11 齿轮传动(下)解析

合集下载

机械设计基础复习精要:第11章 齿轮传动

机械设计基础复习精要:第11章 齿轮传动

133第11章 齿轮传动11.1考点提要11.1.1 重要的术语及概念软齿面、硬齿面、许用应力、弯曲疲劳强度、接触疲劳强度、接触应力、弯曲应力、点蚀、胶合、载荷系数、齿宽系数、齿形系数、应力集中系数、应力循环次数、齿轮精度等级。

11.1.2 许用应力的计算接触疲劳强度的许用应力为: HH HN H S K lim ][σσ= (11—1) 式中:HN K 称为寿命系数,由应力循环次数确定;lim H σ是齿面材料的接触疲劳极限;H S 为安全系数。

即使两齿轮采用同样的材料和热处理,由于两齿轮会有齿数不同,所以应力循环次数也就不同,从而导致寿命系数HN K 不同,因此许用应力也不同。

只有两齿轮齿数相同或齿数虽不同但都按无限寿命取相同的寿命系数HN K 并取相同的安全系数H S ,许用应力才相同。

弯曲疲劳强度的许用应力为:FFE FN F S K σσ=][ (11—2) 式中:环次数确定)为寿命系数(由应力循FN K ;FE σ为齿面材料的弯曲疲劳极限;F S 为安全系数。

即使两齿轮采用同样的材料和热处理,由于两齿轮会有齿数不同,所以应力循环次数也就不同,从而导致寿命系数FN K 不同,因此许用应力也不同。

如果两齿轮齿数相同或齿数虽不同但都按无限寿命取相同的寿命系数FN K 并取相同的安全系数F S ,许用应力才会相同。

为实现等强度设计,如果采用软齿面(HBS 350≤),一般小齿轮比大齿轮硬度高30-50HBS,小齿轮对大齿轮有冷作硬化作用。

如采用硬齿面(HBS 350>),在淬火处理中难以做到如此的硬度差,设计时按同样硬度设计。

要注意:如果是开式齿轮传动,则极限应力要乘以0.7,由于极限应力是按单向转动所获得的数据,如果是双向转动,则也要乘以0.7。

11.1.3齿轮的失效形式和计算准则齿轮的失效形式有五种:(1)轮齿折断。

减缓措施:增大齿根的圆角半径,提高齿面加工精度,增大轴及支承的刚度。

过程装备基础 第11章 齿轮传动与蜗杆传动

过程装备基础 第11章 齿轮传动与蜗杆传动

rb2 ’
ra2
2 OO 2 2

24
啮合线
点击图标播放

25
11.5
斜齿圆柱齿轮传动
11.5.1 斜齿圆柱齿轮的形成及其传动特点
(1)齿廓曲面的形成 基圆柱上的螺旋角: b 分度圆柱上的螺旋角:
发生面 K K A 发生面 发生面 K
渐开线 ?端面齿形
b
K
A
B
A B
A
直齿轮齿廓曲面的形成

40
(5)齿面塑性变形
原因:用软钢或其它较软的材料制造的齿轮在重 载下工作。 条件:低速、起动频繁和瞬时过载。 现象:渐开线形状被破坏,瞬时传动比不恒定。 措施:提高齿面硬度,采用油性好的润滑油。

41
11.6.2 齿轮材料及热处理 (1)齿轮材料
45号钢 中碳合金钢 金属材料 低碳合金钢 最常用,经济、货源充足 40Cr、40MnB、35SiMn等 20Cr、20CrMnTi等
* 齿根圆直径 d f d 2hf ( z 2ha 2c* )m
基圆直径 db d cos mzcos
p m 齿距 齿厚与槽宽 s e m / 2
基圆齿厚
pb db / z mzcos / z m cos p cos

43
(3)按齿面硬度分类
软齿面( HBS≤350)齿轮:
主要失效形式:齿面点蚀。 应用:多用于中、低速传动。 热处理:调质或正火处理,热处理后再进行轮齿的精切。
硬齿面( HBS>350)齿轮:
主要失效形式:齿根弯曲疲劳折断。 应用:高速、中载、无猛烈冲击的重要齿轮。
热处理:中碳钢经表面淬火处理或用低碳钢经表面渗碳淬火处理。

第十一章 齿轮传动

第十一章 齿轮传动

强度计算方法

当量齿轮法,强度当量。 接触强度计算公式

校核公式
H


ZEZH Z
KT 1 u 1 bd 1
2

u
H

H lim
N / mm
2
设计公式
d1 2 KT
3 1
SH

2
d
u 1 ZEZ u
H
Z

H

mm
Z
cos 螺旋角系数


H
[
H
]

σH ——齿面啮合点最大接触应力 [σH]——齿轮材料的许用接触应力
圆柱面的最大接触应力σH的计算

赫兹公式:

H

4
Fn 2 ab


Fn
1
1
1 1 E1
2

1
2
1 21 E2
2
b

σH ——最大接触应力

与法向力Fn成正比; 与接触变形宽度2a成反比 与曲率半径ρ1 、ρ2成反比。 与宽度b成反比。

增加中心距a; 减小外载荷T1; 选σHlim高的材料和热处理。
336 ( u 1) u
3

提高许用接触应力[σH] :


KT 1 ba
2
H

H


H lim
SH
11-6 直齿圆柱齿轮传动的轮 齿弯曲强度计算


轮齿相当于一个悬臂 梁,受载后会发生弯 曲。 两个问题:


