初中数学4-1几何图形教案

合集下载

初中数学【几何图形】教案教学设计

初中数学【几何图形】教案教学设计

5、将包装盒沿它的某些棱剪开,并铺在平面上,得到一个怎样的平面图形?如果展开的方法不同,得到的图形相同吗?动手做一做,然后画一画。

你能得到多少种平面图形?与同学交流。

6、下列哪个图形是立方体包装盒的展开图?
①②③
7、你能制作一个立方体纸盒吗?与同学交流。

二、自我检测
1、用铅笔尖在白纸上移动,你有什么发现?
2、观察下面的图形,并填空:
面面棱
顶点
(1)棱是由_______和________相交而成的;
(2)顶点是由________和_________相交而成的。

3、上面的平面图形绕轴旋转一周,可以得到下面的立体图形.用线将上面的平面图形与对应的立体图形连接起来。

四、达标检测:
1、点动成______;线动成______;面动成_______。

2、飞机飞行表演时在空中留下漂亮的“彩带”。

用数学知识解释为___________。

人教版初中数学七年级上册第四章 几何图形初步 几何图形 教学课件 立体图形与平面图形形(第2课时)

人教版初中数学七年级上册第四章 几何图形初步 几何图形 教学课件 立体图形与平面图形形(第2课时)
人教版 数学 七年级 上册
4.1 几何图形
4.1.1 立体图形与平面图形 (第2课时)
导入新知
题西林壁 ——苏轼
横看成岭侧成峰,远近高低各不同. 不识庐山真面目,只缘身在此山中.
导入新知
【想一想】“横看成岭侧成峰”一句中,蕴含了怎样的数学 道理?
素养目标
3.在平面图形和立体图形互相转换的过程中,初 步建立空间观念.
2. 知道一些简单的立体图形的展开图.
1. 初步体会从不同的方向观察同一个物体可能 会看 到不同的平面图形,能识别简单物体从正面看、从 左面看、从上面看的平面图形.
探究新知 知识点 1 从不同方向看同一个物体
他们为什么会出现争执?
这是数字“9”。 这是数字“6”。
探究新知 如图,把茶壶放在桌面上,那么下面五幅图片分别
是从哪个方向看得到的?
从正面看 从右面看 从左面看 从后面看别是从什么方向看的?
1
背面
2
顶部
3
4
正面
5右

左 侧
探究新知 排一排
一辆汽车从小明的面前经过,小明拍摄了一组照片. 请按照汽车被摄入镜头的先后顺序给下面的照片编号, 并与同伴进行交流.
探究新知
从左面看
巩固练习
分别画出圆柱体、圆锥及球体的从正面、左面、上面 看到的图形.
巩固练习
从正面看 从左面看
从上面看
探究新知
知识点 2 立体图形的展开图
将一个正方体的表面沿某些棱剪开,能展成哪些平面图形?
友情提示: 沿着棱剪,展开后是 一个平面图形.
探究新知
正方体的展开图
1
2
34
5
6
7
8

初中数学 几何图形教案

初中数学 几何图形教案

教学设计教师:_________课题8.1.1几何图形(1)授课时间月日教学目标知识与技能通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.过程与方法(1)经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力.(2)经历问题解决的过程,提高解决问题的能力.情感.态度、价值观从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成参与数学活动,主动与他人合作交流的意识。

重点识别简单几何体难点从具体事物中抽象出几何图形准备小黑板投影仪.教学过程教学内容教学环节教师活动学生活动设计意图(一)自主探究让我们一起来看看北京奥运会奥运村模型图.(出示章前图)展示丰富多彩的图形世界.你能再举出一些常见的图形吗?你能从中找到一些熟悉的图形吗?(学生看书)小组讨论交流.学生从周围的事物(如建筑物、地板、围墙、公园等)找到一些美丽图形的图片或实物,互相交流.在这些图片或实物中有我们熟悉的图形吗?教学内容教学环节教师活动学生活动设计意图教学过程(二)尝试应用思考第117页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?)(出示棱柱、圆柱、棱锥、圆锥模型)看一看再动手摸一摸,说说它们的异同。

