第四章土的压缩性及固结理论
(固结沉降)计算
分层总和法计算步骤
1) 选择沉降计算剖面,在每一个剖面上选择若干计算点;求出基底附加压 力的大小和分布;选择沉降计算点的位置(通常为基础的中心点)。 2) 地基分层 。天然土层的交界面和地下水位面必为分层面,在同一类土层中分层厚度不宜过 大。一般取分层厚hi≤0.4b或hi=1~2m,b为基础宽度。 3) 求出计算点垂线上各分层 层面处的竖向自重应力c ( 从地面起算),并绘 出它的分布曲线。 4) 求出计算点 垂线上各分层层面处的竖向附加应力z,并绘出它的分布曲线,取z =0.2c (中、 低压缩性土)或z =0.1c (高压缩性土)处的土层深度为地基沉降计算深度。 5) 求出各分层的平均自重应力p1i 和平均附加应力pi。 6) 由各分层的平均自重应力p1i 和平均自重应力p1i 与平均附加应力pi 之和 (p1i+ pi ) ,在压缩曲线上查出相应的初始孔隙比和压缩稳定后的孔隙比。 7) 计算各分层土的压缩量si。 8) 地基最终沉降量 s 的分层总和法公式:
(2): elogp曲线。 (3): elnp曲线。
压缩试验曲线特征 压缩试验条件下土体体积变化特征: (1)卸荷时,试样不是沿初始压缩曲线,而是沿曲线bc回弹,可见土体的变形是由可 恢复的弹性变形和不可恢复的塑性变形两部份组成。 (2)回弹曲线和再压线曲线构成一迴滞环,土体不是完全弹性体的又一表征; (3)回弹和再压缩曲线比压缩曲线平缓得多。 (4)当再加荷时的压力超过b点,再压缩曲线就趋于初始压缩曲线的延长线。
前期固结压力的确定
确定先期固结压力步骤如下: (1)从e~logp曲线上找出曲率半 径最小的一点A,过A点作水平线 A1和切线A42; (2)作lA2的平分线A3,, 与
e~logp 曲线中直线段的延长线相交
土的压缩与固结
第四章土的压缩与固结4.1简介固结的过程经常与压实的过程相混淆。
通过减少空隙中空气的体积,压实过程增加非饱和土的密度(参见图4.1)。
然而,固结是一个与时间相关的,通过排出空隙中的水,而使饱和土的密度增加的过程(参见图4.1)。
固结通常与粉砂和粘土等幼粒土有关。
粗粒土,如砂和砾石,由于其高渗透性,也经历了固结,但在以更快的速度。
饱和粘土的固结由于其低渗透速度却慢得多。
固结理论预测的沉降量与沉降速度,以确保成立可压缩土层结构的可维护性。
4.2单向固结模型因为水可以在饱和土中任何方向流动,固结的过程中基本上三维。
然而,在大多数领域的情况下,因为在水平方向上土的区域巨大,土中水将不能够通过水平流动流出。
因此,水流的方向主要是竖向或一维的。
结果是,土层在竖向方向进行单向固结沉降(1-D)。
图4.2显示了一个简单的单向固结模型。
弹簧是类似于土骨架。
弹簧越不易弯曲,它将越难压缩。
因此,硬土将比软土经受更少的压缩。
土的硬度影响其固结沉降的幅度。
阀门开口尺寸类似于土的渗透性。
较小的开口,将需要更长的时间来排水和消散压力。
因此,幼粒土的完全固结比粗粒土需要花费更长的时间。
土壤的渗透性,影响其固结的速度。
4.3单向固结试验一维(1-D)固结试验由固结仪执行。
固结仪如图4.3所示。
土样是在一个环刀中(通常高度为20毫米和直径80毫米),它被限制在钢性护环,沉浸在水浴中。
竖向荷载用于压缩试样,并允许水排出放置在样本顶部和底部的透水石。
4.3.1时间相关的固结对于每一个竖向荷载增量,土样的竖向沉降通过百分表来记录。
图4.4显示了竖向沉降的时间关系,竖向总应力,超孔隙水压力和竖向有效应力。
最初,竖向载荷的100%是由孔隙水来承担,因为土样低渗透性,孔隙水是无法很快地流出空隙。
因此,立即加竖向荷载后,土样很少有沉降。
只有当有一个有效应力增加,土壤的沉降是有可能的,这反过来又要求通过驱逐孔隙水,减少土的孔隙率。
几秒钟后,孔隙水开始流出空隙。
第4章土的压缩性及固结理论
侧限压缩试验(又称固结试验):在压缩过程 侧限压缩试验(又称固结试验):在压缩过程 ): 中只发生竖向变形,不发生侧向变形。 中只发生竖向变形,不发生侧向变形。
(1)试验装置: 试验装置:
4
(2)试验方法: 试验方法:
常规压缩试验(慢速压缩试验法),分 级 常规压缩试验(慢速压缩试验法),分5级 ), 加荷: 、 加荷:50、100、200、300、400 KPa 每级荷 、 、 、 载恒压24h 或变形速率 或变形速率<0.005mm/h,测定每级 载恒压 , 荷载稳定时的总压缩量 ⊿h ,计算出相应的稳定 孔隙比。 孔隙比。
30
∂u ∂u cv 2 = − ∂z ∂t
2
奥地利学者太沙基(K.Terzaghi,1925)公式 可用于求解一维侧限应力状态下,饱和粘性土地基 受外荷载作用下发生渗流固结过程中任意时刻的土 骨架及孔隙水的应力分布情况。
31
该方程属抛物线型偏微分方程,用分离变量法解此方 程,得通解为:
初始条件、边界条件如下:
24
