19…(2分)三.解答题(共70分)17.(10分)设命题p:方程4x2+4(a﹣2)x+1=0无实数根;命题q:函数y=ln (x2+ax+1)的值域是R.如果命题p或q为真命题,p且q为假命题,求实数a的取值范围.【解答】解:若p为真命题,则△=16(a﹣2)2﹣16=16(a﹣1)(a﹣3)<0恒成立…(2分)解得1<a<3 …(3分)若q为真命题,则△=a2﹣4≥0恒成立,…(5分)解得a≤﹣2或a≥2 …(6分)又由题意知命题p或q为真命题,p且q为假命题∴p和q有且只有一个是真命题,若p真q假,∴,∴a的范围为:1<a<2…(8分)若p假q真,∴,a的范围为:a≤﹣2或a≥3 …(10分)综上所述:a∈(﹣∞,﹣2]∪(1,2)∪[3,+∞)…(12分)18.(10分)在△ABC中,角A、B、C的对边分别为a、b、c,且a=,b2+c2﹣bc=3.(1)求角A;(2)设cosB=,求边c的大小.【解答】解:(1)∵a=,由b2+c2﹣bc=3得:b2+c2=a2+bc,∴cosA===,∴A=.(2)由cosB=>0,知B为锐角,所以sinB=.∴sinC=sin(A+B)=sinAcosB+cosAsinB=×+×=.由正弦定理得:c==.19.(12分)已知函数f(x)=x2﹣(a+)x+1,(1)若a>0,解关于x的不等式f(x)≤0;(2)若对于任意x∈(1,3),f(x)+x>﹣3恒成立,求a的取值范围.【解答】解:(1)∵不等式,a>0,当0<a<1时,有,∴不等式的解集为;当a>1时,有,∴不等式的解集为;当a=1时,不等式的解集为x∈{1}.(2)任意x∈(1,3),>﹣3恒成立,即x2﹣ax+4>0恒成立,即恒成立,所以,x∈(1,3),所以a<4.20.(12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度υ(千米/小时)之间的函数关系为:y=(υ>0).(1)在该时段内,当汽车的平均速度υ为多少时,车流量最大?最大车流量为多少?(保留分数形式)(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?【解答】解:(1)依题意,y==≤,当且仅当v=,即v=40时,上式等号成立,∴y max=(千辆/时).∴如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25km/h 且小于64km/h.当v=40km/h时,车流量最大,最大车流量约为千辆/时;(2)由条件得>10,整理得v2﹣89v+1600<0,即(v﹣25)(v﹣64)<0.解得25<v<64.21.(12分)已知等差数列{a n}的公差大于0,且a3,a5是方程x2﹣14x+45=0的两根,数列{b n}的前n项的和为S n,且.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记c n=a n•b n,求数列{c n}的前n项和T n.【解答】解:(Ⅰ)∵a3,a5是方程x2﹣14x+45=0的两根,且数列{a n}的公差d >0,∴a3=5,a5=9,公差.∴a n=a5+(n﹣5)d=2n﹣1.(3分)又当n=1时,有∴当,∴.∴数列{b n}是首项,公比等比数列,∴.(6分)(Ⅱ)由(Ⅰ)知,则(1)∴=(2)(10分)(1)﹣(2)得:=化简得:(12分)22.(14分)已知椭圆经过点A(2,1),离心率为.过点B(3,0)的直线l与椭圆C交于不同的两点M,N.(Ⅰ)求椭圆C的方程;(Ⅱ)求的取值范围;(Ⅲ)设直线AM和直线AN的斜率分别为k AM和k AN,求证:k AM+k AN为定值.【解答】解:(Ⅰ)由题意得,解得,.故椭圆C的方程为.(Ⅱ)由题意显然直线l的斜率存在,设直线l方程为y=k(x﹣3),由得(1+2k2)x2﹣12k2x+18k2﹣6=0.因为直线l与椭圆C交于不同的两点M,N,所以△=144k4﹣4(1+2k2)(18k2﹣6)=24(1﹣k2)>0,解得﹣1<k<1.设M,N的坐标分别为(x1,y1),(x2,y2),则,,y1=k(x1﹣3),y2=k(x2﹣3).所以=(1+k2)[x1x2﹣3(x1+x2)+9]==.因为﹣1<k<1,所以.故的取值范围为(2,3].(Ⅲ)由(Ⅱ)得k AM+k AN=====.所以k AM +k AN 为定值﹣2.赠送—高中数学知识点【1.3.1】单调性与最大(小)值 (1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数yxoM 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。