(教师巡视指导,提倡学生尽量用自己的语言描述,互相补充。

)想一想生活中还有哪些物体的形状类似于这些立体图形呢?1.请你把相应的实物与图形用线连接起来.2.如下图所示,这些物体所对应的立体图形分别是:___________.3.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;.其中属于立体图形的是()A. ①②③;B. ③④⑤;C. ③⑤;D.④⑤4.图中的各立体图形的表面中包含哪些平面图形?试指出这些平面图形中的位置长方体、正方体、圆柱、圆锥、球都是学生已经学习过的图形,棱柱、棱锥也是学生很熟悉的图形,通过找一找,结合具体实例引入小组讨论后回答2.正方体、圆柱、圆锥、球、棱柱3.B4.包含圆,五边形、三角形、四边形、六边形等平面图形,它们教学内容教学环节教师活动学生活动设计意图教学过程(三)补偿提高(四)小结与作业图中的一些物体与我们学过的哪些图形相类似?把相应的物体和图形连接起来1.小结:请学生谈:我知道了什么?我学会了什么?我发现了什么?2. 作业:必做题习题4.1第1、2、3题选做题(1)习题8.1第7、8题1、(2)(1)收集一些常见的几何体的实物;(2)设计一张由简单的平面图形(如圆、三角形、直线等)组合成的优美图案,并写上一两句贴切、诙谐的解说词。

人教版七年级数学上册第四章几何图形初步章节起始课教学设计

人教版七年级数学上册第四章几何图形初步章节起始课教学设计
4.培养学生运用几何图形知识进行简单推理和证明的能力,如通过观察和论证来证明两个三角形全等或相似。
(二)过程与方法
1.通过观察生活中的几何图形,引导学生发现几何图形的美和实用性,培养学生的观察能力和动手操作能力。
2.利用问题驱动的教学方法,激发学生的探究欲望,让学生在解决问题的过程中掌握几何图形的基本知识和技能。
2.每个小组进行汇报,分享他们的发现和讨论成果,其他小组进行评价和补充。
3.鼓励学生提出疑问,并引导他们通过小组讨论解决问题,培养学生的合作意识和解决问题的能力。
(四)课堂练习
在课堂练习环节,我将设计以下练习题:
1.基础题:针对本章所学几何图形的性质和判定方法,设计一些基础题目,让学生巩固所学知识。
本章的学情分析如下:
1.学生在认知方面,对于几何图形的认识还停留在直观阶段,对于图形的性质和判定方法理解不够深入,需要通过具体实例和实际操作来加深理解。
2.在技能方面,学生的尺规作图能力有待提高,对于几何图形的推理和证明能力尚需培养,需要通过课堂讲解和课后练习来逐步提升。
3.在情感态度方面,学生对几何图形的兴趣和好奇心较浓,但部分学生可能对难度较大的几何问题产生恐惧感,需要教师关注并适时给予鼓励和支持。
b.与同学合作,探讨几何图形在科技领域中的应用,如机器人设计、航空航天等,以小组形式提交一份研究报告。
4.思考题:
a.比较三角形、四边形和圆的性质,归纳它们之间的联系和区别。
b.思考如何运用几何图形知识解决实际问题,如城市规划、环境保护等。
作业要求:
1.作业应在规定的时间内完成,要求书写工整、条理清晰。
3.引导学生在解决几何问题的过程中,养成勇于探索、善于思考的良好学习习惯,培养学生的自主学习能力。

4.1.1立体图形与平面图形 教案-人教版七年级数学上册

4.1.1立体图形与平面图形 教案-人教版七年级数学上册

用活动一:创设情境导入新课【课堂引入】同学们,祝贺你们步入了一个新的学习起点,你们会越来越走近数学,感受它的多姿多彩!观察我们周围的世界,你会找到许许多多的图形,它们美化了我们生活的空间.欣赏下面的图片时,不妨用数学的眼光观察一下,你发现它们都是由哪些你熟悉的图形构成的?(教师同时用课件展示图片)图4-1-11接下来,我带领大家走进小明的简易书房,看一看哪些物体的形状与你在小学学过的立体图形类似?通过图片的展示使学生能够在丰富多彩的现实生活中辨认出特征鲜明的立体图形.活动二:实践探究交流新知【探究】1.常见的立体图形及其分类图4-1-12内容:在小明的书房中,哪些物知道立体图形的特征是我们认识不同立体图形、区别不同立体图形的金钥匙,鼓励学生用自己的语言进行表述与交流,在交流中发现棱柱面的个数、顶点个数、棱的条数的规律.实践探究交流新知看成由一些常见的立体图形组合而成,你能找出其中常见的立体图形吗?你还能举出其他组合图形的例子吗?图4-1-13处理方式:学生独立思考并进行回答,在学生回答的过程中引导学生分析复杂组合体的构成,并进行补充.6.平面图形教师举出一些几何图形的例子,如线段、角、三角形、长方形、圆,让学生观察这些几何图形有什么共同特点.处理方式:学生独立思考并进行回答,教师可以提示性地提问:这些几何图形的各部分都在同一平面内吗?总结:各部分都在同一平面内的几何图形是平面图形.平面图形和立体图形是有联系的:立体图形的某些部分是平面图形,例如长方体的侧面是长方形.基础训练1.学生完成课本115页思考题。

