统计学(贾俊平,第四版)第五章习题答案
统计学(第五版)贾俊平-课后思考题和练习题答案(最终完整版)
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)整理by__kiss—ahuang第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论.1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1。
3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据.它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据.统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据.时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据.1.4解释分类数据,顺序数据和数值型数据答案同1。
31。
5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命.1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量.经验变量和理论变量。
1。
7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”.1.8统计应用实例人口普查,商场的名意调查等。
统计学(第五版)贾俊平-课后思考题和练习题答案(完整版)
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1。
1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1。
2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1。
3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据.它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的.实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1。
7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学教材(贾俊平版)课后习题详细答案
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学第四版答案(贾俊平)
统计学第四版答案(贾俊平)第1章统计和统计数据1.1 指出下⾯的变量类型。
(1)年龄。
(2)性别。
(3)汽车产量。
(4)员⼯对企业某项改⾰措施的态度(赞成、中⽴、反对)。
(5)购买商品时的⽀付⽅式(现⾦、信⽤卡、⽀票)。
详细答案:(1)数值变量。
(2)分类变量。
(3)数值变量。
(4)顺序变量。
(5)分类变量。
1.2 ⼀家研究机构从IT从业者中随机抽取1000⼈作为样本进⾏调查,其中60%回答他们的⽉收⼊在5000元以上,50%的⼈回答他们的消费⽀付⽅式是⽤信⽤卡。
(1)这⼀研究的总体是什么?样本是什么?样本量是多少?(2)“⽉收⼊”是分类变量、顺序变量还是数值变量?(3)“消费⽀付⽅式”是分类变量、顺序变量还是数值变量?详细答案:(1)总体是“所有IT从业者”,样本是“所抽取的1000名IT从业者”,样本量是1000。
(2)数值变量。
(3)分类变量。
1.3 ⼀项调查表明,消费者每⽉在⽹上购物的平均花费是200元,他们选择在⽹上购物的主要原因是“价格便宜”。
(1)这⼀研究的总体是什么?(2)“消费者在⽹上购物的原因”是分类变量、顺序变量还是数值变量?详细答案:(1)总体是“所有的⽹上购物者”。
(2)分类变量。
1.4 某⼤学的商学院为了解毕业⽣的就业倾向,分别在会计专业抽取50⼈、市场营销专业抽取30、企业管理20⼈进⾏调查。
(1)这种抽样⽅式是分层抽样、系统抽样还是整群抽样?(2)样本量是多少?详细答案:(1)分层抽样。
(2)100。
第3章⽤统计量描述数据为7.2分钟,标准差为1.97分钟,第⼆种排队⽅式的等待时间(单位:分钟)如下:5.56.6 6.7 6.87.1 7.3 7.4 7.8 7.8(1)计算第⼆种排队时间的平均数和标准差。
(2)⽐两种排队⽅式等待时间的离散程度。