计算时载荷的作用点 及大小 危险截面的位置

齿轮传动的主要说明

齿轮传动的主要说明

7级
8级 9级
≤ 10
≤ 17
≤6
≤5 ≤3
≤ 10 ≤ 3.5
≤3 ≤ 2.5
11-4 直齿圆柱齿轮传动的作用力及计算载荷
一. 轮齿上的作用力 在驱动力矩作用下,主动 轮齿和从动轮齿的作用力 Fn沿啮合线方向(两轮齿 接触点的法线方向)。
t N1 O2 α Fn N2 Fr α t c Ft d1 T1 2 α O1 ω1 (主动)
3 齿面胶合

齿面胶合通常出现在齿 面相对滑动速度较大的 齿顶和齿根部位。齿面 发生胶合后,会使轮齿 失去正确的齿廓形状, 从而引起冲击、振动和 噪声并导致失效。
高速重载、低速重载闭式传动的主要破坏形式。
4 齿面磨损
1)磨粒磨损:由于金属微粒, 灰石砂粒进入齿轮引起的 磨损。 2)跑合磨损:指新机器。 开式齿轮传动易发生磨粒磨损

初始疲劳裂纹 金属剥落出现小坑 裂纹的扩展与断裂
2 齿面点蚀
对于开式齿轮传动, 因其齿面磨损的速度较 快,当齿面还没有形成 疲劳裂纹时,表层材料 已被磨掉,故通常见不 到点蚀现象。因此 齿面点蚀是闭式软齿面齿轮传动的主要破坏形式
3 齿面胶合
高速重载的齿轮传动中,齿面 间压力很大而速度很高,由于发热 大,瞬时温度高,相啮合的齿面发 生粘连现象,此时两齿面有相对滑 动,粘接的地方被撕裂。这叫热胶 合。 低速重载齿轮传动中,油膜遭破 坏也发生胶合现象。这时齿面温度 无明显增高,这种胶合叫冷胶合。
2 KT1 u 1 Z E Z H d1 mm d u [ H ]
3 2
2 KT1YFaYsa F [ F ]MPa 2 bm z1
硬齿面闭式齿轮传动: 按弯曲强度进行设计,按接触强度校核:

齿轮传动(第11章)

齿轮传动(第11章)

K F FtYFa1YSa1Y F1 F 1 bm K F FtYFa 2YSa 2Y F2 F 2 bm
② 应力和许用应力的关系 两齿轮弯曲应力是否相同?许用应力呢?
F
K F Ft YFaYSaY [ F ] bm
39

设计计算时,因为 m 3
8
§11.2
齿轮传动的失效形式
1.轮齿折断
原因: • 齿根弯曲应力大; • 齿根应力集中。
9
1、轮齿折断
★ 疲劳折断 ★ 过载折断
全齿折断—常发生于齿宽较小的直齿轮
局部折断—常发生于齿宽较大的直齿轮,和斜齿轮
措施:选用合适的材料及热处理方法,使齿根芯部 有足够的韧性;采用正变位齿轮以增大齿根的厚度; 增大齿根圆角半径,消除齿根加工刀痕;对齿根进 行喷丸、碾压等强化处理; 提高齿面精度、增大 模数等
d1 sin 2
cos d1 d1 cos
O2
d N 2C 2 2 sin 2
1 1 1 2
d 2 z2 2 d2 u 1 d1 d1 z1

d'2 2
'
(从动)
2

u 1 1 2 d1 cos tan u
23
§11.4 齿轮传动的计算载荷
名义载荷:
Fn p L
pca K Fn L
计算载荷:
载荷系数:K K A Kv K K
24
1.使用系数KA
考虑齿以外的其他因素对齿轮传动 的影响,主要考虑原动机和工作机的影响
原动机 载荷状况 均匀平稳 轻微冲击 中等冲击 严重冲击 工作机器 … … … … 电机 1.0 … 1.1 … 1.25 1.5 1.75 2.0 内燃 机… 1.5 1.75 2.0 2.25 25

