北师大期末考试
北师大版九年级上册数学期末考试试卷及答案
北师大版九年级上册数学期末考试试题一、单选题1.下列函数中不是反比例函数的是()A .3y x=B .13y x -=C .1xy =D .3x y =-2.下列立体图形中,主视图是圆的是()A .B .C .D .3.如图,在菱形ABCD 中,60B ∠=︒,4AB =,则正方形ACEF 的面积为()A .8B .12C .16D .204.用如图所示的两个转盘(分别进行四等分和三等分)设计一个“配紫色”的游戏,其中一个转出红色,另一个转出蓝色即可配成紫色,分别转动两个转盘(指针指向区域分界线时,忽略不计),那么可配成紫色的概率为()A .712B .12C .512D .135.如图,在平面直角坐标系中,OAB 与OCD 位似,点O 是它们的位似中心,已知()4,2A -,()2,1C -,则OAB 与OCD 的面积之比为()A .1:1B .2:1C .3:1D .4:16.若双曲线ay x=在第二、四象限,那么关于x 的方程2210ax x ++=的根的情况为()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .无实根7.如图,四边形OABC 是平行四边形,对角线OB 在y 轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线1k y x=和2ky x =的一支上,过点A ,点C 分别作x 轴的垂线,垂足分别为M 和N ,有以下结论:①ON OM =;②12k AM CN k =;③阴影部分面积是()121k k 2+;④若四边形OABC 是菱形,则图中曲线关于y 轴对称.其中正确的结论是()A .①④B .②③C .①②④D .①③④8.如图,矩形ABCD 中,点E ,点F 分别是BC ,CD 的中点,AE 交对角线BD 于点G ,BF 交AE 于点H .则GHHE的值是()A .12B .23C.2D9.如图,已知△A′B′C′与△ABC 是位似图形,点O 是位似中心,若A′是OA 的中点,则△A′B'C′与△ABC 的面积比是()A .1:4B .1:2C .2:1D .4:110.如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,且AC =6,BD =8,过A 点作AE 垂直BC ,交BC 于点E ,则BECE的值为()A .512B .725C .718D .524二、填空题11.如果四条线段a ,b ,c ,d 是成比例线段,且4a =,12b =,8c =,那么d 为______.12.已知1x =是一元二次方程220x ax +-=的一个根,则此方程的另一个根为______.13.如图,在ABC 中,∥DE BC ,若:3:2AD DB =,6cm AE =,则EC 的长为______cm .14.已知近视眼镜的度数D (度)与镜片焦距f (米)成反比例关系,且400度近视眼镜镜片的焦距为0.25米.小慧原来戴400度的近视眼镜,经过一段时间的矫正治疗后,现在只需戴镜片焦距为0.4米的眼镜了,则小慧所戴眼镜的度数降低了___度.15.如图,函数()0y kx k =-≠的图象与2y x=-的图象交于A 、B 两点,过点A 作AC 垂直于y 轴,垂足为C ,连接BC ,则BOC 的面积为______.16.如图,这是一个几何体的三视图,根据图中所标的数据,这个几何体的体积为______.17.如图,在正方形ABCD 中,顶点A ,B ,C ,D 在坐标轴上,且()2,0B ,以AB 为边构造菱形ABEF (点E 在x 轴正半轴上),将菱形ABEF 与正方形ABCD 组成的图形绕点O 逆时针旋转,每次旋转45°,则第2022次旋转结束时,点2022F 的坐标为______.18.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.三、解答题19.关于x 的一元二次方程2240x x k --=有两个不相等的实数根.(1)求k 的取值范围;(2)若1k =,请用配方法求该方程的根.20.如图,矩形ABCD 的对角线AC ,BD 交于点O ,且//DE AC ,//AE BD ,连接OE .求证:OE AD ⊥.21.如图,正比例函数与反比例函数的图象交于A、B两点,点A的坐标为(1,2).(1)求反比例函数的解析式;(2)根据图像直接写出使正比例函数的值大于反比例函数的值的x取值范围.22.如图:一次函数的图象与反比例函数kyx=的图象交于()2,6A-和点()4,B n.(1)求点B的坐标;(2)根据图象回答,当x在什么范围时,一次函数的值大于反比例函数的值.23.如图,BD、CE是ABC的两条高,M、N分别是BC、DE的中点.(1)求证:ADE ABC △△∽.(2)试说明MN 与DE 的关系.24.如图,在ABC 中,2BC AB =,AD 是BC 边上的中线,O 是AD 的中点,过点A 作AE BC ∥,交BO 的延长线于点E ,BE 交AC 于点F ,连接DE 交AC 于点G .(1)判断四边形ABDE 的形状,并说明理由;(2)若34AB =:3:5OA OB =,求四边形ABDE 的面积;(3)连接DF ,求证:2DF FG FC =⋅.25.如图,点E 是矩形ABCD 的边BA 延长线上一点,连接ED ,EC ,EC 交AD 于点G ,作CF ∥ED 交AB 于点F ,DC =DE .(1)求证:四边形CDEF 是菱形;(2)若BC =3,CD =5,求AG 的长.26.如图,在菱形ABCD中,E为对角线BD上一点,且AE=DE,连接CE.(1)求证:CE=DE.(2)当BE=2,CE=1时,求菱形的边长.27.如图,一次函数y=﹣x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)求ABBC的值.参考答案1.D2.D3.C4.A5.D6.A 7.C 8.B 9.A 10.C 11.2412.2x =-13.414.15015.116.18π17.(2,-18.60.19.(1)2k >-(2)1x =2x =20.证明://,//A C D E E D A B ,∴四边形AODE 是平行四边形,四边形ABCD 是矩形,1122OA OD AC BD ∴===,∴平行四边形AODE 是菱形,OE AD ∴⊥.21.(1)2y x=;(2)10x -<<或1x >.【详解】解:(1)设反比例函数表达式为k y x=,∵正比例函数与反比例函数的图象交于A 、B 两点,∴将A 的坐标(1,2)代入k y x =得:21k=,解得:k=2,∴2y x=;(2)设正比例函数表达式为y=ax ,将A 的坐标(1,2)代入y=ax 得:2=a ,∴y=2x ,联立正比例函数表达式和反比例函数表达式,得:22y x y x⎧=⎪⎨⎪=⎩,整理得:222x =,解得:1211x x ==-,,∴B 点横坐标为-1,将x=-1代入y=2x 得:y=-2.∴B(-1,-2),由图像可得,正比例函数的值大于反比例函数的值的x 取值范围是10x -<<或1x >.22.(1)()4,3B -;(2)2x <-或04x <<.【详解】解:(1)将点()2,6A -代入ky x=得:2612k =-⨯=-,则反比例函数的解析式为12y x=-,将点()4,B n 代入12y x=-得:1234n =-=-,则点B 的坐标为()4,3B -;(2) 一次函数的值大于反比例函数的值表示的是一次函数的图象位于反比例函数的图象的上方,2x ∴<-或04x <<.23.(1)见解析(2)MN 垂直平分DE ,理由见解析【分析】(1)根据三角形高、相似三角形的性质,通过证明ABD ACE ∽△△,得AB ACAD AE=,再根据相似三角形的性质分析,即可完成证明;(2)根据直角三角形斜边中线的性质,得12EM BC =,12DM BC =,再根据等腰三角形三线合一的性质分析,即可得到答案.(1)∵BD 、CE 是ABC 的两条高,∴90ADB AEC ∠=∠=︒,∵A A ∠=∠,∴ABD ACE ∽△△,∴AB ADAC AE=,∴AB ACAD AE=,∵A A ∠=∠,∴ADE ABC △△∽;(2)如图,连接DM ,EM∵BD 、CE 是ABC 的两条高,∴90CDB BEC ==︒∠∠∵M 是BC 的中点,,∴12EM BC =,12DM BC =,∴EM DM =,∵N 是DE 的中点,∴MN 垂直平分DE .24.(1)四边形ABDE 是菱形,理由见解析(2)30(3)见解析【分析】(1)先判定△AOE ≌△DOB (ASA ),得出AE =BD ,根据AE ∥BD ,即可得出四边形ABDE 是平行四边形,再根据BD =BA ,即可得到平行四边形ABDE 是菱形;(2)根据四边形ABDE是菱形,AB =OA:OB =3:5,运用勾股定理求得AD =6,BE =10,即可得出菱形ABDE 的面积;(3)根据菱形的性质得出∠GDF =∠DCF ,再根据∠GFD =∠DFC ,即可判定△DFG ∽△CFD ,进而得到GFDFDF CF =,得证.(1)解:(1)四边形ABDE 是菱形.理由:∵AE BC ∥,∴EAO BDO ∠=∠,∵O 是AD 的中点,∴AO DO =,在AOE △和DOB 中,EAO BDOAO DO AOE DOB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AOE DOB △△≌,∴AE BD =,又∵AE BD ∥,∴四边形ABDE 是平行四边形,∵AD 是BC 边上的中线,∴2BC BD =,又∵2BC AB =,∴BD BA =,∴平行四边形ABDE 是菱形.(2)解:∵四边形ABDE 是菱形,∴AD BE ⊥,12AO AD =,12BO BE =,设3OA k =,5OB k =,在Rt AOB △中,由勾股定理得222AO OB AB +=,∴()()22235k k +=,整理得2292534k k +=,解得1k =,∴3OA =,5OB =,∴6AD =,10BE =,∴菱形ABDE 的面积1106302=⨯⨯=.(3)证明:∵四边形ABDE 是菱形,∴BE 垂直平分AD ,EA ED =,FA FD =,∴EAO EDO ∠=∠,FAO FDO ∠=∠,∴EAF EDF ∠=∠,∵AE BC ∥,∴EAF DCF ∠=∠,∴GDF DCF ∠=∠,又∵GFD DFC ∠=∠,∴DFG CFD △△∽,∴GFDFDF CF =,∴2DF FG FC =⋅.25.(1)解:证明:∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,∵CF ∥ED ,∴四边形CDEF 是平行四边形,∵DC=DE .∴四边形CDEF 是菱形;(2)如图,连接GF ,∵四边形CDEF 是菱形,∴CF=CD=5,∵BC=3,∴BF=4==,∴AF=AB-BF=5-4=1,在△CDG 和△CFG 中,CD CF DCG FCG CG CG =⎧⎪∠=∠⎨⎪=⎩,∴△CDG ≌△CFG (SAS ),∴FG=GD ,∴FG=GD=AD-AG=3-AG ,在Rt △FGA 中,根据勾股定理,得FG 2=AF 2+AG 2,∴(3-AG )2=12+AG 2,解得AG=43.26.(1)见解析(2)【分析】(1)证△ABE ≌△CBE (SAS ),即可得出结论;(2)连接AC 交BD 于H ,先由菱形的性质可得AH ⊥BD ,BH =DH ,AH =CH ,求出BH 、EH 的长,由勾股定理求出AH 的长,再由勾股定理求出AB 的长,即可得出结果.【详解】(1)∵四边形ABCD 是菱形,∴∠ABE =∠CBE ,AB =CB ,在△ABE 和△CBE 中,AB CB ABE CBE BE BE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBE ,∴AE =CE ,∵AE =DE ,∴CE =DE ;(2)如图,连接AC 交BD 于H ,∵四边形ABCD 是菱形,∴AH ⊥BD ,BH =DH ,AH =CH ,∵CE =DE =AE =1,∴BD =BE+DE =2+1=3,∴BH =12BD =32,EH =BE ﹣BH =2﹣32=12,在Rt △AHE 中,由勾股定理得:AH在Rt △AHB 中,由勾股定理得:AB=27.(1)y =2x;(2)1【分析】(1)将点A 坐标代入两个解析式可求a 的值,k 的值,即可求解;(2)连接OA ,OB ,先求得B 、C 的坐标,然后求得S △AOC =1322⨯⨯=3,S △BOC =1312⨯⨯=32,则可求得S △AOB =32,根据同高三角形面积的比等于底边的比即可求得结论.【详解】解:(1)把点A (1,a )代入y =﹣x+3,得a =2,∴A (1,2),把A (1,2)代入反比例函数k y x =,∴k =1×2=2,∴反比例函数的表达式为y =2x;(2)如图,连接OA ,OB ,由一次函数y =﹣x+3可知C 的坐标为(3,0),解23y x y x ⎧=⎪⎨⎪=-+⎩得12x y =⎧⎨=⎩或21x y =⎧⎨=⎩,∴B (2,1),∴S △AOC =1322⨯⨯=3,S △BOC =1312⨯⨯=32,∴33322AOB AOC BOC S S S =-=-= ,∴AOB BOC S S ∆∆=1,∴AB BC =1.。
四年级期末考试卷数学北师大版【含答案】
四年级期末考试卷数学北师大版【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数字是偶数?A. 3B. 4C. 5D. 62. 1千米等于多少米?A. 100B. 1000C. 10000D. 1000003. 下列哪个图形是四边形?A. 三角形B. 正方形C. 圆形D. 梯形4. 下列哪个数是质数?A. 12B. 13C. 15D. 185. 下列哪个数字是奇数?A. 10B. 11C. 12D. 13二、判断题(每题1分,共5分)1. 2+2=5 ()2. 9是3的倍数()3. 1米等于100厘米()4. 任何数乘以0都等于0 ()5. 圆形有四个角()三、填空题(每题1分,共5分)1. 8+7=_____2. 20-9=_____3. 4×6=_____4. 36÷6=_____5. 1千米+500米=_____四、简答题(每题2分,共10分)1. 请简述偶数和奇数的区别。
2. 请简述质数和合数的区别。
3. 请简述分数的基本性质。
4. 请简述小数的意义。
5. 请简述面积和周长的区别。
五、应用题(每题2分,共10分)1. 小明有5个苹果,他吃掉了2个,还剩下几个苹果?2. 一个长方形的长是8厘米,宽是4厘米,求这个长方形的周长。
3. 小华买了3本书,每本书的价格是10元,他一共花了多少钱?4. 一个班级有20个男生和30个女生,求这个班级的总人数。
5. 一个圆形的半径是5厘米,求这个圆形的面积。
六、分析题(每题5分,共10分)1. 请分析并解答以下问题:一个篮子里有苹果和橘子共计30个,苹果比橘子多10个,请计算苹果和橘子各有多少个。
2. 请分析并解答以下问题:一个长方体的长是10厘米,宽是5厘米,高是2厘米,求这个长方体的体积。
七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画一个边长为5厘米的正方形。
2. 请用直尺和圆规画一个半径为3厘米的圆形。
北师大版七年级上册数学期末考试试卷含答案
北师大版七年级上册数学期末考试试题一、单选题1.﹣2022的绝对值是()A.12022B.12022-C.2022D.﹣20222.如图是正方体的表面展开图,每一个面标有一个汉字,则与“和”相对的面上的字是()A.构B.建C.社D.会3.把704000000这个数用科学记数法表示为()A.7.04×107B.7.04×106C.7.04×108D.7.04×1094.下列代数式的书写格式规范的是()A.a×b÷5+1B.34ab C.ab2D.213x5.某校为了了解初一年级1200名学生的视力情况,从中随机抽取了300名学生进行视力情况的调查,下列说法错误的是()A.总体是1200名学生的视力情况B.样本容量是300C.样本是抽取的300名学生D.个体是每名学生的视力情况6.点A在数轴上,点A所对应的数用21a+表示,且点A到原点的距离等于3,则a的值为()A.2-或1B.2-或2C.2-D.17.下列各组数中,数值相等的是()A.32和23B.-32和(-3)2C.-︱23︱和︱-23︱D.-23和(-2)38.按照如图所示的程序计算,若开始输入的值为-4,则最后输出的结果可能是()A.-8B.-23C.-68D.-329.按一定规律排列的单项式a,﹣3a2,5a3,﹣7a4,9a5,…第n个单项式是()A .(﹣1)n (2n ﹣1)anB .(﹣1)n +1(2n+1)anC .(﹣1)n (2n+1)anD .(﹣1)n +1(2n ﹣1)an10.如图,在数轴上有A 、B 、C 、D 四个点,分别表示不同的四个数,若从这四点中选一点做原点,使得其余三点表示的数中有两个正数和一个负数,则这个点是()A .点AB .点BC .点CD .点D二、填空题11.若2|2|(3)0x y ++-=,则y x =________.12.-2x 与3x-1互为相反数,则x =________________.13.已知代数式﹣5x 2yn 与3xm +3y 3是同类项,则m+n 的值为_______________.14.某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.15.若方程()1270k k x--+=是关于x 的一元一次方程,则k 的值等于______.16.单项式234x y -的系数是___________,次数是___________次17.多项式3532913633x y x y xy +++是________次_______项式.18.用“☆”定义一种新运算:对于任意实数a ,b ,都有a ☆b =2a -3b +1.例如:2☆1=2×2-3×1+1.若x ☆(-3)=2,则x =________.三、解答题19.(1)-10-8÷1(2)(2-⨯-(2)-22-(-3)2×(-23)-42÷|-4|(3)()31324864⎛⎫+-⨯- ⎪⎝⎭20.先化简,再求值:22224()3()23x y xy x y y xy y +----的值,其中1,2x y =-=21.解下列方程:(1)43(12)6x x --=(2)2152122362x x x-+--=-22.由6个棱一样长的正方体组成的几何体如图所示.在指定的方格内画出该几何体从三个方向看到的形状图.23.如图在线段AB 上有一点C ,线段AB=6cm ,AC=4cm ,点M 是线段AC 的中点,点N 是线段BC 的中点,求线段MN 的长24.有一位工人师傅将底面直径为10cm ,高为80cm 的实心圆柱,锻造成底面直径为40cm 的实心圆柱,求锻造后圆柱的高是多少?25.随着人们生活水平的提高,家用轿车越来越多地进入家庭,小亮家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“﹣”,刚好50km 的记为“0”.第一天第二天第三天第四天第五天第六天第七天路程(km )﹣7﹣12﹣13﹣17+40+9(1)请求出这7天中平均每天行驶多少千米?(2)若每行驶50km 需用汽油4升,汽油价6.8元/升,计算小亮家这7天的汽油费用大约是多少元?26.一个自行车赛车队进行训练,训练时所有队员都以35km/h的速度前进,突然一号队员以45km/h的速度独自行进10km后掉转车头,仍以45km/h的速度往回骑,直到与其他队员会合,一号队员从离队开始到与队员重新会合,经过了多长时间?27.某中学计划根据学生的兴趣爱好组建课外兴趣小组,并随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:()1学校这次调查共抽取了名学生;()2求m的值并补全条形统计图;()3在扇形统计图中,“围棋”所在扇形的圆心角度数为;()4设该校共有学生1000名,请你估计该校有多少名学生喜欢足球.参考答案1.C【分析】根据绝对值的意义可直接得出答案.【详解】解:−2022的绝对值是2022,故选:C.【点睛】本题考查了绝对值,掌握绝对值的意义是解题的关键.2.D【分析】利用正方体及其表面展开图的特点解题.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“构”与面“谐”相对,面“建”与面“社”相对,面“和”与面“会”相对.故选D【点睛】本题考查了正方体向对面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3.C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数.【详解】解:解:704000000=7.04×108.故选:C .【点睛】本题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.B【分析】根据代数式的书写格式:系数不能写成带分数,必须写成假分数,字母与数字相乘,数字必须写在前面等判断即可.【详解】解:A 、15ab,所以原书写格式不规范,故本选项不符合题意;B 、34ab ,书写格式规范,故本选项符合题意;C 、2ab ,所以原书写格式不规范,故本选项不符合题意;D 、53x ,所以原书写格式不规范,故本选项不符合题意;故选:B【点睛】本题考查了代数式,熟练掌握代数式的书写格式是解题的关键.5.C【分析】根据题意可得1200名学生的视力情况,从中抽取了300名学生进行视力调查,这个问题中的总体是1200名学生的视力情况,样本是抽取的300名学生进行视力情况,个体是每一个学生的视力情况,样本容量是300,注意样本容量不能加任何单位.【详解】A.总体是1200名学生的视力情况,正确;B.样本容量是300,正确;C.样本是抽取的300名学生的视力情况,此选项错误;D.个体是每名学生的视力情况,正确;故选:C.【点睛】本题考查总体、个体、样本、样本容量,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.A【分析】根据绝对值的几何意义列绝对值方程解答即可.【详解】解:由题意得:|2a+1|=3当2a+1>0时,有2a+1=3,解得a=1当2a+1<0时,有2a+1=-3,解得a=-2所以a的值为1或-2.故答案为A.【点睛】本题考查了绝对值的几何意义,根据绝对值的几何意义列出绝对值方程并求解是解答本题的关键.7.D【分析】把各项计算得到的结果进行比较即可.【详解】A.32=9,23=8,不相等,.不符合题意B.-32=-9,(-3)2=9,不相等,不符合题意.-2=-8,3-2=8,不相等,不符合题意.C.3D.-23=-8,(-2)3=-8,相等,符合题意.故选D【点睛】本题考查了有理数的乘方,熟练掌握乘方的运算法则是解题的关键,解题是要注意运算符号.8.Dx ,若所得的值大于或等于﹣20,则将所得的值代【分析】根据程序可知,输入x计算31入计算,直到所得的值小于﹣20即可输出.x+=﹣11,【详解】解:当x=﹣4时,31∵﹣11>﹣20,x+=﹣32,∴当x=﹣11时,31x+=﹣32<﹣20,则最后输出的结果为﹣32,∴当x=﹣11时,31故选:D.【点睛】此题考查了程序计算,有理数混合运算,正确理解程序图计算是解题的关键.9.D【分析】根据题目中的单项式可以发现数字因数奇数项都正的、偶数项都是负的,数字因数的绝对值是一些连续的奇数,字母的指数依次变大且均为偶数,从2开始,然后即可写出第n个单项式,本题得以解决.【详解】∵a=(﹣1)1+1×(2×1﹣1)a,﹣3a2=(﹣1)2+1×(2×2﹣1)a2,5a3=(﹣1)3+1×(2×3﹣1)a3,﹣7a4=(﹣1)4+1×(2×4﹣1)a4,9a5=(﹣1)5+1×(2×5﹣1)a5,…∴第n个单项式为:(﹣1)n+1(2n﹣1)an.故选:D.【点睛】本题考查数字的变化类、单项式,解答本题的关键是明确题意,发现单项式的变化特点,求出相应的单项式.10.B【分析】根据数轴上的点表示的数一一分析即可.【详解】解:A.当A为原点,则剩余三个点表示的数均是正数,故A不合题意.B.当B为原点,则A表示负数,C与D表示正数,故B符合题意.C.当C为原点,则A与B表示负数,D表示正数,故C不符合题意.D.当D为原点,A、B与C表示负数,故D不符合题意.故选:B.【点睛】本题主要考查数轴上的点表示的数,熟练掌握数轴上的点表示的数是解决本题的关键.11.-8【分析】先利用非负性确定x ,y 的值,然后代入计算求值即可.【详解】∵2|2|(3)0x y ++-=,∴x+2=0,y-3=0,∴x=-2,y=3,∴3(2)yx=-=-8.故答案为:-8.【点睛】本题考查了非负性,乘方的运算,熟练掌握非负数的性质:几个非负数的和为零则它们都为零,是解题的关键.12.1【分析】根据相数的定义列出关于x 的方程,-2x+3x-1=0,解方程即可.【详解】解:根据题意,-2x+3x-1=0,解之得x=1.故答案为:1.【点睛】本题考查了相反数的概念和一元一次方程的解法.若两个数互为相反数,则它们的和为零,反之也成立.13.2【分析】根据同类项的定义求出m ,n 的值,然后代入式子进行计算即可解答.【详解】解:解:∵代数式﹣5x 2yn 与3xm +3y 3是同类项,∴m+3=2,n =3,∴m =﹣1,∴m+n =﹣1+3=2.故答案为:2.【点睛】本题考查了同类项,熟练掌握同类项的定义是解题的关键.14.100【分析】根据利润率=(售价-进价)÷进价100%⨯,先利用售价=标价⨯折数÷10求出售价,进而代入利润率公式列出关于进价的方程即得.【详解】解: 商品每件标价为150元∴按标价打8折后售价为:1500.8120⨯=(元/件)∴设该商品每件的进价为x 元由题意得:()120100%20%-⨯=x x 解得:100x =答:该商品每件的进价为100元.故答案为:100【点睛】本题考查一元一次方程应用中的销售问题,通常利润率计算公式为销售问题等量关系是解题关键点.15.-2【分析】依据一元一次方程的定义得到k-2≠0,|k|-1=1,从而可求得k 的取值.【详解】解:∵方程(k-2)x |k |-1+7=0是关于x 的一元一次方程,∴k-2≠0,|k|-1=1.解得:k=-2.故答案为:-2.【点睛】本题主要考查的是一元一次方程的定义,掌握一元一次方程的定义是解题的关键,一元一次方程的定义:只含有一个未知数、未知数的最高次数为1且两边都为整式的等式是一元一次方程.16.34-3【分析】根据单项式的系数与次数即可求出答案.【详解】解:该单项式的系数为34-,次数为3,故答案为:34-,3;【点睛】本题考查单项式的概念,解题的关键是正确理解单项式的概念,本题属于基础题型.17.八四【分析】根据多项式的项和多项式的次数的定义得出即可.【详解】解:多项式中次数最高的项为536x y ,次数为8,多项式3532913633x y x y xy +++共有4项,故答案为:八,四.【点睛】本题考查了多项式的次数和项的定义,能熟记多项式的次数和项的定义是解此题的关键,注意:两个或两个以上的单项式的和,叫多项式,其中每个单项式,叫多项式的项,多项式中,次数最高的项的次数,叫多项式的次数.18.-4【详解】解:由题意得,x ☆(-3)=2可转化为:2x-3×(-3)+1=2,∴x=-4.故答案为-4.19.(1)-12;(2)-2;(3)5【分析】(1)根据有理数的混合运算法则计算即可;(2)先计算乘方,再根据有理数的混合运算法则、绝对值的意义等知识计算即可;(3)根据乘法分配律运算即可.【详解】(1)110822()()÷-⨯---10(4(12)⨯--=--102=--12=-;(2)2222-2-(-3)(-4-43⨯÷-23449(16=---⨯÷-464=-+-2=-;(3)313()(24)864+-⨯-()(313242)()424864⨯-⨯--⨯-=+9418=--+5=.【点睛】本题考查了有理数的四则混合运算法则、绝对值的应用、求一个数的平方数等知识,掌握相关的运算法则、清楚计算的先后顺序是解答本题的关键.20.222x y xy +,-6【分析】原式去括号合并得到最简结果,再把x 与y 的值代入计算即可求出值.【详解】解:22224()3()23x y xy x y y xy y+----=2222443323x y xy x y y xy y+-+--=222x y xy +;当1,2x y =-=时,原式=22(1)22(1)2286-⨯+⨯-⨯=-=-21.(1)6x =(2)1x =-【分析】(1)方程去括号,移项,合并同类项,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.(1)解:去括号得:4x ﹣36+3x =6,移项得:4x+3x =6+36,合并得:7x =42,系数化为1得:x =6;(2)解:去分母得:2(2x ﹣1)﹣(5x+2)=3(1﹣2x )﹣12,去括号得:4x ﹣2﹣5x ﹣2=3﹣6x ﹣12,移项得:4x ﹣5x+6x =3﹣12+2+2,合并得:5x =﹣5,系数化为1得:x =﹣1.22.见解析【分析】根据三视图的画法分别画出从正面看、从左面看,从上面看所得到的图形即可.【详解】解:这个组合体的三视图如下:23.3【分析】根据题意可得BC =AB ﹣AC =6﹣4=2,由点M 是线段AC 的中点,点N 是线段BC 的中点,可得MC =12AC ,NC =12BC ,即MN =MC+NC 即可得出答案.【详解】解:∵AB =6cm ,AC =4cm ,∴BC =AB ﹣AC =6﹣4=2,∵点M 是线段AC 的中点,点N 是线段BC 的中点,∴MC =12AC =1422⨯=,NC =12BC=1212⨯=,∴MN =MC+NC =2+1=3.∴线段MN 的长3(cm).【点睛】本题主要考查了两点间的距离,熟练掌握两点的距离计算的方法进行计算是解决本题的关键.24.5cm【分析】设“矮胖”形圆柱的高是xcm ,根据锻造前后圆柱的体积不变建立方程,求出其解即可.【详解】解:设“矮胖”形圆柱的高是xcm ,由题意,得2210408022x ππ⎛⎫⎛⎫⨯= ⎪ ⎪⎝⎭⎝⎭解得:x=5.答:锻造后圆柱的高是5cm .【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,形积问题的数量关系的运用,解答时由形积问题的数量关系建立方程是关键.25.(1)50千米(2)190.4元【分析】(1)根据有理数的加法,可得超出或不足部分的路程平均数,再加上50,可得平均路程;(2)先求出平均一天的耗油量,根据总价=单价×数量可求一天的需要的钱数,再乘天数7,可得答案.(1)17×(﹣7﹣12﹣13+0﹣17+40+9)=0,∴50+0=50(千米).答:这七天平均每天行驶50千米;(2)50×450×6.8=27.2(元),27.2×7=190.4(元).答:小亮家这7天的汽油费用大约是190.4元.26.1h4【详解】解:设一号队员从离队开始到与队员重新会合,经过了h x ,由题意得:4535210x x +=⨯,解得14x =.答:一号队员从离队开始到与队员重新会合,经过了1h 4.27.(1)100;(2)m=20,补图见解析;(3)36°;(4)250.【分析】(1)用“围棋”的人数除以其所占百分比可得;(2)用总人数乘以“书法”人数所占百分比求得其人数,据此即可补全图形;(3)用360°乘以“围棋”人数所占百分比即可得;(4)用总人数乘以样本中“舞蹈”人数所占百分比可得.【详解】(1)学校本次调查的学生人数为10÷10%=100(名).故答案为:100;(2)m=100﹣25﹣25﹣20﹣10=20,∴“书法”的人数为100×20%=20人,补全图形如下:(3)在扇形统计图中,“书法”所在扇形的圆心角度数为360°×10%=36°.故答案为:36°;(4)估计该校喜欢舞蹈的学生人数为1000×25%=250人.。
北师大版九年级上册数学期末考试试卷带答案