(3)如果让你选择⼀种排队⽅式,你会选择哪⼀种?试说明理由。
详细答案:(1)(岁);(岁)。
(2);。
第⼀中排队⽅式的离散程度⼤。
统计学贾俊平_第四版课后习题答案
3.3 某百货公司连续40天的商品销售额如下:单位:万元41 25 29 47 38 34 30 38 43 40 46 36 45 37 37 36 45 43 33 44 35 28 46 34 30 37 44 26 38 44 42363737493942323635要求:根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。
1、确定组数: ()l g 40l g () 1.60206111 6.32l g (2)l g 20.30103n K =+=+=+=,取k=62、确定组距:组距=( 最大值 - 最小值)÷ 组数=(49-25)÷6=4,取5(1) 对这个年龄分布作直方图;(2) 从直方图分析成人自学考试人员年龄分布的特点。
解:(1)制作直方图:将上表复制到Excel 表中,点击:图表向导→柱形图→选择子图表类型→完成。
即得到如下的直方图:(见Excel 练习题2.6)(2)年龄分布的特点:自学考试人员年龄的分布为右偏。
解:(1)根据上面的数据,画出两个班考试成绩的对比条形图和环形图。
3.14 已知1995—2004年我国的国内生产总值数据如下(按当年价格计算):要求:(2)绘制第一、二、三产业国内生产总值的线图。
4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics汽车销售数量N Valid 10Missing 0Mean 9.60Median 10.00Mode 10Std. Deviation 4.169Percentiles 25 6.2550 10.0075 12.50种是所有颐客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。
统计学第四版答案(贾俊平)
请举出统计应用的几个例子:1、用统计识别作者:对于存在争议的论文,通过统计量推出作者2、用统计量得到一个重要发现:在不同海域鳗鱼脊椎骨数量变化不大,推断所有各个不同海域内的鳗鱼是由海洋中某公共场所繁殖的3、挑战者航天飞机失事预测请举出应用统计的几个领域:1、在企业发展战略中的应用2、在产品质量管理中的应用3、在市场研究中的应用④在财务分析中的应用⑤在经济预测中的应用你怎么理解统计的研究内容:1、统计学研究的基本内容包括统计对象、统计方法和统计规律。
2、统计对象就是统计研究的课题,称谓统计总体。
3、统计研究方法主要有大量观察法、数量分析法、抽样推断法、实验法等。
④统计规律就是通过大量观察和综合分析所揭示的用数量指标反映的客观现象的本质特征和发展规律。
举例说明分类变量、顺序变量和数值变量:分类变量:表现为不同类别的变量称为分类变量,如“性别”表现为“男”或“女”,“企业所属的行业”表现为“制造业”、“零售业”、“旅游业”等,“学生所在的学院”可能是“商学院”、“法学院”等顺序变量:如果类别有一定的顺序,这样的分类变量称为顺序变量,如考试成绩按等级分为优、良、中、及格、不及格,一个人对事物的态度分为赞成、中立、反对。
这里的“考试成绩等级”、“态度”等就是顺序变量。
数值变量:可以用数字记录其观察结果,这样的变量称为数值变量,如“企业销售额”、“生活费支出”、“掷一枚骰子出现的点数”。
定性数据和定量数据的图示方法各有哪些:1、定性数据的图示:条形图、帕累托图、饼图、环形图2、定量数据的图示:a、分组数据看分布:直方图b、未分组数据看分布:茎叶图、箱线图、垂线图、误差图c、两个变量间的关系:散点图d、比较多个样本的相似性:雷达图和轮廓图直方图与条形图有何区别:1、条形图中的每一个矩形表示一个类别,其宽度没有意义,而直方图的宽度则表示各组的组距。
2、由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列。
统计学(第四版) 贾俊平 课后习题答案
第 2 章 统计数据的描述——练习题
●1. 为评价家电行业售后服务的质量,随机抽取了由 100 家庭构成的一个样本。服务质量的 等级分别表示为:A. 好;B.较好;C. 一般;D. 差;E. 较差。调查结果如下: B E C C A D C B A E D A C B C D E C E E A D B C C A E D C B B A C D E A B D D C C B C E D B C C B C D A C B C D E C E B B E C C A D C B A E B A C D E A B D D C A D B C C A E D C B C B C E D B C C B C (1) 指出上面的数据属于什么类型; (2) 用 Excel 制作一张频数分布表;