(5)孔隙比的变化与有效应力的变化成正比即压缩 系数a保持不变。 (6)外荷载一次瞬时施加,且在固结过程中保持不 变。 (7)土体变形完全是孔隙水压力消散引起的。
25
2. 一维固结微分方程的建立 外荷一次施加后单位时间内流入和流出微单元体的 水量:
26
∂h q′ = kiA = k − dxdy ∂z 2 ∂h ∂ h q′′ = k − − 2 dxdy ∂z ∂z
18
4.2.3 弹性模量及其试验测定 弹性模量E: 弹性模量 :正应力与弹性(即可恢复)正应变的比值。 测定方法: 测定方法:采用三轴仪进行三轴重复压缩试验,以应力一
土力学土的压缩性与固结理论
z
1 E0
[ z
(
y
x)]
Es
z z
z
z
Es
1 E0
[
z
2k0
z
]
z
Es
β
E0
(1 2k0 )Es
(1
2
1 )Es
(1
2
2
1
)Es
E0 Es
三、土的弹性模量
土体地无侧限条件下瞬时压缩的应力应变模量,称为弹性 模量。
一般采用室内三轴压缩试验或单轴压缩无侧限抗压强度试验得到 的应力—应变关系曲线所确定的初始切线模量或相当于现场荷载 条件下的再加荷模量。
力的关系曲线,称为回弹 曲线。
回弹曲线bc并不沿压缩曲线回升,而要平缓得多,这 说明土受压缩发生变形,卸压回弹,但变形不能全部恢复,
其中可恢复的部分称为弹性变形,不能恢复的称为残余变 形。
若再重新逐级加压,则可测得再压缩曲线。土在重复
荷载作用下,在加压与卸压的每一级重复循环中都将走新
的路线,形成新的滞后环。
❖ (2) 压缩指数Cc 土体在侧限条件下孔隙比减小量与竖向有效压应力常用对数值增 量的比值,即e-lgp曲线中某一压力段的斜率。
Cc
lg
e1 p2
e2 lg
p1
Cc<0.2时, 低压缩土; 0.2≤Cc<0.4MPa-1时,中压缩性; Cc≥0.4时, 高压缩性土
❖ (3)压缩模量
是土体在完全侧限条件下,竖向附加应力与竖向应变的比值, 或称侧限模量,用Es表示。
E0
(1
2)
p1b s1
沉降影响系数 地基土的泊松比
b 承压板的边长或直径 s1 与所取定的比例界限p1相对应的沉降
第4章-土的压缩性
e1
0.9
e2
0.8
0.7
e
p
高压缩性土 中压缩性土
0.6
p1 p2 e-p曲线
p(kPa )
低压缩性土
§4.2 土的压缩特性
三、土的压缩性指标
(三)压缩指数与回弹再压缩指数 e
1.0 0.9 0.8
1
Cc
在较高的压力范围内, e-lgp曲线近似地为一直线,可 用直线的坡度——压缩指数Cc 来表示土的压缩性高低,即
z
z
z
2 2 z 2 2 E 1 Es 1 z 1 1
无侧向变形条件下二者的理论关系式,用于由Es 求E ,Es恒小于E
§4.2 土的压缩特性
三、土的压缩性指标
土体在侧限条件下孔隙比减 少量与有效压应力增量的比 值(MPa-1)。
§4.4 地基沉降计算的e-p曲线法
一、分层总和法简介
h0
t0
附加应力: z=p 附加有效应力: z=0
0t
附加应力:σz=p 附加有效应力:σz>0
t
附加应力:σz=p 超静孔压: u =0
超静孔隙水压力: u=z=p 超静孔压: u <p
u+ Z'=p
u+ Z'=p
附加有效应力:σz=p
u+ Z'=p
§4.2 土的压缩特性
压缩系数av:
av
e1 e 2 p 2 p1
av mV = 体积压缩系数mv: 1 e1 土在侧限条件下的竖向应变 与应力之比。
e1 e2 Cc 压缩指数Cc: lg p2 lg p1 土体在侧限条件下孔隙比减 少量与有效压应力常用对数 值增量的比值。
土的压缩性及固结理论
学习指导
学习目标
学习土的压缩性指标确定方法,掌握有效应力 原理、一维固结机理的分析计算方法。
学习基本要求
1.掌握土的压缩性与压缩性指标确定方法 2.掌握有效应力原理 3.掌握太沙基一维固结理论
4.1 概述 4.2 固结试验及压缩性指标 4.3 饱和土中的有效应力 4.4 土的单向固结理论
t
透水石 试样
一、e - p曲线 e
1.0 0.9 0.8 0.7 0.6 0 100 200 300 400
P
p1
p2
p3
p(kPa )
e0
e s
e1 H1 e2 H2 H3 e3
t
ei = e0 − (1 + e0 )H i / H 0
t
孔隙比e与压缩量∆H 的关系
e0 1
孔隙
ΔH
e
H H0
无粘性土 粘性土
透水性好,水易于排出
压缩稳定很快完成
透水性差,水不易排出 压缩稳定需要很长一段时间
3、有效应力:土骨架承担由颗粒之间的接触传递 应力。粘性土固结过程,实质是土中有效增长的过 程。 4、压缩性指标 室内试验 侧限压缩、三轴压缩等 (压缩系数,压缩模量) 室外试验 荷载试验、旁压试验等 (变形模量)
太沙基 – 土力学的奠基人
土体是由固体颗粒骨架、孔隙 流体(水和气)三相构成的碎 散材料,受外力作用后,总应 力由土骨架和孔隙流体共同承 受。 • 对所受总应力,骨架和孔隙 流体如何分担? • 它们如何传递和相互转化? • 它们对土的变形和强度有何 影响?