2.课本116页练习巩固本节课所学知识,加深对立体图形中相应平面图形的认识。

K小结归纳师生共同回顾本节课所学内容。

梳理内容,掌握本节课的核心。

J练习与检测绩优学案96页巩固训练97页达标测评选择题填空题板书设计4.1.1立体图形与平面图形立体图形(部分都不在同一平面内)几何图形平面图形(部分都在同一平面内)媒体在教学中的作用分为:A.提供事实,建立经验;B.创设情境,引发动机;C.举例验证,建立概念;D.提供示范,正确操作;E.呈现过程,形成表象;F.演绎原理,启发思维;G.设难置疑,引起思辨;H.展示事例,开阔视野;I.欣赏审美,陶冶情操;J.归纳总结,复习巩固;K.其它。

初中数学教案:几何图形的性质与判断

初中数学教案:几何图形的性质与判断

初中数学教案:几何图形的性质与判断一、引言几何图形的性质与判断是初中数学中重要的知识点之一,它不仅是学习几何形状的基础,也是进一步探索几何知识的起点。

通过了解各种几何图形的性质和判断方法,学生可以更好地认识形状之间的关系,拓展几何思维,培养逻辑推理能力。

本教案将以初中数学教学大纲为依据,结合学生的实际情况,设计一堂关于几何图形性质与判断的教学活动。

二、教学目标1. 知识与技能目标:- 了解各种几何图形的基本性质及定义;- 掌握几何图形的判断方法,能够准确判断几何图形的性质;- 运用所学知识解决与几何图形性质相关的问题。

2. 过程与方法目标:- 通过小组合作学习,培养学生合作意识和团队精神;- 引导学生利用课外资源拓展几何图形的知识,培养自主学习能力;- 培养学生观察、分析和解决问题的能力。

三、教学重点与难点1. 教学重点:- 掌握各种几何图形的基本性质;- 能够灵活运用几何图形的判断方法。

2. 教学难点:- 判断几何图形性质时的思维转换;- 解决实际问题时的应用能力。

四、教学过程1. 导入环节(10分钟)- 示范展示一个几何图形,引出对几何图形性质的思考;- 提问:你能列举一些常见的几何图形吗?你知道它们的性质吗?2. 学习与讨论(30分钟)- 分小组给学生发放几何图形卡片,让学生挑选一个几何图形,找出它的性质,并展示给全班;- 全班讨论,总结出各种几何图形的基本性质;- 引导学生思考几何图形性质之间的联系,如何用性质判断一个几何图形的类型。

3. 知识讲解与演示(30分钟)- 逐一介绍各种几何图形的定义和基本性质;- 以示例和图示形式展示几何图形的判断方法,引导学生理解和掌握;- 学生跟随教师一起完成几个判断练习,巩固所学知识。

4. 合作探究与巩固(40分钟)- 学生分小组进行合作探究活动,根据给定的问题使用所学知识进行解答;- 教师提供辅助材料和指导,引导学生运用所学知识解决问题;- 带领全班共同讨论解决方案,并点评各组成果。