2024年机械设计基础课件齿轮传动

2024年机械设计基础课件齿轮传动

机械设计基础课件齿轮传动机械设计基础课件:齿轮传动1.引言齿轮传动是机械设计中的一种基本传动方式,广泛应用于各种机械设备的运动和动力传递。

齿轮传动具有结构简单、传动效率高、可靠性好、寿命长等优点,因此在工业生产和日常生活中得到广泛应用。

本课件将介绍齿轮传动的基本原理、分类、设计方法和应用。

2.齿轮传动的基本原理齿轮传动是利用齿轮副的啮合来传递动力和运动的一种传动方式。

齿轮副由两个或多个齿轮组成,其中主动齿轮通过旋转驱动从动齿轮,从而实现动力和运动的传递。

齿轮副的啮合是通过齿轮齿廓的接触来实现的,齿廓的形状和尺寸决定了齿轮传动的性能和精度。

3.齿轮传动的分类齿轮传动根据齿轮的形状和布置方式可分为直齿圆柱齿轮传动、斜齿圆柱齿轮传动、直齿圆锥齿轮传动和蜗轮蜗杆传动等。

直齿圆柱齿轮传动是应用最广泛的一种齿轮传动方式,具有结构简单、制造容易、精度高等优点。

斜齿圆柱齿轮传动具有传动平稳、噪声低、承载能力强等优点,适用于高速和重载的传动场合。

直齿圆锥齿轮传动适用于空间狭小和角度传动的场合。

蜗轮蜗杆传动具有大传动比、自锁性和精度高等特点,适用于低速、大扭矩的传动场合。

4.齿轮传动的设计方法齿轮传动的设计主要包括齿轮的几何设计、强度设计和精度设计。

齿轮的几何设计是根据传动比、工作条件、材料等因素确定齿轮的齿数、模数、压力角等参数。

强度设计是保证齿轮传动在规定的工作条件下具有足够的承载能力和寿命,主要包括齿面接触强度和齿根弯曲强度的计算。

精度设计是保证齿轮传动的精度和运动平稳性,主要包括齿轮的加工精度和装配精度的控制。

5.齿轮传动的应用齿轮传动在工业生产和日常生活中得到广泛应用。

在机床、汽车、船舶、飞机等机械设备中,齿轮传动用于传递动力和运动,实现各种复杂的运动轨迹和速度变化。

在风力发电、水力发电等能源领域,齿轮传动用于传递高速旋转的动力,实现能源的转换和利用。

在、自动化设备等高科技领域,齿轮传动用于实现精确的运动控制和动力传递,提高设备的性能和效率。

11章-齿轮传动解析

11章-齿轮传动解析
分析:
材料、热处理、精度 1、设计 模数、齿数
2、准则:
闭式软齿面——按齿面接触强度设计, 后按轮齿弯曲强度校核
解: 1.选择材料并确定许用应力
小齿轮:40MnB、调质—— HB241-286,σHlim=680-760 ,σFE=580-610 取: σHlim=730 ,σFE=600 大齿轮:ZG35SiMn、调质—— HB241-269,σHlim=590-640 ,σFE=500-520 取: σHlim=620 ,σFE=510
模数: m=d1/z1=2.8(取m=3mm) 中心距: a=m( z1+z2)/2=225mm 齿宽:b=dd1=71.8mm(取b2=75, b1=80) 其它几何参数:……
3.验算轮齿弯曲强度
F
2KT1YFaYSa bm2 z1
[ F ]
齿形系数:YFa1=2.56,YFa2=1.63 应力校正系数:YSa1=2.13,YSa2=1.81
矩。
O1
Fn
γ
P
rb
O
O2
危险截面:齿根圆角30˚ 切线两切点连线处。
Fn
F1
γ
FF21
Fn Fn
cos sin
弯矩:M=F1 ·hF
= Fn cos ·hF
Fn
F2
hF
= KFn cos ·hF
A 30˚ 30˚ B
弯曲截面系数:W = b ·sF2/6
弯曲应力:
SF
F
M W
KFn coshF
齿宽系数d:
d=b/d1: d越大,则b越大
若结构的刚性不够,齿轮制造、安装不准确, 则容易发生载荷集中现象,使轮齿折断。
对称布置取大值; 刚性大时取大值; 齿面软时取大值;

齿轮传动的作用力及计算

齿轮传动的作用力及计算

11-4直齿圆柱‎齿轮传动的‎作用力及计‎算载荷:一、齿轮上的作‎用力:为了计算齿‎轮的强度,设计轴和选‎用轴承,有必要分析‎轮齿上的作‎用力。

当不计齿面‎的摩擦力时‎,作用在主动‎轮齿上的总‎压力将垂直‎于齿面,(因为齿轮传‎动一般都加‎以润滑,齿轮在齿啮‎合时,摩擦系数很‎小,齿面所受的‎摩擦力相对‎载荷很小,所以不必考‎虑),即为P17‎5图11-5b所示的‎F n(沿其啮合线‎方向),Fn可分解‎为两个分力‎:圆周力:Ft=2T1/d1 N径向力:Fr=Fttgα‎ N而法向力:Fn=Ft/cosα NT1:小齿轮上的‎扭矩 T1=95500‎00p/n1 n·mmP:传递的功率‎(KW) d1:小齿轮分度‎圆直径 mmα:压力角 n1:小齿轮的转‎速(r·p·m)Ft1:与主动轮运‎动方向相反‎;Ft2与从‎动轮运动方‎向一致。

各力的方向‎ Fr:分别由作用‎点指向各轮‎轮心。

Fn:通过节点与‎基圆相切(由法切互为‎性质)。

根据作用力‎与反作用力‎的关系,主从动轮上‎各对的应力‎应大小相等‎,方向相反。

二、计算载荷:Fn是根据‎名义功率求‎得的法向力‎,称为名义载‎荷,理论上Fn‎沿齿宽均匀‎分布,但由于轴和‎轴承的变形‎,传动装置的‎制造安装误‎差等原因,载荷沿齿宽‎的分布并不‎均匀,即出现载荷‎集中现象(如P176‎图11-6所示,齿轮相对轴‎承不对称布‎置,由于轴的弯‎曲变形,齿轮将相互‎倾斜,这时,轮齿左端载‎荷增大,轴和轴承刚‎度越小,b越宽,载荷集中越‎严重。

此外,由于各种原‎动机和工作‎机的特性不‎同,齿轮制造误‎差以及轮齿‎变形等原因‎,还会引起附‎加动载荷。

精度越低,圆周速度V‎越大,附加载荷越‎大。

因此在计算‎强度时,通常以计算‎载荷K·Fn代替名‎义载荷Fn‎,以考虑上两‎因素的影响‎。

K—载荷系数表达式11‎-311-5 直齿圆柱齿‎轮的齿面接‎触强度计算‎:一、设计准则:齿轮强度计‎算是根据齿‎轮失效形式‎来决定的,在闭式传动‎中,轮齿的失效‎形式主要是‎齿面点蚀,开式传动中‎,是齿轮折断‎,在高速变截‎的齿轮传动‎中,还会出现胶‎合破坏,因胶合破坏‎的计算方法‎有待进一步‎验证和完善‎。