外荷载 → 总应力 σ
Terzaghi的有效应力原理和固结理论
a c b d
e
土的压缩性及固结理论
⼟的压缩性及固结理论第4章⼟的压缩性及固结理论基本内容这是本课程的重点。
在学习⼟的压缩性指标确定⽅法的基础上,掌握地基最终沉降量计算原理和地基固结问题的分析计算⽅法。
学习要求:1. 掌握⼟的压缩性与压缩性指标确定⽅法;2.掌握有效应⼒原理;3.掌握太沙基⼀维固结理论;4.1 概述(outline)⼟在⾃重应⼒或附加应⼒作⽤下,地基⼟要产⽣附加变形,包括体积变形和形状变形。
对于⼟来说,体积变形通常表现为体积缩⼩。
我们把这种在外⼒作⽤下⼟体积缩⼩得特性称为⼟的压缩性(compressibility)。
It is well recognized that the deformations will be induced in ground soil under self-weight or net contact pressure. The load-induced soil deformations can be divided into volumetric deformation and deviatoric deformation (namely, angular distortion or deformation in shape). The volumetric deformation is mainly caused by the normal stress, which compact the soil, resulting in soil contraction instead of soil failure. The deviatoric deformation is caused by the shear stress. When the shear stress is large enough, shear failure of the soil will be induced and soil deformation will develop continuously. Usually shear failure over a large area is not allowed to happen in the ground.⼟的压缩性主要有两个特点:(1)⼟的压缩性主要是由于孔隙体积减少⽽引起的;(2)由于孔隙⽔的排出⽽引起的压缩对于饱和粘⼟来说需要时间,将⼟的压缩随时间增长的过程称为⼟的固结。
第四章土的压缩与固结
3.压缩模量
σ Es ε
S
h2
s e 2 e1 (1 e1 ) h1
Vv 2
hv 2
Δp s/h1
e1 e 2 av
Vs
hs
av
e1 e 2 p 2 p1
4.体积压缩系数mv
av mv 1 e1
e1 e 2 1 e2
1 e1 av
卸荷和再加荷的固结试验。
Vs
S
hv1
Vv 2
hv 2
hs
h2
Vs
hs
Vv1 Ahv1 h v1 e1 Vs Ahs hs
Vv2 Ahv2 h v1 s e2 Vs Ahs hs
h v1 hse1
h1 h v1 hs
h v1 hse2 s
hs
h1 1 e1
h1 s hs 1 e2
地面
4.计算基础中心点以下 地基中竖向附加应力分布。
P p BL
P p0 p σs γd BL σz从基底算起; σz是由基底附加应力 p0引起的
自重应力
p d si p0 zi
d
基底
Hi
附加应力
5.确定计算深度
① 一般土层:σz=0.2 σs; ② 软粘土层:σz=0.1 σs;
沉降计算深度:
S 0.025S
/
S / 由计算深度向上取厚度为 z 的土层沉降计算值;
( z 可查表4-6) S—计算深度范围内各个分层土的沉降计算值的总和。 具体应用时采用试算法,先假定一个沉降计算深度zn
zn = b(2.5 - 0.4lnb)
4-5 地基沉降计算的e~lgp曲线法
土力学 第四章 土的压缩与固结
4.2土的压缩特性 (土的压缩试验与压缩性指标)
一.室内压缩试验(1)
一、室内压缩试验 土的室内压缩试验亦
称固结试验,是研究土压 缩性的最基本的方法。室 内压缩试验采用的试验装 置为压缩仪。
整理课件
试验一时.将室切内有土压样缩的环试刀验置于(刚2性护)环中,由于金属
环刀及刚性护环的限制,使得土样在竖向压力作用下只能 发生竖向变形,而无侧向变形。在土样上下放置的透水石 是土样受压后排出孔隙水的两个界面。压缩过程中竖向压 力通过刚性板施加给土样,土样产生的压缩量可通过百分 表量测。常规压缩试验通过逐级加荷进行试验,常用的分 级加荷量p为:50、100、200、300、400kPa。
2.地基土按固结分类
前期固结应力pc:土在历史上曾受到过的最大的、垂直的