人教版初中数学七年级上册第四章4.1.1几何图形的概念

人教版初中数学七年级上册第四章4.1.1几何图形的概念
第四章 几何图形初步
4.1.1 第1课时 几何图形的概念
到城雕
从古剪代 纸 到现代 从长城 到立交
从植物 到动物
从四通八达的立交桥 到街头巷尾的交通标志
从日常生活用品 到生产劳动工具
现实世界中有形态各异、丰富多彩的图形,千姿百态的图 形美化了我们的生活空间.
几何------研究图形的形状、大小和位置关系的一门学科.
说一说下面这些几何图形有什么共同特点?
正方体
圆柱体
球体
长方体
三棱柱 圆锥体 四棱锥 六棱柱
三棱锥
这些几何图形的各部分不都在同一平面内,它们
是立体图形.
4.1.1 第1课时 几何图形的概念
知识点 3 平面图形的认识
6. 有下列几何图形:圆、圆柱、球、扇形、等腰三角形、长 方体、正方体、直角,其中平面图形有____4____个.
以半圆的直径所在直线为旋转轴,半圆 面旋转一周形成的旋转体
4.1.1 第1课时 几何图形的概念 4. 在如图 4-1-1 所示的图形中,柱体有_①__②_③__⑦__,锥体有 ___⑤__⑥___,球体有___④_____.(填序号)
图 4-1-1
圆柱 圆锥
圆台
棱柱:
有两个面互相平行,其余各面都是平行四边形,并且每相邻两 个四边形的公共边都互相平行,由这些面所围成的多面体叫做 棱柱。
斜棱柱 直棱柱
长方体和正方体都是特殊的棱柱 (四棱柱)
棱柱
三棱柱
四棱柱 五棱柱 六棱柱
n棱柱
面的个数 顶点个数 棱的条数
圆柱: 棱锥: 圆锥:
一个长方形以一边为轴顺时针或逆时针旋转 一周,所经过的空间叫做圆柱体。
从实物中抽象出的各种图形统称为几何图形.

初中七年级数学教案 《1几何图形》 精品

初中七年级数学教案 《1几何图形》 精品

活动三:问题1:面与面相交的地方形成了什么它们有什么不同吗线与线相交之处又得到了什么(2)长方体中的面与面相交的地方形成了什么问题2:投影课件动态图片,动态探究点,线,面,体的关系点动成——线动成——面动成——跟踪练习:再出示一组练习来巩固学生先观察思考、讨论交流,利用身边的实物说说见解;教师出示长方体让学生观察后回答,老师点评。

学生活动:笔尖运动可得到一条线;转动手中的一个三角板得到圆锥;通过学生实际操作,讨论得出结论.教师引导观察,(课件演示生活中动画实例)。

教师启发学生从静态、动态两个方面对点、线、面、体之间的关系进行总结。

学生活动:独立思考结合具体实例,给出面面相交成线、线线相交成点等体、面、线、点之间的关系,让学生经历操作、观察思考,探究发现的过程,加深对体、面、线、点之间关系的理解,从而培养学生们的观察、分析、概括的能力和语言表达能力。

活动四:投影一组身边的平面图形和一组身边的立体图形的图片这两组图形有什么不同你还能举一些类似的例子吗跟踪练习:通过两个练习来巩固学生观察思考、讨论、交流。

教师给出平面图形、立体图形的描述性定义,让学生再举一些实例。

让学生掌握立体图形和平面图形的区别和联系。

(三)学以致用,强化新知练习一、1.正方体是由_____个面围成的, 它们都是_____;2.每两个面之间相交成一条____线;3.正方体有__ _ 个顶点,经过每个顶点有_ _ _条棱, 共____条棱.练习二、1.圆柱是由____个面围成的,其中上下两个面是_____,侧面是_____.2.圆柱的侧面和底面相交成___条线,它们是___.练习三、1.如图,你能看到哪些立体图形2.如图,你能看到哪些平面图形学生独立思考教师提问学生小组讨论、动手操作;教师深入小组,倾听学生的见解,并适时指导学生出现的问题,巩固新知,培养学生对数学知识的应用意识。

进一步丰富对几何形状的感性认识,培养抽象概能力。

设计具有开放性,为学生发挥想象力和创造力提供平台。

北师大版数学七年级上册4.1-线段、射线、直线(教案)