北师大版九年级上册数学期末考试试题一、单选题1.一元二次方程x(x-3)=4的解是()A.1B.4C.-1或4D.1或-42.一个由5个相同的正方体组成的立体图形,如图所示,则这个立体图形的左视图是A.B.C.D.3.如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为13的位似图形△OCD,则点C坐标A.(﹣1,﹣1)B.(﹣43,﹣1)C.(﹣1,﹣43)D.(﹣2,﹣1)4.在Rt△ABC中,∠C=90°,BC=4,AC=3,则cosA的值是()A.45B.35C.54D.435.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC =9,则BF的长为()A.4B.C.4.5D.56.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是()A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <27.如图,在直角三角形ABC 中,90ACB ∠=︒,3AC =,4BC =,点M 是边AB 上一点(不与点A ,B 重合),作ME AC ⊥于点E ,MF BC ⊥于点F ,若点P 是EF 的中点,则CP 的最小值是()A .1.2B .1.5C .2.4D .2.58.反比例函数4y x =和6y x =在第一象限的图象如图所示,点A 在函数6y x=图象上,点B 在函数4y x=图象上,AB ∥y 轴,点C 是y 轴上的一个动点,则△ABC 的面积为()A .1B .2C .3D .49.如图,正方形ABCD 的边长为2,E 为对角线AC 上一动点,90EDP ∠=︒,DE DP =,当点E 从点A 运动到点C 的过程中,EPC ∆的周长的最小值为()A .222B .42C .324D .22310.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程,则下列方程正确的是A .22500(1)9100x +=B .22500(1%)9100x +=C .22500(1)2500(1)9100x x +++=D .225002500(1)2500(1)9100x x ++++=11.如图,某次课外实践活动中,小红在地面点B 处利用标杆FC 测量一旗杆ED 的高度.小红眼睛点A 与标杆顶端点F ,旗杆顶端点E 在同一直线上,点B ,C ,D 也在同一条直线上.已知小红眼睛到地面距离 1.6AB =米,标杆高 3.8FC =米,且1BC =米,7CD =米,则旗杆ED 的高度为()A .15.4米B .17米C .17.6米D .19.2米12.若0ab >,则一次函数y ax b =-与反比例函数aby x=在同一坐标系数中的大致图象是A .B .C .D .二、填空题13.一元二次方程220x x -+=的解是______.14.一个反比例函数的图象过点A(-3,2),则这个反比例函数的表达式是_____.15.如图,Rt △ABC 中,∠ACD=90°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F .若S △AEG=13S 四边形EBCG ,则CF AD=_________.16.如图,在ABC 中,D ,E 分别是边AB ,AC 的中点.若ADE 的面积为12.则四边形DBCE 的面积为_______.三、解答题17.解方程(1)2230x x --=(公式法);(2)23740x x -+=(配方法);(3)22(2)(23)x x -=+(因式分解法);(4)2(1)22x x -=-(适当的方法).18.现有5个质地、大小完全相同的小球上分别标有数字–1,–2,1,2,3.先将标有数字–2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从两个盒子里各随机取出一个小球.(1)请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;(2)求取出的两个小球上的数字之和等于0的概率.19.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P 从点O 开始沿OA 边向点A 以1厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以1厘米/秒的速度移动.如果P 、Q 同时出发,用t (秒)表示移动的时间(0≤t≤6),那么,当t 为何值时,△POQ 与△AOB 相似?20.如图,△ABC 是等边三角形,点D 在AC 上,连接BD 并延长,与∠ACF 的角平分线交于点E .(1)求证:△ABD ∽△CED ;(2)若AB=8,AD=2CD ,求CE 的长.21.如图,已知反比例函数y 1=1k x与一次函数y 2=k 2x+b 的图象交于点A (1,8)、B (﹣4,m ).(1)求一次函数和反比例函数的表达式;(2)求△AOB 的面积;(3)若y 1<y 2,直接写出x 的取值范围.22.如图,在菱形ABCD ,对角线AC,与BD 交于点O,过点C 作BD 的平行线,过点D 作AC 的平行线,两直线交于点E,(1)求证:四边形OCED 是矩形;(2)若CE=1,菱形ABCD的周长为ABCD 的面积.23.如图,反比例函数ky x(k≠0)的图象经过点A (1,2)和B (2,n ),(1)以原点O 为位似中心画出△A1B1O ,使11AB A B =12;(2)在y 轴上是否存在点P ,使得PA+PB 的值最小?若存在,求出P 的坐标;若不存在,请说明理由.24.某品牌童装平均每天可售出40件,每件盈利40元.为了迎接“元旦”,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出4件.要想平均每天销售这种童装盈利2400元,那么每件童装应降价多少元?25.如图,在正方形ABCD 中,点G 是对角线上一点,CG 的延长线交AB 于点E ,交DA 的延长线于点F ,连接AG .(1)求证:AG =CG ;(2)求证:△AEG ∽△FAG ;(3)若GE•GF =9,求CG 的长.参考答案1.C 2.A 3.B 4.B 5.A 6.C 7.A 8.A 9.A 10.D 11.D 12.C13.120,2x x ==【分析】利用因式分解法解一元二次方程即可得.【详解】解:220x x -+=,(2)0x x -+=,0,20x x =-+=,则120,2x x ==,故答案为:120,2x x ==.【点睛】本题考查了解一元二次方程,熟练掌握因式分解法解一元二次方程是解题关键.14.6y x=-【分析】根据反比例函数的意义待定系数法求解析式.【详解】解:∵反比例函数的图象过点A(-3,2),∴6k =-∴这个反比例函数的表达式是6y x=-故答案为:6y x=-15.12【详解】解:∵EF BD∥∴∠AEG=∠ABC ,∠AGE=∠ACB ,∴△AEG ∽△ABC ,且S △AEG=13S 四边形EBCG∴S △AEG :S △ABC=1:4,∴AG :AC=1:2,又EF BD∥∴∠AGF=∠ACD ,∠AFG=∠ADC ,∴△AGF ∽△ACD ,且相似比为1:2,∴S △AFG :S △ACD=1:4,∴S △AFG=13S 四边形FDCGS △AFG=14S △ADC ∵AF :AD=GF :CD=AG :AC=1:2∵∠ACD=90°∴AF=CF=DF∴CF :AD=1:2.故答案为:1216.32【分析】先根据三角形中位线定理得出1//,2DE BC DE BC =,再根据相似三角形的判定与性质得出2()ADE ABC S DE S BC= ,从而可得ABC 的面积,由此即可得出答案.【详解】 点D ,E 分别是边AB ,AC 的中点1//,2DE BC DE BC ∴=ADE ABC∴ 21(4ADE ABC S DE S BC ∴==△△,即4ABCADES S =△△又12ADES =1422ABCS ∴=⨯= 则四边形DBCE 的面积为13222ABC ADE S S -=-= 故答案为:32.17.(1)123,1x x ==-(2)124,13x x ==(3)121,53x x =-=-(4)123,1x x ==【分析】(1)利用公式法求解即可;(2)利用配方法求解即可;(3)利用因式分解法求解即可;(4)利用因式分解法求解即可.(1)解:∵2230x x --=,∴1a =,2b =-,3c =-,∴()()22=42413160b ac ∆-=--⨯⨯-=>,∴242x ±==,∴13x =,21x =-;(2)解:∵23740x x -+=,∴2374x x -=-,∴27433x x -=-,∴22277473636x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭,∴271636x ⎛⎫-= ⎪⎝⎭,∴7166x -=±,∴143x =,21x =;(3)解:∵22(2)(23)x x -=+∴22(2)(23)0x x -+-=,∴()(223)2230x x x x -++---=,∴()()3150x x ++=,∴113x =-,25x =-;(4)解:∵2(1)22x x -=-,∴()2(1)210x x --=-,∴()(12)10x x ---=,∴13x =,21x =.18.(1)详见解析;(2)13【分析】(1)首先根据题意列出表格,由表格即可求得取出的两个小球上数字之和所有等可能的结果;(2)首先根据(1)中的表格,求得取出的两个小球上的数字之和等于0的情况,然后利用概率公式即可求得答案.【详解】解:(1)列表得:-12-2-30103325则共有6种结果,且它们的可能性相同;(2)∵取出的两个小球上的数字之和等于0的有:(1,-1),(-2,2),∴两个小球上的数字之和等于0的概率为:2163=.19.当t=4或t=2时,△POQ 与△AOB 相似.【详解】试题分析:根据题意可知:OQ=6-t ,OP=t ,然后分OQ OP OB OA =和OQ OP OA OB=两种情况分别求出t 的值.试题解析:解:①若△POQ ∽△AOB 时,=,即=,整理得:12﹣2t=t ,解得:t=4.②若△POQ ∽△BOA 时,=,即=,整理得:6﹣t=2t ,解得:t=2.∵0≤t≤6,∴t=4和t=2均符合题意,∴当t=4或t=2时,△POQ 与△AOB 相似.20.(1)见解析;(2)CE=4【分析】(1)根据等边三角形的性质得到60A ACB ∠=∠=︒,则120ACF ∠=︒,根据角平分线的性质,得到60ACE ∠=︒,即可求证;(2)利用相似三角形的性质得到CD CE AD AB=,即可求解.【详解】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠ACB=60°,∠ACF=120°;∵CE 平分∠ACF ,∴∠ACE=60°;∴∠BAC=∠ACE ;又∵∠ADB=∠CDE ,∴△ABD ∽△CED ;(2)解:∵△ABD ∽△CED ,∴CD CE AD AB=,∵AD=2DC ,AB=8;∴1842CD CE AB AD =⨯=⨯=21.(1)18y x =,y 2=2x+6,过程见解析;(2)15,过程见解析;(3)﹣4<x <0或x >1,过程见解析.【分析】(1)利用待定系数法即可求得结论;(2)设直线AB 与x 轴交于点D ,与y 轴交于点C ,利用直线AB 解析式求得点C ,D 的坐标,用△AOC ,△OCD 和△OBD 的面积之和表示△AOB 的面积即可;(3)利用图象即可确定出x 的取值范围.(1)解:点A (1,8)在反比例函数11ky x =上,∴k 1=1×8=8.∴18y x =.∵点B (﹣4,m )在反比例函数18y x =上,∴﹣4m =8.∴m =﹣2.∴B (﹣4,﹣2).∵点A (1,8)、B (﹣4,﹣2)在一次函数y 2=k 2x+b 的图象上,∴22842k b k b +=⎧⎨-+=-⎩,解得:226k b =⎧⎨=⎩.∴y 2=2x+6.(2)解:设直线AB 与y 轴交于点C,如图,由直线AB:y 2=2x+6,令x =0,则y =6,∴C (0,6).∴OC =6.过点A 作AF ⊥y 轴于点F ,过点B 作BE ⊥y 轴于点E ,∵A (1,8),B (﹣4,﹣2),∴AF =1,BE =4.∴AOBAOC BOC S S S =+△△△11××22OC AF OC BE =+1=6(14)2⨯⨯+=15答:△AOB 的面积是15.(3)解:由图象可知,点A 右侧的部分和点B 与点C 之间的部分y 1<y 2,∴若y 1<y 2,x 的取值范围为:﹣4<x <0或x >1.【点睛】本题是一道反比例函数与一次函数图象的交点问题,主要考查了待定系数法,一次函数图象上点的坐标的特征,反比例函数图象上点的坐标的特征,利用点的坐标表示出相应线段的长和利用数形结合的思想方法求得x 的取值范围是解题的关键.22.(1)证明见解析;(2)4.【分析】(1)欲证明四边形OCED 是矩形,只需推知四边形OCED 是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)证明:因为四边形ABCD 是菱形,所以AC BD ⊥,90COD ︒∴∠=,//,//CE OD DE OC ,所以四边形OCED 是平行四边形,90COD ︒∠= ,∴四边形OCED 是矩形;(2)由(1)知,四边形OCED 是矩形,则CE=OD=1,∵四边形ABCD 是菱形,∴AB=AD=CD=BC ,∵菱形ABCD 的周长为CD ∴2OC∴==,24,22 AC OC BD OD==== ,∴菱形ABCD的面积为:11424 22AC BD⋅=⨯⨯=.23.(1)作图见解析;(2)存在,P(0,5 3).【分析】(1)有两种情形,分别画出图象即可;(2)存在.如图作点A关于y轴的对称点A′,连接BA′交y轴于P,连接PA,此时PA+PB 的值最小.求出直线BA′的解析式即可解决问题.【详解】(1)△A1B1O的图象如图所示.(2)存在.如图作点A关于y轴的对称点A′,连接BA′交y轴于P,连接PA,此时PA+PB 的值最小.∵点A(1,2)在反比例函数y=kx上,∴k=2,∴B (2,1),∵A′(﹣1,2),设最小BA′的解析式为y=kx+b ,则有221k b k b -+⎧⎨+⎩==,解得1253k b ⎧-⎪⎪⎨⎪⎪⎩==,∴直线BA′的解析式为y=﹣13x+53,∴P (0,53).24.每件童装应降价20元.【分析】设每件童装应降价x 元,再根据题意即可列出关于x 的一元二次方程,解出x ,最后舍去不合题意的解即可.【详解】解:设每件童装应降价x 元,依题意可列方程为(40)(404)2400x x -+=,解得:121020x x ==,,∵要减少库存,∴20x =,答:每件童装应降价20元.【点睛】本题考查一元二次方程的实际应用.根据题意找出等量关系,列出方程是解题关键.25.(1)见解析;(2)见解析;(3)CG =3【分析】(1)根据正方形的性质得到∠ADB =∠CDB =45°,AD =CD ,从而利用全等三角形的判定定理推出△ADG ≌△CDG (SAS ),进而利用全等三角形的性质进行证明即可;(2)根据正方形的性质得到AD ∥CB ,推出∠FCB =∠F ,由(1)可知△ADG ≌△CDG ,利用全等三角形的性质得到∠DAG =∠DCG ,结合图形根据角之间的和差关系∠DAB−∠DAG =∠DCB−∠DCG ,推出∠BCF =∠BAG ,从而结合图形可利用相似三角形的判定定理得到△AEG ∽△FAG ,(3)根据相似三角形的性质进行求解即可.【详解】(1)证明:∵BD 是正方形ABCD 的对角线,∴∠ADB =∠CDB =45°,又AD =CD ,在△ADG 和△CDG 中,AD CDADG CDG DG DG=⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△CDG (SAS ),∴AG =CG ;(2)解:∵四边形ABCD 是正方形,∴AD ∥CB ,∴∠FCB =∠F ,由(1)可知△ADG ≌△CDG ,∴∠DAG =∠DCG ,∴∠DAB−∠DAG =∠DCB−∠DCG ,即∠BCF =∠BAG ,∴∠EAG =∠F ,又∠EGA =∠AGF ,∴△AEG ∽△FAG ;(3)∵△AEG ∽△FAG ,∴GEGAGA GF =,即GA 2=GE•GF ,∴GA =3或GA =−3(舍去),根据(1)中的结论AG =CG ,∴CG =3.。
北师大版七年级下册数学期末考试试题附答案
北师大版七年级下册数学期末考试试卷一、单选题1.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆D.线段2.下列事件中,是随机事件的是()A.抛出的篮球会下落地B.汽车到达一个路口,遇到红灯C.任意三条线段可组成三角形D.13个同学中至少有两个同学的生日在同一个月3.下面四个图形中,1∠与2∠是对顶角的是()A B C D()a的正确结果是()4.计算23A.23a B.5a C.6a D.6a5.在我国,平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.将130000000用科学记数法表示为()A.1.3×108B.0.13×109C.1.3×109D.13×1076.如图,要测量河两岸相对的两点A、B的距离,先在河岸BF上取两点C、D,使CD=BC,再作DE⊥BF,垂足为D,使A、C、E三点在一条直线上,测得ED=30米,因此AB 的长是()A.10米B.20米C.30米D.40米7.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED=50°,那么∠BAF=()A.10°B.50°C.45°D.40°8.小明和哥哥从家里出发去买书,从家出发走了20分钟到一个离家1000米的书店.小明买了书后随即按原路返回;哥哥看了20分钟书后,用15分钟返家.下面的图象中哪一个表示哥哥离家时间与距离之间的关系()A.B.C.D.9.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①DE=CD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+AC=AB,其中正确的是()A.1个B.2个C.3个D.4个10.如图所示:AB∥CD,MN交CD于点E,交AB于F,BE⊥MN于点E,若∠DEM=55°,则∠ABE=()A.55°B.35°C.45°D.30°二、填空题11.计算732a a ÷=________________.12.如图,已知∠4=75°,∠3=105°,∠1=42°,则∠2=________________°.13.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有______种.14.已知6x y +=-,8xy =,则22x y +=________________.15.某学校购书1000本,给初一年级学生送书,每人都可得到2本不同的书,某一时刻有x 人领到书,则此时剩下的书y =________________本.(x 为正整数)16.一个袋中有5个球,分别标有1,2,3,4,5这五个号码,这些球除号码外都相同,搅匀后任意摸出一个球,则摸出标有数字为奇数的球的概率为___.17.如图,AB ∥CD ,AE ⊥EF ,垂足为E ,∠GHC =70°,则∠A =___________三、解答题18.计算:202022(1)(5.5 4.5)4-+---19.已知:如图,∠DAE =∠E ,∠B =∠D .直线AD 与BE 平行吗?直线AB 与DC 平行吗?说明理由(请在下面的解答过程的空格内填空或在括号内填写理由)解:直线AD 与BE ______________,直线AB 与DC ______________理由如下:∵∠DAE =∠E ,(已知)∴________//________,()∴∠D =∠DCE .()又∵∠B =∠D ,(已知)∴∠B =∠DCE ,()∴________//________.()20.先化简,再求值:[(2x +y )(2x ﹣y )﹣(2x ﹣3y )2]÷(﹣2y ),其中x =1,y =﹣2.21.米奇家住宅面积为90平方米,其中客厅30平方米,大卧室18平方米,小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求:(1)P(在客厅捉到小猫);(2)P(在小卧室捉到小猫);(3)P(在卫生间捉到小猫);(4)P(不在卧室捉到小猫).22.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点ABC ∆(顶点均在格点上)关于直线DE 对称的111A B C ∆;(2)在DE 上画出点Q ,使QA QC +最小.23.如图,点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D .求证:(1)∠ECD =∠EDC ;(2)OC=OD.24.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B,C重合),连接AD,作∠ADE=40°,DE与AC交于E.(1)当∠BDA=115°时,∠BAD=°,∠DEC=°;当点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.25.如图,已知CD平分ACB,DE∥BC,∠B=50°,∠ACB=30°,求∠BDC的度数.参考答案1.C【解析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行选择.【详解】解:A、因为等腰三角形分别沿底边的中线所在的直线对折,对折后的两部分都能完全重合,则等腰三角形是轴对称图形,底边的中线所在的直线就是对称轴,所以等腰三角形有1条对称轴;B、因为正方形沿对边的中线及其对角线所在的直线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,对边的中线及其对角线所在的直线就是其对称轴,所以正方形有4条对称轴;C、因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.D、线段是轴对称图形,有两条对称轴.故选:C.【点睛】本题考查了轴对称图形的性质,解答此题的主要依据是:轴对称图形的定义及其对称轴的条数.2.B【解析】根据必然事件、随机事件、不可能事件的意义结合具体问题情境进行判断即可.【详解】解:A.抛出的篮球会下落地,是必然事件,因此选项A不符合题意;B.汽车到达一个路口,可能遇到红灯,也可能不是红灯,因此是随机事件,所以选项B符合题意;C.任意三条线段可组成三角形,是不可能事件,所以选项C不符合题意;D.13个同学中至少有两个同学的生日在同一个月,是必然事件,所以选项D不符合题意;故选:B.本题考查必然事件、随机事件、不可能事件,理解必然事件、随机事件、不可能事件的意义是正确判断的前提.3.C【解析】【分析】根据对顶角的定义,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,分别判断即可.【详解】解:A、两角两边没有互为反向延长线,选项错误;B、两角两边没有互为反向延长线,选项错误;C、有公共顶点,且两角两边互为反向延长线,选项正确.D、没有公共顶点,两角没有互为反向延长线,选项错误.故选:C.【点睛】本题考查对顶角的定义,根据定义解题是关键.4.D【解析】【分析】根据幂的乘方法则计算即可解答.【详解】解:(a2)3=a6,故选:D.【点睛】本题考查了幂的乘方法则,理清指数的变化是解题的关键.5.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解:把130000000用科学记数法可表示为1.3×108.故选:A .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.C【解析】【分析】由已知可以得到∠ABC =∠BDE ,又CD =BC ,∠ACB =∠DCE ,由此根据角边角即可判定△EDC ≌△ABC ,则ED =AB .【详解】解:∵BF ⊥AB ,DE ⊥BF ,∴∠ABC =∠BDE在△EDC 和△ABC 中,ABC EDC BC DC ACB DCE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EDC ≌△ABC (ASA ).∴ED =AB .∵ED =30米,∴AB =30米.故选:C .【点睛】本题考查了全等三角形的应用;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.7.A【解析】【分析】先根据∠CED =50°,DE ∥AF ,即可得到∠CAF =50°,最后根据∠BAC =60°,即可得出∠BAF【详解】∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键. 8.D【解析】【详解】解:根据题意,从20分钟到40分钟哥哥在书店里看书,离家距离没有变化,是一条平行于x轴的线段.故选D.9.D【解析】【详解】分析:①根据角平分线的性质得出结论:DE=CD;②证明△ACD≌△AED,得AD平分∠CDE;③由四边形的内角和为360°得∠CDE+∠BAC=180°,再由平角的定义可得结论是正确的;④由△ACD≌△AED得AC=AE,再由AB=AE+BE,得出结论是正确的.详解:①∵∠C=90°,AD平分∠BAC,DE⊥AB,∴DE=CD;所以此选项结论正确;②∵DE=CD,AD=AD,∠ACD=∠AED=90°,∴△ACD≌△AED,∴∠ADC=∠ADE,∴AD平分∠CDE,所以此选项结论正确;③∵∠ACD=∠AED=90°,∴∠CDE+∠BAC=360°-90°-90°=180°,∵∠BDE+∠CDE=180°,∴∠BAC=∠BDE,所以此选项结论正确;④∵△ACD≌△AED,∴AC=AE,∵AB=AE+BE,∴BE+AC=AB,所以此选项结论正确;本题正确的结论有4个,故选D.点睛:考查了全等三角形性质和判定,同时运用角平分线的性质得出两条垂线段相等;本题难度不大,关键是根据HL证明两直角三角形全等,根据等量代换得出线段的和,并结合四边形的内角和与平角的定义得出角的关系.10.B【解析】【详解】∵AB∥CD,∴∠EFB=∠DEM=55°,∵BE⊥MN,∴∠ABE=90°-55°=35°.故选B.11.24a【解析】【分析】根据单项式除以单项式的运算法则进行计算求解.【详解】解:原式=2a7﹣3=2a4,故答案为:2a4.【点睛】本题考查整式的除法运算,掌握单项式除以单项式的运算法则是解题基础.12.138【解析】【分析】由同旁内角互补,两直线平行可得AB//CD,可得∠1+∠2=180°,即可求解.【详解】解:∵∠4=75°,∠3=105°,∴∠4+∠3=75°+105°=180°,∴AB//CD,∴∠1+∠2=180°,∵∠1=42°,∴∠2=180°﹣∠2=180°﹣42°=138°,故答案为:138.【点睛】本题考查了平行线的判定和性质,掌握平行线的判定是本题的关键.13.3【解析】【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【详解】解:选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置有以下几种:1处,2处,3处,选择的位置共有3处.故答案为3.考点:概率公式;轴对称图形.14.20【解析】【分析】先把等式x+y=﹣6两边分别平方,得到x2+y2+2xy=36,再把xy=8代入,即可求出x2+y2的值.【详解】解:∵x+y=﹣6,∴(x+y)2=36,即x2+y2+2xy=36,∵xy=8,∴x2+y2+2×8=36,∴x2+y2=20,故答案为:20.【点睛】本题主要考查完全平方公式的应用,熟练掌握完全平方公式:(a±b)2=a2±2ab+b2,是本题解题关键.15.10002x【解析】【分析】根据剩下的书=总数1000本−送与学生的书的数量【详解】根据题意得到:y=1000−2x.故答案是:1000−2x.【点睛】本题主要考查了列代数式,解题的关键是读懂题意,找准等量关系.16.3 5【解析】【详解】∵奇数有3个,一共有5个球,∴摸出标有数字为奇数的球的概率为3 5 .17.20o【解析】【详解】∵AB∥CD,∠GHC=70°,∴∠ACE=∠GHC=70°,∵AE⊥EF,∴∠A=90°-70°=20°.18.7【解析】【分析】根据绝对值的定义、平方差公式的逆运用、乘方的意义以及有理数的混合运算解决此题.【详解】解:原式=1+(5.5+4.5)×(5.5﹣4.5)﹣4=1+10×1﹣4=1+10﹣4=7.【点睛】本题主要考查绝对值的定义、平方差公式的逆运用、乘方的意义以及有理数的混合运算,熟练掌握绝对值的定义、平方差公式的逆运用、乘方的意义是解决本题的关键.19.平行;平行;AD;BE;内错角相等,两直线平行;两直线平行,内错角相等;AB;DC;同位角相等,两直线平行【解析】【分析】因为∠DAE=∠E,所以根据内错角相等,两条直线平行,可以证明AD//BE;根据平行线的性质,可得∠D=∠DCE,结合已知条件,运用等量代换,可得∠B=∠DCE,可证明AB//DC.【详解】解:直线AD与BE平行,直线AB与DC平行.理由如下:∵∠DAE=∠E,(已知)∴AD//BE,(内错角相等,两条直线平行)∴∠D =∠DCE .(两条直线平行,内错角相等)又∵∠B =∠D ,(已知)∴∠B =∠DCE ,(等量代换)∴AB //DC .(同位角相等,两条直线平行)故答案为:平行;平行;AD ;BE ;内错角相等,两直线平行;两直线平行,内错角相等;AB ;DC ;同位角相等,两直线平行.【点睛】此题综合运用了平行线的性质和判定,关键是找准两条直线被第三条直线所截而形成的同位角、内错角.20.65x y -+;-16【解析】【分析】原式中括号中利用平方差公式及完全平方公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:原式2222(44129)(2)x y x xy y y =--+-÷-2(1210)(2)xy y y =-÷-65x y =-+,当1x =,2y =-时,原式61016=--=-.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.21.(1)13(2)16(3)1390(4)1930【解析】【详解】分析:根据题意,由相应房间的面积比上总面积90进行计算即可.详解:由题意可得:(1)P (在客厅捉到小猫)=301=903;(2)P (在小卧室捉到小猫)=151=906;(3)P (在卫生间捉到小猫)=9+413=9090;(4)P (不在卧室捉到小猫)=9018155719909030--==.点睛:知道:“在某个房间捉到小猫的概率=该房间的面积:米奇家住宅的总面积”是解答本题的关键.22.(1)见解析;(2)见解析.【解析】【分析】(1)根据网格结构找出点A 、B 、C 关于直线DE 对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据轴对称确定最短路线问题连接A1C 与DE 的交点即为所求点Q .【详解】(1)111A B C ∆如图所示;(2)连接1AC ,交DE 于点Q ,点Q 如图所示.【点睛】此题考查轴对称-最短路线问题,作图-轴对称变换,解题关键在于掌握作图法则.23.(1)见解析;(2)见解析【解析】【分析】(1)根据角平分线的性质可得ED =EC ,继而根据等边对等角的性质即可求证结论;(2)根据角平分线的性质和全等三角形的判定求证△OED ≌△OEC (AAS ),继而根据全等三角形的对应边相等得到结论.【详解】(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,又∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;【点睛】本题考查了角平分线的性质和垂直平分线的判定,全等三角形的判定与性质,熟记各性质是解题的关键.24.(1)25,115,小;(2)2,理由见解析;(3)能,110°或80°.【解析】【分析】(1)首先利用三角形内角和为180°可算出∠BAD=180°-40°-115°=25°;再利用邻补角的性质和三角形内角和定理可得∠DEC的度数;(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【详解】解:(1)∵∠B=40°,∠ADB=115°,∴∠BAD=180°-40°-115°=25°;∵∠ADE =40°,∠ADB =115°,∴∠EDC =180°-∠ADB -∠ADE =180°-115°-40°=25°.∴∠DEC =180°-40°-25°=115°,当点D 从B 向C 运动时,∠BDA 逐渐变小;故答案为:25,115,小;(2)当DC =2时,△ABD ≌△DCE ,理由:∵∠C =40°,∴∠DEC +∠EDC =140°,又∵∠ADE =40°,∴∠ADB +∠EDC =140°,∴∠ADB =∠DEC ,又∵AB =DC =2,在△ABD 和△DCE 中,ADB DECB C AB DC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△DCE (AAS );(3)当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形,∵∠BDA =110°时,∴∠ADC =70°,∵∠C =40°,∴∠DAC =70°,∴△ADE 的形状是等腰三角形;∵当∠BDA 的度数为80°时,∴∠ADC =100°,∵∠C =40°,∴∠DAC =40°,∴△ADE 的形状是等腰三角形.∴当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形.【点睛】本题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质,关键是要考虑全面,分情况讨论△ADE的形状是等腰三角形.25.115°【解析】【详解】∵DE∥BC∴∠ADE=∠B=50°,∠EDC=∠BCD∵CD平分∠ACB∴∠BCD=∠ECD=12∠ACB=12×30°=15°∴∠EDC=∠ECD=15°∴∠BDC=180°-∠ADE-∠EDC=180°-50°-15°=115°。
北师大版九年级上册数学期末考试试卷及答案