机械设计基础习题11-2

机械设计基础习题11-2

第11章 齿轮传动精选例题与解析例11-1 二级圆柱齿轮减速器,其中一级为直齿轮,另一级为斜齿轮。

试问斜齿轮传动应置于高速级还是低速级?为什么?若为直齿锥齿轮和圆柱齿轮组成减速器,锥齿轮传动应置于高速级还是低速级?为什么?答:在二级圆柱齿轮传动中,斜齿轮传动放在高速级,直齿轮传动放在低速级。

其原因有三点:1)斜齿轮传动工作平稳,在与直齿轮精度等级相同时允许更高的圆周速度,更适于高速。

2)将工作平稳的传动放在高速级,对下级的影响较小。

如将工作不很平稳的直齿轮传动放在高速级,则斜齿轮传动也不会平稳。

3)斜齿轮传动有轴向力,放在高速级轴向力较小,因为高速级的转矩较小。

由锥齿轮和斜齿轮组成的二级减速器,一般应将锥齿轮传动放在高速级。

其原因是:低速级的转矩较大,齿轮的尺寸和模数较大。

当锥齿轮的锥距R 和模数m 大时,加工困难,制造成本提高。

例11-2 一对齿轮传动,若按无限寿命考虑,如何判断其大小齿轮中哪个不易出现齿面点蚀?哪个不易发生齿根弯曲疲劳折断?答:一对齿轮的接触应力相等,哪个齿轮首先出现点蚀,取决于它们的许用接触应力][H σ,其中较小者容易出现齿面点蚀。

通常,小齿轮的硬度较大,极限应力lim σ较大,按无限寿命设计,小齿轮的许用接触应力][H σ 1 较大,不易出现齿面点蚀。

判断哪个齿轮先发生齿根弯曲疲劳折断,即比较两轮的弯曲疲劳强度,要比较两个齿轮的111][F Sa Fa Y Y σ和222][F Sa Fa YY σ,其比值较小者弯曲强度较高,不易发生轮齿疲劳折断。

、例11-3 图示双级斜齿圆柱齿轮减速器,高速级:m n =2 mm ,z 1=22,z 2 =95,︒=20n α,a =120,齿轮1为右旋;低速级:m n = 3 mm ,z 3 =25,z 4=79,︒=20n α,a =160。

主动轮转速n 1=960 r/min ,转向如图,传递功率P = 4 kW ,不计摩擦损失,试:(1) 标出各轮的转向和齿轮2的螺旋线方向; (2) 合理确定3、4轮的螺旋线方向;(3) 画出齿轮2、3 所受的各个分力; (4) 求出齿轮3所受3个分力的大小。

齿轮传动(11版)

齿轮传动(11版)

1.00
1.10
1.50
1.75
轻微冲击
1.50
1.35 1.60 1.85
中等冲击
1.50
1.60
1.75
2.00
1.75
1.85
2.00
严重冲击
2.25 或更 大
2、动载荷系数Kv 考虑齿轮制造精度、运转速度对齿 轮内部附加动载荷影响的系数。
进行齿顶修缘可以减小动载荷
3、齿向载荷分布系数K 考虑齿宽方向载荷分布不均匀 对轮齿强度影响的系数
Kv------与v 有关。
初选:
K t d1t or mt v K v K d1 d1t 3 K , Kt m mt 3 K Kt
思考各齿轮应力种类及受载次数
主动
被动
主动
被动
例6-1
已知:P=28kW, n1 970r/min, i 3.2
、z 2 材料: 40 MnB ,表面淬火 HRC=48--55 精度:8-8-7
§10-2 齿轮的材料
一、钢

锻钢 ( 中、小尺寸的齿轮) 铸钢(尺寸较大的齿轮)
1. 软齿面齿轮材料及热处理: 中碳钢:45,40Cr,38SiMnMo;ZG310-570 热处理:正火,调质; 软齿面齿轮应使小齿轮的齿面硬度大 于大齿轮的齿面硬度(30~50)HBS。 2.硬齿面齿轮材料及热处理: 中碳钢:表面淬火
二、设计准则
对中、低速齿轮传动:
闭式软齿面齿轮: 按接触疲劳强度设计, 验算弯曲疲劳强度。 闭式硬齿面齿轮: 按弯曲强度设计, 验算接触强度。 开式齿轮传动:按弯曲疲劳强度设计. 开式齿轮传动: 按弯曲强度设计,用增大 对于高速重载闭式齿轮传动,由于易发生 模数考虑磨损的影响。 胶合失效,在保证不发生轮齿折断和齿面 点蚀失效条件下,还应进行胶合能力计算

孙桓《机械原理》笔记和课后习题(含考研真题)详解-第十一章至第十四章【圣才出品】

孙桓《机械原理》笔记和课后习题(含考研真题)详解-第十一章至第十四章【圣才出品】

第11章齿轮系及其设计11.1复习笔记一、齿轮系及其分类1.定义由一系列的齿轮所组成的齿轮传动系统称为齿轮系,简称轮系。

2.分类根据轮系运转时各个齿轮的轴线相对于机架的位置是否固定,将轮系分为三大类:(1)定轴轮系运转时各个齿轮的轴线相对于机架的位置都是固定的轮系称为定轴轮系。

(2)周转轮系①定义如图11-1-1所示,运转时至少有一个齿轮轴线的位置不固定,而是绕着其他齿轮的固定轴线回转的轮系称为周转轮系。

图11-1-1周转轮系②基本构件在周转轮系中,一般都以太阳轮和行星架作为输入和输出构件,称为周转轮系的基本构件。

a.太阳轮轮系中绕固定轴回转的齿轮称为太阳轮。

如图11-1-1中齿轮l和内齿轮3都围绕着固定轴线OO回转,则齿轮1和内齿轮3为太阳轮;b.行星轮不仅绕自身轴线作自转,还随着行星架一起绕固定轴线做公转的齿轮称为行星轮。