有效应力 四. 土的应力历史(4)
超固结比OCR :前期固结应力与现有有效应力之比,即
OCR= pc/p1
正常固结土: OCR=1 pc=p1
超固结土: OCR>1,OCR愈大,土受到的超固结作用愈强,
在其他条件相同的情况下,其压缩性愈低。 pc> p1
作用下再压缩稳定后的孔隙比,相应地可绘制出再压
缩曲线,如图4-6(a)中cdf曲线所示。可以发现其中df
段像是ab段的延续,犹如其间没有经过卸载和再压的
过程一样。
整理课件
二. 压缩性指标(10)
(a)e-p曲线;
(b)e-lgp曲线
图 4-3 土的回弹—在压缩曲线 整理课件
三、 现场载荷试验及变形模量(1)
2.由于孔隙水的排出而引起的压缩对于饱和粘性土来说是
需要时间的,土的压缩随时间增长的过程称为土的固结。
这是由于粘性土的透水性很差,土中水沿着孔隙排出速度
土力学课后答案详解 第4章
γ = 16.0kN / m 3 ,土的天然孔隙比 e = 0.97 。地下水位埋深 3.4m,地下水位以下土的饱
和重度
γ sat = 18.2kN / m 3 ,土的压缩系数:地下水位以上为 a1 = 0.3MPa −1 ,地下水位
−1
以下为 a 2 = 0.25MPa 。计算柱基中心的沉降量。 解: (1)绘制柱基剖面图与地基土的剖面图 (2)计算地基土的自重应力 基础底面 地下水面
第四章 思考题与习题 思考题
4.1 试述压缩系数、压缩指数、压缩模量和固结系数的定义、用途? 答:设压力由 p1 增至 p 2 ,相应的孔隙比由 e1 减小到 e 2 ,则与应力增量 Δp = p 2 − p1 对应 的孔隙比变化为 Δe = e2 − e1 。压缩系数是 a ≈
Δe e1 − e2 。评价土体压缩性的高低。 = Δp p 2 − p1
试求: ⑴加荷一年后的沉降量
St ?
⑵地基固结度达
U t = 0.75 时所需要的历时 t ? U t = 0.75 时所需历时 t ?
⑶若将此粘土层下部改为透水层,则 解: (a)求当 t 为 1 年时的 S t
S=
a 0.00025 235.4 + 157 σ zH = ×( ) × 10000 = 273mm 1 + e1 1 + 0.8 2
4
由 土 层 编 号 土层厚 度 平均自重 应力 平均附加 应力
由
(σ ci + σ zi ) / kPa
σ ci
查
σ ci + σ zi
查 e2 0.937 0.936 0.940 0.941
hi / m
1.20 1.20 1.60 2.00
4第四章-土的压缩与固结
(7)最后将每一分层 的压缩量累加,即得 地基的总沉降量为: S=∑ Si
【例题4-1】
有一矩形基础放置在均 质粘土层上,如图(a )所示。基础长度 l=10m,宽度b=5m, 埋置深度d=1.5m,其 上作用着中心荷载 P=10000kN。
【例题4-1】
地基土的天然湿重度为20kN/m3,饱和重度为 21kN/m3,土的压缩曲线如图(b)所示。若地下水 位距基底2.5m,试求基础中心点的沉降量。
二、土的压缩性指标
(一)室内固结试验与压缩曲线 为了研究土的压缩特性,通常可在试验室内进行固结试 验,从而测定土的压缩性指标。室内固结试验的主要装 置为固结仪,如图所示。
(一)室内固结试验与压缩曲线
用这种仪器进行试验时,由于刚性护环所限,试样只能 在竖向产生压缩,而不能产生侧向变形,故称为单向固 结试验或侧限固结试验。
●分层总和法有两种基本方法: e~p曲线法和e~lgp曲线法。
二、用e~p曲线法计算地基的最终沉降量
(1)根据建筑物基础 的形状,结合地基中土 层性状,选择沉降计算 点的位置;再按作用在 基础上荷载的性质(中 心、偏心或倾斜等情况 ),求出基底压力的大 小和分布。
二、用e~p曲线法计算地基的最终沉降量
为“压缩层”。
一、分层总和法简介
对于一般粘性土,当地 基某深度的附加应力σz 与自重应力σs之比等于 0.2时,该深度范围内的 土层即为压缩层;对于 软粘土,以σz/σs=0.1为 标准确定压缩层的厚度 。
一、分层总和法简介
●分层总和法的基本思路是:将压缩层 范围内地基分层,计算每一分层的压缩 量,然后累加得总沉降量。
第4节 地基沉降计算的e~p曲线法
一、分层总和法简介 上述公式是在土层均 一且应力沿高度均匀 分布假定下得到的。 但通常地基是分层的, 自重应力和附加应力 也沿深度变化,所以 不能直接采用上述公 式进行计算。
土力学课件第四章土的压缩与固结
THANKS
感谢观看
房屋建设中的土的压缩与固结问题
总结词
房屋建设中的土的压缩与固结问题主要表现在地基沉降和建筑物开裂两个方面。
详细描述