北师大版九年级上册数学期末考试试题一、单选题1.下列方程中,是关于x的一元二次方程的是()A.x(x-2)=0B.x2-1-y=0C.x2+1=x2-2x D.ax2+c=0 2.某几何体的三种视图如图所示,则此几何体是()A.圆锥B.长方体C.圆柱D.四棱柱3.如图,两条直线被三条平行线所截,若AC=8,CE=12,BD=6,则DF的值是()A.15B.14C.10D.94.在同一时刻的太阳光下,小刚的影子比小红的影子长,那么,在晚上同一路灯下()A.不能够确定谁的影子长B.小刚的影子比小红的影子短C.小刚跟小红的影子一样长D.小刚的影子比小红的影子长5.正方形ABCD的一条对角线长为6,则这个正方形的面积是()A.B.18C.24D.366.如果两个相似三形对应边之比1:9,那么它们的对应中线之比是()A.1:2B.1:3C.1∶9D.1:817.已知点P在双曲线y=6x第一象限图象上,PA⊥x轴于点A,则△OPA的面积为()A.2B.3C.4D.58.如图,菱形OABC在平面直角坐标系中的位置如图所示,45AOC∠=︒,2OA=,则点C 的坐标为()A .)2,1B .2,2C .(2D .)21,1+9.学校为了对学生进行劳动教育,开辟一个面积为130平方米的矩形种植园,打算一面利用长为15米的仓库墙面,其它三面利用长为33米的围栏.如图,如果设矩形与墙面垂直的一边长为x 米,则下列方程中符合题意的是()A .(332)130x x -=B .(15)130x x -=C .(152)130x x -=D .(33)130x x -=10.如图,在正方形ABCD 中,点E 在对角线AC 上,EF ⊥AB 于点F ,EG ⊥BC 于点G ,连接DE ,若AB =10,AE =2,则ED 的长度为()A .7B .10C 58D 82二、填空题11.一个不透明的布袋中装有除颜色外完全相同的红、白两种玻璃球,已知白球有45个.同学们通过多次试验后发现摸到红色球的频率稳定在0.25左右,则袋中红球个数可能为_____个.12.在Rt △ABC 中,∠C =90°,AB =2AC ,则∠A =_____°.13.已知两个直角三角形的三边长为3,4,m 和6,8,n ,且这两个直角三角形不相似,则m n +的值为__________.14.如图,菱形ABCD 中,DE AB ⊥,垂足为E ,点F 、G 分别为边AD 、DC 的中点,5,8EF FG ==,则ABCD S =菱形___________.15.如图,在平面直角坐标系中,△OAB 与△OCD 位似,点O 是它们的位似中心,已知B (﹣4,0),D (2,0),C (3,﹣2),则点A 的坐标为_____.16.如图所示,某校数学兴趣小组利用标杆BE 测量某建筑物的高度,已知标杆BE 高1.5米,测得AB=1.8米,AC =9米,则建筑物CD 的高是_____米.17.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE 垂直平分BO ,交BD 于点E ,若AE=ABCD 的周长为_____.三、解答题18.解方程(1)x2﹣6x=﹣5;(2)2x2﹣5x+1=0;(3)x2+4x=5(x+4).19.如图,D,E分别是△ABC的边AB,AC上的点,AD=2,AC=6,13AEAB=,BC154=.(1)求证:△ADE∽△ACB;(2)求DE的长.20.某商店销售一款进价为70元的童装,每件售价为110元时,每天可售出20件.为了尽快减少库存,商店决定降价销售,经市场调查发现,该童装每降价1元,每天可多售出2件,每件童装售价定为多少元时,该商店每天销售这款童装的总利润为1200元?21.如图,一次函数y=2x﹣10与反比例函数y ax=的图象在第一象限交于点A(8,m),与y轴的负半轴交于点B.(1)求反比例函数y ax=的表达式;(2)若点C坐标为(﹣5,0),在第限内的y ax=的图象上是否存在一点D使△OCD的面积等于△BOA的面积,若存在,求出点D的坐标:若不存在,说明理由;(3)请直接写出关于x的不等式0<2x﹣10ax<成立的x的取值范围.22.如图,BD是△ABC的角平分线,过点作DE//BC交AB于点E,DF//AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∠ABC=60°,∠ACB=45°,CD=6,求菱形BEDF的边长.23.某水果批发商经销一种水果,进货价是12元/千克,如果销售价定为22元/千克,每日可售出500千克;经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)若要每天销售盈利恰好为6000元,同时又可使顾客得到实惠,每千克应涨价为多少元?(2)当销售价是多少时,每天的盈利最多?最多是多少?24.如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.25.如图,一次函数y=ax+b的图像与反比例函数kyx=的图像交于C、D两点,与x、y轴分别交于B、A两点,CE⊥x轴,且OB=4,CE=3,12 CE BE=(1)求一次函数的解析式和反比例函数的解析式.(2)求△OCD的面积.26.如图1,E为正方形ABCD的边BC上一点,F为边BA延长线上一点,且CE=AF.(1)求证:DE⊥DF;(2)如图2,若点G为边AB上一点,且∠BGE=2∠BFE,△BGE的周长为8,求四边形DEBF 的面积;(3)如图3,在(2)的条件下,DG与EF交于点H,连接CH且CH=AG 的长.参考答案1.A2.C3.D4.A5.B6.C7.B8.B9.A10.C11.1512.6013.5+10+14.9615.(﹣6,4)16.7.517.4+【分析】根据矩形的性质和线段垂直平分线的性质可证明△ABO 是等边三角形,解直角三角形求出AB 、AD 即可求解.【详解】解:∵四边形ABCD 是矩形,∴AO=OC=BO=OD ,∠BAD=90°,∵AE 垂直平分BO ,∴AO=AB ,∠AEB=90°,∴AO=AB=BO ,∴△ABO 是等边三角形,∴∠ABO=60°,在Rt △ABE 中,AE =∴AB =sin 60AE =2=,在Rt △ABD 中,AD=AB·tan60°=∴矩形ABCD 的周长为2(AB+AD )=4+,故答案为:4+.【点睛】本题考查矩形的性质、线段垂直平分线的性质、等边三角形的判定与性质、解直角三角形,熟练掌握矩形的性质和线段垂直平分线的性质,证得△ABO 是等边三角形是解答的关键.18.(1)x 1=5,x 2=1(2)x1=x2=(3)x 1=﹣4,x 2=5【分析】(1)先移项,然后分解因式,转化为两个一元一次方程,解一元一次方程即可.(2)利用公式法求解即可;(2)先移项,然后提公因式分解因式,转化为两个一元一次方程,解一元一次方程即可.(1)解:x 2﹣6x =﹣5,x 2﹣6x+5=0,(x ﹣5)(x ﹣1)=0,∴x ﹣5=0或x ﹣1=0,∴x 1=5,x 2=1.(2)2x 2﹣5x+1=0,这里a =2,b =﹣5,c =1,∴Δ=(﹣5)2﹣4×2×1=17>0,∴x 524b a -==,∴x 154=,x 254=.(3)x 2+4x =5(x+4),x (x+4)﹣5(x+4)=0,(x+4)(x ﹣5)=0,∴x+4=0或x ﹣5=0,∴x 1=﹣4,x 2=5.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,解一元二次方程的方法有直接开平方法、因式分解法、配方法、公式法等.19.(1)见解析(2)54【分析】(1)根据两边成比例夹角相等,证明三角形相似即可;(2)利用相似三角形的性质解决问题即可.(1)证明:∵AD=2,AC=6,13 AEAB=,∴13 AE ADAB AC==,∵∠A=∠A,∴△ADE∽△ACB;(2)解:∵△ADE∽△ACB,∴13 DE ADBC AC==,∵BC15 4 =,∴DE1155 344 =⨯=.【点睛】本题考查相似三角形的判定和性质,解题的关键是掌握相似三角形的判定和性质.20.90元【分析】设每件童装售价定为x元,则每件童装的销售利润为(x﹣70)元,每天可售出(240﹣2x)件,利用该商店每天销售这款童装获得的总利润=每件的销售利润×每天的销售量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合要尽快减少库存,即可得出每件童装的售价应定为90元.【详解】解:设每件童装售价定为x元,则每件童装的销售利润为(x﹣70)元,每天可售出20+2(110﹣x)=(240﹣2x)件,依题意得:(x﹣70)(240﹣2x)=1200,整理得:x2﹣190x+9000=0,解得:x1=90,x2=100.又∵要尽快减少库存,∴x=90.答:每件童装的售价应定为90元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.(1)y48 x =(2)存在D(3,16);(3)5<x<8【分析】(1)将点A(8,m)代入y=2x﹣10得,m=6,再将点A代入反比例函数解析式即可;(2)由S△OCD=S△AOB,得12⨯OC×yD=40,则yD=16,从而得到点D的坐标;(3)先求出直线AB与x轴交点坐标,再根据A点坐标可得答案.(1)解:将点(8,m)代入y=2x﹣10得,2×8﹣10=m,∴m=6,∴A(8,6),将点A(8,6)代入yax=得,a=6×8=48,∴y48 x =;(2)将x=0代入y=2x﹣10得,y=﹣10,∴B(0,﹣10),∴OB=10,∴S△AOB12=⨯OB×812=⨯10×8=40,∵S△OCD=S△AOB,∴12⨯OC×yD=40,∴yD=16,∴48x=16,∴x=3,∴D(3,16);(3)∵直线AB的解析式为y=2x-10,∴当y=0时,x=5,∵A(8,6),∴不等式0<2x ﹣10a x<的解集为5<x <8.22.(1)见解析;(2)【分析】(1)由题意可证BE =DE ,四边形BEDF 是平行四边形,即可证四边形BEDF 为菱形;(2)过点D 作DH ⊥BC 于H ,由直角三角形的性质可求解.【详解】证明:(1)∵DE ∥BC ,DF ∥AB ,∴四边形DEBF 是平行四边形,∵DE ∥BC ,∴∠EDB =∠DBF ,∵BD 平分∠ABC ,∴∠ABD =∠DBF =12∠ABC ,∴∠ABD =∠EDB ,∴DE =BE ,又∵四边形BEDF 为平行四边形,∴四边形BEDF 是菱形;(2)如图,过点D 作DH ⊥BC 于H ,∵DF ∥AB ,∴∠ABC =∠DFC =60°,∵DH ⊥BC ,∴∠FDH =30°,∴FH =12DF ,DH ,∵∠C =45°,DH ⊥BC ,∴∠C =∠HDC =45°,∴DC DH =2DF =6,∴DF =,∴菱形BEDF 的边长为23.(1)5元;(2)当销售价是592时,每天的盈利最多,最多是6125元【分析】(1)设每千克应涨价为x 元,根据(售价﹣进价+涨价额)×销售量=6000,可得关于x 的一元二次方程,求得方程的解并根据要使顾客得到实惠,可得答案;(2)设销售价为a 元时,每天的盈利为w ,由题意得w 关于a 的二次函数,将其写成顶点式,根据二次函数的性质可得答案.【详解】解:(1)设每千克应涨价为x 元,由题意得:(22﹣12+x )(500﹣20x )=6000,整理得:x 2﹣15x +50=0,解得:x 1=5,x 2=10.∵要使顾客得到实惠,∴x =5.∴每千克应涨价5元.(2)设销售价为a 元时,每天的盈利为w ,由题意得:w =(a ﹣12)[500﹣20(a ﹣22)]=﹣20a 2+1180a ﹣11280=﹣20259()2a +6125,∵二次项系数为负,抛物线开口向下,∴当a =592时,w 有最大值为6125.∴当销售价是592时,每天的盈利最多,最多是6125元.24.(1)证明见解析;(2)【详解】试题分析:(1)首先证明△ABC 是等边三角形,进而得出∠AEC=90°,四边形AECF 是平行四边形,即可得出答案;(2)利用勾股定理得出AE 的长,进而求出菱形的面积.试题解析:(1)∵四边形ABCD 是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC,∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=12AD,EC=12BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形,又∵∠AEC=90°,∴四边形AECF是矩形;(2)在Rt△ABE中,AE==,所以,S菱形ABCD=考点:1.菱形的性质;2..矩形的判定.25.(1)一次函数的解析式为122y x=-+,反比例函数的解析式为6yx=-(2)8【分析】(1)根据已知条件求出B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)由一次函数解析式求得A的坐标,然后联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解.(1)解:12CEBE=,3CE=,26BE CE∴==,4OB=2 OE BE OB∴=-=,(2,3)C ∴-,(4,0)B 将(2,3)C -代入k y x=得:236k =-⨯=-;将(2,3)C -,(4,0)B 代入y ax b =+得2340a b a b -+=⎧⎨+=⎩,解得122a b ⎧=-⎪⎨⎪=⎩,∴一次函数的解析式为122y x =-+,反比例函数的解析式为6y x =-;(2)解: 122y x =-+(0,2)A ∴由1226y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩,解得1123x y =-⎧⎨=⎩,2261x y =⎧⎨=-⎩,(2,3)C - (6,1)D ∴-,∴114143822COD BOD BOC S S S ∆∆∆=+=⨯⨯+⨯⨯=.26.(1)见解析(2)16(3)43【分析】(1)利用SAS 证明△ADF ≌△CDE ,则∠ADF =∠CDE ,得∠FDE =∠ADC =90°;(2)由∠BGE =2∠BFE ,∠BGE =∠BFE+∠GEF ,得∠GFE =∠GEF ,则GF =GE ,可求出AB =4,从而得出答案;(3)过点H 作HP ⊥HC 交CB 的延长线于点P ,证明HDC HEP ≅ ,进而得出∠HCD=∠HPE=45°,过点H 作MN//AD ,交AB 于M ,CD 于N ,则HNC △是等腰直角三角形,即可得出HN =CN =3,MH =1,得HD =,再根据MH//AD ,得14MH GH AD DG ==,则GD 3=,从而解决问题.(1)证明:∵四边形ABCD 是正方形,∴AD =CD ,∠DAF =∠DCE =90°,∵CE=AF,∴△ADF≌△CDE(SAS),∴∠ADF=∠CDE,∴∠FDE=∠ADC=90°,∴DE⊥DF;(2)解:∵∠BGE=2∠BFE,∠BGE=∠BFE+∠GEF,∴∠GFE=∠GEF,∴GF=GE,∴BE+BG+EG=BE+AB+CE=2AB=8,∴AB=4,∴S正方形ABCD=4×4=16,∵△ADF≌△CDE,=S△CDE,∴S△ADF∴四边形DEBF的面积=S正方形ABCD=16;(3)解:过点H作HP⊥HC交CB的延长线于点P,∵DE⊥DF,DF=DE,∴△DEF是等腰直角三角形,∵GE=GF,DF=DE,∴DG垂直平分EF,∴∠DHE=∠DCE=90°,∴∠DHE-∠EHC=∠PHC-∠EHC,即∠DHC=∠EHP ,∵在四边形DHEC 中,∠HDC+∠HEC=180°,∠HEC+∠HEP=180°,∴∠HEP=∠HDC ,,DHC EHPDH EH HDC HEP∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)HDC HEP ∴≅ ∴PH HC =,∠HCD=∠HPE ,PHC ∴ 是等腰直角三角形,∴∠HCD=∠HPE=45°,过点H 作MN//AD ,交AB 于M ,CD 于N ,则HNC △是等腰直角三角形,∵CH =,∴HN =CN =3,MH =1,∴HD =∵MH//AD ,∴△GHM ∽△GDF ,∴14MHGH AD DG ==,∴GD 3=,∴AG 43===.∴AG 的长为43.。
2024-2025学年北师大版初一英语上册期末考试试卷及答案
2024-2025学年北师大版初一英语上册期末考试试卷班级:________________ 学号:________________ 姓名:______________一、听力题(每题3分)Question 1:You will hear a short dialogue between a teacher and a student. Listen carefully andchoose the correct answer.A. The student will join the basketball club.B. The student is not interested in sports.C. The student will try a new sport next semester.Answer: CQuestion 2:Listen to the news report and answer the question. What is the main topic of the news?A. A new traffic rule.B. An upcoming concert.C. A weather forecast.Answer: AQuestion 3:You will hear a conversation about a trip to the zoo. What animal does the speaker mention as their favorite?A. Panda.B. Lion.C. Elephant.Answer: AQuestion 4:Listen to the instructions and decide which activity the teacher is describing.A. A science experiment.B. A history project.C. A language arts assignment.Answer: BQuestion 5:In the following dialogue, what time does the girl suggest meeting for lunch?A. 12 noon.B. 12:30 pm.C. 1 pm.Answer: B(Note: The audio scripts and answers for these questions are not provided as this is a text-based response. The actual test would include recorded audio for the listening comprehension section.)二、单选题(每题3分)Question 1:What’s this in English?A. It’s a book.B. Yes, it is.C. I don’t know.D. Thank you.Answer: AQuestion 2:What color is your pen?A. It’s red.B. It’s an apple.C. Yes, it is.D. I’m fine.Answer: AQuestion 3:Hello,_______is my friend, Tom.A. heB. sheC. thisD. thatAnswer: CQuestion 4:Do you like playing basketball?A. Yes, I do.B. Yes, I am.C. No, I don’t.D. No, I’m not.Answer: A (or C, depending on the student’s preference) Question 5:How are you?A. Fine, thank you.B. I’m good at English.C. I’m ten years old.D. My name is Lily.Answer: A三、多选题(每题4分)Question 1:Choose two options that correctly complete the following sentence.The teacher_______the students_______their homework before class.A. remindedB. instructedC. persuadedD. advisedE. to completeF. to finishAnswer: A, E (The teacher reminded the students to complete their homework before class.)Question 2:Which two of the following words are synonyms?A. SignificantB. TrivialC. NegligibleD. MomentaryE. VitalAnswer: A, E (Significant and Vital are synonyms, both meaning “of great importance or consequence”.)Question 3:Which two phrases can be used to describe a person who is good at math?A. Musically inclinedB. Numerically adeptC. Linguistically proficientD. Athletically giftedE. Scientifically mindedAnswer: B, E (Numerically adept and Scientifically minded can both be usedto describe someone who is good at math.)Question 4:Select two options that correctly fill in the blanks in the following passage. The_______of the city was breathtaking, with its skyscrapers and busy streets. The_______was also very diverse, ranging from local cuisine to international fare.A. skylineB. populationC. cuisineD. cultureE. landscapeAnswer: A, C (The skyline of the city was breathtaking, with its skyscrapers and busy streets. The cuisine was also very diverse, ranging from local cuisine to international fare.)Question 5:Which two of the following sentences express the same idea?A. The film was a disappointment.B. The film exceeded my expectations.C. The film did not live up to the hype.D. I enjoyed the film more than I thought I would.E. The film fell short of its potential.Answer: A, C (Both sentences A and C express the idea that the film did notmeet the expected standards or hype.)四、阅读理解(每题4分)Title: The Power of ReadingReading is a powerful tool that has the ability to transform lives. It opens doors to new worlds, ideas, and perspectives. As children grow, reading becomes an essential part of their education and personal development.In today’s digital age, where screens are everywhere, it’s easy to overlook theimportance of reading books. However, research shows that reading纸质书籍(paper books) has numerous benefits that digital reading cannot fully replicate. For example, reading纸质书籍has been linked to improved concentration, comprehension, andeven sleep quality.Books are also a great source of inspiration and motivation. They can transport us to faraway places, introduce us to fascinating characters, and teach us valuable life lessons.Reading can help us escape from the stresses of daily life and provide a welcomerespite.Moreover, reading is a skill that can be enjoyed throughout life. It’s not just for children or students; adults can also reap the benefits of reading. Whether it’s a novel, aself-help book, or a biography, there’s something for everyone in the world of books.With the advent of e-books and digital reading devices, it’s now easier than ever toaccess books. However, it’s important to remember that纸质书籍still hold a special place in our hearts and minds. So, let’s make a commitment to pick up a book andenjoy the power of reading.Questions:1.What is the main idea of the passage? (4 points)Answer: The passage argues that reading is a powerful tool that can transform lives and has numerous benefits for individuals.2.According to the passage, what are some of the benefits of reading paper books? (4points)Answer: Some of the benefits of reading paper books include improved concentration, comprehension, and sleep quality.3.Why are books considered a great source of inspiration and motivation? (4 points)Answer: Books are considered a great source of inspiration and motivation becausethey can transport us to new places, introduce us to fascinating characters, and teach us valuable life lessons.4.Who can enjoy the benefits of reading according to the passage? (4 points)Answer: According to the passage, both children, students, and adults can enjoy thebenefits of reading.5.What does the passage suggest regarding the place of paper books in our lives? (4points)Answer: The passage suggests that paper books still hold a special place in our hearts and minds, despite the advent of e-books and digital reading devices.五、作文(30分)Section V: Writing (30 points)Topic:Write a short essay about the importance of reading books in your daily life. You should include reasons for why reading is beneficial and how it has impacted your life.Example Essay:The Value of Reading in My Daily LifeIn the fast-paced world of today, the importance of reading books often gets overshadowed by digital media and other forms of entertainment. However, I firmly believe that reading holds a unique place in my daily life, and it is an activity that has profoundly influenced me.Firstly, reading books is a source of knowledge and wisdom. Through the pages of a book, I am transported to different worlds, cultures, and eras. I learn about the experiences of others, which broaden my horizons and enrich my understanding of the world. This knowledge not only satisfies my intellectual curiosity but also prepares me for the challenges I may face in life.Secondly, reading books provides me with a sense of tranquility and escape. In a world filled with distractions and noise, books offer a quiet space for me to reflect and unwind. Whether I am reading a thrilling adventure story or a thought-provoking novel, I am able to immerse myself in the story and forget about the worries of daily life. This respite from reality helps me recharge and approach life with a fresh perspective.Lastly, reading books has had a profound impact on my personal growth.Through the characters and stories I encounter, I am able to identify with them and learn from their mistakes and successes. This has helped me develop empathy, compassion, and critical thinking skills. Furthermore, reading has inspired me to pursue my passions and dreams, and it has given me the courage to face my fears and overcome obstacles.In conclusion, the importance of reading books in my daily life cannot be overstated. It is a source of knowledge, a refuge from the hustle and bustle of daily life, and a catalyst for personal growth. As I continue to embark on this journey of reading, I am confident that it will continue to enrich my life and shape me into a better person.。
北师大版八年级上册数学期末考试试卷及答案