(3)条形图的制作:将上表 (包含总标题,去掉合计栏)复制到 Excel 表中,点击:图 表向导→条形图→选择子图表类型→完成(见 Excel 练习题 2.1)。即得到如下的条形图:
E D C B A 0 20 40
服务质量等 级评价的频 数分布 频 率% 服务质量等 级评价的频 数分布 家庭 数(频数)
25
30
35
40
●4. 为了确定灯泡的使用寿命(小时) ,在一批灯泡中随机抽取 100 只进行测试,所得结果 如下: 700 716 728 719 685 709 691 684 705 718 706 715 712 722 691 708 690 692 707 701 708 668 706 694 688 701 693 729 710 692 690 689 671 697 694 693 691 736 683 718 664 681 697 747 689 685 707 681 695 674 699 696 702 683 721 685 658 682 651 741 717 720 706 698 698 673 698 733 677 661 666 700 749 713 712 679 735 696 710 708 676 683 695 665 698 722 727 702 692 691
统计学(第四版)贾俊平 第五章 参数估计 练习题答案
统计学(第四版)贾俊平 第五章 参数估计 练习题答案5.1(答案精确到小数点后两位)(1)已知:n=49,15σ=,样本均值的标准误差X σ==(2)已知:置信水平:2195%, 1.96Z αα-==,估计误差E=2151.96 4.207Z α== (3)已知120,X =置信水平:2195%, 1.96Z αα-==,E=4.20置信区间为()2120 4.20115.80,124.20X Z α±=±=5.2(答案精确到小数点后两位)(1)置信区间为28900 1.96(8646.97,9153.03)X Z α±=±=(2)置信区间为28900 1.96(8815.48,8984.52)X Z α±=±=(3)置信区间为28900 1.65(8760.55,9039.45)X Z α±=±=(4)置信区间为28900 2.58(8681.95,9118.05)X Z α±=±= 5.3 (1) 表5.3—1置信水平90%上网时间置信区间报告上网时间5.4(答案精确到小数点后两位)(1)已知N=500,n=50,132n =A. 传统方法:320.6450p ==比例置信区间为0.64(0.51,0.77)p ±=±= B. 现代方法:3220.63504p +==+比例置信区间为0.63(0.50,0.76)p ±=±=(2)已知0.8p =0.1≤得到:16n ≥5.5(1)(2)5.6已知2212121214,7,53.2,43.4,96.8,102.0n n X X s s ======,(1)置信水平195%α-=,12μμ- 置信区间为()(()122 1.86,17.74X X t v α-±= (2)置信水平199%α-=,12μμ- 置信区间为()(()1220.19,19.41X X t v α-±=5.8已知1212250,p 40%,p 30%n n ==== (答案精确到小数点后四位)(1)置信水平190%α-= ,12ππ- 的置信区间为 ()()120.10.0300,0.1700p p -±=±=(2)置信水平195%α-= ,12ππ- 置信区间()()120.10.0168,0.1832p p -±±=5.9 有Excel 得,()2212121220.241609,0.076457,0.058375,0.005846, 2.464484,0.405764s s s s F F αα-======所以,方差比的置信区间为()()22112222122, 4.051926,24.61011s s s s F F αα-⎛⎫ ⎪= ⎪ ⎪ ⎪⎝⎭5.10已知置信水平2195%,Z 1.96,120,20E αασ-====≤ 所以,222138.3Z n E σ=≥ ,取n=139。
贾俊平《统计学》(第5版)章节题库-第4章 数据的概括性度量【圣才出品】
第4章 数据的概括性度量一、单项选择题1.一组数据中出现频数最多的变量值称为( )。