北师大版数学七年级上册4.1-线段、射线、直线(教案)
二、核心素养目标
1.培养学生的空间观念,通过直观演示和动手操作,使学生理解线段、射线、直线的概念,并能够运用这些概念描述图形;
2.培养学生的逻辑思维能力,让学生在学习过程中发现线段、射线、直线之间的联系与区别,提高分类与比较能力;
3.培养学生的几何直观,使学生能够从实际问题中抽象出线段、射线、直线的几何模型,并运用所学知识解决简单问题;
在新课讲授环节,我注意到当我解释无限延伸的概念时,学生们显得有些困惑。我意识到,对于这样一个抽象的几何概念,仅仅通过语言描述是不够的,还需要更多的直观演示和实际操作。在接下来的实践活动中,让学生们亲自使用直尺和圆规画图,确实有助于他们更好地理解这些概念。
小组讨论的环节让我看到了学生们的积极性和创造力。他们能够将所学知识应用到具体的情境中,并提出一些很有见地的观点。但同时,我也发现有些学生在讨论中不够主动,可能是因为他们对这些概念还不够熟悉,或者是在小组合作中缺乏自信。
4.培养学生的数学表达与交流能力,让学生在学习过程中学会使用规范的几何语言描述线段、射线、直线的性质和表示方法。
三、教学难点与重点1.源自学重点-线段、射线、直线的定义:准确理解这三种基本几何概念,并掌握它们的表示方法。
-线段、射线、直线的性质:了解它们的特征,如长度、端点个数、延伸性等。
-线段、射线、直线之间的联系与区别:能够区分这三者,并理解它们之间的关系。
-区分难点:可以通过具体的例子和图形比较,强调线段有固定的长度和两个端点,射线有一个端点且在另一侧无限延伸,直线则没有端点且在两侧都无限延伸。
-实际应用:教师可以设计一些实际测量或定位的题目,指导学生如何使用线段、射线、直线的概念来解决问题,如测量两点之间的距离,确定物体的方向等。
四、教学流程

初中数学教案:几何图形绘制与计算应用

初中数学教案:几何图形绘制与计算应用

初中数学教案:几何图形绘制与计算应用引言在初中数学学科中,几何图形是重要的一部分。

掌握几何图形的绘制和计算应用,不仅帮助学生建立对空间关系的认识和判断能力,还培养了他们的逻辑思维和问题解决能力。

本教案将介绍如何在初中数学课堂上有效地教授几何图形的绘制和计算应用。

1. 几何图形基础知识在开始绘制和计算几何图形之前,首先需要对常见的几何图形及其性质进行了解。

以下是一些基础知识点:1.1 点、线段与射线•点:表示一个位置,没有长度、宽度或高度。

•线段:由两个端点确定的有限线段。

•射线:一个起点为A,经过B的无限延伸直线。

1.2 直线、平行线与垂直线•直线:无限延伸并保持方向相同的线段。

•平行线:位于同一个平面内且永远不会相交的直线。

•垂直线:互相垂直且相交于一点的直线。

1.3 角度和三角形•角度:由两条射线共享同一个端点形成的图形。

•三角形:由三条线段组成的几何图形。

2. 几何图形绘制学生可以根据已知条件利用直尺、量角器等仪器绘制各种几何图形。

以下是常见几何图形的绘制方法:2.1 直线、线段和射线的绘制方法•直线:在纸上选取两个不同的点,将它们用直尺连接起来即可。

•线段:在纸上选取两个不同的点,用直尺连接它们,并勾画出这个线段。

•射线:在纸上选取一个起点A和任意一点B,使用直尺连接起点A和任意一点B,并延伸出去。

2.2 角度和三角形的绘制方法•角度:以一个已知定点为中心,在纸上用量角器固定一个射线,再用量角器测量另一个射线与固定射线之间的夹角,最后用直尺连接定点与两条测量出来的射线。