在房屋建设中,地基的沉降会导致建筑物开裂,影响建筑物的安全性和使用寿命。为了解决这个问题,需要在施 工前进行土质勘察和试验,了解土的压缩性和固结性,采取适当的措施进行地基处理,如桩基、扩基等,以减小 地基沉降。
表示土体的固结性能越好。
土的固结系数与土的渗透性、压 缩性、应力历史等因素有关。
土的固结系数可以通过室内试验 和原位观测等方法进行测定。
03 土的压缩与固结 的关系
土的压缩与固结的相互影响
土的压缩
土在压力作用下体积减小的性质 。主要由于土中孔隙体积减小。
土的固结
土体在外力作用下,经过排水、排 气、气泡的破裂和合并等过程,使 孔隙体积减小,土体逐渐被压缩的 过程。
土压力计算
在挡土墙设计、基坑支护等工程中, 需要考虑土压力对结构的影响,而土 压力与土的压缩和固结密切相关。
土的压缩与固结的研究展望
深入研究土的微观结构和孔隙分布对 压缩和固结的影响机制,建立更为精 确的理论模型。
考虑环境因素对土的压缩和固结的影 响,如温度、湿度、气候变化等。
发展新型的试验技术和测试方法,以 更准确地测定土的压缩和固结性能。
01
02
03
04
土的矿物成分
不同矿物成分的土具有不同的 压缩性,例如粘土矿物具有较
高的压缩性。
孔隙比
孔隙比越大,土的压缩性越高 。
含水率
含水率越高,土的压缩性越大 。
应力状态
在较低应力水平下,土的压缩 性较小,随着应力水平的增加
4土的变形计算讲解
由竖向的应力、应变关系以及压缩模量的定义可得到土的变形模量与压缩模量换算的理论关系公式
E0(12K0)Es
第二节 地基最终沉降量的 计算
一、概念说明: 1、地基最终沉降量:地基在建筑物荷载作用下,最后的稳定沉降量。 2、计算的目的:在于确定建筑物的最大沉降量、沉降差和倾斜,并控制在容许范围之内 ,以保证建筑物的安全和正常使用。 3、分层总和法和《规范》推荐法概述: 分层总和法假设土层只有垂直单向压缩,侧向不能膨胀。 而《规范》推荐法根据建国以来二十多年实践经验,对分层总和法进行了修正。
n
s si
i1
n
i1
e1i e2i 1e1i
Hi
n ai i1
p2i p1i 1e1i
Hi
n
i1
EpsiiHi
n
i1
EsziiHi
3、计算方法及步骤 1) 按比例尺绘出地基剖面图和基础剖面图。 2)分层 一般hi≤0.4b(b为基础宽度)。还需考虑下述条件: A、地质剖面图中的不同土层,应为分层面。
B、地下水位,应为分层面。 C、基底附近附加应力变化大,分层厚度应小些,使各计算分层的附加应力分布可视为直线。 3)计算基底中心点下各分层面上土的附加应力和自重应力,并绘制自重应力和附加应力分布曲线。
4)确定地基沉降计算深度Zn(地基压缩层厚度)
地基土的压缩性随着深度的增大而降低,局部荷载引起的附加应力又随深度的增大而减少,所以 超过一定深度的土,其变形对沉降量的贡献小到可忽略不计。沉降时应考虑其土体变形的深度范围内 的土层称为地基压缩层,该深度称为地基沉降计算深度(地基压缩层厚度)。
p F G F G A d 7 2 2 0 2 0 3 1 .5 1K 5
4土的压缩与固结
σ z (1 + e1 )
体积
σz
孔隙
e1
1+e1 e2 1+e2
土粒
1
三、土的压缩性指标
(五)应力历史对粘性土压缩性的影响 应力历史:土体在历史上曾经受到过的应力状态。 应力历史:土体在历史上曾经受到过的应力状态。 固结应力:能够使土体产生固结或压缩的应力,以p0表示。 表示。 固结应力:能够使土体产生固结或压缩的应力, 前期固结应力:土在历史上曾受到过的最大有效应力, 前期固结应力:土在历史上曾受到过的最大有效应力, 以pc表示。 表示。 超固结比:前期固结应力与现有有效应力poˊ之比, 之比, 超固结比:前期固结应力与现有有效应力 以OCR表示,即OCR=pc/ poˊ。 表示, 表示
z n = b ( 2 . 5 − 0 . 4 ln b )
2
(σ si )上
(σ si )下
(σ zi )上
σ zi=
(σ zi )上 + (σ zi )下
2
i
(σ zi )下
σs
沉降计算深度
σ z = 0.1σ s ( 0.2σ s )
地面
(6)求第 分层的压缩量。 分层的压缩量。 )求第i分层的压缩量
p1i=σ si → e1 p2i=σ si +σ zi → e2
计算地基的沉降时, 计算地基的沉降时,在地 可能产生压缩的土层深度内, 基可能产生压缩的土层深度内, 土的特性和应力状态的变化将 按土的特性和应力状态的变化将 地基分为若干( ) 地基分为若干(n)层,假定每 一分层土质均匀且应力沿厚度均 匀分布, 匀分布,然后对每一分层分别计 算其压缩量S 算其压缩量 i,最后将各分层的 压缩量总和起来, 压缩量总和起来,即得地基表面 的最终沉降量S, 的最终沉降量 ,这种方法称为 分层总和法。 分层总和法。
土的压缩性及固结理论