A.众数B.中位数C.四分位数D.平均数【答案】A【解析】众数是一组数据中出现次数最多的变量值。
众数主要用于测度分类数据的集中趋势。
一般情况下,只有在数据量较大的情况下,众数才有意义。
2.下列关于众数的叙述,不正确的是( )。
A.一组数据可能存在多个众数B.众数主要适用于分类数据C.一组数据的众数是唯一的D.众数不受极端值的影响【答案】C【解析】众数是一组数据中出现次数最多的变量值。
众数主要用于测度分类数据的集中趋势,当然也适用于作为顺序数据以及数值型数据集中趋势的测度值。
一般情况下,只有在数据量较大的情况下,众数才有意义。
一组数据可能存在多个众数,由于众数是一个位置代表值,因此它不受数据中极端值的影响。
3.一组数据排序后处于中间位置上的变量值称为( )。
A.众数B.中位数C.四分位数D.平均数【答案】B【解析】中位数是一组数据排序后处于中间位置上的变量值。
中位数将全部数据等分成两部分,每部分包含50%的数据,一部分数据比中位数大,另一部分则比中位数小。
4.一组数据排序后处于25%和75%位置上的值称为( )。
A.众数B.中位数C.四分位数D.平均数【答案】C【解析】四分位数也称四分位点,它是一组数据排序后处于25%和75%位置上的值。
四分位数是通过3个点将全部数据等分为4部分,其中每部分包含25%的数据。
5.非众数组的频数占总频数的比例称为( )。
A.异众比率B.离散系数C.平均差D.标准差【答案】A【解析】异众比率是指非众数组的频数占总频数的比例。
主要用于衡量众数对一组数据的代表程度。
6.四分位差是( )。
A.上四分位数减下四分位数的结果B.下四分位数减上四分位数的结果C.下四分位数加上四分位数D.四分位数与上四分位数的中间值【答案】A【解析】四分位差也称内距或四分间距,它是上四分位数与下四分位数之差。
四分位差反映了中间50%数据的离散程度,其数值越小,说明中间的数据越集中;其数值越大,说明中间的数据越分散。
统计学贾俊平课后习题答案完整版
统计学贾俊平课后习题答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】附录:教材各章习题答案第1章统计与统计数据1.1(1)数值型数据;(2)分类数据;(3)数值型数据;(4)顺序数据;(5)分类数据。
1.2(1)总体是“该城市所有的职工家庭”,样本是“抽取的2000个职工家庭”;(2)城市所有职工家庭的年人均收入,抽取的“2000个家庭计算出的年人均收入。
1.3(1)所有IT从业者;(2)数值型变量;(3)分类变量;(4)观察数据。
1.4(1)总体是“所有的网上购物者”;(2)分类变量;(3)所有的网上购物者的月平均花费;(4)统计量;(5)推断统计方法。
1.5(略)。
1.6(略)。
第2章数据的图表展示2.1(1)属于顺序数据。
(2)频数分布表如下(4)帕累托图(略)。
2.2(1)频数分布表如下2.3频数分布表如下2.5(1)排序略。
(2)频数分布表如下2.6(3)食品重量的分布基本上是对称的。
2.72.8(1)属于数值型数据。
2.9(1)直方图(略)。
(2)自学考试人员年龄的分布为右偏。
2.10A 班分散,且平均成绩较A 班低。
2.11 (略)。
2.12 (略)。
2.13 (略)。
2.14 (略)。
2.15 箱线图如下:(特征请读者自己分析) 第3章 数据的概括性度量3.1(1)100=M ;10=e M ;6.9=x 。
(2)5.5=L Q ;12=U Q 。
(3)2.4=s 。
(4)左偏分布。
3.2(1)190=M ;23=e M 。
(2)5.5=L Q ;12=U Q 。
(3)24=x ;65.6=s 。
(4)08.1=SK ;77.0=K 。
(5)略。
3.3 (1)略。
(2)7=x ;71.0=s 。
(3)102.01=v ;274.02=v 。
(4)选方法一,因为离散程度小。
3.4 (1)x =(万元);M e= 。
贾俊平《统计学》(第5版)章节题库-第5章 概率与概率分布【圣才出品】
客购买其他商品。则某顾客来超市购买食品的条件下,也购买其他商品的概率为( )。
A.0.80
B.0.60
C.0.4375
D.0.35
【答案】C
【解析】由于 A =顾客购买食品, B =顾客购买其他商品。则有 P A 80% ,
P B=
60%
,
P AB 35% 。则 P B
A
P AB P A
0.35 0.8
A.抛掷多次硬币,恰好有一半结果正面朝上 B.抛掷两次硬币,恰好有一次结果正面朝上 C.抛掷多次硬币,出现正面的次数接近一半 D.抛掷一次硬币,出现的恰好是正面 【答案】C