•三角形:可以根据提供的条件进行绘制,如已知边长和角度等。

根据已知条件,使用直尺和量角器辅助完成三角形的绘制。

3. 几何图形计算应用除了绘制几何图形外,学生还需要学会如何计算几何图形的一些属性。

以下是一些常见的计算方法:3.1 长度计算•线段长度:可以使用直尺或尺子进行测量。

•圆的周长:圆的周长可以通过半径或直径进行计算,公式为:C = πd 或 C = 2πr,其中π为圆周率。

人教版初中数学《几何图形》_课件-完美版

人教版初中数学《几何图形》_课件-完美版
知2-练
2 (中考·宁波)如果一个多面体的一个面是多边形, 其余各面是有一个公共顶点的三角形,那么这个多 面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它 们各有12条棱.下列棱柱中和九棱锥的棱数相等的是 ( B) A.五棱柱 B.六棱柱 C.七棱柱 D.八棱柱
【 获 奖 课 件 ppt】人 教版初 中数学 《几何 图形》 _课件 -完美版 1-课件 分析下 载
第四章 几何图形初步
4.1 几何图形
第1课时 认识几何图形
1 课堂讲解 u 几何图形
u 立体图形
u 平面图形
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
从城市宏伟的建筑到乡村简朴的住宅,从四通八 达的立交桥到街头巷尾的交通标志,从古老的剪纸艺 术到现代的城市雕塑,从自然界形态各异的动物到北 京的申奥标志(如图)……图形世界是多姿多彩的!
知识点 1 几何图形
下列图形 中有你认 识的几何 图形吗? 请指出来.
知1-导
Байду номын сангаас 知1-导
图中有: 球、棱锥、圆柱、长方体、三角形、长方形(矩形)、 线段、点······ 这些都是几何图形 几何图形指:从实物中抽象出来的各种图形. 几何图形可分为立体图形和平面图形两类.
知1-讲
1.几何图形:从形形色色的物体外形中得出的长方体、 圆柱、长方形、圆、三角形等都是几何图形.
知2-讲
总结
本题采用定义法识别图形: (1)柱体的基本特征:两个底面互相平行且完全相同,
当侧面是曲面图形时是圆柱,当侧面是平面图形 时是棱柱; (2)锥体的基本特征:一个底面一个“尖”,当侧面是 曲面图形时是圆锥,当侧面是三角形时是棱锥.
【 获 奖 课 件 ppt】人 教版初 中数学 《几何 图形》 _课件 -完美版 1-课件 分析下 载