土的压缩性5.1概述土体压缩性——土在压力(附加应力或自重应力)作用下体积缩小的特性。
土体压缩包括:(1)土粒本身和孔隙水的压缩; (2)孔隙气体的压缩;(3)孔隙水、气排出,使得孔隙体积减小。
上面(1)的压缩不到压缩量的1/400,忽略;(2)的压缩量也很小,忽略。
地基土的压缩实质土的固结——土体在压力作用下其压缩量随时间增长的过程。
土体的压缩性指标:压缩系数、压缩模量。
压缩性指标测定方法:(1)室内试验测定,如侧限条件的固结试验;(2)原位测试测定,如现场[静]载荷试验。
5.2固结试验及压缩性指标 一、固结试验及压缩性指标 1.压缩试验和压缩曲线减少。
会被压缩,也会被排出部分);)不变;但会被排出(孔隙水体积(不变;土粒体积(v as V V V V ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧ω)a s E(1)侧限压缩试验(固结试验)侧限——限制土样侧向变形,土样只能发生竖向压缩变形。
通过金属环刀来实现。
试验目的——研究测定试样在侧限与轴向排水条件下的变形和压力,或孔隙比和压力的关系,变形和时间的关系,以便计算土的各项压缩指标。
试验设备——固结仪(压缩仪)。
试验方法:逐级加压固结,以便测定各级压力作用下土样压缩稳定后的孔隙比。
(2)e -p 曲线要绘制e -p 曲线,就必须求出各级压力作用下的孔隙比。
如何求?看示意图:设试样截面积为A ,如图:依侧限压缩试验原理可知:土样压缩前后试样截面积A 不变,土粒体积不变,令,有或——分别为土粒比重、土样的初始含水量和初始密度。
利用上式计算各级荷载作用下达到的稳定孔隙比,可绘制如i p i e i p i e i e s V 1=sV iii i i i e H H e H e H e A H e A H +∆-=+=+⇒⎭⎬⎫+=+=1111100000)1(1000000e H H e e e e e H H ii i i +∆-=⇒+-=∆1)1(000-+=ρρωws G e 00ρω、、s G i p i e下图所示的e -p 曲线,该曲线亦被称为压缩曲线。
第4章土的压缩性-lsj
H0 H1 1 e0 1 e Gs (1 w0 ) w e= 1 0
0
根据不同压力p作用下,达到稳定的孔隙比e,绘制e-p曲线, 为压缩曲线
压缩性
e e0
曲线A
曲线B
曲线A压缩性>曲线B压缩性
e
p e-p曲线
p
二、压缩性指标
压缩性不同的土,曲线形状不同,曲线愈陡,说明在相同压 力增量作用下,土的孔隙比减少得愈显著,土的压缩性愈高 根据压缩曲线可以得到三个压缩性指标 1.压缩系数a 2.压缩模量Es 3.变形模量E0
内因: 1.固相矿物本身压缩,极小,物理学上有意义,对建 筑工程来说没有意义的; 2.土中液相水的压缩,在一般建筑工程荷载 (100-600)Kpa作用下,很小,可不计; 3.土中孔隙的压缩,土中水与气体受压后从孔隙中 挤出,使土的孔隙减小。
土的压缩性是指土在压力作用下体积缩小的特性
固体颗粒的压缩 土中水的压缩 空气的排出 水的排出
h H
J jV jz jH w h 渗透力产生的应力: A A H w h
压缩试验,亦称固结试验 研究土的压缩性大小及其特征的室内试验方法
荷载 加压活塞 刚性护环 透水石 环刀
土样
注意:土样在竖直 压力作用下,由于 环刀和刚性护环的 限制,只产生竖向 压缩,不产生侧向 变形
压缩仪示意图
透水石
底座
2.e-p曲线
研究土在不同压力作用下,孔隙比变化规律
p
s
Vv=e0
H0 H0/(1+e0)
Vv=e
H1 H1/(1+e)
Vs=1
Vs=1 整理
土的压缩与固结
理论上不够完备,缺乏统一理论; 单向压缩分层总和法是一个半经验性方法。
分层总和法的基本思路是:将压缩层范围内地基分层,计算每一分层的 压缩量,然后累加得总沉降量。 分层总和法有两种基本方法:e~p曲线法和e~lgp曲线法。
2、计算公式:
各分层沉降量:
S iiH i e 1 1 i e e 1 i2 iH i a i(1 p 2 ie 1 ip 1 i)H i E p siH i i
Es
' z
e z 1 e0
a e '
Es
1
e0 a
侧限压缩模量单位:Kpa ,Mpa
• 体积压缩系数:土在完全侧限条件下体积应变增量与压力增量
之比,
mv
av 1 + e0
• 压缩模量 完全侧限时,土的应力与应变之比。
Es
1 e0 av
E
【解】(1)由L/B=10/5=2<10可知,属于空间问题,且为中心荷载,所 以基底压力为
p=P/(L×B)=1000/(10×5)=200kPa 基底净压力为
pn=p-γD=200-20 ×1.5=170kPa (2)因为是均质土,且地下水位在基底以下2.5m处,取分层厚度 Hi=2.5m。 (3)求各分层面的自重应力(注意:从地面算起)并绘分布曲线见图4 -12(a)