【解析】概率的统计定义:在相同条件下随机试验 n 次,事件 A 出现 m 次 m n ,
则比值 m n 称为事件 A 发生的频率。随着 n 的增大,该频率围绕某一常数上下波动,趋于
者对工作不满意,或者二者皆有的概率为 P AB P AB P AB P A
P B P AB 0.4 0.3 0.15 0.55 。
10.一家超市所作的一项调查表明,有 80%的顾客到超市是来购买食品,60%的人
是来购买其他商品,35%的人既购买食品也购买其他商品。设 A =顾客购买食品, B =顾
4.随机抽取一只灯泡,观察其使用寿命 t ,其样本空间为 Ω=( )。 A.{ t 0 } B.{ t 0 } C.{ t 0 } D.{ t 0 }
【答案】D 【解析】一个试验中所有的简单事件的全体称为样本空间或基本空间。灯泡的使用寿
命样本空间为 Ω={ t 0 }。
5.观察一批产品的合格率 p ,其样本空间为 Ω=( )。 A.{ 0 p 1 }
稳定,这个频率的稳定值即为该事件的概率,记为 P(A)。故概率 P(A)=1/2 的含义是抛 掷多次硬币,出现正面的次数接近一半。
统计学贾俊平第四版课后习题测验答案
3.3 某百货公司连续40天的商品销售额如下:单位:万元41 25 29 47 38 34 30 38 43 40 46 36 45 37 37 36 45 43 33 44 35 28 46 34 30 37 44 26 38 44 42363737493942323635要求:根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。
1、确定组数:()lg 40lg() 1.60206111 6.32lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(49-25)÷6=4,取5(1) 对这个年龄分布作直方图;(2) 从直方图分析成人自学考试人员年龄分布的特点。
解:(1)制作直方图:将上表复制到Excel 表中,点击:图表向导→柱形图→选择子图表类型→完成。
即得到如下的直方图:(见Excel 练习题2.6)(2)年龄分布的特点:自学考试人员年龄的分布为右偏。
解:(1)根据上面的数据,画出两个班考试成绩的对比条形图和环形图。
3.14 已知1995—2004年我国的国内生产总值数据如下(按当年价格计算):要求:(2)绘制第一、二、三产业国内生产总值的线图。
4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics汽车销售数量N Valid 10Missing 0Mean 9.60Median 10.00Mode 10Std. Deviation 4.169Percentiles 25 6.2550 10.0075 12.50种是所有颐客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。
统计学第五版(贾俊平)课后习题答案
统计学第五版(贾俊平)课后题答案第4章 数据的归纳性气宇(1)众数:100=M 。
中位数:5.5211021=+=+=n 中位数位置,1021010=+=e M 。
平均数:6.91096101514421==++++==∑= nxx ni i。
(2)5.24104===n Q L 位置 ,5.5274=+=LQ 。
5.7410343=⨯==n Q U 位置,1221212=+=U Q 。
(3)2.494.156110)6.915()6.914()6.94()6.92(1)(222212==--+-++-+-=--=∑= n x xs ni i(4)由于平均数小于中位数和众数,所以汽车销售量为左偏散布。
(1)从表中数据能够看出,年龄出现频数最多的是19和23,所以有两个众数,即190=M 和230=M 。
将原始数据排序后,计算的中位数的位置为:13212521=+=+=n 中位数位置,第13个位置上的数值为23,所以中位数23=e M 。
(2)25.64254===n Q L 位置,19)1919(25.019=-⨯+=L Q 。
75.184253=⨯=位置U Q ,56.252-7257.052=⨯+=)(U Q 。
(3)平均数242560025231715191==++++==∑= n xx ni i。
65.61251062125)2423()2417()2415()2419(1)(222212=-=--+-++-+-=--=∑= n x xs ni i(4)偏态系数:()08.165.6)225)(125(242533=⨯---=∑i x SK 。