初中数学教案:理解数学概念的几何图形展示与探索

初中数学教案:理解数学概念的几何图形展示与探索

初中数学教案:理解数学概念的几何图形展示与探索引言在初中数学教学中,几何是一个重要的部分。

通过几何的学习,学生可以培养他们的空间想象力,增强他们的逻辑思维能力,提高他们解决数学问题的能力。

然而,对于初中生来说,理解几何概念可能是一件很具挑战性的事情。

他们很难从抽象的数学定义中获得直观的认识。

因此,在教学中,我们需要通过几何图形的展示与探索来帮助学生理解数学概念。

本文将介绍一些有效的教学方法和策略,以帮助初中生理解几何概念。

1. 几何图形的展示与探索的重要性几何图形的展示与探索可以帮助学生从直观的角度理解数学概念。

通过观察和操作几何图形,学生可以直观地认识到几何概念的属性和规律。

此外,几何图形的展示与探索还可以激发学生的学习兴趣和主动性,使他们更主动地探索和发现数学规律。

因此,几何图形的展示与探索在初中数学教学中具有重要的作用。

2. 几何图形的展示方法在几何图形的展示中,我们可以使用实物、几何模型、几何仪器和电子工具等多种方法来呈现几何图形。

不同的展示方法可以用于不同的几何概念,以便更好地引导学生的理解。

2.1 使用实物使用实物是一种简单而有效的几何图形展示方法。

通过使用实物,学生可以触摸、感受和操作几何图形,从而更直观地理解其属性和规律。

例如,在教授平行线的概念时,我们可以使用两根相同长度的竹签来表示平行线,并通过移动和旋转竹签来探索平行线的性质。

2.2 使用几何模型几何模型是一种更直观和可视化的几何图形展示方法。

通过使用几何模型,学生可以更清楚地看到几何图形的形状、大小和关系。

例如,在教授三角形的概念时,我们可以使用三角板来展示不同类型的三角形,并让学生自己操作和探索。

2.3 使用几何仪器几何仪器是一种专门用于绘制几何图形的工具,如直尺、圆规和量角器等。

通过使用几何仪器,学生可以自己绘制几何图形,并通过观察和操作图形来理解几何概念。

例如,在教授相似三角形的概念时,我们可以让学生使用相应的几何仪器绘制相似的三角形,并观察其性质和比例关系。

4.1几何图形-2024-2025学年初中数学七年级上册(沪科版)上课课件

4.1几何图形-2024-2025学年初中数学七年级上册(沪科版)上课课件

四面体
圆柱
圆锥

长方体
四面体
圆柱
圆锥

长方体、四面体、圆柱、圆锥、球等都 是几何体,简称体.
包围着体的是面.面有平面与曲面两种.
长方体
四面体
圆柱
圆锥

思考:
1.长方体、四面体各有几个面?它们是
平的面还是曲的面?
2.包围着圆柱、圆锥、球的面是平的面
还是曲的面?
几何体中面与面相交形成线。多面体中 面与面的交线是直的,它们叫作多面体的棱. 圆柱、圆锥中的侧面与底面的交线是曲线.
第4章 几何图形初步
4.1 几何图形
沪 科 版体形态各异、多姿多彩. 如果只研 究它们的形状、大小和位置,就得到各种几何图形.
新知探究
画线,把图中上一行的物体与下一行中类似它 们的几何图形连接起来.
说说还有哪些物体的形状是这样的几何图形?
长方体
【归纳结论】各点不都在同一个平面内的几 何图形叫作立体图形.
练习
【教材P140 练习 第1题】
1. 试举出图形是长方体、圆柱的实例.
解:箱子的形状是长方体,铁皮 罐头的形状是圆柱等.
【教材P140 练习 第2题】
2. 下图中的蒙古包可看作是由哪些几何体组 成的?
解:圆锥和圆柱.
【教材P140 练习 第3题】
3. (1)围成下列几何体的各个面中,哪些面
是平的?哪些面是曲的?
(2)将下列几何体分类,并说明理由.





解:(1)①的底面和侧面都是平的,② 的表面是曲的,③的上、下底面是平的, 侧面是曲的,④的底面是平的,侧面是曲 的,⑤的底面和侧面都是平的. (2)锥体:①④;球:②;柱体:③⑤.

初中数学几何图形说课稿11篇

初中数学几何图形说课稿11篇

初中数学几何图形说课稿11篇初中数学几何图形说课稿【篇1】一、背景分析1、学习任务分析(多媒体)《几何图形》是新课标人教版《数学》七年级上册第四章第一节,本节内容分为两课时,这是第一课时,在这一课时要求学生掌握几何图形的概念,并理解立体图形与平面图形的关系。

它是小学学习简单的几何图形之后的进一步加深学习,它也是以后学习三视图的基础。

2.学生情况分析(多媒体)学生在小学认识了简单的立体图形与平面图形之后,对于几何图形有了一定的认识。

所以本节的重点是让学生理解立体图形与平面图形的概念和关系,难点是如何将立体图形展开成平面图形,将平面图形围成为立体图形。

二、教学目标设计(多媒体)我根据数学课程标准、结合教材内容和学生实际情况制定如下目标:1.知识与技能目标:(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;(2)能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系.2.能力目标:(1)经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力;(2)经历问题解决的过程,提高解决问题的能力.3.情感目标:(1)积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;(2)倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性.三、课堂结构设计《数学课程标准》强调,要创造性地使用教材,要求教师要用发展的眼光来看待它,因此我对教材进行适当处理,以立体图形与平面图形的关系为知识主线,以培养学生动手能力、训练学生思维为能力主线,来确定课堂结构:(多媒体)创设情境,导入课题初步感知,认识图形分组实验,画出图形动手操作,展开图形猜想图形,还原实验巩固练习,小结反思四、教学媒体设计根据学生的年龄特征和认知规律,我对教学媒体的利用进行下如下设计:在引入和实验环节:用实物演示,给学生以直观印象。

七年级上册数学《几何图形》教案共11篇(人教版七年级数学几何图形课件)

七年级上册数学《几何图形》教案共11篇(人教版七年级数学几何图形课件)

七年级上册数学《几何图形》教案共11篇(人教版七年级数学几何图形课件)下面是收集的七年级上册数学《几何图形》教案共11篇(人教版七年级数学几何图形课件),供大家品鉴。