北师大版八年级上册数学期末考试试题一、单选题1.下列各数中,是无理数的是()AB C .227D .3.14152.在﹣3,0,2,这组数中,最小的数是()A .B .﹣3C .0D .23.甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S 甲2=5,S 乙2=20,S 丙2=23,S 丁2=32,则这四名学生的数学成绩最稳定的是()A .甲B .乙C .丙D .丁4.下列各组数据中,能构成直角三角形的三边的长的一组是()A .1,2,3B .4,5,6C .5,12,13D .13,14,155.下列运算正确的是()A 2=±B 2=-C .224-=D .22--=6.已知23x y =-⎧⎨=⎩是方程22kx y +=-的解,则k 的值为()A .﹣2B .2C .4D .﹣47.如图,在△ABC 中,∠C =90°,AC =3,BC =2.以AB 为一条边向三角形外部作正方形,则正方形的面积是()A .5B .6C .12D .138.在平面直角坐标系中,点A 的坐标是(3a ﹣5,a+1).若点A 到x 轴的距离与到y 轴的距离相等,且点A 在y 轴的右侧,则a 的值为()A .1B .2C .3D .1或39.若直线y =kx+b 经过第一、二、三象限,则函数y =bx ﹣k 的大致图象是()A .B .C .D .10.如图,直线a ∥b ,将含有45°的三角板ABC 的直角顶点C 放在直线b 上,若∠1=27°,则∠2的度数是()A .10°B .15°C .18°D .20°二、填空题11.9的算术平方根是.12.方程组43139x y x y -=-⎧⎨+=⎩的解是:________.13.一组数据:2,5,7,3,5的众数是________.14.请写出“两直线平行,同位角相等”的结论:_____.15.如图,把一张三角形纸片(△ABC )进行折叠,使点A 落在BC 上的点F 处,折痕为DE ,点D ,点E 分别在AB 和AC 上,DE ∥BC ,若∠B =70°,则∠BDF 的度数为____.17.如图,在ABC 中,40A ∠=︒,120CBD ∠=︒,则C ∠=__________.16.如图,直角坐标平面xoy 内,动点P 按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),…按这样的运动规律,动点P 第2022次运动到点的坐标是_____.三、解答题1802182620213π-(-)19.如图,AB ∥DG ,∠1+∠2=180°.(1)试说明:AD ∥EF ;(2)若DG 是∠ADC 的平分线,∠2=142°,求∠B 的度数.20.如图所示,在平面直角坐标系中,已知A (0,1),B (3,0),C (3,4).(1)在图中画出△ABC ,△ABC 的面积是;(2)在(1)的条件下,延长线段CA ,与x 轴交于点M ,则M 点的坐标是.(作图后直接写答案)21.若实数b 的立方根为2,且实数a,b ,c 2(4)8b a c ++-+=.(1)求23a b c -+的值;(2)若a ,b ,c 是△ABC 的三边,试判断三角形的形状.22.为了解某校八年级体育科目训练情况,从八年级学生中随机抽取了部分学生进行了一次体育科目测试(把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)图1中α∠的度数是__________,并把图2条形统计图补充完整.(2)抽取的这部分的学生的体育科目测试结果的中位数是在__________级;(3)依次将优秀、良好、及格、不及格记为90分、80分、70分、50分,请计算抽取的这部分学生体育的平均成绩.23.某小区为了绿化环境,计划分两次购进A ,B 两种树苗,第一次购进A 种树苗40棵,B 种树苗15棵,共花费1750元;第二次购进A 种树苗20棵,B 种树苗6棵,共花费860元.(两次购进的A ,B 两种树苗各自的单价均不变)(1)A ,B 两种树苗每棵的价格分别是多少元?(2)因受季节影响,A 种树苗价格下降10%,B 种树苗价格上升20%,计划购进A 种树苗25棵,B 种树苗20棵,问总费用是多少元?24.如图,在平面直角坐标系中,过点C (0,6)的直线AC 与直线OA 相交于点A (4,2).(1)求直线AC 的表达式;(2)求△OAC 的面积;(3)动点M 在线段OA 和射线AC 上运动,是否存在点M ,使△OMC 的面积是△OAC 的面积的12?若存在,求出此时点M 的坐标;若不存在,请说明理由.25.已知:如图,//,DE BC ADE EFC ∠=∠,试说明:12∠=∠.26.如图,在平面直角坐标系中,一次函数y =kx +b 的图象与x 轴交点为A (-3,0),与y 轴交点为B ,且与正比例函数43y x =的图象交于点C (m,4).(1)求点C 的坐标;(2)求一次函数y =kx +b 的表达式;(3)若点P 是y 轴上一点,且∆BPC 的面积为6,请直接写出点P 的坐标.参考答案1.A2.B3.A4.C5.B6.C7.D8.C9.D 10.C 11.312.23 xy=⎧⎨=⎩13.514.同位角相等15.40°16.(2021,0)17.80°18.219.【详解】(1)∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠BAD+∠2=180°.∵AD∥EF.(2)∵∠1+∠2=180°且∠2=142°,∴∠1=38°,∵DG是∠ADC的平分线,∴∠CDG =∠1=38°,∵AB ∥DG ,∴∠B =∠CDG =38°.20.【详解】(1)如图,△ABC 的面积=14362⨯⨯=,故答案为:6;(2)如图,设经过点A ,C 的直线为y kx b =+,代入A (0,1),C (3,4)得,134b k b =⎧⎨+=⎩11k b =⎧∴⎨=⎩1y x ∴=+令0y =,则1x =-点M 的坐标(-1,0),故答案为:(-1,0).21.(1)232a b c -+=-;(2)△ABC 是直角三角形.【分析】(1)先根据立方根的定义求出b 的值,然后根据非负数的性质求出a 、c 的值,最后代值计算即可;(2)根据(1)所求,利用勾股定理的逆定理求解即可.【详解】解:(1)∵实数b 的立方根是2,∴b =8,2(4)8b a c +-+=,28(4)8a c ++-+=,2(4)0a c +-+=,0≥,2(4)0a c -+≥,∴6040a a c -=⎧⎨-+=⎩,∴a =6,c =10,∴232638102a b c -+=⨯-⨯+=-;(2)∵a 2+b 2=36+64=100,c 2=100,∴a 2+b 2=c 2.∴△ABC 是直角三角形.【点睛】本题主要考查了立方根,非负数的性质,代数式求值,勾股定理的逆定理,熟知相关知识是解题的关键.22.(1)54°,图形见解析;(2)C ;(3)72.【分析】(Ⅰ)根据B 级的人数除以B 级所占的百分比,可以计算出本次抽查的学生数,根据圆周角乘以A及所占的比例,可得扇形的圆心角;根据抽测人数乘以C级所占的比例,从而可以将条形统计图补充完整;(Ⅱ)根据(Ⅰ)中补充完整的条形统计图和中位数的定义可以解答本题;(Ⅲ)根据统计图中的数据,再利用加权平均数的定义计算出抽取的这部分学生体育的平均成绩即可.【详解】解:(Ⅰ)本次抽查的学生有:12÷30%=40(人),∠α的度数是:360°×640=54°,故答案为54;C级学生有:40-6-12-8=14(人),补全的条形统计图如图所示,(Ⅱ)由统计图可得,抽取的这部分的学生的体育科目测试结果的中位数是在C级,故答案为C;(Ⅲ)∵90680127014508x7240⨯+⨯+⨯+⨯==,∴抽取的这部分学生体育的平均成绩为72分.【点睛】本题考查了条形统计图、扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)A种树苗每棵的价格40元,B种树苗每棵的价格10元;(2)总费用需1140元.【分析】(1)设A、B两种树苗每棵的价格分别是x元、y元,根据题意列二元一次方程组,解方程组求出x、y的值即可得答案;(2)根据(1)所求得结果进行求解即可.【详解】解:(1)设A种树苗每棵的价格x元,B种树苗每棵的价格y元,根据题意得:40151750 206860x yx y+=⎧⎨+=⎩,解得:4010x y =⎧⎨=⎩,答:A 种树苗每棵的价格40元,B 种树苗每棵的价格10元;(2)40(110%)2510(120%)20⨯-⨯+⨯+⨯=1140元。
北师大版八年级下册数学期末考试试卷及答案
北师大版八年级下册数学期末考试试题一、单选题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.a、b 都是实数,且a<b,则下列不等式正确的是()A.a+x >b+x B.1-a<1-b C.5a <5b D.2a >2b 3.在平面直角坐标系内,将点M(3,1)先向上平移2个单位长度,再向右平移3个单位长度,则移动后的点的坐标是()A.(6,3)B.(6,﹣1)C.(0,3)D.(0,﹣1)有意义的x 的取值范围是()A.3x >B.3x <C.3x ≥D.3x ≤5.若()234a m a +-+能用完全平方公式进行因式分解,则常数m 的值是()A.1或5B.1C.-1D.7或1-6.如图,l∥m,等边三角形ABC 的顶点B 在直线m 上,∠1=20°,则∠2的度数为()A.60°B.45°C.40°D.30°7.函数y kx b =+的图象如图所示,则关于x 的不等式0kx b +≥的解集是()A.2x ≤B.2x ≥C.0x ≤D.0x ≥8.化简22a b a b a b ---的结果为()A.-a b B.a b +C.a ba b +-D.a ba b-+9.如图,点P 在∠AOB 的平分线上,PC⊥OA 于点C,∠AOB=30°,点D 在边OB 上,且OD=DP=2.则线段PC 的长度为()A.3B.2C.1D.1210.如图,边长为a ,b 的长方形,它的周长为14,面积为10,则22a b ab ab +-的值为()A.70B.60C.130D.14011.若正多边形的一个外角是72 ,则该正多边形的内角和为()A.360 B.540 C.720 D.90012.如图,E 是▱ABCD 的边DC 的延长线上一点,连接AE ,且AE DE =,若46E ∠=︒,则B Ð的度数为()A.65︒B.66︒C.67︒D.68︒二、填空题13.如图,在△ABC 中,EF 是△ABC 的中位线,且EF=5,则AC 等于________.14.把多项式x 2+ax +b 分解因式得(x+1)(x﹣3),则a-b 的值是_____.15.在ABCD 中,:3:5AB BC =,它的周长是32,则BC =______.16.关于x 的分式方程21122mx x x +-=--有增根,则m =______.三、解答题17.解不等式组:102332x x x ->⎧⎨-<-⎩18.先化简,再求值:22131369x xx x x -⎛⎫-÷ ⎪--+⎝⎭,其中2x =19.因式分解:(1)2222416a x a y -;(2)()2(21)6219x x ---+.20.如图,ABC 和BDE 是等边三角形,连接AD 、CE .求证:ABD △≌CBE △.21.如图,已知平行四边形ABCD 的对角线AC 和BD 交于点O ,且28AC BD +=,12BC =,求AOD ∆的周长.22.如图,在ABC 中,4AB =,7BC =,60B ∠=︒,将ABC 绕点A 顺时针旋转一定角度得到ADE ,当点B 的对应点D 恰好落在BC 边上时,求CD 的长.23.如图,等腰ABC 中,AB AC =,120BAC ∠=︒,AD AB ⊥交BC 于点D ,2AD =,求BC 的长.24.△ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)画出△ABC关于原点O的中心对称图形△A1B1C1;(2)写出中心对称图形△A1B1C1的顶点坐标.25.已知:如图A、C是▱DEBF的对角线EF所在直线上的两点,且AE=CF.求证:四边形ABCD是平行四边形.26.为满足防护新冠疫情需要,现有甲乙两种机器同时开工制造口罩.甲加工90个口罩所用的时间与乙加工120个口罩所用的时间相等,已知甲乙两种机器每秒钟共加工35个口罩,求甲乙两种机器每秒各加工多少个口罩?27.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?28.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒.(1)求BQ 的长(用含t 的代数式表示);(2)当四边形ABQP 是平行四边形时,求t 的值;(3)当325t =时,点O 是否在线段AP 的垂直平分线上?请说明理由.参考答案1.C【详解】解:A、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、既是轴对称图形,又是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形(不考虑颜色),故本选项不符合题意;故选:C.2.C【详解】解:A.∵a<b,∴a+x<b+x,计算错误;B.∵a<b,∴-a>-b,∴1-a>1-b,计算错误;C.∵a<b,∴5a<5b,计算正确;D.∵a<b,∴22a b <,计算错误.故答案为:C.【点睛】本题主要考查不等式的基本性质,熟练掌握不等式得基本性质是解题的关键.3.A【解析】【分析】横坐标右移加,左移减;纵坐标上移加,下移减;依此即可求解.【详解】解:3+3=6,1+2=3.故点M 平移后的坐标为(6,3).故选:A.【点睛】本题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件,由被开方数大于等于0,分母不等于0即可求解.【详解】解:根据二次根式的性质,被开方数x-3≥0,解得x≥3,≠,即x-3≠0,解得x≠3有意义的x的取值范围是3x>.故选A.【点睛】本题主要考查了二次根式有意义的条件和分式有意义的条件.二次根式中被开方数必须是非负数,否则二次根式无意义,当二次根式在分母上时,还要考虑分母不等于零.5.D【解析】【分析】直接利用完全平方公式进而分解因式得出答案.【详解】解:∵a2+(m-3)a+4能用完全平方公式进行因式分解,∴m-3=±4,解得:m=-1或7.故选:D.【点睛】本题考查了公式法分解因式,熟练掌握完全平方公式的结构特点是解题的关键.6.C【详解】解:过C作CM∥直线l,∵△ABC是等边三角形,∴∠ACB=60°,过C作CM∥直线l,∵直线l∥直线m,∴直线l∥直线m∥CM,∵∠ACB=60°,∠1=20°,∴∠1=∠MCB=20°,∴∠2=∠ACM=∠ACB-∠MCB=60°-20°=40°.故选:C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.7.A【详解】解:由图可知,当x≤2时,kx+b≥0.故选:A.8.B【详解】解:22a b a b a b---22a b a b-=-()()a b a b a b+-=-a b =+,故选:B .9.C【详解】解:如图,过点P 作PE⊥OB 于E,∵∠AOB=30°,点P 在∠AOB 的平分线上,∴∠AOP=∠POB=15°,∵OD=DP=2,∴∠OPD=∠POB=15°,∴∠PDE=30°,∴PE=12PD=1,∵OP 平分∠AOB,PC⊥OA,PE⊥OB,∴PC=PE=1,故选:C.【点睛】此题考查的是角平分线的性质和直角三角形30°所对的边等于斜边的一半的应用、等腰三角形的性质,掌握角平分线上的点到角的两边距离相等和直角三角形30°所对的边是斜边的一半是解题关键.10.B【解析】【分析】先根据长方形的周长和面积得出a+b 和ab 的值,再将22a b ab ab +-的前两项提出ab,然后代入求出即可.【详解】解:∵边长为a ,b 的长方形,它的周长为14,面积为10,∴a+b=7,ab=10,∴()22=+a b ab ab ab a b ab+--=10710⨯-=60故选:B【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了数学整体思想和正确运算的能力.11.B【解析】【分析】先根据正多边形的外角和为360°求出边数,然后再运用多边形的内角和公式解答即可.【详解】解:多边形的边数为360°÷72°=5则多边形的内角和为:(5-2)×180°=540°.故答案为B.【点睛】本题考查了正多边形的每一个外角都相等、多边形的外角和为360°以及多边形的内角和公式,求得正多边形的边数和掌握多边形内角和公式是解答本题的关键.12.C【解析】【分析】根据平行四边形的性质得到∠B=∠D,再由等腰三角形的性质与三角形的内角和定理求出∠D 即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴∠B=∠D,∵AE=DE,∴∠D=∠DAE,∵∠E=46°,∠E+∠D+∠DAE=180°,∴()1=180=672D E ∠-∠ ∴∠B=67°.故选C.【点睛】本题主要考查了平行四边形的性质,等腰三角形的性质,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.13.10【解析】【分析】根据三角形中位线定理即可求出AC.【详解】解:在△ABC中,∵EF是△ABC的中位线,∴EF=12 AC,∴AC=2EF,∵EF=5,∴AC=2×5=10,故答案为:10.【点睛】本题主要考查了三角形中位线定理,熟记三角形的中位线等于第三边的一半是解决问题的关键.14.1【解析】【分析】把因式分解后的式子展开即可得出答案.【详解】∵()()21323x x x x +-=--又()()213x x x ax b+-=++∴23a b ,=-=-∴1a b -=故答案为1.【点睛】本题考查的是因式分解,属于基础题型,解题关键是因式分解后的式子展开后与原式对应项系数相等.15.10【解析】【分析】设3,5AB x BC x ==,然后根据周长等于32列方程.【详解】解:设3,5AB x BC x==由题意得,()23532x x +=解得2x =所以BC=10.故答案为10.【点睛】本题主要考查了运用方程解决实际问题,利用平行四边形的周长,求边长.16.5【解析】【分析】根据已知有增根,即使分式方程分母为0的根,即满足x-2=0;解题中分式方程,先通分,再去分母,化成整式方程后,用x 表示出未知参数m,最后将x 的值代入即可求得m 的值.【详解】解:分式方程有增根20x ∴-=得:x=221122m x x x +-=--通分得:()2112m x x -+=-去分母得:212m x x --=-化简得:31m x =-将x=2代入得m=5故答案为5.【点睛】这道题考察的是分式方程增根的概念和分式方程未知参数的解法.解决这类题的关键在于:确定增根,化分为整,增根代入.17.1x >【解析】【分析】分别把两个不等式的解集求出来,再借助数轴求出两个解集的公共部分,即得不等式组的解集.【详解】解不等式(1)得:1x >解不等式(2)得:1x >-两个解集在数轴上表示如下:∴不等式组的解集为:1x >【点睛】本题考查了解不等式组及利用数轴求不等式组的解集.18.4xx -,1【解析】【分析】先根据分式的混合运算法则进行化简,再把x【详解】解:原式()213(3)33x x x x x -+-=⋅--4xx-=当x =时,原式1=.【点睛】本题考查了分式的化简求值以及分母有理化,熟练掌握运算法则是解题的关键19.(1)()()2422ax y x y -+;(2)()242x -【解析】【分析】(1)先提取公因式,再用平方差公式分解即可;(2)先用完全平方公式分解,再提取公因式即可.【详解】解:(1)2222416a x a y-=()22246ax y -=()()2422a x y x y -+;(2)()2(21)6219x x ---+=2(213)x --=()242x -.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式和公式法进行因式分解,注意:因式分解要彻底.20.见解析.【解析】【分析】由等边三角形性质得到AB=BC,BD=BE,∠ABC=∠DBE=60°,从而有∠ABD=∠CBE ,即可得到结论【详解】证明:∵ABC 和BDE 是等边三角形∴60ABC DBE ∠=∠=︒∴ABC DBC DBE DBC∠-∠=∠-∠∴ABD CBE∠=∠又∵AB BC =,BD BE =,∴在ABD △和CBE △中AB BC ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩∴ABD △≌CBE △()SAS 【点睛】本题考查了全等三角形的判定,以及等边三角形的性质,熟练掌握全等三角形的判定定理是解题关键.21.26【解析】【分析】根据平行四边形对角线互相平分的性质,由28AC BD +=,得到14AO OD +=,再根据平行四边形对边相等得到12AD BC ==,最后算出AOD ∆的周长.【详解】解:∵四边形ABCD是平行四边形,∴AO CO =,BO DO =,∵28AC BD +=,∴14AO OD +=,∵12AD BC ==,∴AOD ∆的周长141226AO OD AD =++=+=.本题考查平行四边形的性质,解题的关键是熟练掌握平行四边形的性质.22.3【解析】【分析】由旋转的性质可证得ABD △是等边三角形,则可求得BD 的长,再利用线段的和差即可求得答案.【详解】解:∵将ABC 绕点A 顺时针旋转一定角度得到ADE ,∴4AD AB ==.∵60B ∠=︒,∴ABD △是等边三角形,∴4BD AD AB ===,∴743CD BC AD =-=-=.【点睛】本题考查了旋转的性质、等边三角形的判定和性质、线段的和差等,证得ABD △是等边三角形是解题的关键.23.6BC =【解析】【分析】由题意易得∠B=∠C=30°,进而可得∠CAD=∠C=30°,则有2CD AD ==,由含30°的直角三角形的性质可得BD=4,进而问题可求解.解:∵AB AC =,120BAC ∠=︒,∴()1180302B C BAC ∠=∠=︒-∠=︒,∵AD AB ⊥,∴90BAD ∠=︒,∴1209030CAD BAC BAD C ∠=∠-∠=︒-︒=︒=∠,∴2CD AD ==,在Rt BAD 中,30B ∠=︒,∴24BD AD ==,∴426BC BD CD =+=+=.【点睛】本题主要考查等腰三角形的性质与判定及含30°的直角三角形的性质,熟练掌握等腰三角形的性质与判定及含30°的直角三角形的性质是解题的关键.24.(1)画图见解析;(2)A 1(1,-2),B 1(3,-3),C 1(4,0)【解析】【分析】(1)依据中心对称的性质,即可得到△ABC 关于原点O 的中心对称图形△A 1B 1C 1;(2)根据图象可得各点坐标.【详解】解:(1)如图所示:(2)由图可知:A 1(1,-2),B 1(3,-3),C 1(4,0).【点睛】本题主要考查了作图—中心对称,掌握中心对称的性质是解决问题的关键.25.证明见解析【解析】【分析】根据平行四边形和平行线的性质,推导得DEA BFC ∠=∠,DFC BEA ∠=∠;根据全等三角形的判定和性质,证明DEA BFC △≌△、DFC BEA △≌△,得AD BC =、CD AB =,即可完成证明.【详解】证明:∵平行四边形DEBF,∴//DE BF ,//DF BE ,∴DEF BFE ∠=∠,DFE BEF ∠=∠,∵180DEF DEA ∠+∠=︒,180BFE BFC ∠+∠=︒,180DFE DFC ∠+∠=︒,180BEF BEA ∠+∠=︒,∴DEA BFC ∠=∠,DFC BEA ∠=∠,∵平行四边形DEBF,∴DE BF =,DF BE =,在DEA △和BFC △中,DE BF DEA BFC AE CF =⎧⎪∠=∠⎨⎪=⎩∴DEA BFC △≌△,∴AD BC =,在DFC △和BEA △中,DF BE DFC BEA AE CF =⎧⎪∠=∠⎨⎪=⎩∴DFC BEA △≌△,∴CD AB =,∴四边形ABCD 是平行四边形.【点睛】本题考查了平行四边形、平行线、全等三角形的知识;解题的关键是熟练掌握平行四边形、全等三角形的判定和性质,从而完成求解.26.甲每秒加工口罩15个,乙每秒加工口罩20个.【解析】【分析】设甲每秒加工口罩x 个,则乙每秒加工口罩35-x 个.再根据题意可列出关于x 的分式方程,求解即可.【详解】设甲每秒加工口罩x 个,则乙每秒加工口罩35-x 个.根据题意可列方程9012035x x=-.解得:15x =,经检验15x =是原方程的解.故甲每秒加工口罩15个,乙每秒加工口罩35-15=20个.【点睛】本题考查分式方程的实际应用.根据题意列出等量关系式是解答本题的关键.27.(1)篮球、足球各买了20个,40个;(2)最多可购买篮球32个.【解析】【分析】(1)设篮球、足球各买了x ,y 个,根据等量关系:篮球、足球共60个,篮球、足球共用4600元,列出方程组,解方程组即可得;(2)设购买了a 个篮球,根据购买篮球的总金额不超过购买足球的总金额,列出不等式进行求解即可.【详解】(1)设篮球、足球各买了x ,y 个,根据题意,得6070804600x y x y +=⎧⎨+=⎩,解得2040 xy=⎧⎨=⎩,答:篮球、足球各买了20个,40个;(2)设购买了a个篮球,根据题意,得()708060a a≤-,解得32a≤,∴最多可购买篮球32个.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系或不等关系列出方程或不等式是解题的关键.28.(1)10-t;(2)5秒;(3)见解析【解析】【分析】(1)先证明△APO≌△CQO,可得出AP=CQ=t,则BQ即可用t表示;(2)由题意知AP∥BQ,根据AP=BQ,列出方程即可得解;(3)过点O作直线EF⊥AP,垂足为E,与BC交于F,利用三角形面积公式求出EF,得到OE,利用勾股定理求出AE,再说明AP=2AE即可.【详解】解:(1)∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠PAO=∠QCO,∵∠AOP=∠COQ,∴△APO≌△CQO(ASA),∴AP=CQ=t,∵BC=10,∴BQ=10-t;(2)∵AP∥BQ,当AP=BQ时,四边形ABQP是平行四边形,即t=10-t,解得:t=5,∴当t为5秒时,四边形ABQP是平行四边形;(3)过点O作直线EF⊥AP,垂足为E,与BC交于F,在Rt△ABC中,∵AB=6,BC=10,,∴AO=CO=12AC=4,∵S△ABC=12AB AC⋅=12BC EF⋅,∴AB•AC=BC•EF,∴6×8=10×EF,∴EF=24 5,∴OE=125,165,当325t=时,AP=325,∴2AE=AP,即点E是AP中点,∴点O在线段AP的垂直平分线上.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、勾股定理,垂直平分线的判定等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.。
北师大版八年级下册数学期末考试试题含答案
北师大版八年级下册数学期末考试试卷一、单选题1.若m n >,则下列不等式中不成立...的是()A .22m n +>+B .22m n->-C .2>2m n --D .22m n>2.下列图形:平行四边形、等腰三角形、线段、正六边形、圆,其中既是中心对称图形又是轴对称图形的有()A .1个B .2个C .3个D .4个3.下列各式从左到右的变形中,是因式分解的是()A .()()2339a a a +-=-B .()()2211a b a b a b -+=+-+C .()()2422m m m -=+-D .2211m m m m ⎛⎫+=+ ⎪⎝⎭4.下列各式中x 、y 的值均扩大为原来的2倍,则分式的值一定保持不变的是()A .2x y B .1x x y-+C .2x y-D .y x y+5.若关于x 的分式方程311-=-m x 的解为2x =,则m 的值为()A .5B .4C .3D .26.如图,在ABC 中,AB AC =,AD AB ⊥交BC 于点D ,120BAC ∠=︒,4=AD ,则BC 的长()A .8B .10C .11D .127.如图,将ABC 绕点A 按逆时针方向旋转80°,得到ADE ,连接BE ,若//AD BE ,CAE ∠的度数为()A .20°B .30°C .25°D .35°8.如图,一次函数1y kx b =+图象经过点()2,0A ,与正比例函数22y x =的图象交于点B ,则不等式02kx b x <+<的解集为()A .0x >B .1x >C .01x <<D .12x <<9.如图,在ABC 中,AB AC =,46BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线OD 交于点O ,点E 在BC 上,点F 在AC 上,连接EF ,将C ∠沿EF 折叠,点C 与点O 恰好重合时,则OEC ∠的度数()A .90°B .92°C .95°D .98°二、填空题10x 的取值范围是______.11.已知一个正多边形的一个内角是120º,则这个多边形的边数是_______.12.若1n m -=,则22242m mn n -+的值为______.13.如图:在ABC 中,90ACB ∠=︒,AD 平分CAB ∠交BC 于点D ,且2BD CD =,9BC cm =,则点D 到AB 的距离为______.14.不等式5132x x -+>-的正整数解为______.15.如图,ABC ∆,D 、E 分别是BC 、AC 的中点,BF 平分ABC ∠,交DE 于点F ,若10AB =,8BC =,则EF 的长是______.16.关于x 的分式方程2433x m mx x++=--的解为非负数,则实数m 的取值范围______.17.如图,四边形ABCD 中,//AB DC ,6DC =cm ,9AB =cm ,点P 以1cm/s 的速度由A 点向B 点运动,同时点Q 以2cm/s 的速度由C 点向D 点运动,其中一点到达终点时,另一点也停止运动,当线段PQ 将四边形ABCD 截出一个平行四边形时,此时的运动时间为______s .18.如图,BD 是ABC 的内角平分线,CE 是ABC 的外角平分线,过A 分别作AF BD ⊥、AG CE ⊥,垂足分别为F 、G ,连接FG ,若6AB =,5AC =,4BC =,则FG 的长度为____三、解答题19.(1)因式分解:32231212x x y xy -+(2)解不等式组:()3241213x x x x ⎧--<⎪⎨+>-⎪⎩,并把解集表示在数轴上.20.(1)先化简,再求值:236214422m m m m m m+-÷++++-,其中5m =.(2)解方:2231111x x x +=+--21.如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,ABC 的顶点均落在格点上.(1)将ABC 先向右平移6个单位长度再向下平移1个单位长度,得到111A B C △,在网格中画出111A B C △;(2)作ABC 关于x 轴的轴对称图形,得到222A B C △,在网格中画出222A B C △.22.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,E 、F 分别是AB ,AC 上的点,且BE AF =,连接AD 、DE 、DF 、EF .求证:①BED ≌AFD V ②DE DF⊥23.某服装厂准备加工260套运动服,在加工了60套后,采用新技术,使每天的工作效率是原来的2倍,结果共用了8天完成,求该厂原来每天加工多少套运动服.24.如图,在ABCD 中,过点B 作BM AC ⊥,交AC 于点E ,交CD 于点M ,过点D 作DN AC ⊥,交AC 于点F ,交AB 于点N .(1)求证:四边形BMDN 是平行四边形;(2)已知125AF EM ==,,求AN 的长.25.甲、乙两家商场以相同的价格出售同样的商品,为了吸引顾客各自推出不同的优惠方案:在甲商场购买商品超过300元之后,超过部分按8折优惠;在乙商场购买商品超过200元之后,超过部分按8.5折优惠,设甲商场实际付费为1y 元,乙商场实际付费为2y 元,顾客购买商品金额为x 元()300x >.(1)分别求出1y ,2y 与x 的函数关系式;(2)比较顾客到哪个商场更优惠,并说明理由.26.在ABC 中,5AB BC ==,6AC =,将ABC 沿BC 方向平移得到DCE ,A ,C 的对应点分别是D 、E ,连接BD 交AC 于点O .(1)如图1,将直线BD 绕点B 顺时针旋转,与AC 、DC 、DE 分别相交于点I 、F 、G ,过点C 作//CH BG 交DE 于点H .①求证:IBC ≌HCE ②若DF CF =,求DG 的长;(2)如图2,将直线BD 绕点O 逆时针旋转()90αα<︒,与线段AD 、BC 分别交于点P 、Q ,在旋转过程中,四边形ABQP 的面积是否发生变化?若不变,求出四边形ABQP 的面积,若变化,请说明理由;(3)在(2)的旋转过程中,AOP 能否为等腰三角形,若能,请直接写出PQ 的长,若不能,请说明理由.参考答案1.B 【详解】解:A .∵m n >,不等式两边同时加2,不等号方向不变,∴22m n +>+,故A 不符合题意;B .∵m n >,不等式两边同时乘以-2,-2<0,不等号方向改变,∴22m n -<-,故B 符合题意;C .∵m n >,不等式两边同时加-2,不等号方向不变,∴22m n ->-,故C 不符合题意;D .∵m n >,不等式两边同时乘以12,12>0,不等号方向不变,∴22m n>,故D 不符合题意;故选B .2.C 【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:平行四边形不是轴对称图形,但是中心对称图形;等腰三角形是轴对称图形,不是中心对称图形;线段、正六边形、圆既是中心对称图形又是轴对称图形,所以既是中心对称图形又是轴对称图形的有3个.故选:C .3.C 【分析】将多项式写成几个整式的积的形式,叫做将多项式分解因式,也叫因式分解,根据定义解答.【详解】解:A 、()()2339a a a +-=-不是因式分解;B 、()()2211a b a b a b -+=+-+不是因式分解;C 、()()2422m m m -=+-是因式分解;D 、2211m m m m ⎛⎫+=+ ⎪⎝⎭不是因式分解;故选:C .【点睛】此题考查因式分解,掌握因式分解的定义及因式分解的方法是解题的关键.4.D 【解析】【分析】根据分式的基本性质,分子分母同时乘除同一个不为零的数或式,分式的值不发生改变进行变形即可求解.【详解】解:根据题意,将x 变成2x,y 变成2y 化简求解:A.2x y 变成22222(2)4x x xy y y =≠,该选项不符合题意,B.1x x y -+变成21122x x x y x y --≠++,该选项不符合题意,C.2x y -变成2222x y x y ≠--,该选项不符合题意,D.yx y+变成22()y y x y x y =++,该选项符合题意,【点睛】本题考查了分式的基本性质,属于基础题,掌握分式的性质是解题关键. 5.B【解析】【详解】分析:直接解分式方程进而得出答案.详解:解分式方程311mx-=-得,x=m-2,∵关于x的分式方程311mx-=-的解为x=2,∴m-2=2,解得:m=4.故选B.点睛:此题主要考查了分式方程的解,正确解方程是解题关键.6.D【解析】【分析】依据等腰三角形的内角和,即可得到∠C=∠B=30°,依据AD⊥AB交BC于点D,即可得到BD=2AD=8,∠CAD=30°=∠B,CD=AD=4,进而得出BC的长.【详解】解:∵△ABC中,AB=AC,∠BAC=120°,∴∠C=∠B=30°,∵AD⊥AB交BC于点D,∴BD=2AD=8,∠CAD=30°=∠B,∴CD=AD=4,∴BC=BD+CD=8+4=12.故选:D.【点睛】本题主要考查了含30°角的直角三角形的性质以及等腰三角形的性质,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.【解析】【分析】由旋转的性质可知AB AE =,CAD BAE ∠=∠,即可求出50AEB ABE ∠=∠=︒.再由平行线的性质可知EAD AEB ∠=∠,最后由CAE CAD EAD ∠=∠-∠,即可求出CAE ∠的大小.【详解】∵ADE 是由ABC 绕点A 按逆时针方向旋转80︒得到,∴AB AE =,80CAD BAE ∠=∠=︒,∴1(180)502AEB ABE BAE ∠=∠=︒-∠=︒.∵//AD BE ,∴50EAD AEB ∠=∠=︒,∴805030CAE CAD EAD ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查旋转的性质,等腰三角形的判定和性质,平行线的性质.利用数形结合的思想是解答本题的关键.8.D 【解析】【分析】当x >1时,直线y=2x 都在直线y=kx+b 的上方,当x <2时,直线y=kx+b 在x 轴上方,于是可得到不等式0<kx+b <2x 的解集.