(2)将地基分层。2~4m, <=0.4b, 土层交 界面,地下水位,砂土可不分层;
(3)计算地基中的自重应力分布。从地面 (4)计算地基中竖向附加应力分布。 (5)按算术平均求各分层平均自重应力和 平均附加应力。(注意:也可以直接计算各 土层中点处的自重应力及附加应力)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
《土力学》 第4章 土的压缩性及固结理论
mv
1 Es 1 e1
13
《土力学》 第4章 土的压缩性及固结理论
§4.2 土的压缩性
4.2.1 固结试验及压缩性指标
4.土的回弹再压缩章 土的压缩性及固结理论
§4.2 土的压缩性
4.2.1 固结试验及压缩性指标 Dr. Han WX
正常固结线
观测装置包括百分表及固定支架等。
16
《土力学》 第4章 土的压缩性及固结理论
§4.2 土的压缩性
4.2.2 现场载荷试验及变形模量
1.浅层平板载荷试验及变形模量
Dr. Han WX
荷载试验的观测标准: (1)每级加载后,按间隔10、10、10、15、15分钟,以后为每隔半小时读次沉降量, 当连续两小时内,每小时的沉降量小于0.1mm时,则认为已趋稳定,可加下一级荷载;
= -de/dp
tan
e e1 e2 p p1 p2
10
《土力学》 第4章 土的压缩性及固结理论
§4.2 土的压缩性
4.2.1 固结试验及压缩性指标
2.土的压缩系数和压缩指数 为了比较,通常采用压力段由p1=0.1MPa(100kPa)增加到p2=0.2MPa(200kPa) 时的压缩系数卸—探评定土的压缩性如下; 当 1-2 <0.1MPa-1时,为低压缩性土; 0.1< 1-2 <O.5MPa-1时,为中压缩性土; 1-2 >0.5MPa-1时,为高压缩性土。 土的压缩指数是土体在侧限条件下孔隙比 减小量与竖向有效压应力常用对数值增量的比值, 即e-logp曲线中某一压力段的直线斜率。
4
Dr. Han WX
室内试验测定土的压缩性指标,常用不允许土样产生侧向变形,即侧限条
《土力学》 第4章 土的压缩性及固结理论
§4.2 土的压缩性
4.2.1 固结试验及压缩性指标
1.固结试验和压缩曲线 压缩曲线是土的孔隙比与所受压力的关系曲线。
荷载 加压活塞 刚性护环 透 水 石 土 样
Dr. Han WX
18
《土力学》 第4章 土的压缩性及固结理论
§4.2 土的压缩性
4.2.2 现场载荷试验及变形模量
1.浅层平板载荷试验及变形模量 地基土的变形模量: E0=ω(1-2)bp1/s1
Dr. Han WX
19
《土力学》 第4章 土的压缩性及固结理论
§4.2 土的压缩性
4.2.2 现场载荷试验及变形模量
20
Dr. Han WX
《土力学》 第4章 土的压缩性及固结理论
§4.2 土的压缩性
4.2.2 现场载荷试验及变形模量
2.深层平板载荷试验及变形模量 深层平板载荷试验可用于测试地基深部土层及大直径桩桩端土层,在承压 板下应力主要影响范围内的承载力及变形模量。承压板采用直径为0.8m的刚性 板,紧靠承压板周围外侧的土层高度应不少于80cm;加荷等级可按预估极限荷 载的(1/10)-(1/15)分级施加,最大荷载宜达到破坏,不应少于荷载设计值的两 倍。每级加荷测读时间间隔及稳定标准与浅层平板载荷试验一样。至于终止加 载标准:①沉降s急骤增大,p-s曲线上有可判定极限荷载的陡降段,且沉降量 超过0.04d(d为承压板直径);②在某级荷载下,24小时内沉降速率不能达到稳 定标准,③当持力层土质坚硬,沉降量很小时,最大加载量不小于荷载设计值 的2倍。 土的变形模量E0的计算公式如下: E0=ωI(1-2)bp1/s1 其中 I =0.5+0.23d/z
e Cc log z '
回弹再压缩线
e Cs log z '
15
《土力学》 第4章 土的压缩性及固结理论
§4.2 土的压缩性
4.2.2 现场载荷试验及变形模量 Dr. Han WX
土的压缩性指标,除从室内试验测定外,还可以通过现场原位测试取得。 可以通过载荷试验或旁压试验所测得地基沉降(或土的变形)与压力之间近似的 比例关系,从而利用地基沉降的弹性力学公式来反算土的变形模量。 1.浅层平板载荷试验及变形模量 地基土的浅层平板载荷试验是工程地质勘察工作中一项基本的原位测试。 试验前先在现场试坑中竖立载荷架,使施加的荷载通过承压板传到地层中,以 便测试浅部地基应力主要影响范围内的土的力学性质,包括测定土的变形模量 、地基承载力以及研究土的湿陷性质等。 平板载荷试验装置构造一般由加荷稳压装置、反力装置及观测装置三部分 组成。 加荷稳压装置包括承压板、立柱、加荷千斤顶及稳压器; 反力装置包括地锚系统或避重系统等;