如图11-1-1中齿轮2,其中构件H为行星架,又称转臂或系杆。

③分类a.根据其自由度的数目分类第一,差动轮系自由度为2的周转轮系称为差动轮系;第二,行星轮系自由度为1的周转轮系称为行星轮系。

b.根据基本构件的不同分类若轮系中的太阳轮以K表示,行星架以H表示,则如图11-1-1所示的轮系称为2K-H 型周转轮系。

(3)复合轮系既包含定轴轮系部分,又包含周转轮系部分,或者是由几部分周转轮系组成的轮系称为复合轮系。

二、定轴轮系的传动比1.轮系传动比的定义轮系的传动比是指轮系中首、末两构件的角速度之比。

2.传动比计算(1)定轴轮系的传动比等于组成该轮系的各对啮合齿轮传动比的连乘积;(2)传动比又等于各对啮合齿轮中所有从动轮齿数的连乘积与所有主动轮齿数的连乘积之比,即:定轴轮系的传动比=所有从动轮齿数的连乘积/所有主动轮齿数的连乘积3.首、末轮转向关系的确定(1)转向的确定①齿轮的转向可用箭头表示,箭头方向表示齿轮可见侧的圆周速度的方向;②标志一对啮合传动的齿轮转向的箭头为同时指向节点或同时背离节点;③当首、末两轮的轴线彼此平行时,两轮的转向不是相同就是相反;当两者的转向相同时,规定其传动比为“+”,反之为“-”;④若首、末两轮的轴线不平行,其间的转向关系只能在图上用箭头来表示。

《机械设计基础》课件 第11章 齿轮传动

《机械设计基础》课件  第11章 齿轮传动




H
2
bd1
u
Zβ cos
32
§11-8 斜齿圆柱齿轮传动
2 KT1
F
YFaYSa F
bd1mn
2 KT1 YFaYSa
2
mn 3

cos

2
d z1 F
z
zv
3
cos
33
§11-9 直齿圆锥齿轮传动
34
§11-9 直齿圆锥齿轮传动
35
轴向力:
Fa Ft tan
29
§11-8 斜齿圆柱齿轮传动
力的方向:
圆周力t :主动轮与运动方向相反,
从动轮与运动方向相同
径向力r :两轮都是指向各自的轴心
轴向力a :主动轮的左(右)手法则
30
根据主动轮轮齿的齿向(左旋或右旋)伸左手或右手,四指
沿着主动轮的转向握住轴线,大拇指所指即为主动轮所受的
轮齿会变形,需要磨齿。
二、主要参数
1. 齿数比:一般≤7,同要求的传动比误差≤ (3~5)%
2. 齿数:一般z1>17
3. 齿宽:过大,宽度方向载荷分布不均匀
28
§11-8 斜齿圆柱齿轮传动
一、轮齿上的作用力
轮齿所受总法向力
可分解为:
2T1
圆周力:Ft
d1
Ft tan n
径向力:Fr
cos
开式传动的主要失效形式为齿面磨粒磨损和轮齿的弯曲疲劳
折断。
由于目前齿面磨粒磨损尚无完善的计算方法,因此通常只对
其进行抗弯曲疲劳强度计算,并采用适当加大(10%~20%)
模数(或降低许用弯曲应力)的方法来考虑磨粒磨损。

机械设计第11章斜齿与圆锥齿轮传动

机械设计第11章斜齿与圆锥齿轮传动

2a
2 135
d1
mn z1
cos
2 27 cos15.642
mm 56.08mm 47
d2
mn z1
cos
2 1.3 mm 213.92mm cos15.642 47
b d d1 1.1 56.08mm 61.69mm
圆整取b2=65 mm,b1=70mm。
(3) 用式(8-43)校核
[
]F1
F2
F2
YFS 2 YFS1
51.37
3.95 4.1
M
Pa
49.49Mpa
[
]F
2
6. 确定齿轮的传动精度 齿轮的圆周速度
v d1n1 56.081450 4.25m / s
601000 601000
由表8-11综合评价,确定齿轮为8级精度。
8.12
1.
图8-49(a)所示为直齿圆锥齿轮传动的受力情况。设法向力
2. 实心式齿轮 图8-51 实心结构的齿轮
图8-52 齿轮轴
图8-53 腹板式齿轮
3.
当齿顶圆直径da≤500 mm时,为了减少质量和节约材料, 通常要用腹板式结构。应用最广泛的是锻造腹板式齿轮,对以 铸铁或铸钢为材料的不重要齿轮,则采用铸造腹板式齿轮。
4. 轮辐式齿轮
当齿轮直径较大,如da=400~1000 mm,多采用轮辐式的 铸造结构(如图8-54)。 轮辐剖面形状可以是椭圆形(轻载)、T字 形(中载)及工字形(重载)等,圆锥齿轮的轮辐剖面形状只用T字 形。
T1
9.55 106
P1 n1
9.55 106 7.5 1450
N
mm
4.94 104 N
mm