峰态系数:[]77.065.6)325)(225)(125()125()24(3)24()125(254224=⨯-------+=∑∑i i x x K 。
(5)分析:从众数、中位数和平均数来看,网民年龄在23~24岁的人数占多数。
由于标准差较大,说明网民年龄之间有较大不同。
统计学(贾俊平 第四版)课后习题答案
频数
2 3 9 12 7 4 2 1 40
频率%
5.0 7.5 22.5 30.0 17.5 10.0 5.0 2.5 100.0
要求:根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。
K 1
l g 4 0 l gn ( ) 1.60206 ,取 1 1 6.3 2 k=6 lg(2) lg 2 0.30103
2、确定组距: 组距=( 最大值 - 最小值)÷ 组数=(49-25)÷6=4,取 5 3、分组频数表
要求: (1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率。 1、确定组数:
K 1
l g 4 0 l gn ( ) 1.60206 ,取 1 1 6.3 2 k=6 lg(2) lg 2 0.30103
2、确定组距: 组距=( 最大值 - 最小值)÷ 组数=(152-87)÷6=10.83,取 10 3、分组频数表 销售收入
直方图:
组距4,小于等于
40
30
Frequency
20
10
Mean =4.06 Std. Dev. =1.221 N =100 0 0 2 4 6 8
组距4,小于等于
组距 5,上限为小于等于 频数 有效 <= 45.00 46.00 - 50.00 51.00 - 55.00 56.00 - 60.00 61.00+ 合计 12 37 34 16 1 100 百分比 12.0 37.0 34.0 16.0 1.0 100.0 累计频数 12.0 49.0 83.0 99.0 100.0 累积百分比 12.0 49.0 83.0 99.0 100.0
统计学贾俊平课后习题答案
附录:教材各章习题答案第1章统计与统计数据1.1(1)数值型数据;(2分类数据;(3)数值型数据;(4)顺序数据;(5)分类数据。
1.2(1)总体是该城市所有的职工家庭”样本是抽取的2000个职工家庭”(2)城市所有职工家庭的年人均收入,抽取的“ 200个家庭计算出的年人均收入。
1.3(1)所有IT从业者;(2)数值型变量;(3)分类变量;(4)观察数据。
1.4(1)总体是所有的网上购物者”(2)分类变量;(3)所有的网上购物者的月平均花费;(4)统计量;(5)推断统计方法。
1.5(略)。
1.6(略)。
第2章数据的图表展示2.1(1)属于顺序数据。
(2)频数分布表如下服务质量等级评价的频数分布(3)条形图(略)(4)帕累托图(略)。
2.2(1)频数分布表如下40个企业按产品销售收入分组表(2)某管理局下属40个企分组表2.3 频数分布表如下某百货公司日商品销售额分组表直方图(略)。
2.4 茎叶图如下箱线图(略)。
2.5(1)排序略。
(2)频数分布表如下100只灯泡使用寿命非频数分布690~700 700~710 710~720 720~730 730~740 261813103261813103合计100 100(3)直方图(略)(4)茎叶图如下茎叶65 1 866 1 4 5 6 867 1 3 4 6 7 968 1 1 2 3 3 3 4 5 5 5 8 8 9 969 0 0 1 1 1 1 2 2 2 3 3 4 4 5 5 6 6 6 7 7 8 8 8 8 9 970 0 0 1 1 2 2 3 4 5 6 6 6 7 7 8 8 8 971 0 0 2 2 3 3 5 6 7 7 8 8 972 0 1 2 2 5 6 7 8 9 973 3 5 674 1 4 7(1)频数分布表如下按重量分组频率/包40 〜42 242 〜44 344 〜46 746 〜48 1648 〜50 1752 〜52 1052 〜54 202.62.7 2.854 〜56 856 〜58 1058 〜60 460 〜62 3合计100(2)直方图(略)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《统计原理》第五章练习题答案
5.1 (1)平均分数是范围在0-100之间的连续变量,Ω=[0,100]
(2)已经遇到的绿灯次数是从0开始的任意自然数,Ω=N
(3)之前生产的产品中可能无次品也可能有任意多个次品,Ω=[10,11,12,13…….]