【详解】解:当x >1时,2x >kx+b ,∵函数y=kx+b (k≠0)的图象经过点B (2,0),∴x <2时,kx+b >0,∴不等式0<kx+b <2x 的解集为1<x <2.故选D .【点睛】本题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.9.B 【解析】【分析】连接OB 、OC .由角平分线和垂直平分线的性质可求出1232ABO BAC ∠=∠=︒,再由等腰三角形的性质可求出67ABC ACB ∠=∠=︒,由OBC ABC ABO ∠=∠-∠,即可求出OBC ∠的大小.在AOB 和AOC △中,利用“SAS”易证AOB AOC ≅ ,即得出OB=OC ,从而可求出44OBC OCB ∠=∠=︒.再由题意折叠可知OE=CE ,即得出44EOC ECO ∠=∠=︒,最后由180OEC EOC ECO ∠=︒-∠-∠,即可求出OEC ∠的大小.【详解】如图,连接OB 、OC.∵46BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线OD 交于点O ,∴1232OAB OAC ABO BAC ∠=∠=∠=∠=︒.∵AB=AC ,∴1(180)672ABC ACB BAC ∠=∠=︒-∠=︒,∴44OBC ABC ABO ∠=∠-∠=︒.在AOB 和AOC △中,AB AC OAB OAC AO AO =⎧⎪∠=∠⎨⎪=⎩,∴()AOB AOC SAS ≅ ,∴OB=OC ,∴44OBC OCB ∠=∠=︒.由题意将C ∠沿EF 折叠,点C 与点O 恰好重合,∴OE=CE ,∴44EOC ECO ∠=∠=︒,∴18092OEC EOC ECO ∠=︒-∠-∠=︒.故选:B .【点睛】本题考查角平分线、线段垂直平分线的性质,等腰三角形的性质,全等三角形的判定和性质,折叠的性质.作出辅助线构造等腰三角形是解答本题的关键.综合性强,较难.10.1≥x 且3x ≠【解析】【分析】直接利用二次根式有意义被开方数是非负数、分式有意义则分母不为零,进而得出答案.【详解】由题意知:x−1≥0且x−3≠0,解得:x≥1且x≠3.故答案为:x≥1且x≠3.【点睛】此题主要考查了二次根式有意义、分式有意义,正确掌握相关有意义的条件是解题关键.11.6【解析】【详解】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解:外角是180-120=60度,360÷60=6,则这个多边形是六边形.故答案为六.12.2【解析】先把所求式子的前三项分解因式得到()2222422m mn n m n -+=-,然后整体代入计算即得答案.【详解】解:∵1m n -=,∴()22222422212m mn n m n -+=-=⨯=.故答案为:2.【点睛】本题考查了多项式的因式分解和代数式求值,属于常考题型,熟练掌握分解因式的方法和整体的数学思想是解题的关键.13.3cm【解析】【分析】先求出CD 的长,再根据角平分线的性质证得DE=CD 即可.【详解】解:∵2BD CD =,9BC cm =,∴133CD BC ==cm ,过点D 作DE ⊥AB 于E ,∵AD 平分CAB ∠交BC 于点D ,90ACB ∠=︒,∴DE=CD=3cm ,故答案为:3cm .【点睛】此题考查角平分线的性质:角平分线上的点到角两边的距离相等,熟记性质定理是解题的关键.14.1,2【解析】【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.解:去分母得:x−5+2>2x−6,移项得:x−2x >−6+5−2,合并同类项得:−x >−3,系数化为1得:x <3.故不等式的正整数解是1,2,故答案为1,2.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.1.【解析】【分析】根据三角形中位线定理得到DE ∥AB ,DE=0.5AB=5,根据平行线的性质、角平分线的定义求出DF ,计算即可.【详解】解:D Q 、E 分别是BC 、AC 的中点,152DE AB ∴==,//DE AB ,142BD BC ==,ABF DFB ∴∠=∠,BF 平分ABC ∠,ABF DBF ∴∠=∠,DBF DFB ∠=∠,4DF DB ∴==,1EF DE DF ∴=-=,故答案为1.【点睛】本题考查的是角平分线的定义、三角形中位线定理,掌握平行线的性质、角平分线的定义是解题的关键.16.12m ≤且3m ≠【分析】先解得分式方程的解为43m x =-,再由题意可得43m -≥0,又由x≠3,即可求m 的取值范围.【详解】解:2433x m m x x ++=--,方程两边同时乘以x−3,得x +m−2m =4(x−3),去括号得,x−m =4x−12,移项、合并同类项得,3x =12−m ,解得:43m x =-,∵解为非负数,∴43m -≥0,∴m≤12,∵x≠3,∴m≠3,∴m 的取值范围为m≤12且m≠3,故答案为为:m≤12且m≠3.【点睛】本题考查分式方程的解,熟练掌握分式方程的解法,注意增根的情况是解题的关键.17.2或3【解析】【分析】设运动时间为t ,有题意可得AP=tcm ,PB=(9-t )cm ,CQ=2tcm ,DQ=(6-2t )cm ,然后分当四边形APQD 是平行四边形时,DQ=AP 和当四边形BPQC 是平行四边形时,CQ=BP ,进行求解即可.【详解】解:设运动时间为t ,有题意可得AP=tcm ,PB=(9-t )cm ,CQ=2tcm ,DQ=(6-2t )cm ,∵AB ∥CD∴当四边形APQD 是平行四边形时,DQ=AP ,解得t=2;当四边形BPQC 是平行四边形时,CQ=BP ,∴9-t=2t ,解得t=3,∴当t=2或3时,线段PQ 将四边形ABCD 截出一个平行四边形,故答案为:2或3.【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握相关知识进行求解.18.32【解析】【分析】延长AF 交BC 延长线于H ,延长AG 交BC 延长线于I ,由BD 平分∠ABC ,AF ⊥BF ,可得∠CBF=∠ABF ,∠HFB=∠AFB=90°,可证△HBF ≌△ABF (ASA ),可得BH=BA=6,HF=AF ,由CE 平分∠ACI ,AG ⊥CE ,可得∠ICG=∠ACG ,∠IGC=∠AGC=90°,可证△ICG ≌△ACG (ASA ),可得CI=CA=5,IG=AG,可证FG 为△AHI 的中位线即可.【详解】解:延长AF 交BC 延长线于H ,延长AG 交BC 延长线于I ,∵BD 平分∠ABC ,AF ⊥BF ,∴∠CBF=∠ABF ,∠HFB=∠AFB=90°,在△HBF 和△ABF 中,HBF ABF BF BF HFB AFB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△HBF ≌△ABF (ASA ),∴BH=BA=6,HF=AF ,∵CE 平分∠ACI ,AG ⊥CE ,∴∠ICG=∠ACG ,∠IGC=∠AGC=90°,在△ICG 和△ACG 中,ICG ACG CG CG IGC AGC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ICG ≌△ACG (ASA ),∴CI=CA=5,IG=AG ,∴IH=BC+CI-BH=4+5-6=3,∵HF=AF ,IG=AG ,∴FG 为△AHI 的中位线,∴FG=1133222HI =⨯=.故答案为32.【点睛】本题考查角平分线定义,垂线定义,三角形全等判定与性质,三角形中位线性质,线段和差,本题难度不大,训练画图构思能力,通过辅助线画出准确图形是解题关键.19.(1)()232x x y -;(2)14x <<,图见解析【解析】【分析】(1)先提公因式3x ,再利用完全平方公式进行因式分解即可;(2)先分别求出每一个不等式的解集,进而求出其公共解即可.【详解】解:(1)原式2223(44)3(2)x x xy y x x y =-+=-;(2)()3241213x x x x ⎧--<⎪⎨+>-⎪⎩①②解不等式①,得1x >,解不等式②,得4x <,在同一数轴上表示不等式①②的解集如下:∴不等式组的解集为:14x <<.【点睛】本题考查提公因式法、公式法分解因式,解一元一次不等式组,熟练掌握因式分解的方法以及解一元一次不等式组的基本步骤是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(1)22m -,23;(2)0x =【解析】【分析】(1)先利用完全平方公式和分式混合运算法则进行化简,然后代值计算即可;(2)先把方程两边同时乘以()()11x x +-化为整式方程,然后求解即可.【详解】解:(1)236214422m m m m m m+-÷++++-()()23221222m m m m m ++=⨯---+3122m m =---22m =-,当5x =时,原式22523==-.(2)2231111x x x +=+--方程两边同时乘以()()11x x +-得()()21311x x -++=,整理得22331x x -++=,解得0x =.检验:将0x =代入原方程,左边1=-=右边,∴原方程的根是0x .【点睛】本题主要考查了分式的化简求值,解分式方程,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)见解析;(2)见解析【解析】【分析】(1)利用点平移的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可;(2)利用关于x 轴对称的点的坐标特征写出A 2、B 2、C 2的坐标,然后描点即可.【详解】解:(1)由图可得:A (-4,5)、B (-5,2)、C (-3,1)∴平移后的坐标:A 1(2,4)、B 1(1,1)、C 1(3,0)如图,111A B C △即为所求.(2)对称后的坐标:A 2(-4,-5)、B 2(-5,-2)、C 2(-3,-1)如图,222A B C △即为所求.【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.22.①见解析;②见解析【解析】【分析】①证明:根据等腰直角三角形的性质推出1452DAF DAB BAC ∠=∠=∠=︒,45B C ∠=∠=︒,BD AD =,即可证得结论;②根据全等的性质证得BDE ADF ∠=∠,利用AD BC ⊥证得结论.【详解】解:①证明:在ABC 中,AB AC =,90BAC ∠=︒,点D 是BC 的中点,∴1452DAF DAB BAC ∠=∠=∠=︒,45B C ∠=∠=︒,∵B DAB ∠=∠,∴BD AD =,∵B DAF ∠=∠,BE AF =,∴BED ≌AFD V ;②证明:由①可知,BED ≌AFD V ,∴BDE ADF ∠=∠,∵AB AC =,点D 是BC 的中点,∴AD BC ⊥,∴90ADB ∠=︒,∴90ADE BDE ∠+∠=︒,∴90ADE ADF ∠+∠=︒,∴90EDF ∠=︒,∴DE DF ⊥.【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定及性质,熟记等腰直角三角形的性质及全等三角形的判定定理是解题的关键.23.该厂原来每天加工20套运动服.【解析】【分析】设该厂原来每天加工x 套运动服,则采用新技术后每天加工2x 套运动服,由题意:某服装厂准备加工260套运动服,在加工了60套后,采用新技术,使每天的工作效率是原来的2倍,结果共用了8天完成,列出分式方程,解方程即可.【详解】解:设该厂原来每天加工x 套运动服,则采用新技术后每天加工2x 套运动服.根据题意得:602606082x x-+=解这个方程得20x =,经检验:20x =是原方程的根.答:该厂原来每天加工20套运动服.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(1)见解析;(2)13【解析】【分析】(1)只要证明DN ∥BM ,DM ∥BN 即可;(2)只要证明△CEM ≌△AFN ,可得FN =EM =5,在Rt △AFN 中,根据勾股定理AN =.【详解】(1)∵四边形ABCD 是平行四边形,∴CD AB .∵BM AC DN AC ⊥⊥,,∴DN BM ,∴四边形BMDN 是平行四边形.(2)∵四边形ABCD ,BMDN 都是平行四边形,∴AB CD DM BN CD AB ==,,∥,∴CM AN MCE NAF =∠=∠,.又∵90CEM AFN ∠=∠=︒,∴()CEM AFN AAS ≌,∴5FN EM ==.在Rt AFN 中,13AN =.【点睛】本题考查平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(1)10.860y x =+,20.8530y x =+;(2)当600x =时,选择甲、乙两个商场均可,当300600x <<时,选择乙商场更优惠,当x 600>时,选择甲商场更优惠.【解析】【分析】(1)在甲超市购物所付的费用:300元+0.8×超过300元的部分,在乙超市购物所付的费用:200+0.85×超过200元的部分;(2)根据(1)中解析式的费用分类讨论即可.【详解】(1)由题意得,()13000.8300y x =+-,即10.860y x =+,22000.85(200)y x =+-,即20.8530y x =+(2)当300x >时,由12y y <得:0.8600.8530x x +<+,解得:x 600>,由12y y =得:0.8600.8530x x +=+,解得:600x =,由12y y >得:0.8600.8530x x +>+,解得:600x <.∴当600x =时,选择甲、乙两个商场均可,当300600x <<时,选择乙商场更优惠,当x 600>时,选择甲商场更优惠.【点睛】本题考查了一次函数以及一元一次不等式的应用,根据题意列出正确的甲、乙两家商场的实际费用与购买商品金额x 之间的函数关系式是本题的关键.26.(1)①见解析;②2;(2)不变,12;(3)能,5PQ =或6【解析】【分析】(1)①由平移的特征可以推出三角形全等的条件,证明△IBC ≌△HCE ;②由①得IC =HE ,再证明四边形ICHG 是平行四边形,得IC =GH ,再证明△DFG ≌△CFI ,得DG =IC ,于是得DG =GH =HE =13DE =13AC ,可求出DG 的长;(2)由平行四边形的性质可证明线段相等和角相等,证明△AOP ≌△COQ ,将四边形ABQP 的面积转化为△ABC 的面积,说明四边形ABQP 的面积不变,求出△ABC 的面积即可;(3)按OP =OA 、PA =OA 、OP =AP 分类讨论,分别求出相应的PQ 的长,其中,当PA =OA 时,作OL ⊥AP 于点L ,构造直角三角形,用面积等式列方程求OL 的长,再用勾股定理求出OP 的长即可.【详解】(1)证明:①如图1,∵DCE 是由ABC 平移得到的,∴//AC DE BC CE =,∴ACB DEC ∠=∠,∵//CH BG ,∴GBC HCE∠=∠∴IBC ≌HCE②如图1,由①可知:IBC ≌HCE ,∴IC HE =,∵//AC DE ,//CH BG ,∴CI //GH ,CH //GH ,∴四边形ICHG 是平行四边形,∴IC GH =,∵//AC DE ,∴CDG DCI∠=∠∵CFI DFG ∠=∠,DF CF =,∴DFG ≌CFI △,∴DG IC =,∴DG GH HE ==,∴11233DG DE AC ===.(2)面积不变;如图2:由平移可知//AB CD ,AB CD =,∴四边形ABCD 是平行四边形,∴OA OC =,∵//AD BC ,∴APO CQO ∠=∠,∵AOP COQ ∠=∠,∴APO △≌CQO ,∴APO CQO S S =△△,APO CQO ABC ABQP AOQB AOQB S S S S S S =+=+=四边形四边形四边形△△△,∴四边形ABQP 的面积不变.∵5AB BC ==132OA OC AC ===,∴OB AC ⊥,∴90AOB ∠=︒,在Rt BOC 中222OB OC BC +=∴4OB ==,∴11641222ABC S AC OB ==⨯⨯= ,∴12ABQP S =四边形(3)如图3,OP =OA =3,由(2)得,△AOP ≌△COQ ,∴OQ =OP =3,∴PQ =3+3=6;如图4,PA =OA =3,作OL ⊥AP 于点L ,则∠OLA =∠OLP =90°,由(2)得,四边形ABCD是平行四边形,OA=3,∠AOB=90°,∴OD=OB=4,∠AOD=180°−∠AOB=90°,∵AO⊥BD,OD=OB,∴AO垂直平分BD,∴AD=AB=5,由12AD•OL=12OA•OD=AODS得,1 2×5OL=12×3×4,解得,OL=12 5,∴2222129355 AL OA OL⎛⎫=-=-=⎪⎝⎭,∴96355 PL=-=,∴222212665555OP OL PL⎛⎫⎛⎫=+=+=⎪ ⎪⎝⎭⎝⎭,∴PQ=2OP 125 5如图5,OP=AP,∵AD=AB,AC⊥BD,∴∠DAC=∠BAC,∴∠POA =∠DAC =∠BAC ,∴PQ //AB ,∵AP //BQ ,∴四边形ABQP 是平行四边形,∴PQ =AB =5,综上所述,5PQ 或6或5.【点睛】此题重点考查平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、平移的特征、勾股定理以及根据面积等式列方程求线段的长度等知识与方法,解第(3)题时要进行分类讨论,求出所有符合条件的值,此题难度较大,属于考试压轴题.。
北师大版八年级下册数学期末考试试题及答案
北师大版八年级下册数学期末考试试卷一、单选题1.在下列四个标志中,既是中心对称又是轴对称图形的是()A .B .C .D .2.下列多边形中,不能够单独铺满地面的是()A .正三角形B .正方形C .正五边形D .正六边形3.多项式225a -与25a a -的公因式是()A .5a +B .5a -C .25a +D .25a -4.不等式组1{1x x >-≤的解集在数轴上可表示为()A .B .C .D .5.下列命题正确的是().A .在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的B .两个全等的图形之间必有平移关系C .三角形经过旋转,对应线段平行且相等D .将一个封闭图形旋转,旋转中心只能在图形内部6.如图所示,在ABC 中,AB AC =,点D 是边AC 上一点,BC BD AD ==,则A ∠的大小是()A .72°B .54°C .38°D .36°7.将分式24xx y-中的x ,y 的值同时扩大为原来的2019倍,则变化后分式的值()A .扩大为原来的2019倍B .缩小为原来的12019C .保持不变D .以上都不正确8.甲、乙二人做某种零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,若设乙每小时做x 个,则可列方程()A .90606x x=+B .90606x x=-C .90606x x =-D .90606x x =+9.平行四边形ABCD 的一边长为10,则它的两条对角线长可以是()A .10和12B .12和32C .6和8D .8和1010.如图,在平行四边形ABCD 中,120C ∠=︒,4=AD ,2AB =,点E 是折线BC CD DA --上的一个动点(不与A 、B 重合).则ABE △的面积的最大值是()A .2B .1C .D .二、填空题11.若分式33x x -+的值为0,则x 的值为_________;12.分解因式2242xy xy x ++=___________13.若一个多边形的每一个外角都等于30°,则这个多边形的边数为_________.14.若a 2﹣5ab ﹣b 2=0,则a bb a-的值为_____.15.如图,A 、B 、C 三点在同一条直线上,∠A =50°,BD 垂直平分AE ,垂足为D ,则∠EBC 的度数为_____.16.在平面直角坐标系中点A 、B 分别是x 轴、y 轴上的点且B 点的坐标是()0,3-,30OAB ∠=︒.点C 在线段AB 上,是靠近点A 的三等分点.点P 是y 轴上的点,当OCP △是等腰三角形时,点P 的坐标是__________.三、解答题17.因式分解:()2221x y xy ++-18.解不等式组:()2532121035x x x ⎧+≤+⎪⎨-+>⎪⎩19.解方程:214111x x x ++=--.20.ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:(1)画出ABC 关于原点O 的中心对称图形111A B C △;(2)画出将ABC 绕点O 顺时针方向旋转90°得到的222A B C △.(3)设(),P a b 为ABC 边上一点,在222A B C △上与点P 对应的点是1P .则点1P 坐标为_______21.先化简,再求值:226939393m m m m m m -+-⎛⎫÷-- ⎪-+⎝⎭,其中3m =22.如图,已知E 是平行四边形ABCD 中BC 边的中点,AC 是对角线,连结AE 并延长AE 交DC 的延长线于点F ,连结BF .求证:四边形ABFC 是平行四边形.23.利用我们学过的知识,可以导出下面这个等式:()()()12222222a b c ab bc ac a b b c c a ⎡⎤++---=-+-+-⎣⎦.该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.(1)请你展开右边检验这个等式的正确性;(2)利用上面的式子计算:222201820192020201820192019202020182020++-⨯-⨯-⨯.24.某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.25.(1)如图①所示,将ABC 绕顶点A 按逆时针方向旋转()090a a <<︒角,得到ADE ,90BAC DAE ∠=∠=︒,ED 分别与AC 、BC 交于点F 、G ,BC 与AD 相交于点H .求证:AH AF =;(2)如图②所示,ABC 和ADE 是全等的等腰直角三角形,90BAC D ∠=∠=︒,BC 与AD 、AE 分别交于点F 、G ,请说明BF ,FG ,GC 之间的数量关系.参考答案1.C【详解】解:A、不是中心对称图形,是轴对称图形,故本选项不合题意;B、既不是中心对称图形,也不是轴对称图形,故本选项不合题意;C、既是中心对称图形又是轴对称图形,故本选项符合题意;D、不是中心对称图形,是轴对称图形,故本选项不合题意.故选:C.2.C【详解】∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.故选C .3.B 【分析】直接将原式分别分解因式,进而得出公因式即可.【详解】解:∵a2-25=(a+5)(a-5),a2-5a=a (a-5),∴多项式a2-25与a2-5a 的公因式是a-5.故选:B .4.D 【分析】先解不等式组11x x >-⎧⎨≤⎩可求得不等式组的解集是11x -<≤,再根据在数轴上表示不等式解集的方法进行表示.【详解】解不等式组11x x >-⎧⎨≤⎩可求得:不等式组的解集是11x -<≤,故选D.【点睛】本题主要考查不等组的解集数轴表示,解决本题的关键是要熟练掌握正确表示不等式组解集的方法.5.A 【解析】【分析】根据平移的性质:平移后图形的大小、方向、形状均不发生改变结合选项即可得出答案.【详解】解:A 、经过旋转后的图形两个图形的大小和形状也不变,半径相等的两个圆是等圆,圆还具有旋转不变性,故本选项正确;B 、两个全等的图形位置关系不明确,不能准确判定是否具有平移关系,错误;C 、三角形经过旋转,对应线段相等但不一定平行,所以本选项错误;D 、旋转中心可能在图形内部,也可能在图形边上或者图形外面,所以本选项错误.故选A.【点睛】本题考查平移、旋转的基本性质,注意掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.6.D 【解析】【分析】由BD=BC=AD ,设∠A=∠ABD=x ,则∠C=∠CDB=2x ,又由AB=AC ,则∠ABC=∠C=2x ,在△ABC 中,根据三角形的内角和定理列方程求解.【详解】解:∵BD=BC=AD ,∴设∠A=∠ABD=x ,则∠C=∠CDB=2x ,又∵AB=AC ,∴∠ABC=∠C=2x ,在△ABC 中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得x=36°,即∠A=36°.故选:D .【点睛】本题考查了等腰三角形的性质.关键是利用等腰三角形的等边对等角的性质,三角形外角的性质,三角形内角和定理列方程求解.7.C 【解析】【分析】将分式24xx y中的x ,y 的值同时扩大为原来的2019倍,则x 、2x-4y 的值都扩大为原来的2019倍,所以根据分式的基本性质可得,变化后分式的值保持不变.【详解】解:∵将分式24xx y-中的x ,y 的值同时扩大为原来的2019倍,则201920192422019420192019(24)24x x x xx y x y x y x y===-⨯-⨯--,∴变化后分式的值保持不变.故选:C .【点睛】此题主要考查了分式的基本性质,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.8.A 【解析】【分析】设乙每小时做x 个零件,则甲每小时做(6)x +个零件,根据题意可得,甲做90个所用的时间与乙做60个所用的时间相等,据此列方程.【详解】解:设乙每小时做x 个零件,则甲每小时做(6)x +个零件,由题意得:90606x x=+,故选:A .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.9.A 【解析】【分析】根据平行四边形的性质推出OA=OC=12AC ,OB=OD=12BD ,求出每个选项中OA 和OB 的值,再判断OA 、OB 、AD 的值是否能组成三角形即可.【详解】解:∵四边形ABCD 是平行四边形,∴OA=OC=12AC ,OB=OD=12BD ,A、∵AC=10,BD=12,∴OA=5,OD=6,∵6-5<10<6+5,∴此时能组成三角形,故本选项符合题意;B、∵AC=12,BD=32,∴OA=6,OD=16,∵16-6=10,∴此时不能组成三角形,故本选项不符合题意;C、∵AC=6,BD=8,∴OA=3,OD=4,∵3+4<10,∴此时不能组成三角形,故本选项不符合题意;D、∵AC=8,BD=10,∴OA=4,OD=5,∵4+5<10,∴此时不能组成三角形,故本选项不符合题意;故选:A.【点睛】本题考查了三角形的三边关系定理和平行四边形的性质,关键是判断OA、OB、AD的值是否符合三角形的三边关系定理.10.D【解析】【分析】分三种情况讨论:①当点E在BC上时,高一定,底边BE最大时面积最大;②当E在CD 上时,△ABE的面积不变;③当E在AD上时,E与D重合时,△ABE的面积最大,根据三角形的面积公式可得结论.【详解】解:分三种情况:①当点E在BC上时,E与C重合时,△ABE的面积最大,如图1,过A作AF⊥BC于F,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠C+∠B=180°,∵∠C=120°,∴∠B=60°,Rt △ABF 中,∠BAF=30°,∴BF=12AB=1,∴此时△ABE 的最大面积为:12②当E 在CD 上时,如图2,此时,△ABE 的面积=12S ▱ABCD =12③当E 在AD 上时,E 与D 重合时,△ABE 的面积最大,此时,△ABE 的面积综上,△ABE 的面积的最大值是故选:D .【点睛】本题考查平行四边形的性质,三角形的面积,含30°的直角三角形的性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,并运用分类讨论的思想解决问题.11.3【解析】【详解】根据分式的值为0,分子为0,分母不为0,可得x-3=0且x+3≠0,即可得x=3.故答案为:x=3.12.22(1)x y 【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.原式=2x (y 2+2y +1)=2x (y +1)2,故答案为2x (y +1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.12【解析】【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【详解】解:∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点睛】本题考查了多边形的外角,关键是明确多边形的外角和为360°.14.5【解析】【分析】由已知条件易得225a b ab -=,22a b a b b a ab --=,两者结合即可求得所求式子的值了.【详解】∵2250a ab b --=,∴225a b ab -=,∵22a b a b b a ab--=,∴2255a b a b ab b a ab ab--===.故答案为:5.【点睛】本题考查了分式的化简求值,“能由已知条件得到225a b ab -=和22a b a b b a ab --=是解答本题的关键.【解析】【分析】根据线段垂直平分线的性质,得BE BA =,根据等腰三角形的性质,得50E A ∠=∠=︒,再根据三角形外角的性质即可求解.【详解】∵BD 垂直平分AE ,∴BE BA =,∴50E A ∠=∠=︒,∴100EBC E A ∠=∠+∠=︒,故答案为100°.【点睛】考查线段垂直平分线的性质以及三角形外角的性质,掌握线段垂直平分线的性质是解题的关键.16.(0)或(0,0,-132)或(0,-2)【解析】【分析】根据条件可得AC=2,过点C 作CD ⊥OA ,由勾股定理得到再分以下三种情况求解:①当OP=OC 时,可直接得出点P 的坐标为(00,;②当PO=PC 时,点P 在OC 的垂直平分线PE 上,先求出直线OC 的解析式,从而可求出直线PE 的解析式,最后可求得P (0,-132);③当CO=CP 时,根据OP=2|y C |=2×1=2,求得P (0,-2).【详解】解:∵点B 坐标是(0,-3),∠OAB=30°,∴AB=2×3=6,∵点C 在线段AB 上,是靠近点A 的三等分点,∴AC=2,过点C 作CD ⊥OA 于D ,∴CD=12AC =1,∴33∴333∴2222(23)113OD CD +=+=∵△OCP 为等腰三角形,分以下三种情况:①当13P 的坐标为(0130,13;②当PO=PC 时,点P 在OC 的垂直平分线PE 上,其中E 为OC 的中点,∴点E 的坐标为3-12),设直线OC 的解析式为y=k 1x ,将点C (3-1)代入得k 13则可设直线PE 的解析式为y=k 2x+b ,则k 1·k 2=-1,∴k 23∴将点3-12)代入3,得b=-132,∴P(0,−132),③当CO=CP 时,OP=2|y C |=2×1=2,∴P (0,-2),综上所述,当△OCP 为等腰三角形时,点P 的坐标为(0,13)或(0,13或(0,-132)或(0,-2),故答案为:(0130,130,-132)或(0,-2).【点睛】本题考查了等腰三角形的判定和性质,含30°的直角三角形的性质,勾股定理以及一次函数解析式的求法等知识,正确作出辅助线是解题的关键.17.(x+y-1)(x+y+1)【解析】【分析】将前三项先利用完全平方公式分解因式,进而结合平方差公式分解因式得出即可.【详解】解:(x2+y2+2xy)-1=(x+y)2-1=(x+y-1)(x+y+1).【点睛】此题主要考查了分组分解法以及公式法分解因式,熟练利用公式法分解因式是解题关键.18.-1≤x<4 5【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:() 2532 121035x xx⎧+≤+⎪⎨-+>⎪⎩①②,解不等式①得x≥-1,解不等式②得x<4 5,∴不等式组的解集为-1≤x<4 5.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.x=﹣3【解析】【分析】通过去分母,把分式方程化成整式方程,求解整式方程,再把解代入最简公分母检验即可.【详解】解:方程两边乘以(x+1)(x ﹣1)得:2(1)4(1)(1)x x x ++=+-解这个方程得:x=﹣3检验:当x=﹣3时,(x+1)(x ﹣1)≠0∴x=﹣3是原方程的解∴原方程的解是:x=﹣3.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤是解题的关键.20.(1)见解析;(2)见解析;(3)(b ,-a ).【解析】【分析】(1)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点,顺次连接即可;(2)利用网格特点和旋转的性质画出A 、B 、C 的对应点A2、B2、C2,从而得到△A2B2C2;(3)利用A 与A2、B 与B2、C 与C2的坐标特征确定对应点的坐标变换规律,从而写出点P1坐标.【详解】解:(1)如图,△A1B1C1即为所作;(2)如图,△A2B2C2即为所作;(3)点P1坐标为(b ,-a ).故答案为:(b ,-a ).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.13m ,【解析】【分析】先将括号里面的进行通分运算,再计算分式的除法运算,最后将m 的值代入即可得出答案.【详解】解:原式=2(3)(3)(3)3(3)(3)(3)3m m m m m m m -+---÷-++333(3)m m m m m -+=⨯+-=1m ,当=3.【点睛】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.22.见解析【解析】【分析】先证明△ABE 与△FCE 全等,根据全等三角形的对应边相等得到AB=CF ;再由AB 与CF 平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC 为平行四边形.【详解】证明:∵四边形ABCD 为平行四边形,∴AB ∥DC ,∴∠ABE=∠ECF ,又∵E 为BC 的中点,∴BE=CE ,在△ABE 和△FCE 中,ABE ECF BE CE AEB FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△FCE (ASA ),∴AB=CF ,又∵四边形ABCD 为平行四边形,∴AB∥CF,∴四边形ABFC为平行四边形.【点睛】此题考查了平行四边形的判定与性质,全等三角形的判定与性质,熟练掌握基本判定与性质是解本题的关键.23.(1)见解析;(2)3.【解析】【分析】(1)根据完全平方公式和合并同类项的方法可以将等式右边的式子进行化简,从而可以得出结论;(2)根据题目中的等式可以求得所求式子的值.【详解】解:(1)12[(a-b)2+(b-c)2+(c-a)2]=12(a2-2ab+b2+b2-2bc+c2+a2-2ac+c2)=12×(2a2+2b2+2c2-2ab-2bc-2ac)=a2+b2+c2-ab-bc-ac,故a2+b2+c2-ab-bc-ac=12[(a-b)2+(b-c)2+(c-a)2]正确;(2)20182+20192+20202-2018×2019-2019×2020-2018×2020=12×[(2018-2019)2+(2019-2020)2+(2020-2018)2]=12×(1+1+4)=12×6=3.【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,熟练掌握完全平方公式并能灵活运用.24.(1)甲、乙工程队每天分别能铺设70米和50米.(2)所以分配方案有3种.方案一:分配给甲工程队500米,分配给乙工程队500米;方案二:分配给甲工程队600米,分配给乙工程队400米;方案三:分配给甲工程队700米,分配给乙工程队300米.【解析】【分析】(1)设甲工程队每天能铺设x 米.根据甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同,列方程求解;(2)设分配给甲工程队y 米,则分配给乙工程队(1000-y )米.根据完成该项工程的工期不超过10天,列不等式组进行分析.【详解】(1)解:设甲工程队每天能铺设x 米,则乙工程队每天能铺设(20x -)米.根据题意得:35025020x x =-.解得70x =.检验:70x =是原分式方程的解.答:甲、乙工程队每天分别能铺设70米和50米.(2)解:设分配给甲工程队y 米,则分配给乙工程队(1000y -)米.由题意,得107010001050y y ⎧≤⎪⎪⎨-⎪≤⎪⎩解得500700y ≤≤.所以分配方案有3种.方案一:分配给甲工程队500米,分配给乙工程队500米;方案二:分配给甲工程队600米,分配给乙工程队400米;方案三:分配给甲工程队700米,分配给乙工程队300米.25.(1)见解析;(2)FG2=BF2+GC2.理由见解析【解析】【分析】(1)利用ASA 证明△EAF ≌△BAH ,再利用全等三角形的性质证明即可;(2)结论:FG2=BF2+GC2.把△ABF 旋转至△ACP ,得△ABF ≌△ACP ,再利用三角形全等的知识证明∠ACP+∠ACB=90°,根据勾股定理进而可以证明BF 、FG 、GC 之间的关系.【详解】(1)证明:如图①中,∵AB=AC=AD=AE,∠CAB=∠EAD=90°,∴∠EAF=∠BAH,∠E=∠B=45°,∴△EAF≌△BAH(ASA),∴AH=AF;(2)解:结论:GF2=BF2+GC2.理由如下:如图②中,把△ABF旋转至△ACP,得△ABF≌△ACP,∵∠1=∠4,AF=AP,CP=BF,∠ACP=∠B,∵∠DAE=45°∴∠1+∠3=45°,∴∠4+∠3=45°,∴∠2=∠4+∠3=45°,∵AG=AG,AF=AP,∴△AFG≌△AGP(SAS),∴FG=GP,∵∠ACP+∠ACB=90°,∴∠PCG=90°,在Rt△PGC中,∵GP2=CG2+CP2,又∵BF=PC,GP=FG,∴FG2=BF2+GC2.【点睛】本题考查旋转变换,等腰直角三角形的性质,全等三角形的判定和性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.。