高等教育出版社第11章机械设计基础第五版 齿轮传动

高等教育出版社第11章机械设计基础第五版 齿轮传动
载荷多次重复作用,弯曲应力超过弯曲疲劳极限, 齿根部分的疲劳裂纹扩展,引起轮齿断裂。分轮齿单 侧工作的脉动循环和轮齿双侧工作的对称循环。 采取措施:
材料及热处理;增大模数;增大齿根圆角半径; 消除刀痕;喷丸、滚压处理;增大轴及支承刚度。
二、齿面点蚀:
在润滑良好的闭式齿轮传动中,由于齿面材料在 交变接触应力(脉动循环)作用下,因为接触疲劳产 生金属微粒剥落形成凹坑的破坏形式称为点蚀。
则可得到:
2T1 圆周力: Ft d1
经向力:Fr
N N N
Ft tan
Ft 法向力: Fn cos
小齿轮上的转矩:
P T1 9550 ( N m) n1
圆周力Ft的方向在主动轮上与运动方向相反, 在从动轮上与运动方向相同。经向力Fr的方向都是 由作用点指向各自的轮心,与齿轮回转方向无关。

b d d1
代入上式得
m3
2 KT1 YFa
FE
SF
试验轮齿失效概率为1/100时的 齿根弯曲疲劳极限,见表11-1。 若轮齿两面工作时,应将数值乘 以0.7倍。 安全系数,见表11-5
在进行弯曲强度验算时,应对大小齿轮分别 进行验算;而在计算m时,应以
§11-5 直齿圆柱齿轮传动的 齿面接触强度计算
直齿圆柱齿轮的强度计算方法是其它各类齿轮
传动计算方法的基础,斜齿圆柱齿轮、直齿圆锥齿
轮等强度计算,可以折合成当量直齿圆柱齿轮来进
行计算。
强度计算的目的在于保证齿轮传动在工作载荷
的作用下,在预定的工作条件下不发生各种失效。
齿轮强度计算是根据齿轮可能出现的失效形式 来进行的。
三、齿面胶合
高速重载的齿轮传动,齿面间的压力大,瞬时 温度高,油变稀而降低了润滑效果,导致摩擦增大, 发热增多,将会使某些齿面上接触的点熔合焊在一 起,在两齿面间相对滑动时,焊在一起的地方又被 撕开。于是,在齿面上沿相对滑动的方向形成伤痕, 这种现象称作胶合。

哈尔滨工程大学机械设计基础 第十一章 齿轮传动简答题

哈尔滨工程大学机械设计基础 第十一章 齿轮传动简答题

第十一章齿轮传动1.(1)闭式齿轮传动的主要失效形式及设计准则是什么?开式齿轮传动的主要失效形式及设计准则是什么?答:软齿面闭式齿轮传动的主要失效形式为齿面点蚀,故应先进行齿面接触疲劳强度校核,再进行齿根弯曲疲劳强度校核。

硬齿面闭式齿轮传动的主要失效形式是齿轮疲劳折断,故应先进行齿根弯曲疲劳强度校核,再进行齿面接触疲劳强度校核。

开式齿轮传动的主要失效形式是齿面磨损,一般只进行齿根弯曲疲劳强度校核,同时考虑磨损的影响将模数增加10%~15%。

(对于高速大功率的齿轮传动还要进行齿面抗胶合计算)2.(1)选择齿轮材料时,为何小齿轮的材料硬度要选得比大齿轮材料硬度高?答:因为小齿轮应力循环次数多,弯曲应力更大。

3.(1)提高轮齿的抗弯曲疲劳折断能力和齿面抗点蚀能力有哪些可能的措施?答:抗弯曲疲劳折断能力的措施:通过计算齿根弯曲疲劳强度来保证;增大齿根过渡圆角半径,消除加工刀痕,降低应力集中;增大轴和支承的刚度,减小局部载荷程度;使齿轮芯具有足够的韧性;在齿根处采取强化措施(喷丸或挤压)等。

齿面抗点蚀措施:通过计算齿面接触疲劳强度来保证;提高齿面硬度;减小齿面的粗糙度值;增加润滑油的粘度。

4.什么是硬齿面齿轮?什么是软齿面齿轮?各适用于什么场景?(此题略去)答:当齿面硬度大于350HBS时,称为硬齿面齿轮;当齿面硬度≤350HBS时,称为软齿面齿轮;硬齿面齿轮适用于高速、重载和精密仪器,而软齿面齿轮适用于对速度、载荷和精密度要求都不是很高的场合。

5.齿轮产生齿面磨损的主要原因是什么?它是哪一种齿轮传动的主要失效形式?防止磨损失效的最有效办法是什么?答:在齿轮传动时,当落入磨料性物质时,就会发生磨损,当齿轮表面比较粗糙时也会发生齿轮磨损;是开式齿轮传动的主要失效形式;最有效的方法就是改为闭式齿轮传动,其次是各种增大齿面硬度的方法。

6.齿面接触疲劳强度计算的计算点在何处?其计算的力学模型是什么?齿面接触疲劳强度针对何种失效形式?(此题略去)答:节点;两个半径为两齿轮接触点出曲率半径的圆柱之间的弹性接触;针对齿面点蚀失效形式。

机械设计基础第11章齿轮传动(六-2)

机械设计基础第11章齿轮传动(六-2)