17
《土力学》 第4章 土的压缩性及固结理论
§4.2 土的压缩性
4.2.2 现场载荷试验及变形模量
1.浅层平板载荷试验及变形模量
Dr. Han WX
(2)当出现下列情况之一时,即可终让加载:①承压板周围的土有明显的侧向挤出(砂 土)或发生裂纹(粘性土和料土);②沉降s急骤增大,荷载—沉降(p-s)曲线出现陡降段; ③在某一级荷载下,24小时内沉降速率不能达到稳定标准;④s/b>0.06(b为承压板的 宽度或直径)。
§4.1 概述
土压缩变形的本质
Dr. Han WX
土的压缩性是指土在压力作用下体积缩小的特性
土体的压缩变形实际上是孔隙压缩、孔隙比变小所造成的。
在土的压缩过程中,假定土颗粒是不可压缩的,水是不可压缩的, 只有孔隙可以压缩。
对饱和土而言,土的压缩主要是由孔隙中的水被挤出所致,压缩过 程同排水过程一致。 孔隙水排出,土的压缩随时间而增长的过程,称为土的固结。
土 力 学
第4章 土的压缩性及固结理论
Consolidation
《土力学》 第4章 土的压缩性及固结理论
§4.1 概述
土的压缩性是指土体在压力作用下体积缩小的特性。
Dr. Han WX
试验研究表明,在一般压力(100一600kPa)作用下,土粒和土中水的压缩 量与土体的压缩总量之比是很微小的,可以忽略不计,很少量封闭的土中气被 压缩,也可忽略不计。 土的压缩是指土中孔隙的体积缩小,即土中水和土中气的体积缩小,此时 ,土粒调整位臵,重新排列,互相挤紧。
3.土的压缩模量和体积压缩系数 根据e-p曲线,可以求算另一个压缩性指标—压缩模量Es。土体在侧限条件 下竖向附加压应力与竖向应变的比值称为压缩模量,或称侧限模量 土的压缩模量Es可根据下式计算: E s 1 e1 如果压缩曲线中的土样孔隙比变化 Δe=e1-e2为已知,则可反算相应的土样 高度变化ΔH=H1-H2 (如图)。于是 H2=H1-ΔH 则: H1 H1 H
7
《土力学》 第4章 土的压缩性及固结理论
§4.2 土的压缩性
4.2.1 固结试验及压缩性指标
1.固结试验和压缩曲线
Dr. Han WX
8
《土力学》 第4章 土的压缩性及固结理论
§4.2 土的压缩性
4.2.1 固结试验及压缩性指标
1.固结试验和压缩曲线
Dr. Han WX
9
《土力学》 第4章 土的压缩性及固结理论
3
《土力学》 第4章 土的压缩性及固结理论
§4.1 概述
件的固结试验,非饱和土只用于压缩时,亦称压缩试验。
土的固结试验可以测定土的压缩系数a、压缩模量Es等压缩性指标。 室内土样在侧限条件下所完成的固结,常称为K0固结,K0为土的静止侧压力系 数,它是水平向有效应力与竖向有效应力之比的比例系数。通过室内土的三轴 压缩试验,可以测定土的弹性模量E,还可测定K0固结抗剪强度指标。 原位测试测定土的压缩性指标,常用现场[静]载荷试验,它可以同时测定 地基承载力和土的变形模量E0。一般浅层平板载荷试验可以模拟在半空间地基 表面作用着局部均布荷载,测试刚性承压板稳定沉降与压力的关系,从而利用 地基沉降的弹性力学公式来反算土的变形模量。 对于深层土,采用深层平板载荷试验或螺旋板载荷试验。现场快速的原位 测试,例如旁压试验、触探试验等。
2.深层平板载荷试验及变形模量 深层平板载荷试验可用于测试地基深部土层及大直径桩桩端土层,在承压 板下应力主要影响范围内的承载力及变形模量。承压板采用直径为0.8m的刚性 板,紧靠承压板周围外侧的土层高度应不少于80cm;加荷等级可按预估极限荷 载的(1/10)-(1/15)分级施加,最大荷载宜达到破坏,不应少于荷载设计值的两 倍。每级加荷测读时间间隔及稳定标准与浅层平板载荷试验一样。至于终止加 载标准:①沉降s急骤增大,p-s曲线上有可判定极限荷载的陡降段,且沉降量 超过0.04d(d为承压板直径);②在某级荷载下,24小时内沉降速率不能达到稳 定标准,③当持力层土质坚硬,沉降量很小时,最大加载量不小于荷载设计值 的2倍。 土的变形模量E0的计算公式如下: E0=ωI(1-2)bp1/s1 其中 I =0.5+0.23d/z
§4.2 土的压缩性
4.2.1 固结试验及压缩性指标
2.土的压缩系数和压缩指数 土的压缩系数是土体在侧限条件下孔隙比减小量与竖向有效压应力增量的比
Dr. Han WX
值,即e-p曲线中某一压力段的割线斜率。
地基中计算点的压力段应取土中自重应力至自 重应力与附加应力之和范围。曲线愈陡,说明随 着压力的增加,土孔隙比的减小愈显著,因而土的 压缩性愈高。所以,曲线上任一点的切线斜率就 表示相应于压力p作用下土的压缩性:
1 e1 1 e2 H e1 e2 H1 1 e1 H e1 e2 H1 1 e1
12
Dr. Han WX
《土力学》 第4章 土的压缩性及固结理论