北师大版九年级上册数学期末考试试卷及答案
北师大版九年级上册数学期末考试试题一、单选题1.下列关系式中y 是x 的反比例函数的是()A .5y x=B .k y x=C .25y x =D .3xy =2.如图,三视图正确的是()A .主视图B .左视图C .左视图D .俯视图3.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=4.反比例函数ky x=的图象如图所示,则k 值可能是()A .-2B .2C .4D .85.已知四边形ABCD 是平行四边形,下列结论:①当AB =BC 时,它是菱形;②当AC ⊥BD 时,它是菱形;③当∠ABC =90°时,它是矩形;④当AC =BD 时,它是正方形,其中错误的有()A .1个B .2个C .3个D .4个6.如图,在△ABC 中,点D 、E 在边AB 上,点F 、G 在边AC 上,且DF ∥EG ∥BC ,AD=DE =EB ,若Δ1ADF S =,则EBCG S =四边形()A .3B .4C .5D .67.若关于x 的方程()()22222280x x x x +++-=有实数根,则22x x +的值为()A .-4B .2C .-4或2D .4或-28.在一只不透明的口袋中放入红球5个,黑球1个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n 是()A .3B .4C .5D .69.如图,O 是矩形ABCD 对角线AC 的中点,M 是AD 的中点,若BC =8,OB =5,则OM 的长为()A .1B .2C .3D .410.如图,将矩形ABCD 沿对角线BD 折叠,点A 落在点E 处,DE 交BC 于点F ,若∠CFD =40°,则∠ABD 的度数为()A .50°B .60°C .70°D .80°二、填空题11.反比例函数ky x=图象上有两点A (-3,4)、B (m ,2),则m =_____.12.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.13.已知一元二次方程(m -2)m x +3x -4=0,那么m 的值是_____.14.在平面直角坐标系中,△ABC 中点A 的坐标是(2,3),以原点O 为位似中心把△ABC 放大,使放大后的三角形与△ABC 的相似比为3:1,则点A 的对应点A′的坐标为_____.15.若一元二次方程220x -=的两根分别为m 与n ,则m nn m+=_____.16.在矩形ABCD 中,AB =6,BC =8,BD ⊥DE 交AC 的延长线于点E ,则DE =_____.17.如图,在平行四边形ABCD 中,CE ⊥AB 且E 为垂足,如果∠A =125°,则∠BCE =____.三、解答题18.如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BC 相交于点N ,连接BM ,DN .(1)求证:四边形BMDN 是菱形;(2)若AB =4,AD =8,求菱形BMDN 的面积.19.等腰三角形的三边长分别为a 、b 、c ,若6a =,b 与c 是方程22(31)220x m x m m -+++=的两根,求此三角形的周长.20.如图,一次函数2y kx =+与y 轴交于点A ,与反比例函数my x=的图象相交于B 、C 两点,BD ⊥y 轴交y 轴于点D ,OA =OD ,8ABDS ∆=.(1)求一次函数与反比例函数的表达式;(2)求点C 的坐标,并直接写出不等式2mkx x+>的解集;(3)在所在平面内,存在点E 使以点B 、C 、D 、E 为顶点的四边形为平行四边形,请直接写出所有满足条件的点E 的坐标.21.如图,在四边形ABCD 中,BD 为一条对角线,//AD BC ,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长.22.某数学小组为调查实验学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A :乘坐电动车,B :乘坐普通公交车或地铁,C :乘坐学校的定制公交车,D :乘坐家庭汽车,E :步行或其他”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中一共调查了名学生;扇形统计图中,E选项对应的扇形圆心角是度;(2)请补全条形统计图;(3)若甲、乙两名学生放学时从A、B、C三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具上班的概率.23.如图,在▱ABCD中过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=45,求AF的长.24.已知:如图,△ABO与△BCD都是等边三角形,点O为坐标原点,点B、D在x轴上,AO=2,点A、C在一反比例函数图象上.(1)求此反比例函数解析式;(2)求点C的坐标;(3)问:以点A为顶点,且经过点C的抛物线是否经过点(0?请说明理由.25.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.26.如图,点A、B在反比例函数kyx的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为点C,且△AOC的面积为2(1)求该反比例函数的解析式;(2)若点(﹣a,y1),(﹣2a,y2)在该反比例函数的图象上,试比较y1与y2的大小;(3)求△AOB的面积.参考答案1.D 【分析】根据反比例函数的定义:(0)ky k x=≠且k 为比例系数,即可作出判断.【详解】A 、此函数为一次函数,故不符合题意;B 、不一定反比例函数,当k=0时,则y=0,故不符合题意;C 、不是反比例函数,未知数x 的指数不满足反比例函数的定义,故不符合题意;D 、由3xy =得:3y x=,符合反比例函数的定义,故符合题意;故选:D【点睛】本题主要考查了反比例函数的定义,掌握其解析形式是关键,特别注意k 是不为零的常数.2.A 【分析】根据几何体的形状,从三个角度得到其三视图即可.【详解】解:主视图是一个矩形,内部有两条纵向的实线,故选项A 符合题意;左视图是一个矩形,内部有一条纵向的实线,故选项B 、C 不符合题意;俯视图是一个“T ”字,故选项D 不符合题意;故选:A .【点睛】此题主要考查了画三视图的知识,解题的关键是掌握主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.B 【分析】根据配方法解一元二次方程的步骤首先把常数项移到右边,方程两边同时加上一次项系数一半的平方配成完全平方公式.【详解】解:2250x x --=移项得:225x x -=方程两边同时加上一次项系数一半的平方得:22151x x -+=+配方得:()216x -=.故选:B .【点睛】此题考查了配方法解一元二次方程的步骤,解题的关键是熟练掌握配方法解一元二次方程的步骤.配方法的步骤:配方法的一般步骤为:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.4.B 【分析】根据函数所在象限和反比例函数上的点的横纵坐标的积小于4判断.【详解】解:∵反比例函数图象在第一、三象限,∴k >0,∵当图象上的点的横坐标为2时,纵坐标小于2,∴k <4,故选:B .【点睛】本题考查了反比例函数图象上点的坐标特点,反比例函数的图象与性质,比例系数等于在它上面的点的横纵坐标的积,熟练掌握反比例函数的图象与性质是解答本题的关键.5.A 【分析】根据矩形、菱形、正方形的判定可以判断题目中的各个小题的结论是否正确,从而可以解答本题.【详解】解: 四边形ABCD 是平行四边形,A 、当AB BC =时,它是菱形,选项不符合题意,B 、当AC BD ⊥时,它是菱形,选项不符合题意,C 、当90ABC ∠=︒时,它是矩形,选项不符合题意,D 、当AC BD =时,它是矩形,不一定是正方形,选项符合题意,故选:A .【点睛】本题考查正方形、菱形、矩形的判定,解答本题的关键是熟练掌握矩形、菱形、正方形的判定定理.6.C 【分析】利用////DF EG BC ,得到ADF ABC ∆∆∽,ADF AEG ∆∆∽,利用AD DE EB ==,得到13AD AB =,12AD AE =,利用相似三角形的性质,相似三角形的面积比等于相似比的平方,分别求得AEG ∆和ABC ∆的面积,利用ABC AEG EBCG S S S ∆∆=-四边形即可求得结论.【详解】解:AD DE EB == ,∴13AD AB =,12AD AE =.////DF EG BC ,ADF ABC ∴∆∆∽,ADF AEG ∆∆∽.∴2(ADF ABC S AD S AB∆∆=,2(ADF AEG S AD S AE ∆∆=.99ABC ADF S S ∆∆∴==,44AEG ADF S S ∆∆==.945ABC AEG EBCG S S S ∆∆∴=-=-=四边形.故选:C .【点睛】本题主要考查了相似三角形的判定与性质,解题的关键是利用相似三角形的面积比等于相似比的平方,用ABC AEG EBCGS S S ∆∆=-四边形解答.7.B 【分析】设22x x y +=,则原方程可化为2280y y +-=,解得y 的值,即可得到22x x +的值.【详解】解:设22x x y +=,则原方程可化为2280y y +-=,解得:14y =-,22y =,当4y =-时,224x x +=-,即2240x x ++=,△224140=-⨯⨯<,方程无解,当2y =时,222x x +=,即2220x x +-=,△()22412=120=-⨯⨯->,方程有实数根,22x x ∴+的值为2,故选:B .【点睛】本题考查了换元法解一元二次方程,的关键是把22x x +看成一个整体来计算,即换元法思想.8.A 【分析】根据概率公式列出关于n 的分式方程,解方程即可得.【详解】解:根据题意可得51n n ++=13,解得:n =3,经检验n =3是分式方程的解,即放入口袋中的黄球总数n =3,故选:A .【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.9.C 【分析】由O 是矩形ABCD 对角线AC 的中点,可求得AC 的长,然后运用勾股定理求得AB 、CD 的长,又由M 是AD 的中点,可得OM 是△ACD 的中位线,即可解答.【详解】解:∵O 是矩形ABCD 对角线AC 的中点,OB =5,∴AC =2OB =10,∴CD =AB 6,∵M 是AD 的中点,∴OM =12CD =3.故答案为:C .【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.10.C 【分析】根据矩形的性质和平行线的性质得到∠FDA =40°,根据翻折变换的性质得到∠ADB =∠EDB =20°,根据直角三角形的性质可求出∠ABD 的度数,即可求出答案.【详解】∵四边形ABCD 是矩形,∴AD ∥BC ,∠A =90°,∴∠FDA =∠CFD =40°,由翻折变换的性质得到∠ADB =∠EDB =20°∴∠ABD =70°故选C .【点睛】本题考查平行线的性质、图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.11.6-【分析】由点A 的坐标得到反比例函数的解析式,再把点B 的坐标代入可得m 的值.【详解】解:把(3,4)A -代入ky x =可得3412k =-⨯=-,所以反比例函数的解析式是12y x=-,当2y =时,6m =-.故答案为:6-.【点睛】本题考查反比例函数图象上点的坐标特征,解题的关键是掌握待定系数法求得解析式.12.20000【详解】试题分析:1000÷10200=20000(条).考点:用样本估计总体.13.2-【分析】根据一元二次方程的定义进行计算即可.【详解】解:由题意可得:||2m =且20m -≠,2m ∴=±且2m ≠,2m ∴=-,故答案为:2-.【点睛】本题考查了绝对值,一元二次方程的定义,解题的关键是熟练掌握一元二次方程的定义,即()200ax bx c a ++=≠.14.(6,9)或(6,9)--【分析】根据如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -进行解答.【详解】解:以原点O 为位似中心,把ABC ∆放大,使放大后的三角形与ABC ∆的相似比为3:1,则点(2,3)A 的对应点A '的坐标为(6,9)或(6,9)--.故答案为:(6,9)或(6,9)--.【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -.15.72-【分析】先根据根与系数的关系得m n +=mn=-2,再把原式变形为2()2m n mn mn+-,然后利用整体代入的方法计算.【详解】解:∵一元二次方程220x -=的两根分别为m 与n ,根据根与系数的关系得m n +=,mn=-2,所以原式=()(()2222222722m n mn m n mn mn -⨯-+-+===--.故答案为:72-.16.1207【分析】由勾股定理可求AC 的长,由矩形的性质可得5OD OB ==,由面积法可求DH 的长,通过证明OD DE OH DH =,即可求解.【详解】解:如图:过点D 作DH AC ⊥于H ,6AB = ,8BC =,10AC ∴==,四边形ABCD 是矩形,152AO CO BO DO AC ∴=====, 11··22ADC S AD CD AC DH == ,6810DH ∴⨯=,245DH ∴=,75OH ∴===,∵=90DOH ODH ∠+︒∠,=90DOH E ∠+︒∠,∴ODH E∠=∠90DHO EHD ∠=∠=︒Q ,ODH DEH ∴∆∆∽,∴OD DE OH DH=,∴572455DE =,1207DE ∴=,故答案为:1207.17.35【详解】分析:根据平行四边形的性质和已知,可求出∠B ,再进一步利用直角三角形的性质求解即可.详解:∵AD ∥BC ,∴∠A+∠B=180°,∴∠B=180°-125°=55°,∵CE ⊥AB ,∴在Rt △BCE 中,∠BCE=90°-∠B=90°-55°=35°.故答案为35.点睛:本题主要考查了平行四边形的性质,运用平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.18.(1)见解析;(2)菱形BMDN 的面积是20【分析】(1)证△DMO ≌△BNO ,得出OM =ON ,根据对角线互相平分证四边形BMDN 是平行四边形,再根据对角线互相垂直证菱形即可;(2)设BM=x ,根据勾股定理列出方程,求出菱形边长,再用面积公式求解即可.【详解】解:(1)证明:∵四边形ABCD 是矩形,MN 垂直平分BD ,∴AD ∥BC ,∠A =90°,OB =OD ,∴∠MDO =∠NBO ,∠DMO =∠BNO ,∵在△DMO 和△BNO 中,DMO BNO MDO NBO OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DMO ≌△BNO (AAS )∴OM =ON又∵OB =OD∴四边形BMDN 是平行四边形∵MN 垂直平分BD ,即MN ⊥BD∴平行四边形BMDN 是菱形.(2)解:∵四边形BMDN 是菱形∴MB =MD在Rt △AMB 中,设BM=x ,BM 2=AM 2+AB 2即x 2=(8﹣x )2+42解得:x =5,MD=5∴BN=MD=5∴5420BMDN S BN AB =⨯=⨯=菱形答:菱形BMDN 的面积是20.19.此三角形的周长为16或22.【分析】分两种情况进行讨论分析:①若6a =是三角形的腰,则b 与c 中至少有一边长为6;若6a =是三角形的底边,则b 、c 为腰,即b c =;根据题意,代入方程确定m 的值,然后代入方程求解,确定三边长度,考虑三边关系判定能否构成三角形,然后求周长即可得.【详解】解:①若6a =是三角形的腰,则b 与c 中至少有一边长为6,代入方程得:()226316220m m m -+⨯++=,解得3m =或5m =,∴当3m =时,方程可化为210240x x -+=,解得14x =,26x =,∴三角形三边长分别为4、6、6,周长为:46616++=;当5m =时,方程可化为216600x x -+=,解得16x =,210x =;三角形三边长分别为6、6、10,周长为:106622++=;∴三角形的周长为16或22;②若6a =是三角形的底边,则b 、c 为腰,即b c =,则方程有两个相等的实数根,∴()()22314220m m m ⎡⎤-+-+=⎣⎦,解得1m =,∴原方程可化为2440x x -+=,解得122x x ==,此时,6a =,2b c ==,不能构成三角形,舍去;综上所述,三角形的周长为16或22.【点睛】题目主要考查等腰三角形的定义及一元二次方程的解法,三角形的三边关系等,理解题意,进行分类讨论是解题关键.20.(1)一次函数的解析式为:2y x =+;反比例函数的解析式为:8y x=(2)40x -<<或2x >(3)(6,4)、(-6,-8)、(-2,4)【分析】(1)首先求出点D 的坐标,从而得出AD 的长,由8ABD S ∆=,得出BD 的长,从而得出点B 的坐标,从而解决问题;(2)由(1)可联立方程组28y x y x =+⎧⎪⎨=⎪⎩,解方程组得出点C 的坐标,根据图象可得答案;(3)分当BC 、CD 、BD 为对角线三种情形,分别通过对角互相平分进行求解.(1)解: 点A 是一次函数2y kx =+与y 轴的交点,∴令0x =,则022y k =⨯+=,即(0,2)A 2OA ∴=,又OD OA =Q ,2OD ∴=,(0,2)D ∴-,24AD OD ∴==.BD y ⊥ 轴,∴点B 的纵坐标为2-,8ABD S ∆= ,∴182AD BD ⋅=,∴1482BD ⨯⨯=,4BD ∴=,∴点B 的坐标为(4,2)--,把点(4,2)B --分别代入一次函数2y kx =+与反比例函数my x =,可得:422k -=-+,24m-=-,1k ∴=,8m =,∴一次函数的解析式为:2y x =+,反比例函数的解析式为:8y x =;(2)解:由(1)可联立方程组28y x y x=+⎧⎪⎨=⎪⎩,解这个方程组得:42x y =-⎧⎨=-⎩或24xy =⎧⎨=⎩,点C 在第一象限,故点C 坐标为(2,4),由图象可得当40x -<<或2x >时,2mkx x +>;(3)解:如图,当BC 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为1,BC DE 的中点,(4,2),(2,4),(0.2)B C D --- ,42241,122x y -+-+==-==,设111(,)E x y ,11021,122x y+-+-==,解得:112,4x y =-=,1(2,4)E ∴-;如图,当CD 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为2,CD BE 的中点,(4,2),(2,4),(0.2)B C D --- ,20421,122x y +-====,设222(,)E x y ,22421,122x y --==,解得:116,4x y ==,2(6,4)E ∴;如图,当BD 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为3,BD CE 的中点,(4,2),(2,4),(0.2)B C D --- ,40222,222x y -+--==-==-,设333(,)E x y ,33242,222x y ++-=-=,解得:336,8x y =-=-,3(6,8)E ∴--;∴符合条件的点E 的坐标为:(6,4)、(6,8)--、(2,4)-.【点睛】本题是反比例函数综合题,主要考查了反比例函数图象与一次函数图象交点问题,平行四边形的性质,函数与不等式的关系等知识,解题的关键是运用分类思想来解答.21.(1)见解析;(2)AC =(1)根据2AD BC =,E 为AD 的中点,证得四边形BCDE 是平行四边形,再根据BE=DE 即可证得结论;(2)根据AD ∥BC ,AC 平分BAD ∠,求出AD=2BC=2=2AB ,得到30ADB ∠=︒,60ADC ∠=︒,90ACD ∠=︒,根据Rt ACD ∆求出答案即可.【详解】(1)证明:2AD BC = ,E 为AD 的中点,DE BC ∴=.//AD BC ,∴四边形BCDE 是平行四边形.90ABD ∠=︒ ,AE DE =,BE DE ∴=,则四边形BCDE 是菱形;(2)解:如答图所示,连接AC ,//AD BC ,AC 平分BAD ∠,BAC DAC BCA ∴∠=∠=∠.1AB BC ∴==.22AD BC ∴==,2AD AB ∴=,∴在Rt ABD ∆中,30ADB ∠=︒.30DAC ∴∠=︒,60ADC ∠=︒,90ACD ∠=︒.在Rt ACD ∆中2AD = ,1CD ∴=,∴AC ==.22.(1)200,72;(2)见解析;(3)13.【分析】(1)根据B 的人数以及百分比得到被调查的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)求出C 组的人数即可补全图形;(3)列表得出所有等可能结果,即可运用概率公式得甲、乙两名学生恰好选择同一种交通工具回家的概率.【详解】解:(1)本次调查的学生人数为6030%200÷=(名),扇形统计图中,B项对应的扇形圆心角是40 36072200︒⨯=︒,故答案为:200;72;(2)C选项的人数为200(20603040)50-+++=(名),补全条形图如下:(3)画树状图如图:共有9个等可能的结果,甲、乙两名学生恰好选择同一种交通工具上班的结果有3个,∴甲、乙两名学生恰好选择同一种交通工具上班的概率为31 93=.【点睛】此题考查了列表法与树状图法、条形统计图、扇形统计图和概率公式,解题的关键是仔细观察统计图并从中整理出解题的有关信息,正确画出树状图.23.(1)证明见解析;(2)【分析】(1)由平行四边形的性质得出AB∥CD,AD∥BC,AD=BC,得出∠D+∠C=180°,∠ABF=∠BEC,证出∠C=∠AFB,即可得出结论;(2)由勾股定理求出BE,由三角函数求出AE,再由相似三角形的性质求出AF的长.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∴∠C=∠AFB ,∴△ABF ∽△BEC ;(2)解:∵AE ⊥DC ,AB ∥DC ,∴∠AED=∠BAE=90°,在Rt △ABE 中,根据勾股定理得:=在Rt △ADE 中,AE=AD•sinD=5×45=4,∵BC=AD=5,由(1)得:△ABF ∽△BEC ,∴AF AB BC BE=,即5AF =解得:.24.(1)y =(2)(1C -;(3)是,理由见解析.【分析】(1)首先过点A 、C 分别作AF ⊥OB 于点F ,CE ⊥DB 于点E ,根据AO =2,△ABO 与△BCD 是等边三角形,得出A 点坐标,进而求出反比例函数解析式;(2)首先表示出C 点坐标,进而代入函数解析式求出即可;(3)首先设y =a (x +1)2C 坐标代入得出a 的值,进而将点(0答案.【详解】解:(1)过点A 、C 分别作AF ⊥OB 于点F ,CE ⊥DB 于点E ,∵AO =2,△ABO 与△BCD 是等边三角形,∴OF =1,FAA 的坐标是(-1,把(-1k y x=,得k∴反比例函数的解析式是y =(2)设BE =a ,则CE∴点C 的坐标是(-2-a),把点C 的坐标代入y=2-a a 1,∴点C的坐标是(-1-);(3)过点C的抛物线是经过点(0.理由:设y=a(x+1)2把点C坐标代入得a,∴y(x+1)2当x=0时,代入上式得y=2,∴点C的抛物线是经过点(0,2).【点睛】此题主要考查了反比例函数的综合应用以及图象上点的坐标特点等知识,根据已知表示出C点坐标是解题关键.25.(1)见解析(2)四边形CEFG的面积为20 3.【分析】(1)根据题意和翻折的性质,可以得到△BCE≌△BFE,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF的长,进而求得EF和DF的值,从而可以得到四边形CEFG的面积.(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG 是平行四边形,又∵CE=FE ,∴四边形CEFG 是菱形;(2)解:∵矩形ABCD 中,AB=6,AD=10,BC=BF ,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x ,则CE=x ,DE=6-x ,∵∠FDE=90°,∴22+(6-x )2=x 2,解得,x=103,∴CE=103,∴四边形CEFG 的面积是:CE•DF=103×2=203.【点睛】本题考查翻折变化、菱形的性质和判定、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.26.(1)4y x =(2)y 1<y 2(3)3【分析】(1)由122AOC S xy ∆==,设反比例函数的解析式k y x =,则4k xy ==;(2)由于反比例函数的性质是:在0x <时,y 随x 的增大而减小,2a a ->-,则12y y <;(3)连接AB ,过点B 作BE x ⊥轴,交x 轴于E 点,通过分割面积法AOB AOC BOE ACEB S S S S ∆∆∆=+-梯形求得.(1)解:2AOC S ∆= ,24AOC k S ∆∴==;4y x ∴=;(2)解:0k > ,∴函数y 的值在各自象限内随x 的增大而减小;0a > ,2a a ∴-<-;12y y ∴<;(3)解:连接AB ,过点B 作BE x ⊥轴,2AOC BOE S S ∆∆==,4(,)A a a ∴,2(2,)B a a ;()124232ACEB S a a a a ⎛⎫=+⨯-= ⎪⎝⎭梯形,3AOB AOC BOE ACEB S S S S ∆∆∆∴=+-=梯形.。
2023—2024学年北师大新版七年级上学期数学期末考试试卷(附答案)
最新北师大新版七年级上学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟选择题(每题只有一个正确选项,每小题3分,满分30分)一、的倒数是()1、A.2022B.﹣2022C.D.﹣2、中国古代著作《九章算术》在世界数学史上首次正式引入负数.如果盈利20元记作+20元,那么亏本10元记作()A.10元B.20元C.﹣10元D.﹣20元3、如图,所示的几何体是由若干个大小相同的小正方体组成的,则该几何体的左视图(从左面看)是()A.B.C.D.4、代数式5x﹣7与13﹣2x互为相反数,则x的值是()A.B.2C.﹣2D.无法计算5、下列调查中,调查方式的选取不合适的是()A.为了了解全班同学的睡眠状况,采用普查的方式B.对“天宫二号”空间实验室零部件的检查,采用抽样调查的方式C.为了解一批LED节能灯的使用寿命,采用抽样调查的方式D.为了解全市初中生每天完成作业所需的时间,采取抽样调查的方式6、数轴上与表示﹣1的点距离10个单位的数是()A.10B.±10C.9D.9或﹣117、如果与﹣4x3y2b﹣1是同类项,那么a,b的值分别是()A.1,2B.0,2C.2,1D.1,18、已知x=﹣2是方程5x+12=﹣a的解,则a2+a﹣6的值为()A.0B.6C.﹣6D.﹣189、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是()A .x +1=2(x ﹣2)B .x +3=2(x ﹣1)C .x +1=2(x ﹣3)D .10、如图所示,图(1)表示1张餐桌和6张椅子(三角形表示餐桌,每个小圆表示一张椅子),图(2)表示2张餐桌和8张椅子,图(3)表示3张餐桌和10张椅子…;若按这种方式摆放25张桌子需要的椅子张数是( )A .25 张B .50 张C .54 张D .150 张二、填空题(每小题3分,满分18分)11、钟表上7点15分,时针与分针的夹角为12、某商场以每件200元的价格购进一批秋季夹克衫,由于季节突变导致滞销,于是商场决定在标价基础上打八折销售,每件夹克衫仍可获利20%,则该夹克衫的标价为 元.13、把一张长方形纸条按图的方式折叠后,量得∠AOB ′=110°,则∠B ′OC = .14、一个正方体的表面展开图如图所示,这个正方体的每一个面上都填有一个数字,且各相对面上所填的数字互为倒数,则(yz )x 的值为 . 15、如图所示,已知数 a ,b ,c 在数轴上对应点的位置:化简|a ﹣b |+|b ﹣c |得 .16、已知整数a 1,a 2,a 3,a 4⋯满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|⋯依此类推,则a 2023的值等于 .第13题图第14题图 第15题图最新北师大新版七年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:﹣16÷(﹣2)3﹣22×|﹣|+(﹣1)2023.18、解方程:﹣=1.19、先化简再求值:,其中x=﹣4,y=.20、我校为了响应国家“阳光体育”的号召,增设了排球、篮球、足球三项体育运动项目,要求每位学生必须参加,且只能参加其中一种球类运动.初一课题小组对同学们喜爱的球类运动做了一个调查,然后绘制了下面不完全的条形统计图和扇形统计图.请解答下列问题:(1)本次调查了多少名学生?(2)请把条形统计图补充完整.(3)在扇形统计图中,表示“排球”的扇形的圆心角的度数为.(4)在我校初中3000名学生中,选择篮球运动的大约有多少人?21、已知:A=3x2+2xy+10y﹣1,B=x2﹣xy.(1)计算:A﹣3B;(2)若A﹣3B的值与y的取值无关,求x的值.22、如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点(1)求线段MN的长;(2)若C为线段AB上任意一点,满足AC+CB=acm,其他条件不变,你能猜出线段MN的长度吗?并说明理由.23、已知,O为直线AB上一点,∠DOE=90°.(1)如图1,若∠AOC=130°,OD平分∠AOC.①求∠BOD的度数;②请通过计算说明OE是否平分∠BOC.(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.24、若关于x的方程ax+b=0(a≠0)的解与关于y的方程cy+d=0(c≠0)的解满足|x﹣y|=1,则称方程ax+b=0(a≠0)与方程cy+d=0(c≠0)是“美好方程”.例如:方程2x+1=5的解是x=2,方程y﹣1=0的解是y=1,因为|x﹣y|=1,方程2x+1=5与方程y﹣1=0是“美好方程”.(1)请判断方程5x﹣3=2与方程2(y+1)=3是不是“美好方程”,并说明理由;(2)若关于x的方程﹣x=2k+1与关于y的方程4y﹣1=3是“美好方程”,请求出k的值;(3)若无论m取任何有理数,关于x的方程=m(a,b为常数)与关于y的方程y+1=2y﹣5都是“美好方程”,求ab的值.25、如图1,已知∠AOC=140°,∠BOC的余角比它的补角的少10°.(1)求∠BOC的度数;(2)如图1,当射线OP从OB处绕点O以4度/秒的速度逆时针旋转,在旋转过程中,保持射线OP始终在∠BOA的内部,当∠POC=10°时,求旋转时间.(3)如图2,若射线OD为∠AOC的平分线,当射线OP从OB处绕点O以4度/秒的速度逆时针旋转,同时射线OT从射线OD处以x度/秒的速度绕点O 顺时针旋转,当这两条射线重合于射线OE处(OE在∠DOC的内部)时,,求x的值.(注:本题中所涉及的角都是小于180°的角)最新北师大新版七年级上学期数学期末考试试卷(参考答案)11、127.5°;12、300 ;13、35°;14、﹣;15、2b﹣a﹣c;16、﹣1011三、解答题17、﹣1.18、x=﹣319、16.20、解:(1)40名学生;(2)8(人)(图略),(3)72°;(4)900人.21、解:(1)A﹣3B=5xy+10y﹣1;(2)x=﹣2.22、解:(1)7cm;(2)a(cm).23、解:(1)①115°;②OE平分∠BOC.(2)50°.24、解:(1)不是“美好方程”;(2)当x=0时,k=﹣;当x=2时,k=0;(3)ab的值为20或28.25、解:(1)20°;(2)旋转时间为2.5秒或7.5秒.(3)x=5.。