2T1 dm1
F F tg ' t
Ft的方向在主动轮上与运动方向 相反,在从动论上与运动方向相
同;
径向力:Fr1 F'cos 1 Ft tg cos 1
径向力指向各自的轴心;
轴向力:Fa Ft tg sin
F’
Fr
δ Fr δ
轴向力Fa的方向对两个齿轮都是背着锥顶。
当δ 1+δ 2 = 90˚ 时,有: sinδ 1=cosδ 2
YFaYSa
[ F ]
mm
MPa
§11-10 齿轮的构造
一、概述 由强度计算只能确定齿轮的主要参数:
如齿数z、模数m、齿宽B、螺旋角、分度圆直径d 等。
其它尺寸由结构设计确定
齿轮结构设计的内容: 主要是确定轮缘,轮辐,轮毂等结构形式及尺寸大小。

Ft tan n cos
Fr
Fn
c α F n
F β a
潘存云教授研制
t
长方体对角面即轮齿法面
Fr
潘存云教授研制
β
Fn αn
F’
潘存云教授研制
T1 F’ ω1
Ft Fr = F’ tanαn
β
d1
Fa
F’ 长方体底面
2
F’=Ft /cosβ
方向判断:
Ft、Fr 方向判断均同直齿圆柱齿轮 Ft:主动轮上与转向相反,从动轮上与转向相同。 Fr:均由作用点指向各自轮心。
dm2 d dm是平均分度圆直径
2
R =0.25 ~ 0.3
当量齿轮分度圆直径:
Re
rv1

dm1
2 cos 1
rv 2
dm2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(u 1)3 KT1 H 305 H MPa 2 uba 此式为验算公式。
如取齿宽系数ψa=b/a,则可变换为下列设计公式
305 KT1 a (u 1) 3 u H a
2
mm
载荷系数K仍由表查取。由于斜齿轮传动平稳,因此,选取载 荷系数K时,应考虑到这点。 若配对齿轮材料为钢对铸铁或铸铁对铸铁,则应将公式中的系 数305分别改为259.5和227.6。
适用于煤炭、水泥和冶金 等工业部门的大型闭式齿 轮传动装置的润滑。
主要适用于开式齿轮、链 条和钢丝绳的润滑。
续表 齿轮传动常用的润滑剂
名 称 牌 号 运动粘度 v/cSt(40˚ ) 应 用
120
150 硫—磷型极压 工业齿轮用油 200 250 300 350
110~130
130~170 180~220 230~270 280~320 330~370 适用于80~100,有水 分或较潮湿的环境中工 作的齿轮传动,但不适 于低温工作情况。 适用于起重机底盘的齿 轮传动、开式齿轮传动、 需耐潮湿处。 适用于经常处于边界润 滑的重载、高冲击的直、 斜齿轮和蜗轮装置及轧 钢机齿轮。
3、各作用力之间的关系
Fa1= - Fr2
Fr1= - Fa2
二、齿根弯曲疲劳强度和齿面接触疲劳强度计算(自学) 1. 齿根弯曲疲劳强度计算 一对直齿圆锥齿轮传动与其当量齿轮的强度近似相等。 可直接套用直齿轮的计算公式,代入当量齿轮参数。
KFtYFaYSa F [ F ] bmm
设计公式:
mm
2.5 2.75 3 7 8 9 10…
2.齿面接触疲劳强度计算 综合曲率为:
1 1 1 1
直齿锥齿轮的齿面接触疲劳强度,仍按 齿宽中点处的当量圆柱齿轮计算。
2 2 1 2 cos 1 1 (1 ) v1 v d v1 sin uv d v1 sin d m1 sin uv 2
求出中心距a后,可先选定齿数z1、 z2 和螺旋角β,再按下 式计算模数mn。
2a cos mn z1 z2
求得的模数应按表圆整为标准值。然后按下式计算实际螺旋角 β mn ( z1 z2 ) arccos 2a 通常螺旋角β=8°~20°,人字齿轮可取β=25°~30°。
3 斜齿圆柱齿轮传动
一、斜齿圆柱齿轮的受力分析
轮齿所受总法向力Fn可分解为三个分力 :
2T1 轴向力:Fa Ft tan 径向力:Fr 圆周力: Ft d1
Fr Fa c Fn
长方体对角面即轮齿法面

Ft tan n cos
Fr
αn Ft
β
Ft Fa
Fn αn
β
T1 F’
ω1
d1 2
da
ds
c b lh
适用于中型尺 寸的齿轮。
dh=1.6 ds ; lh=(1.2.~1.5) ds ,并使lh ≥b c=0.3b ; δ=(2.5.~4) mn ,但不小于8 mm d0和d按结构取定。
dh
3. 腹板式齿轮
b ∆ d
斜度1:10
lh R ds d0
dh
dh= 1.6 ds ; lh= (1.2.~1.5) ds c= (0.2~0.3)b ; ∆ = (2.5~4) me ; 但不小于10 mm d0 和 d 按结构取定
da
b
∆ 斜度1:20 lh ds d
dh
R
dh=( 1.6~1.8) ds ; lh= (1.2.~1.5) ds c= (0.2~0.3)b ; s=0.8c; ∆ = (2.5~4) me ; 但不小于10 mm d0 和 d 按结构取定
da
d0
4. 轮辐式齿轮
δ
斜度1:20
e
e
ds
lh
dh
轴向力Fa的方向对两个齿轮都是背着锥顶。
F’
δ Fr δ Fa Fr Fn
α
Fn α α Ft
当δ 1+δ 2 = 90˚ 时,有: sinδ 1=cosδ 2 dm1 cosδ 1=sinδ 2 2 Ft1 =Fa2 于是有: δ Fa1 =Ft2
Fa
c
Ft
T1 ω1
各作用力的方向 (1)圆周力Ft 在主动轮上与其旋转方向相反,在 从动轮上与其旋转方向相同(主反从同)。 (2)径向力Fr (3)轴向力Fa Ft1= - Ft2 分别指向各自的轮心。 从小端指向大端。
塑料、铸 铁、青铜 350 450~1000 1000~1250 500 500 220 350 500 500 150 220 350 500 100 150 220 350 80 100 150 220 55 80 100 150 55 80 100