5.2 设订日报的集合为A ,订晚报的集合为B ,至少订一种报的集合为A ∪B ,同时订两种报的集合为A ∩B 。
P(A ∩B)=P(A)+ P(B)-P(A ∪B)=0.5+0.65-0.85=0.3
5.3 P(A ∪B)=1/3,P(A ∩B )=1/9, P(B)= P(A ∪B)- P(A ∩B )=2/9
5.4 P(AB)= P(B)P(A ∣B)=1/3*1/6=1/18 P(A ∪B )=P(B A )=1- P(AB)=17/18 P(B )=1- P(B)=2/3 P(A B )=P(A )+ P(B )- P(A ∪B )=7/18 P(A ∣B )= P(B A )/P(B )=7/12
5.5 设甲发芽为事件A ,乙发芽为事件B 。
(1)由于是两批种子,所以两个事件相互独立,所以有:P(AB)= P(B)P(B)=0.56
(2)P(A ∪B)=P(A)+P(B)-P(A ∩B)=0.94
(3)P(A B )+ P(B A )= P(A)P(B )+P(B)P(A )=0.38
5.6 设合格为事件A ,合格品中一级品为事件B
P(AB)= P(A)P(B ∣A)=0.96*0.75=0.72
5.7 设前5000小时未坏为事件A ,后5000小时未坏为事件B 。
P(A)=1/3,P(AB)=1/2, P(B ∣A)= P(AB)/ P(A)=2/3
5.8 设职工文化程度小学为事件A ,职工文化程度初中为事件B ,职工文化程度高中为事件C ,职工年龄25岁以下为事件D 。
P(A)=0.1 P(B)=0.5, P(C)=0.4
P(D ∣A)=0.2, P(D ∣B)=0.5, P(D ∣C)=0.7
P(A ∣D)=2/55)C P(C)P(D )B P(B)P(D )A P(A)P(D )
A P(A)P(D =++
同理P(B ∣D)=5/11, P(C ∣D)=28/55
5.9 设次品为D ,由贝叶斯公式有:
P(A ∣D)=)C P(C)P(D )B P(B)P(D )A P(A)P(D )
A P(A)P(D ++=0.249
同理P(B ∣D)=0.112
5.10 由二项式分布可得:P (x=0)=0.25, P (x=1)=0.5, P (x=2)=0.25
5.11 (1) P (x=100)=0.001, P (x=10)=0.01, P (x=1)=0.2, P (x=0)=0.789
(2)E(X)=100*0.001+10*0.01+1*0.2=0.4
5.13 答对至少四道题包含两种情况,对四道错一道,对五道。
C 54+)()(43414 C 65)(4
15=1/64 5.14 由泊松分布的性质有:
P (X=1)=λλ-e ,P (X=2)=!22λ
λ-e ,可得λ=2
P (X=4)=2/3e
5.15 11
)!()!1(k)P(X 1)k P(X 1=+=∙+==+=+k k k k k λλλ 所以,当k=λ-1和k=λ时P (x=k )最大。
5.16 (1)P(x >2)= P(x >2)+ P(x <-2)=φ(0.5)+1-φ(2.5)=0.6977 由于N (3,4)关于均值3对称,所以P (x >3)=0.5
5.17 P(120<x <200)=P (8.00140240160-x ≥-=〈)()σ
φσσ 9.040
≥)(σφ,27.398≤σ
5.18 (1)9332.0)5.1()20
3020200(
)230(==≤-=≤φx P x P (2)383.01)5.0(2)201020200()210190(=-=≤-=≤≤φx P x P。