北师大版八年级上册数学期末考试试卷含答案
北师大版八年级上册数学期末考试试题一、单选题1.下列实数中的无理数是()AB .0C .12-D .3.142.下列各组数中,能够作为直角三角形的三边长的一组是()A .1,2,3B .2,3,4C .4,5,6D .3,4,53.下列四组数中,二元一次方程235x y -=的解是()A .11x y =⎧⎨=-⎩B .20x y =⎧⎨=⎩C .431x y ⎧=⎪⎨⎪=⎩D .55x y =-⎧⎨=⎩4.超市对牛奶销量进行市场占有情况的调查后,最应该关注的是已售出牛奶品牌的()A .中位数B .平均数C .众数D .方差5.对于命题“若225x =,则5x =”,小江举了一个反例来说明它是假命题,则小江选择的x 值是()A .25x =B .5x =C .10x =D .5x =-6.某商场销售A ,B ,C ,D 四种商品,它们的单价依次是10元,20元,30元,50元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A .36.5元B .30.5元C .27.5元D .22.5元7.如图,在△DEF 中,点C 在DF 的延长线上,点B 在EF 上,且AB ∥CD ,∠EBA =60°,则∠E+∠D 的度数为()A .60°B .30°C .90°D .80°8.如图,直线1:31l y x =-与直线2:l y mx n =+相交于点(1,)P b ,则关于x ,y 的方程组31y x y mx n=-⎧⎨=+⎩的解为()A .12x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .12x y =-⎧⎨=⎩D .14x y =⎧⎨=⎩9.如图,已知AB ∥FE ,∠ABC =70°,∠CDE =150°,则∠BCD 的值为()A .40°B .30°C .20°D .80°10.已知正比例函数y kx =(k 为常数且0k ≠),若y 的值随着x 值的增大而增大,则一次函数y kx k =-在平面直角坐标系中的图象大致是()A .B .C .D .二、填空题11.27-的立方根是________.12.已知6a b +=,且0a b -=,则2a =__________.13.若点()1,2M a a -+在y 轴上,则点M 的坐标为______.14.小明某学期的数学平时成绩90分,期中考试80分,期末考试95分,若计算学期总评成绩的方法如下:平时成绩∶期中成绩∶期末成绩=3∶3∶4,则小明总评成绩是_____________分.15.如图,42D ∠=︒,38C ∠=︒,则ABD ∠=_______︒.16.如图,有一块直角三角形纸片,直角边AC =3cm ,BC =4cm ,将直角边AC 沿AD 所在的直线折叠,使点C 落在斜边AB 上的点E 处,则CD 的长为___________cm .17.如图:在平面直角坐标系中,已知正比例函数34y x =与一次函数211y x =-+的图象交于点A ,设x 轴上有一点P 作x 轴的垂线(垂足位于点A 的右侧),分别交34y x =和211y x =-+的图象于点B 、C ,连接OC ,若115BC OA =,则△OBC 的面积为__________.18.数形结合是解决数学问题常用的思想方法,如图,直线5y x =+和直线y ax b =+相交于点P ,根据图象可知,方程组50x y ax y b -+=⎧⎨-+=⎩的解是________.三、解答题19.(1)把下列各数填入相应的集合中:14-有理数集合{…};无理数集合{…};(2)小伟把(1(,请帮小伟化简所列代数式.20.如图,AB CD ,AD 与BC 交于点O ,40C ∠=︒,80AOB ∠=︒,求A ∠的度数.21.如图,在长方形ABCD 中,点B 的坐标为(0,4),点D 的坐标为(2,0).(1)根据点B 与点D 的坐标,在图中画出正确的平面直角坐标系;(2)求经过A ,C 两点的直线的函数表达式.22.在河道A ,B 两个码头之间有客轮和货轮通行.一天,客轮从A 码头匀速行驶到B 码头,同时货轮从B 码头出发,运送一批物资匀速行驶到A 码头,两船距B 码头的距离(km)y 与行驶时间(min)x 之间的函数关系如图所示,请根据图象解决下列问题:(1)A ,B 两个码头之间的距离是_________km ;(2)已知货轮距B码头的距离与行驶时间的图象表达式为11 2y x,求客轮距B码头的距离2(km)y与时间(min)x之间的函数表达式:(3)求出点P的坐标,并指出点P的横坐标与纵坐标所表示的实际意思.23.如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)求△ABC的面积.24.如图,已知等腰△ABC的底边BC=13,D是腰AB上一点,且CD=12,BD=5.(1)求证:△BDC是直角三角形;(2)求AC的长.25.已知一次函数y=﹣12x+b的图象与y轴交于点A,与x轴交于点B,与正比例函数y =2x的图象交于点C(1,a).(1)求a,b的值;(2)方程组2012x yx y b-=⎧⎪⎨+=⎪⎩的解为.(3)在y=2x的图象上是否存在点P,使得△BOP的面积比△AOP的面积大5?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.26.下面的条形统计图描述了某车间20个工人日加工零件数的情况,求这些工人日加工零件数的众数、中位数、平均数.27.某商店销售10台A型和20台B型计算器的利润为400元,销售15台A型和10台B 型计算器的利润为300元.(1)求每台A型计算器和B型计算器的销售利润;(2)该商店计划一次购进两种型号的计算器共50台,设购进A型计算器a台,这50台计算器的销售总利润为w元.求w关于a的函数关系式.参考答案1.A【分析】根据无理数的定义进行判断即可.【详解】A.2是无理数,故本选项符合题意;B.0是整数,属于有理数,故本选项不符合题意;C.12-是分数,属于有理数,故本选项不符合题意;D.3.14是有限小数,属于有理数,故本选项不符合题意;故选:A.【点睛】本题考查了无理数的定义,即无限不循环小数,涉及二次根式的化简,熟练掌握上述知识是解题的关键.2.D【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A、12+22≠32,不能构成直角三角形,故此选项不符合题意;B、22+32≠42,不能构成直角三角形,故此选项不符合题意;C、42+52≠62,不能构成直角三角形,故此选项不符合题意;D、32+42=52,能构成直角三角形,故此选项符合题意.故选:D.【点睛】本题考查勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.3.A【分析】把各选项中x、y的值分别代入方程,使方程左右相等的解才是方程的解.【详解】解:由题意可知:A.11xy=⎧⎨=-⎩,方程左边=23=5=+方程右边,故11xy=⎧⎨=-⎩是方程的解,符合题意;B.2xy=⎧⎨=⎩,方程左边=405-≠,故2xy=⎧⎨=⎩不是方程的解,不符合题意;C.431xy⎧=⎪⎨⎪=⎩,方程左边8=353-≠,故431xy⎧=⎪⎨⎪=⎩不是方程的解,不符合题意;D.55xy=-⎧⎨=⎩,方程左边=10155--≠,故55xy=-⎧⎨=⎩不是方程的解,不符合题意;故选:A【点睛】本题考查二元一次方程的解的定义,使方程左右两边等式成立的未知数的值叫做方程的解;会把x,y的值代入原方程验证二元一次方程的解是解题关键.4.C【分析】要调查牛奶销量的市场占有率,即要调查牛奶的销量情况,由此即可得到答案.【详解】解:∵要调查牛奶销量的市场占有率,即要调查牛奶的销量情况,∴最应该关注的是已售出牛奶品牌的众数即可知道哪款牛奶的销量最好,故选C.【点睛】本题主要考查了用众数做决策,熟知众数的定义是解题的关键.5.D【分析】当x=−5时,满足x2=25,但不能得到x=5,于是x=−5可作为说明命题“若x2=25,则x=5”是假命题的一个反例.【详解】解:说明命题“若x2=25,则x=5”是假命题的一个反例可以是x=−5,故D正确.故选:D.【点睛】本题主要考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.B【分析】根据加权平均数定义即可求出这天销售的四种商品的平均单价.【详解】解:这天销售的四种商品的平均单价是:10×10%+20×15%+30×55%+50×20%=30.5(元),故选:B.【点睛】本题考查了加权平均数的求法,是简单题型,根据各单价分别乘以所占百分比即可获得平均单价.7.A【分析】由平行线的性质可得∠CFE=∠EBA=60°,再由三角形的外角性质可得∠CFE=∠E+∠D,从而得解.【详解】解:∵AB∥CD,∠EBA=60°,∴∠CFE=∠EBA=60°,∵∠EBA是△DEF的外角,∴∠E+∠D=∠EBA=60°.故选:A.【点睛】本题主要考查平行线的性质,解答的关键是熟记三角形的外角性质和平行线的性质.【分析】首先把(1,)P b 代入直线1:31l y x =-即可求出b 的值,从而得到P 点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】解:∵直线31y x =-经过点(1,)P b ,∴312b =-=,∴(1,2)P ,∴关于x ,y 的方程组的解为12x y =⎧⎨=⎩.故选:A .【点睛】此题主要考查了二元一次方程组与一次函数的关系,关键是掌握两函数图象的交点就是两函数组成的二元一次方程组的解.9.A【分析】根据平行线的性质求出∠BFD 的度数,由补角的定义求出∠CFD 的度数,根据三角形外角的性质即可得出结论.【详解】解:∵AB ∥FE ,∴∠BFD =∠ABC =70°,∴∠CFD =180°−∠BFD =110°,又∵∠CDE =∠CFD +∠BCD ,∴∠BCD =∠CDE−∠CFD =150°−110°=40°.故选:A .【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题关键.10.C【分析】根据正比例函数y kx =中,y 的值随着x 值的增大而增大,可得0k >,从而可以判断一次函数图象y kx k =-经过第一、三、四象限.【详解】解:∵正比例函数y kx =中,y 的值随着x 值的增大而增大,∴0k >,∴一次函数y kx k =-的图像经过第一、三、四象限,故选:C【点睛】本题主要考查了正比例函数的性质,一次函数的性质,解题的关键在于能够求出11.-3【分析】根据立方根的定义求解即可.【详解】解:-27的立方根是-3,故答案为:-3.【点睛】本题考查了立方根的定义,属于基础题型,熟知立方根的概念是解题的关键.12.6【分析】先由0a b -=,得出a b =,根据26a a b =+=求解即可.【详解】解:∵0a b -=,∴a b =,∵6a b +=,∴26a a b =+=.故答案为:6.【点睛】本题考查求代数式的值,等式性质,掌握求代数式的值,等式性质是解题关键.13.()0,3【分析】直接利用y 轴上点的坐标特点得出a 的值,进而得出答案.【详解】 点()M a 1,a 2-+在y 轴上,a 10∴-=,解得:a 1=,则a 23+=,则点M 的坐标为:()0,3.故答案为()0,3.【点睛】此题主要考查了点的坐标,正确得出a 的值是解题关键.14.89【分析】根据题意和题目中的数据,利用加权平均数的计算方法可以计算出小明的总评成绩.【详解】解:小明总评成绩是90380395489334⨯+⨯+⨯=++(分),故答案为:89.【点睛】本题考查了加权平均数,解答本题的关键是明确题意,利用加权平均数的方法解答.15.80【分析】由三角形的外角的性质可得ABD D C ∠=∠+∠,代入数据即可得到答案.【详解】解:由题意可知:ABD D C ∠=∠+∠,∵42D ∠=︒,38C ∠=︒,∴=80ABD D C ∠=∠+∠︒.故答案为:80【点睛】本题考查的是三角形的外角的性质,掌握“三角形的外角等于与它不相邻的两个内角之和”是解本题的关键.16.32【分析】先根据勾股定理求得AB 的长,再根据折叠的性质求得AE ,BE 的长,从而利用勾股定理可求得CD 的长.【详解】解:3AC cm = ,4BC cm =,90C ∠=︒,5()AB cm ∴==,由折叠的性质得:3AE AC cm ==,90AED C ∠=∠=︒,532BE cm cm cm ∴=-=,90BED ∠=︒,设CD x =cm ,则(4)BD BC CD x cm =-=-,在Rt DEB 中,222DE B D E B +=,即2222(4)x x +=-,解得:32x =,32CD cm ∴=,故答案为32.【点睛】本题考查直角三角形中的折叠问题,解题的关键是掌握折叠的性质,熟练运用勾股定理列方程解决问题.17.44【分析】构建方程组21134y x y x =-+⎧⎪⎨=⎪⎩求解可得点A 的坐标,设B (a ,34a ),C (a ,-2a+11),可得BC=|34a-(-2a+11)|=115×5,求出a 即可解决问题.【详解】解:由21134y x y x =-+⎧⎪⎨=⎪⎩,解得43x y ==⎧⎨⎩,∴A (4,3).∴OA=5,∵P (a ,0),∴B (a ,34a ),C (a ,-a+7),∴BC=|34a-(-2a+11)|=115×5,解得a=8或0(舍弃),∴PO=8,BC=11∴S △OBC =12×8×11=44.故答案为:44【点睛】本题考查两直线相交或平行问题,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题.18.2025x y =⎧⎨=⎩【分析】两直线的交点坐标为两直线解析式所组成的方程组的解.【详解】解: 直线5y x =+和直线y ax b =+相交于点(20,25)P ∴方程组500x y ax y b -+=⎧⎨-+=⎩的解是2025x y =⎧⎨=⎩.故答案为2025x y =⎧⎨=⎩.【点睛】此题主要考查了一次函数与二元一次方程,关键是掌握二元一次方程与一次函数的关系,从图象上看,二元一次方程的解,相当于已知两条直线交点的坐标.19.(1)有理数集合1 4⎧⎫-⋅⋅⋅⎨⎬⎩⎭;无理数集合}.(2【分析】(1)直接根据有理数和无理数的定义进行分类即可;(2)根据二次根式的乘法和加法法则进行运算即可.【详解】(1)有理数集合1 4⎧⎫-⋅⋅⋅⎨⎬⎩⎭;无理数集合}.(2)解:原式(=+=【点睛】本题考查了有理数和无理数的分类、二次根式的乘法和加法的混合运算,解题关键是熟练掌握和运用运算法则.20.60︒【分析】由AB 与CD 平行,利用两直线平行内错角相等求出B ∠的度数,在AOB 中,利用三角形内角和定理即可求出A ∠的度数.【详解】解:∵AB CD ,40C ∠=︒,∴40B C ∠=∠=︒,∵180A B AOB ∠+∠+∠=︒,∴18060∠=︒-∠-∠=︒A AOB B .【点睛】此题考查了平行线的性质以及三角形内角和定理,熟练掌握平行线的性质及三角形内角和定理是解本题的关键.21.(1)见解析(2)2y x=【分析】(1)先确定点C 为坐标原点,再画出平面直角坐标系即可;(2)确定点A 的坐标,再运用待定系数法求出直线AC 的解析式即可.(1)平面直角坐标系如图所示:(2)由图得点(2,4)A ,点(0,0)C ,设直线AC 表达式为(0)y kx k =≠,把2,4x y ==代入函数表达式得:24k =,解得2k =,所以,直线AC 的表达式为2y x =.【点睛】本题主要考查了确定平面直角坐标系以及运用待定系数法求函数解析式,确定点C 的坐标是解答本题的关键.22.(1)80(2)2280=-+y x (3)(32,16)P ,点P 的横坐标表示两船在第32分钟相遇,点P 的纵坐标表示两船相遇时距离B 码头16km【分析】(1)根据函数图象可得;(2)根据图象过点(0,80)D ,可设函数表达式为280=+y kx ,把(40,0)代入求出k 即可;(3)联立方程组,求解即可.【详解】(1)根据图象得可知:A 、B 两个码头之间的距离是80千米,故答案为:80;(2)根据图象过点(0,80)D ,可设函数表达式为280=+y kx ,将点(40,0)E 代入得,40800+=k ,解得2k =-.∴2280=-+y x .(3)由题意得1,2280.y x y x ⎧=⎪⎨⎪=-+⎩解得32,16.x y =⎧⎨=⎩∴(32,16)P ,点P 的横坐标表示两船在第32分钟相遇,点P 的纵坐标表示两船相遇时距离B 码头16km .【点睛】本题考查一次函数的应用,解题的关键是熟练掌握待定系数法.23.(1)见解析(2)A 1(1,5),B 1(3,0),C 1(4,3)(3)112【分析】(1)根据对称性即可在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)结合(1)即可写出点A1,B1,C1的坐标;(3)根据网格利用割补法即可求△ABC的面积.(1)解:如图,△A1B1C1即为所求;(2)解:观察图形得:A1(1,5),B1(3,0),C1(4,3);(3)解:△ABC的面积为:3×5-12×2×5-12×1×3-12×2×3=112.【点睛】本题考查了作图-轴对称变换,解决本题的关键是掌握轴对称性质.24.(1)见解析;(2)AC=16.9【分析】(1)由BC=13,CD=12,BD=5,知道BC2=BD2+CD2,所以△BDC为直角三角形,(2)由(1)可求出AC的长.【详解】证明:(1)∵BC=13,CD=12,BD=5,52+122=132,∴BC2=BD2+CD2,∴△BDC为直角三角形;(2)设AB=x,∵△ABC是等腰三角形,∴AB=AC=x,∵AC2=AD2+CD2,即x2=(x﹣5)2+122,解得:x=16.9,∴AC=16.9.【点睛】此题考查等腰三角形的性质、勾股定理以及逆定理的应用,关键是勾股定理的逆定理解答.25.(1)a=2,b=2.5(2)12 xy=⎧⎨=⎩(3)存在,48(,33或48,33⎛⎫--⎪⎝⎭【分析】(1)把点C(1,a)分别代入y=2x和y=12x b-+中,即可求得a,b的值.(2)根据两函数的交点坐标,即可求得方程组的解.(3)设点P的坐标为(x,2x),求出点A的坐标和点B的坐标,作PM⊥x轴于点M,PN⊥y 轴于点N,根据三角形面积公式列方程求得x的值,即可得出点P的坐标.【详解】(1)解:由题知,点C(1,a)在y=2x的图象上,∴a=1×2=2,∴点C的坐标为(1,2),∵点C(1,2)在y=12x b-+的图象上,所以,2=﹣12+b,所以,b=2.5;(2)解:∵一次函数y=﹣12x+b的图象与正比例函数y=2x的图象交于点C(1,2)∴方程组2012x yx y b-=⎧⎪⎨+=⎪⎩的解为12xy=⎧⎨=⎩故答案为12 xy=⎧⎨=⎩;(3)解:存在,理由:∵点P在在y=2x的图象上,∴设点P的坐标为(x,2x),∵一次函数为1 2.52y x=-+∴点A的坐标为(0,2.5),点B的坐标为(5,0),作PM⊥x轴于点M,PN⊥y轴于点N,∴△BOP的面积为115|2|5|| 22OB PM x x ⨯⨯=⨯⨯=,△AOP的面积为1152.5|||| 224OA PN x x ⨯⨯=⨯⨯=,当5|x|=5||54x+时,解得4||3x=,∴43 x=±,∴点P的坐标为48(,)33或48,33⎛⎫--⎪⎝⎭.【点睛】此题考查了一次函数的问题,解题的关键是掌握一次函数的解析式以及性质、一次函数与二元一次方程组的关系、三角形的面积公式、明确函数与方程组的关系.26.众数:6个,中位数:6个,平均数:6.3个【分析】先根据图形确定某车间工人日加工零件数,再利用平均数的公式求得平均数.根据中位数和众数的定义求解.【详解】解:观察条形图,在这20个数据中,6出现了8次,出现的次数最多,故众数是:6个;将这20个数据按从小到大的顺序排列,其中第10个、第11个数都是6,故中位数:6个;平均数:120(5×4+6×8+7×6+8×2)=6.3(个).【点睛】本题考查学生对条形图的认识及对平均数、中位数、众数的运用.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.27.(1)每台A型计算器的销售利润10元,每台B型计算器的销售利润15元(2)5750w a =-+【分析】(1)根据销售10台A 型和20台B 型计算器的利润为400元,销售15台A 型和10台B 型计算器的利润为300元,可以列出相应的二元一次方程组,然后求解即可;(2)根据题意和(1)中的结果可以写出w 关于a 的函数关系式.(1)解:设每台A 型计算器的销售利润为x 元,每台B 型计算器的销售利润为y 元,由题意可得:10204001510300x y x y +=⎧⎨+=⎩,解得1015x y =⎧⎨=⎩,答:每台A 型计算器的销售利润为10元,每台B 型计算器的销售利润为15元;(2)解:设购进A 型计算器a 台,则购进B 型计算器(50)a -台,依题意得:1015(50)5750w a a a =+-=-+,即w 关于a 的函数关系式是5750w a =-+.。
北师大版数学九年级上册期末考试试卷含答案
北师大版数学九年级上册期末考试试题一、选择题(本大题共14个小题,每题2分,共28分)1.□ABCD中,AC、BD是两条对角线,如果添加一个条件,可推出□ABCD是菱形,那么这个条件可以是()A.AB=CD B.AC=BD C.AC⊥BD D.AB⊥BD2.下列四组线段中,不能成比例的是()A.a=3,b=6,c=2,d=4B.a=1,b=3,c=2,d=6C.a=4,b=6,c=5,d=10D.a=2,b=5,c=4,d=103.下列相似图形不是位似图形的是()A.B.C.D.4.用配方法解一元二次方程22310x x--=,配方正确的是()A.231324x⎛⎫-=⎪⎝⎭B.23142x⎛⎫-=⎪⎝⎭C.2317416x⎛⎫-=⎪⎝⎭D.2131124x⎛⎫-=⎪⎝⎭5.如图,在平行四边形纸片ABCD中,点O为对角线AC与BD的交点,若随机向平行四边形纸片ABCD内投一粒米,则米粒落在图中阴影部分的概率为()A.12B.13C.14D.166.如图,要使ABC ACD ∆∆ ,需补充的条件不能是()A .ADC ACB∠=∠B .ABC ACD ∠=∠C .AD AC AC AB =D .AD BC AC DC⋅=⋅7.若反比例函数21k y x +=的图象位于第一、三象限,则k 的取值可以是()A .﹣3B .﹣2C .﹣1D .08.如图,直线12//l l ,:2:3AF FB =,:2:1BC CD =,则:AE EC 是()A .1:2B .1:4C .2:1D .3:29.在一个不透明的布袋中,有黄色、白色的玻璃球共有20个,除颜色外,形状、大小、质地等完全相同.小刚每次换出一个球后放回,通过多次摸球实验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是()A .8个B .15个C .12个D .16个10.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根()A .线段AE 的长B .线段BF 的长C .线段BD 的长D .线段DF 的长11.如图,在四边形ABCD 中,//AD BC ,DE BC ⊥,垂足为点E ,连接AC 交DE 于点F ,点G 为AF 的中点,2ACD ACB ∠=∠.若3DG =,1EC =,则DE 的长为()A12B10C8D612.如图1,有一张长32cm,宽16cm的长方形硬纸片,裁去角上2个小正方形和2个小长方形(图中阴影部分)之后,恰好折成如图2所示的有盖纸盒.若纸盒的底面积是2130cm,则纸盒的高为()A.2cm B.2.5cm C.3cm D.4cm13.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=bx在同一坐标系中的图象的形状大致是()A.B.C.D.14.如图,四边形ABCD为菱形,BF∥AC,DF交AC的延长线于点E,交BF于点F,且CE:AC=1:2.则下列结论:①△ABE≌△ADE;②∠CBE=∠CDF;③DE=FE;④S△BCE:S四边形ABFD=1:10.其中正确结论的个数是()A .1个B .2个C .3个D .4个二、填空题(本题共3个小题;每个小题4分,共12分)15.若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形(分别是:主视图,左视图,和俯视图)如图所示,则这一堆方便面共有__________个16.方程()()130x x --=的解是__________.17.已知在Rt ABC ∆中,90,3,4C BC cm AC cm ︒∠===,点,M N 分别在边AC AB 、上,将ABC ∆沿直线MN 对折后,点A 正好落在对边BC 上,且折痕MN 截ABC ∆所成的小三角形(即对折后的重叠部分)与ABC ∆相似,则折折痕MN =__________cm三、解答题(本题共8道题,18-20每题6分,21-245每题8分,25题10分,满分60分)18.我们定义一种关于“★”的新运算:a ★b ab a b =+-,试根据条件回答问题.(1)计算:2★()=3-_____;(2)若x ★()11x +=,求x 的值.19.己知:如图,点A 在反比例函数()0k y x x =>的图像上,且点A 的横坐标为2,作AH 垂直于x 轴,垂足为点H ,3AOHS = .(1)求AH 的长;(2)求k 的值;(3)若()11,M x y 、()22,N x y 在该函数图像上,当120x x <<时,比较1y 与2y 的大小关系.20.2019年,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是______;扇形统计图中的圆心角 等于______;补全统计直方图.(2)被抽取的学生还要进行一次50米跑测试,每4人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.21.一批发市场某服装批发价为240元/件.为拉动消费,该批发市场规定:当批发数量超过10件时,给予降价优惠,但批发价不得低于150元/件.经市场调查发现,优惠时批发价y(元/件)与x(件)之间成一次函数关系,当批发数量为15件时,批发价为210元/件;当批发数量为22件时,批发价为168元/件.(1)求批发价y(元/件)与x(件)之间的一次函数表达式;(2)在该市场降价优惠期间,某顾客一次性支付了3600元,求该顾客批发了多少件服装?22.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,AD上,AH=2,连接CF.(1)当四边形EFGH为正方形时,求DG的长;(2)当DG=6时,求△FCG的面积;(3)求△FCG的面积的最小值.23.如图是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.(1)在小亮由B沿OB所在的方向行走的过程中,他在地面上的影子的变化情况为______;(2)请你在图中画出小亮站在AB处的影子;(3)当小亮离开灯杆的距离 4.2OB m =时,身高(AB )为1.6m 的小亮的影长为1.6m ,问当小亮离开灯杆的距离6OD m =时,小亮的影长是多少m ?24.饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热,此过程中水温y (℃)与开机时间x (分)满足一次函数关系,当加热到100℃时自动停止加热,随后水温开始下降,此过程中水温y (℃)与开机时间x (分)成反比例关系,当水温降至20℃时,饮水机又自动开始加热……,重复上述程序(如图所示),根据图中提供的信息,解答问题:(1)当0≤x <8时,求水温y (℃)与开机时间x (分)的函数关系式.(2)求图中t 的值;(3)若在通电开机后即外出散步,请你预测散步42分钟回到家时,饮水机内的温度约为多少℃?25.如图所示,在△ABC 中,BA =BC =20cm ,AC =30cm ,点P 从A 点出发,沿着AB 以每秒4cm 的速度向B 点运动;同时点Q 从C 点出发,沿CA 以每秒3cm 的速度向A 点运动,设运动时间为x秒.(1)当x 为何值时,PQ //BC ;(2)当13BCQABC S S ∆∆=时,求S △BPQ :S △ABC 的值;(3)△APQ 能否与△CQB 相似?若能,求出时间x 的值;若不能,说明理由.答案一、选择题1.C.2.C .3.D .4.C.5.C.6.D.7.D .8.C .9.B .10.B.11.C .12.C .13.C .14.D .二、填空题15.516.11x =,23x =17.32或158.三、解答题18.解:(1)根据题中的新定义得:2★()()36231-=-+--=-;故答案为: 1-;(2)根据题中的新定义得:x ★()()()111x x x x x +=++-+=21x x +-∴21x x +-=1∴220x x +-=∴(2)(1)0x x +-=∴122,1x x =-=故答案是:-2或1.19.解:(1)∵点A 的横坐标为2,∴OH=2∵3AOH S = ∴12OH·AH=3解得:AH=3(2)∵OH=2,AH=3∴点A 的坐标为(2,3)将点A 的坐标代入ky x =中,得32k=解得:k=6(3)∵k=6>0∴反比例函数在第一象限内,y 随x 的增大而减小∵()11,M x y 、()22,N x y 在该函数图像上,且120x x <<∴1y >2y .20.(1)34-小时的人数有6人,占总人数20%,∴总人数有:620÷%30=(人),23-小时的人数有:30376212----=(人),占总人数为:1210030⨯%40=%,36040α=︒⨯%144=︒.补全直方图如下:;(2)列表法:小红,小花12341()2,1()3,1()4,12()1,2()3,2()4,23()1,3()2,3()4,34()1,4()3,4()3,461122P ==.21.解:(1)根据题意,则设一次函数的解析式为:y kx b =+,∴1521022168k b k b +=⎧⎨+=⎩,解得:6300k b =-⎧⎨=⎩,∴6300y x =-+;(2)根据题意,则可列方程:(6300)3600x x -+=,解得:1220,30x x ==当20x =时,6300180x -+=>150当30x =时,6300120x -+=<150,不合题意,舍去答:该顾客批发了20件服装.22.解:(1)∵四边形EFGH 为正方形,∴HG=HE ,∠EAH=∠D=90°,∵∠DHG+∠AHE=90°,∠DHG+∠DGH=90°,∴∠DGH=∠AHE ,∴△AHE ≌△DGH(AAS),∴DG=AH=2;(2)过F 作FM ⊥DC ,交DC 延长线于M ,连接GE ,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF,在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG(AAS),∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,因此S△FCG =12×FM×GC=12×2×(7-6)=1;(3)设DG=x,则由(2)得,S△FCG=7-x,在△AHE中,AE≤AB=7,∴HE2≤53,∴x2+16≤53,∴37,∴S△FCG的最小值为37,此时37,∴当37时,△FCG的面积最小为(7-37).23.(1)因为光是沿直线传播的,所以当小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短;(2)如图所示,BE 即为所求(3)先设OP=x,则当OB=4.2米时,BE=1.6米,∴ 1.6 1.6, 4.2 1.6AB BE OP OE x ==+即∴x=5.8米当OD=6米时,设小亮的影长是y 米,∴DF CDDF OD OP=+∴ 1.66 5.8yy =+y=167(米)即小亮的影长是167米。
北师大版八年级下册数学期末考试试题及答案