渗碳或表 面淬火钢
1250~1580 900
da>500mm
6 齿轮传动的润滑和效率
齿轮传动时,齿面间产生摩擦和磨损,增加能量消耗。
齿轮传动时,相啮合的齿面间有相对滑动,因此就 会产生摩擦和磨损,增加动力消耗,降低传动效率。
润滑的目的:减少摩擦磨损、散热和防锈蚀。 润滑方式:开式及半闭式或低速齿轮传动常采用人工定期润滑。 可用润滑油或润滑脂。 闭式齿轮传动的润滑方式由圆周速度v确定。 当v≤ 12 m/s时,采用油池润滑。 当v > 12 m/s时,采用油泵喷油润滑。
其它尺寸由结构设计确定
齿轮的结构
轮缘 轮齿
键槽
轮毂
轴孔
幅板
二、常见的结构形式 1. 齿轮轴 直径较小的钢质齿轮,当齿根圆 直径与轴径接近时,可以将齿轮与 轴做成一体,称为齿轮轴。否则可 能引起轮缘断裂。
e 圆锥齿轮:e <1.6 mt
e
圆柱齿轮:e < 2 mt
圆柱齿轮轴
圆锥齿轮轴
2. 实心齿轮(da≤200mm)
钙钠基润滑脂
ZNG-2
(ZBE 86001-88) ZNG-3 石墨钙基润滑脂 (ZBE 36002-88)
ZG-S
啮合中的摩擦损耗; 齿轮传动的损耗: 搅动润滑油的油阻损耗;
轴承中的摩擦损耗。 表9-11 齿轮传动的平均效率 8级精度的 闭式传动 0.97 0.96 6级或7级精度 传动装置 的闭式传动 圆柱齿轮 圆锥齿轮 0.98 0.97
油池润滑
采用惰轮的油池润滑
喷油润滑
高速齿轮传动采用喷油润滑的理由: 1)v过高,油被甩走,不能进入啮合区; 2)搅油过于激烈,使油温升高,降低润滑性能; 3)搅起箱底沉淀的杂质,加剧轮齿的磨损。 润滑剂的选择: 齿轮传动常用的润滑剂为润滑油或润滑脂。 选用时,应根据 齿轮的工作情况(转速高低、载荷大小、环境温度等),选择 润滑剂的粘度、牌号。 齿轮传动润滑油粘度荐用值 圆周速度 v (m/s) 齿轮材料 强度极限 <0.5 0.5~1 1~2.5 2.5~5 5~12.5 12.5 ~25 >25 运动粘度 v/cSt(40℃ )
h1
da
c
s
h
2
b dh= 1.6 ds (铸钢) ; dh=1.6 ds (铸铁) lh= (1.2.~1.5) ds ,并使lh ≥b c= 0.2b ; 但不小于10 mm δ= (2.5.~4) mn ,但不小于8 mm h1 = 0.8 ds ; h2 = 0.8 h1 ; s = 1.5 h1 ; 但不小于10 mm e = 0.8 ds ; h2 = 0.8 h1 这种结构适用于大型尺寸的齿轮。
mm
以上两式中:mn为法向模数;齿形系数YF应根据当量齿数zv, 由图查得。
4 直齿圆锥齿轮传动
一、轮齿受力分析 轮齿所受总法向力Fn可分解为三个分力 :
2T1 圆周力:Ft d m1
Ft的方向在主动轮上与运动方向相反, 在从动论上与运动方向相同;
F ' Ft tan
Fr Ft tan cos F’ 径向力: 径向力指向各自的轴心; Fa Ft tan sin 轴向力:
齿轮传动常用的润滑剂
名 称 牌 号 运动粘度 v/cSt(40˚ ) 41.4~50.6 61.2~74.8 41.4~110.0 61.2~74.8 90~110 135~165 198~242 288~352 61.2~74.8 90~110 135~165 198~242 288~352 414~506 100℃ 60~75 90~110 135~165 应 用 适用于对润滑油无特殊要求 的锭子、轴承、齿轮和其它 低负荷机械等部件的润滑。 适用于工业设备的润滑 L-AN46 全损耗系统用油 L-AN68 (GB/T443-1989) L-AN100 68 100 工业齿轮用油 150 (SY1172-88) 220 320 68 100 150 中负荷工业齿轮油 220 (GB/T5903-86) 320 460 普通开式齿轮油 (SY1232-85) 68 100 150
3. 腹板式齿轮
d
δ 斜度1:10
ds
c b lh
200mm < da≤500mm
dh=1.6 ds ; lh=(1.2.~1.5) ds ,并使lh ≥b c=0.3b ; δ=(2.5.~4) mn ,但不小于8 mm d0和d按结构取定,当d 较小时可不开孔
dh
d0
da
3. 腹板式齿轮
δ 斜度1:10
利用赫兹公式,并代入齿宽中点处的当量齿轮相应参数,可得锥齿轮齿面接触疲劳强度计算公式如下:
校核计算公式: H 5Z E
KT1 H 2 3 R 1 0.5R d1 u
KT1 设计计算公式:d1 2.923 ( ) H R 1 0.5R 2 u
第11章 齿轮传动(下)
相关文档
最新文档