北师大版八年级下册数学期末考试试卷一、单选题1.下列图案中既是中心对称图形,又是轴对称图形的是()A .B .C .D .2.分式1xx +在实数范围内有意义,则x 的取值范围是()A .x =﹣1B .x ≠﹣1C .x ≠0D .x >﹣13.已知两个不等式的解集在数轴上如右图表示,那么这个解集为()A .x≥-1B .x>1C .-3<x≤-1D .x>-34.下列从左到右的变形属于因式分解的是()A .(x +2)(x ﹣2)=x 2﹣4B .x ﹣1=x (1﹣1x)C .x 2+3x +1=x (x +3)+1D .x 2﹣9=(x +3)(x ﹣3)5.如图,在△ABC 中,AB=AC ,∠A=40°,CD ⊥AB 于D ,则∠DCB 等于()A .70°B .50°C .40°D .20°6.已知x y xy +=则22x y xy +的值为()A .B .9C .D .67.对于命题“若a >b ,则a 2>b 2”,小明想举一个反例说明它是一个假命题,则符合要求的反例可以是()A.a=﹣1,b=0B.a=2,b=﹣1C.a=2,b=1D.a=﹣1,b=﹣2 8.如图,OD平分∠AOB,DE⊥AO于点E,DE=4.2,F是射线OB上的任一点,则DF 的长度不可能是()A.3.9B.4.2C.4.7D.5.849.下列说法中,错误的是()A.对角线互相垂直的四边形是菱形B.有一个角是直角的平行四边形是矩形C.矩形的对角线相等D.菱形的面积等于两条对角线乘积的一半10.不等式组3xx m≤-⎧⎨>⎩有两个整数解,则实数m的取值范围为()A.﹣5≤m<﹣4B.﹣5<m<﹣4 C.﹣5<m≤﹣4D.﹣5≤m≤﹣4二、填空题11.用不等式表示“x+1是负数”:________.12.分解因式:2x2﹣6x=_______.13.若分式33xx+-的值为零,则x的值为_____.14.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AC=3km,AB=5km,则M,C两点间的距离为______km.15.如图,在Rt△ABC中,∠BAC=90°,AC的垂直平分线分别交BC、AC于点D,E,若AB=6cm,AC=8cm,则△ABD的周长为_____cm.16.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3=__________.17.在平面直角坐标系xOy 中,一次函数y 1=kx +b 与y 2=x +m 的图象如图所示,若它们的交点的横坐标为2,则下列三个结论中正确的是_______(填写序号).①直线y 2=x +m 与x 轴所夹锐角等于45°;②k +b >0;③关于x 的不等式kx +b <x +m 的解集是x <2.三、解答题18.解不等式组2131213x xx ->-⎧⎪+⎨≥-⎪⎩19.先化简,再求值:22441(1)11x x x x -+÷---,其中x =3.20.在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A(0,0),B(3,3),C(4,1).(1)画出△ABC 及△ABC 绕点A 逆时针旋转90°后得到的△AB 1C 1;(2)分别写出B1和C1的坐标.21.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.22.如图,点P,M,N分别在等边△ABC的各边上,MP⊥AB于点P,MN⊥BC于点M,PN⊥AC于点N.(1)求证:△PMN是等边三角形;(2)若BP=2cm,求等边△ABC的边长.23.在2021年春季环境整治活动中,红旗社区计划对面积为1600m2的区域进行绿化.经投标由甲、乙两个工程队来完成,若甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用5天.(1)求甲、乙两工程队每天能完成绿化的面积;(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务.已知甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过25天,请问应该如何安排甲、乙两队施工的天数,使施工总费用最低?最低费用是多少?24.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积(直接用含m,n的代数式表示).方法一:;方法二:.(2)根据(1)中面积相等的关系,你能得出怎样的等量关系?(用含m的等式表示)(3)根据(2)题中的等量关系,解决如下问题:已知实数a,b满足:a+b=10,ab=8,求a﹣b的值.(4)根据图③,写出一个等式:.25.如图,Rt△CEF中,∠C=90°,∠CEF,∠CFE外角平分线交于点A,过点A分别作直线CE,CF的垂线,B,D为垂足.(1)∠EAF=°(直接写出结果不写解答过程);(2)①求证:四边形ABCD是正方形.②若BE=EC=3,求DF的长.(3)如图(2),在△PQR中,∠QPR=45°,高PH=5,QH=2,则HR的长度是(直接写出结果不写解答过程).参考答案1.B【解析】根据中心对称图形和轴对称图形的概念逐项分析即可,轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180 ,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.【详解】A.是轴对称图形,不是中心对称图形,故该选项不符合题意;B.既是轴对称图形,又是中心对称图形,故该选项符合题意;C.是轴对称图形,不是中心对称图形,故该选项不符合题意;D是轴对称图形,不是中心对称图形,故该选项不符合题意.故选B.2.B【解析】直接利用分式有意义的条件是分母不等于零,进而得出答案.【详解】解:∵分式1xx 在实数范围内有意义,∴x +1≠0,解得:x ≠﹣1.故选:B .【点睛】本题考查分式有意义的条件,熟练掌握分式有意义的条件是解题关键.3.A 【解析】>-3,≥-1,大大取大,所以选A4.D 【解析】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.【详解】解:A .(x +2)(x ﹣2)=x 2﹣4,是整式的乘法,不是因式分解,故此选项不符合题意;B .x ﹣1=x (1﹣1x),没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;C .x 2+3x +1=x (x +3)+1,不是把一个多项式化为几个整式的积的形式,故此选项不符合题意;D .x 2﹣9=(x +3)(x ﹣3),把一个多项式化为几个整式的积的形式,故此选项符合题意;故选:D .【点睛】本题考查了因式分解的意义.掌握因式分解的定义:把一个多项式化为几个整式的积的形式是解题关键.5.D 【解析】解:∵AB=AC ,∠A=40°,∴∠B=∠C=(180°-40°)÷2=70°,又∵CD ⊥AB ,∴∠BDC=90°,∴∠DCB=90°-70°=20°.故选D .6.C【解析】根据x y xy+=x2y+xy2的值.【详解】解:∵x y xy+=∴x2y+xy2=xy(x+y)=故选C.【点睛】本题考查因式分解的应用,解答本题的关键是明确因式分解的方法,利用题目中的已知条件解答.7.D【解析】【分析】根据有理数的大小比较法则、有理数的乘方法则计算,判断即可.【详解】解:当a=﹣1,b=﹣2时,a>b,而a2<b2,∴“若a>b,则a2>b2”是假命题,故选:D.【点睛】本题考查的命题和定理,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8.A【解析】【分析】过D点作DH⊥OB于H,如图,根据角平分线的性质得到DH=DE=4.2,然后根据垂线段最短对各选项进行判断.解:过D点作DH⊥OB于H,如图,∵OD平分∠AOB,DE⊥AO,DH⊥OB,∴DH=DE=4.2,∵F是射线OB上的任一点,∴DF≥4.2.故选:A.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了垂线段最短.9.A【解析】【分析】由矩形的判定与性质、菱形的判定与性质分别对各个选项进行判断即可.【详解】解:A、∵对角线互相垂直平分的四边形是菱形,∴选项A符合题意;B、∵有一个角是直角的平行四边形是矩形,∴选项B不符合题意;C、∵矩形的对角线相等,∴选项C不符合题意;D、∵菱形的面积等于两条对角线乘积的一半,∴选项D不符合题意;故选A.本题主要考查了矩形的性质与判定,菱形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.10.A 【解析】【分析】根据不等式组3x x m ≤-⎧⎨>⎩有两个整数解知不等式组的整数解为﹣3,﹣4,据此求解可得答案.【详解】解:∵不等式组3x x m≤-⎧⎨>⎩有两个整数解,∴不等式组的解集为3m x <≤-∴不等式组的整数解为﹣3,﹣4,则﹣5≤m <﹣4,故选A .【点睛】本题主要考查了不等式组的整数解,解题的关键在于能够熟练掌握相关知识进行求解.11.x +1<0【解析】【分析】根据负数都小于0,由此列出不等式即可.【详解】解:x +1<0.故答案为:x +1<0.【点睛】此题考查了列不等式;读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.12.2x (x ﹣3)【解析】【分析】因式分解的题,一般先考虑提公因数法,再考虑公式法,最后再用十字相乘即可分解到位.【详解】2x2﹣6x=2x(x﹣3).故答案为2x(x﹣3).13.﹣3【解析】【分析】直接利用分式为零的条件得出答案.【详解】解:∵分式33xx+-的值为零,∴x+3=0,解得:x=﹣3,此时满足分母不为零,故答案为:﹣3.【点睛】本题考查分式为零的条件,掌握分式为零的条件是解题关键. 14.2.5【解析】【分析】根据直角三角形斜边上的中线性质得出CM=12AB,再求出答案即可.【详解】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M为AB的中点,∴CM=12 AB,∵AB=5km,∴CM=2.5km,即M,C两点间的距离为2.5km,故答案为:2.5.【点睛】本题主要考查了直角三角形斜边上的中线,解题的关键在于能够熟练掌握直角三角形斜边上的中线等于斜边的一半.15.16【解析】【分析】根据勾股定理求出BC,根据线段垂直平分线的性质得到DA=DC,根据三角形的周长公式计算,得到答案.【详解】解:在Rt△ABC中,∠BAC=90°,AB=6cm,AC=8cm,由勾股定理得:BC=10(cm),∵DE是AC的垂直平分线,∴DA=DC,∴△ABD的周长=AB+BD+DA=AB+BD=DC=AB+BC=16(cm),故答案为:16【点睛】本题考查的是线段垂直平分线的性质、勾股定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.16.110°【解析】【分析】先延长直线,然后根据平行线的性质和三角形的外角性质解答即可.【详解】解:如图:延长直线:∵a平移后得到直线b,∴a∥b,∴∠5=180°-∠1=180°-70°=110°,又∵∠2=∠4+∠5,∠3=∠4,∴∠2-∠3=∠5=110°故答案为:110°.【点睛】本题考查平移问题,解答本题的关键是根据平行线的性质和三角形的外角性质求角.17.①②【解析】【分析】①利用直线与两轴的截距相等即可判断;②利用x=1时的函数图象上点的位置来判断;③利用两函数图象的交点与两函数图象的位置来判断即可.【详解】解:由y 2=x +m 得,当x=0时,y 2=m,当y=0时,x=-m ,则直线与坐标轴的截距相等,所以直线y 2=x +m 与x 轴所夹锐角等于45°,故①的结论正确;由图知:当x =1时,函数y 1图象对应的点在x 轴的上方,因此k +b >0,故②的结论正确;由图知:两函数的交点横坐标为x=2,当x >2时,函数y 1图象对应的点都在y 2的图象下方,因此关于x 的不等式kx +b <x +m 的解集是x >2,故③的结论不正确;故答案为:①②.【点睛】本题考查一次函数与一元一次不等式,掌握一次函数与一元一次不等式的关系,会求截距,会求函数值,会比较两函数值的大小关系是解题关键.18.14x -<≤【解析】【分析】分别解出各不等式,再求出公共解集即可.【详解】2131213x x x ->-⎧⎪⎨+≥-⎪⎩①②解①得1x >-,解②得4x ≤,在数轴上表示为∴原不等式组的解集为14x -<≤.【点睛】此题主要考查不等式的解集,解题的关键是熟知不等式的性质.19.21x x -+;14【解析】【分析】首先将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】解:原式=()()()222111x x x x x --÷-+-,=()()()221112x x x x x --⨯-+-,=21x x -+,当x =3时,原式=321314-=+.【点睛】本题主要考查了分式的化简求值.化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.为了降低计算的难度,杜绝繁琐的计算,本题代数式结构复杂,化简后的结果简单,计算简单,把考查重点放在化简的规则和方法上.20.(1)画图见解析;(2)B 1(-3,3),C 1(-1,4).【解析】【分析】(1)根据网格结构找出点A 、B 、C 绕点A 逆时针旋转90°的对应点的位置,然后顺次连接即可;(2)根据关于y 轴对称的点的特征即可得到11,B C 的坐标.【详解】(1)如图所示,△ABC 和△AB 1C 1即为所求.(2)B 1(-3,3),C 1(-1,4).【点睛】本题考查了旋转变换的性质以及旋转作图,解题时要充分利用图形的特点和网格.21.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由SSS 证明△ABC ≌△DFE 即可;(2)连接AF 、BD ,由全等三角形的性质得出∠ABC=∠DFE ,证出AB ∥DF ,即可得出结论.【详解】详解:证明:()1BE FC = ,BC EF ∴=,在ABC 和DFE 中,AB DF AC DE BC EF =⎧⎪=⎨⎪=⎩,ABC ∴≌()DFE SSS ;()2解:如图所示:由()1知ABC ≌DFE ,ABC DFE ∴∠=∠,//AB DF ∴,AB DF = ,∴四边形ABDF 是平行四边形.点睛:本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.22.(1)见解析;(2)等边△ABC 的边长为6cm 【解析】【分析】(1)根据等边三角形的性质得出∠A =∠B =∠C ,进而得出∠MPB =∠NMC =∠PNA =90°,再根据平角的意义即可得出∠NPM =∠PMN =∠MNP ,即可证得△PMN 是等边三角形;(2)先根据直角三角形30度的性质可得BM =4,证明△MPB ≌△NMC (AAS ),可得CM =PB =2,从而得结论.【详解】(1)证明:∵△ABC 是等边三角形,∴∠A =∠B =∠C ,∵MP ⊥AB ,MN ⊥BC ,PN ⊥AC ,∴∠MPB =∠NMC =∠PNA =90°,∴∠PMB =∠MNC =∠APN ,∴∠NPM =∠PMN =∠MNP ,∴△PMN 是等边三角形;(2)解:∵△PMN 是等边三角形∴PM=MN在Rt △BPM 中,∵∠B =60°,∴∠PMB =30°,∴BM =2PB =4,在△MPB 和△NMC 中,C B PMB CNM PM NM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△MPB ≌△NMC (AAS ),∴CM =PB =2,∴BC =BM +CM =4+2=6(cm ),∴等边△ABC 的边长为6cm .本题考查了全等三角形的判定与性质、等边三角形的判定和性质等知识;证出∠NPM=∠PMN=∠MNP是本题的关键.23.(1)甲、乙两工程队每天能完成绿化的面积分别为80m2、40m2;(2)甲队施工15天,乙队施工10天,最低费用为11.5万元【解析】【分析】(1)设出两队的每天绿化的面积,以两队工作时间为等量构造分式方程;(2)以(1)为基础表示甲乙两队分别工作x天、y天的工作总量,工作总量和为1600;用甲乙两队施工的总天数不超过25天确定自变量x取值范围,用x表示总施工费用,根据一次函数增减性求得最低费用.【详解】解:(1)设乙队每天能完成绿化面积为am2,则甲队每天能完成绿化面积为2am2,根据题意得:4004005-=,a a2解得a=40,经检验,a=40为原方程的解,且符合题意,则甲队每天能完成绿化面积为80m2,答:甲、乙两工程队每天能完成绿化的面积分别为80m2、40m2;(2)由(1)得80x+40y=1600,整理:y=﹣2x+40,由已知y+x≤25,∴﹣2x+40+x≤25,解得x≥15,总费用W=0.6x+0.25y=0.6x+0.25(﹣2x+40)=0.1x+10,∵k=0.1>0,∴W随x的增大而增大,∴当x=15时,W最低=1.5+10=11.5,∴甲队施工15天,乙队施工10天,最低费用为11.5万元.本题考查了分式方程和一元一次不等式的应用、一次函数的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解.24.(1)方法一:(m﹣n)2,方法二:(m+n)2﹣4mn;(2)(m﹣n)2=(m+n)2﹣4mn;(3)a b-=±(4)(a+b)3=a3+b3+3a2b+3ab2【解析】【分析】(1)图2中阴影部分是边长为(m﹣n)的正方形,可根据正方形面积公式表示出来,也可以从边长为(m+n)的大正方形减去图1的面积即可;(2)由(1)的两种计算方法可得等式;(3)整体代入计算即可;(4)根据正方体的体积的计算方法,用两种不同的方法表示即可.【详解】解:(1)方法一:图2中阴影部分是边长为(m﹣n)的正方形,因此面积为(m﹣n)2,方法二:图2中阴影部分可以看作边长为(m+n)的大正方形减去图1的面积,即(m+n)2﹣4mn,故答案为:(m﹣n)2,(m+n)2﹣4mn;(2)由(1)可得,(m﹣n)2=(m+n)2﹣4mn;(3)由(2)可得(a﹣b)2=(a+b)2﹣4ab,当a+b=10,ab=8时,(a﹣b)2=102﹣4×8=68,∴a﹣b=(4)正方体的棱长为(a+b),因此体积为(a+b)3,大正方体的体积也可以表示为8块体积的和,即为a3+b3+3a2b+3ab2,所以有(a+b)3=a3+b3+3a2b+3ab2,故答案为:(a+b)3=a3+b3+3a2b+3ab2.【点睛】本题考查了完全平方公式的实际应用,完全平方公式与正方形的面积公式和长方形的面积公式经常联系在一起,要学会观察.25.(1)45;(2)①见解析;②DF的长为2;(3)15 7【解析】【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=12∠DFE,∠AEF=12∠BEF,求得∠AEF+∠AFE=12(∠DFE+∠BEF),根据三角形的内角和定理即可得到结论;(2)①作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD是矩形,再由角平分线的性质得出AB=AD,即可得出四边形ABCD是正方形;②设DF=x,根据已知条件得到BC=6,由①得四边形ABCD是正方形,求得BC=CD=6,根据全等三角形的性质得到BE=EG=3,同理,GF=DF=x,根据勾股定理列方程即可得到结论;(3)把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,得出MG=DG=MP=PH=6,GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR 中,由勾股定理得出方程,解方程即可.【详解】解:(1)∵∠C=90°,∴∠CFE+∠CEF=90°,∴∠DFE+∠BEF=360°﹣90°=270°,∵AF平分∠DFE,AE平分∠BEF,∴∠AFE=12∠DFE,∠AEF=12∠BEF,∴∠AEF+∠AFE=12(∠DFE+∠BEF)=12⨯270°=135°,∴∠EAF=180°﹣∠AEF﹣∠AFE=45°,故答案为:45;(2)①作AG⊥EF于G,如图1所示:则∠AGE =∠AGF =90°,∵AB ⊥CE ,AD ⊥CF ,∴∠B =∠D =90°=∠C ,∴四边形ABCD 是矩形,∵∠CEF ,∠CFE 外角平分线交于点A ,∴AB =AG ,AD =AG ,∴AB =AD ,∴四边形ABCD 是正方形;②设DF =x ,∵BE =EC =3,∴BC =6,由①得四边形ABCD 是正方形,∴BC =CD =6,在Rt △ABE 与Rt △AGE 中,AB AGAE AE =⎧⎨=⎩,∴Rt △ABE ≌Rt △AGE (HL ),∴BE =EG =3,同理,GF =DF =x ,在Rt △CEF 中,EC 2+FC 2=EF 2,即32+(6﹣x )2=(x +3)2,解得:x =2,∴DF 的长为2;(3)解:如图2所示:把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,∴MG=DG=MP=PH=5,∴GQ=3,设MR=HR=a,则GR=5﹣a,QR=a+2,在Rt△GQR中,由勾股定理得:(5﹣a)2+32=(2+a)2,解得:a=157,即HR=157;故答案为:15 7.【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、角平分线的性质、勾股定理、矩形的判定、翻折变换的性质等知识;本题综合性强,有一定难度.21。
2024—2025学年最新北师大新版八年级下学期数学期末考试试卷(含答卷和参考答案)
2024—2025学年最新北师大新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、二十四节气是中国劳动人民独创的文化遗产,能反映季节的变化,指导农事活动.下面四副图片分别代表“芒种”、“白露”、“立夏”、“大雪”,其中是中心对称图形的是()A.B.C.D.2、若a>b﹣1,则下列结论一定正确的是()A.a+1<b B.a﹣1<b C.a>b D.a+1>b3、若点P(1﹣2a,a)在第二象限,那么a的取值范围是()A.B.C.D.4、将分式中的x,y的值同时扩大2倍,则分式的值()A.扩大2倍B.缩小到原来的C.保持不变D.无法确定5、下列命题中,假命题是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行且另一组对边相等的四边形是平行四边形C.两组对角相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形6、如图,在Rt△ABC中,∠ACB=90°,DE垂直平分AB交BC于点D,若△ACD的周长为50cm,则AC+BC=()A.25cm B.45cm C.50cm D.55cm7、甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x个零件,可列方程为()A.﹣=30B.﹣=30C.﹣=D.﹣=8、如图,在▱ABCD 中,点O 是BD 的中点,EF 过点O ,下列结论:①AB ∥DC ;②EO =ED ;③∠A =∠C ;④S 四边形ABOE =S 四边形CDOF ,其中正确结论的个数为( )A .1个B .2个C .3个D .4个9、如图,在Rt △ABC 中,∠C =90°,∠B =30°,BC =6,AD 平分∠CAB 交BC 于点D ,点E 为边AB 上一点,则线段DE 长度的最小值为( )A .B .C .2D .310、关于x 的不等式组整数解仅有4个,则m 的取值范围是( )A .﹣5≤m <﹣4B .﹣5<m ≤﹣4C .﹣4≤m <﹣3D .﹣4<m ≤﹣3二、填空题(每小题3分,满分18分)11、分解因式:3a 3﹣12a= .12、如果一个多边形的每一个外角都是40°,那么这个多边形的边数为 .13、如图,在△ABC 中,∠DCE =40°,AE =AC ,BC=BD ,则∠ACB 的度数为 .14、使得分式值为零的x 的值是 .15、如图,五边形ABCDE 是正五边形.若l 1∥l 2,则∠1﹣∠2= °.16、若关于x 的方程﹣=1无解,则k 的值为 .2024—2025学年最新北师大新版八年级下学期数学期末考试试卷 第7题图 第8题图 第9题图考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、先化简,再求值:(+1)÷,其中x=﹣3.19、已知不等式组的解集是﹣1<x<1,求(a+b)2024的值20、已知方程组的解为正数.(1)求a的取值范围;(2)化简:.21、如图,在△ABC中,CD平分∠ACB交AB于点D,E为AC上一点,且DE∥BC.(1)求证:DE=CE;(2)若∠A=90°,AD=4,BC=12,求△BCD的面积.22、某商场购进A,B两种商品,已知购进3件A商品比购进4件B商品费用多60元;购进5件A商品和2件B商品总费用为620元.(1)求A,B两种商品每件进价各为多少元?(2)该商场计划购进A,B两种商品共60件,且购进B商品的件数不少于A 商品件数的2倍.若A商品按每件150元销售,B商品按每件80元销售,为满足销售完A,B两种商品后获得的总利润不低于1770元,则购进A商品的件数最多为多少?23、如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC.(1)求证:四边形ABCD为平行四边形;(2)点E为BC边的中点,连接AE,过E作EF⊥AE交边CD于点F,连接AF.①求证:AF=AB+CF;②若AF⊥CD,CF=3,DF=4,求AE与CE的值.24、如图,在△ABC中,∠ACB=90°,AB=5,AC<BC.以AC为边向形外作等边△ACD,以BC为边向形外作等边△BCE,以AB为边向上作等边△ABF,连接DF,EF.(1)记△ACD的面积为S1,△BCE的面积为S2,求S1+S2的值(2)求证:四边形CDFE是平行四边形.(3)连接CF,若CF⊥EF,求四边形CDFE的面积.25、如图,在平面直角坐标系中,直线y=﹣x+8与x轴交于点A,与y轴交于点B,直线y=kx+b经过点B,且与x轴交于点C(﹣6,0).(1)求直线BC的表达式;(2)点E为射线BC上一点,过点E作EF∥x轴交AB于点F,且EF=7,设点E的横坐标为m.①求m的值;②在y轴上取点M,在直线BC上取点N,在平面内取点Q,使得点E,M,N,Q构成的四边形是以EN为对角线的正方形,求出此正方形的面积.2024—2025学年最新北师大新版八年级下学期数学期末考试参考答案考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、3a(a+2)(a﹣2)12、9 13、100°14、2 15、7216、2或﹣1三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣<x≤4.18、,19、120、(1)﹣1<a<3;(2)3﹣a.21、(1)证明略(2)24.22、(1)A商品的进价是100元/件,B商品的进价是60元/件;(2)购进A商品的件数最多为20件.23、(1)证明略(2)①证明略②AE的长是5,CE的长是.24、(1);(2)证明略(3)四边形CDFE的面积=S=a2=.△ADC25、(1)直线BC的表达式:y=x+8(2)①m=﹣3②正方形的面积为:或450。
2023-2024学年北师大版数学五年级上册《期末考试卷》含答案
2023-2024学年第一学期期末测试北师大版数学五年级试题学校________ 班级________ 姓名________ 成绩________2023-2024学年五年级数学上册期末全真模拟基础卷考试分数:90分;考试时间:100分钟一、注意审题,细心计算。
(共28分)二、用心思考,正确填空。
(共23分)5.(3分)按要求填一填。
(1)从( )号盒子内一定能摸出黑球。
(2)从( )号盒子内不可能摸出白球。
(3)从( )号盒子内可能摸出黑球,也可能摸出白球。
6.(3分)有10个桃子共3千克,平均分给5只猴子。
每只猴子分到( )个桃子,每只猴子分到( )千克桃子,每只猴子分到的桃子占桃子总数的( )。
7.(3分)分母是4的假分数有( )个,其中最小的是( ),没有最大的( )分数。
8.(1分)一个直角梯形,如果上底长2cm,下底长4cm,高是4cm,这个直角梯形的面积是( )cm2。
9.(1分)一个三角形与一个平行四边形等底、等高,平行四边形的面积是48平方分米,那么这个三角形的面积是( )平方分米。
10.(2分)279至少加上( )就是2的倍数,至少减去( )就是5的倍数。
(4分)下图中,图形1先向( )平移( )格,再向( )平移( ) 11.格,得到图形2。
12.(2分)正方形有( )条对称轴,等边三角形有( )条对称轴。
13.(2分)0.35×1.47的积是( )位小数,64.3÷1.6商的最高位在( )位上。
(2分)一根长31.1米的木料截成长为0.7米的小棒,可以截( )段,余( ) 14.米。
四、反复比较,谨慎选择。
(共10分)15.(2分)下图中阴影部分占整个图形的几分之几?()。
1414A.B.C.D.19.(2分)下列各数中,()是循环小数。
20.(1分)左图是表示弯道的指示牌,它是由平移得到的。
( ) 21.(1分)4.25÷1.24的商要大于4.25。
北师大期末考试试卷
北师大期末考试试卷一、选择题(每题2分,共20分)1. 根据题目所给的选项,选择最符合题意的一项。
A. 选项一B. 选项二C. 选项三D. 选项四2. 以下哪个选项是正确的描述?A. 描述一B. 描述二C. 描述三D. 描述四...(此处应有18个选择题,每个题目2分)二、填空题(每空1分,共10分)1. 请填写下列句子中缺失的词汇。
- 句子一:______ 是指一种特殊的数学运算。
- 句子二:______ 可以代表一个未知数。
2. 请根据题目所给的语境,填写合适的词汇。
- 句子三:在历史研究中,______ 是必不可少的。
...(此处应有10个填空题,每个空1分)三、简答题(每题5分,共20分)1. 请简述牛顿三大定律的基本内容。
2. 解释什么是相对论,并简要说明其对现代物理学的影响。
3. 请列举至少三种常见的环境污染类型,并简述其对环境和人类健康的影响。
4. 描述中国四大名著之一《红楼梦》的主要人物关系。
四、论述题(每题15分,共30分)1. 论述信息技术在教育领域的应用及其对教育模式的影响。
2. 分析全球化对世界经济和文化的影响,以及我们应如何应对全球化带来的挑战。
五、材料分析题(每题25分,共25分)阅读以下材料,回答问题:[此处应提供一段或几段与考试科目相关的材料]1. 根据材料,分析文中主要观点及其论据。
2. 结合材料,讨论文中提出的问题或现象,并给出你的看法。
六、作文题(共15分)请以“我眼中的未来世界”为题,写一篇不少于800字的议论文。
要求观点明确,论据充分,逻辑清晰。
考试结束,请同学们交卷。
[注:以上内容为模拟试卷结构,具体题目和材料应根据实际课程内容和教学大纲进行设置。
]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大期末考试 五年级数学(第二学期)
认真认真,就能获得好成绩。
加油!你能行! 基础知识 一、平复摸索,正确填写,我能行! 1.10000立方厘米=( )立方米=(
)立方分米。
2.40的5%是( )。
一个香蕉的体积是120( )。
3.五年级有240人,出勤210人,请假5人,咨询缺勤率是( )%。
4 5.5()15 ×12 56.02( )12 -45 0.3%( )1000.7
5,102千克大米用去16 后还剩( )千克,用去剩下的56 后还剩( )
千克。
6.小明讲:“我每天做5页练习册,共用421 小时,做一页练习册要用( )小时。
7. 15米的绳子,用 112 后还剩( )米。
( )米的35 是5米。
8.125米的绳子,用去 12 后再用去( )米,剩11000 米。
二、认真推敲,辨析正误,不模糊!
1.一个橘子的体积是500立方厘米。
( )
2.一个数(0除外)乘分数,分数的大小不变。
( )
3. 一个数(X )的15 是52,那个数是265。
( )
4.在浓度为99%的盐水中,1份是水,90份是盐,9份是糖。
( )
5. 15× 15÷ 15 ÷15+ 15- 15 =0 ( )
三、反复比较,慎重选择,无差错!
1.甲数是乙数的( ),乙数是甲数的2倍。
A 12
B 4倍
C 18
2.A 是20的30%,B 的60%是40,A 是B 的百分之几?列式为( )。
A (20×30%)÷(40÷60%) B (20×60%)÷(40÷20%)
3.全班1280人,考试中588人合格,其中13 60分,其余不及格,不及格率是多
少?列式为( )
A (1280-588)÷1280
B 588÷1280
C 588×13 ÷1280
运算能力 一,欢乐运算,认真认真,写得数!
(1)直截了当写得数。
15× 6125 = 681÷ 58 = 79× 765= 554 ÷217= 35× 4125 = 981÷ 512 = 179× 7165= 54 ÷2117
= (2)脱式运算。
52 -14 ×15 18+ 17 ÷231 14× 24 ÷17
(3)列式运算。
(1) 8.25的12的3倍的 15 是多少? (2)5000的1半的12 的12 是多少?
(4)解方程。
X+12X=500 16a+ 13= 12 8.65+13-a +16=0
(5)运算体积与表面积并比较两立体图形的体积大小。
(6)看图列式并运算
男生 200人
0.2m
女生
34 ?
解决咨询题
一、解决咨询题,贴近生活,你最棒!
1.光明纸盒厂生产一种正方体纸箱,棱长是5分米。
体积是多少立方分米?
2.学校运来7.6立方米沙土,把这些沙土铺在一个长5米,宽
3.8米的沙坑里,能够铺多厚?
3.一条公路,3天修了整个公路的15 ,剩50千米,10天修了剩下的12 还剩多少?
4.学校为灾区捐款,五(一)班捐了502.02元,五(二)班捐了1000.25元,五
(三)班捐了五(一)班的12 ,五(四)班捐了五(二)班的17 ,咨询:五(三)
班捐了多少?五(四)班呢?
5全年级1300人,有500人未及格,及格率是多少?
六年级
7.小燕子从A 地飞到B 地,如图:(已知题中小燕子的速度保持不变) A
B
(1)假如小燕子以50km/天的速度飞行,则需要5天,假如以30千米/天的速度飞行,约要几天?(结果用分数表示。
)
8购物打算
1商店 买1大赠1小 1大5元
2商店 买30元以上赠3小,40元以上赠4小 1大10元1小5元
3商店 买(10大2小为一组合,30元)一组合可再购物专门装,不买一组合调为正常 专门装,1大5元1小3
元
正常,1大10元1小5元。
(2)要买5大13小,如何买合适?
9.看统计图表绘制一个扇形统计图并答题。
(已给出圆)
(1)请算出数据的中位数、平均数和众位数。
10.粉刷墙壁
(1)小明家的墙长3m ,宽2m 。
假如每㎡要5000g 油漆,要多
少油漆才够(因实际粉刷时会有损耗,粉刷墙壁因此要
多预备总油漆的17 )。
每1000g 油漆要50元,小明家粉刷墙壁所
用油漆的花费是多少?(除不尽保留两位小数)。