七年级上册数学《几何图形》教案共1第1课时认识立体图形与平面图形教学目标1.可以从简单实物的外形中抽象出几何图形,并了解立体图形与平面图形的区别;2.会判断一个几何图形是立体图形还是平面图形,能准确识别棱柱与棱锥.教学过程一、情境导入观察实物及欣赏图片:我们生活在一个图形的世界中,图形世界是多姿多彩的.其中蕴含着大量的几何图形.本节我们就来研究图形问题.二、合作探究探究点一:立体图形【类型一】从实物图中抽象立体图形的认识例1 观察下列实物模型,其形状是圆柱体的是( )解析:圆柱的上下底面都是圆,所以正确的是D.方法总结:结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.【类型二】立体图形的名称与分类例2 如图所示为8个立体图形.其中,是柱体的序号为________,是锥体的序号为________,是球的序号为________.解析:分别根据柱体,锥体,球体的定义可得结论,柱体为①②⑤⑦⑧,锥体为④⑥,球为③,故填①②⑤⑦⑧;④⑥;③.方法总结:正确理解立体图形的定义是解题的关键.探究点二:平面图形的认识【类型一】平面图形的识别例3 有下列图形,①三角形,②长方形,③平行四边形,④立方体,⑤圆锥,⑥圆柱,⑦圆,⑧球体,其中平面图形的个数为( )A.5个B.4个C.3个D.2个解析:根据平面图形的定义:一个图形的各部分都在同一个平面内可判断①②③⑦是平面图形.故选B.方法总结:区分平面图形要记住平面图形的特征,即一个图形的各部分都在同一个平面内.【类型二】由平面图形组成的图形例4 如图所示,各标志的图形主要由哪些简单的平面图形组成?解:(1)由5个图形组成;(2)由2个正方形和1个长方形组成;(3)由3个四边形组成.方法总结:解决这类问题的关键是正确区分图形的形状和名称.三、板书设计1.立体图形特征:几何图形的各部分不都在同一平面内.2.平面图形特征:几何图形的各部分都在同一平面内.教学反思本节利用课件展示图片,联系生活实际,激发学习兴趣,调动学生的积极性.使学生以最佳状态投入到学习中去.通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识.使学生在讨论交流的基础上总结出立体图形和平面图形的特征.第2课时从不同的方向看立体图形和立体图形的展开图教学目标1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果;2.能画出从不同方向看一些简单几何体以及由它们组成的简单组合体得到的平面图形,了解直棱柱、圆柱、圆锥的展开图或根据展开图判断立体图形.(重点,难点)教学过程一、情境导入《题西林壁》苏东坡横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.诗中描绘出诗人面对庐山看到的两幅不同的画面,你能用简洁的图形把它们形象的勾勒出来吗?二、合作探究探究点一:从不同的方向观察立体图形【类型一】判断从不同的方向看到的图形例1 沿圆柱体上底面直径截去一部分后的物体如图所示,它从上面看到的图形是( )解析:从上面看依然可得到两个半圆的组合图形.故选D.方法总结:本题考查了从不同的方向观察物体.在解题时要注意,看不见的线画成虚线,看得见的线画成实线.【类型二】画从不同的方向看到的图形例2 如图所示,由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形.解析:从正面看所得到的图形,从左往右有三列,分别有1,1,2个小正方形;从左面看所得到的图形,从左往右有两列,分别有2,1个小正方形;从上面看所得到的图形,从左往右有三列,分别有2,1,1个小正方形.解:如图所示:方法总结:画出从不同的方向看物体的形状的方法:首先观察物体,画出视图的外轮廓线,然后将视图补充完整,其中看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.在画三种视图时,从正面、上面看到的图形要长对正,从正面、左面看到的图形要高平齐,从上面、左面看到的图形要宽相等.七年级上册数学《几何图形》教案共2整式人教版数学七年级上册教案1.进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.2.经历用含有字母的式子表示实际问题数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.分析题目中的数量关系,用式子表示数量关系.(设计者:)一、创设情境明确目标青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100 km/h,列车在冻土地段的行驶时,根据已知数据求出列车行驶的路程.(1)2 h行驶的路程是多少?3 h呢?t h呢?(2)字母t表示时间有什么意义?如果用v表示速度,列车行驶的路程是多少?(3)回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗?二、自主学习指向目标自学教材第54至55页,完成下列问题:1.假设列车的行驶速度是100 km/h,根据路程、速度、时间之间的关系:路程=速度×时间,请写出:(1)列车2 h行驶的路程为__200__km.(2)列车3 h行驶的路程为__300__km.(3)列车t h行驶的路程为__100t__km.2.在含有字母的式子中如果出现乘号,通常将乘号写作__?__或__省略不写__.三、合作探究达成目标用字母表示数活动一:(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价;(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量;(3)一个长方体包装盒的长和宽都是a cm,高是h cm,用式子表示它的体积;(4)用式子表示数n的相反数.【展示点评】解答过程见教材第54页例1的解.含有字母的式子中如果出现乘号,写成“?”或省略不写.如第(3)小题,就不能写成a2?h.【小组讨论】用字母表示数有什么意义?【反思小结】字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明的将数量关系表示出来.【针对训练】见“学生用书”.用字母表示简单的数量关系活动二:阅读教科书例2中的四个问题,思考:顺水行驶时,船的速度=________+________;逆水行驶时,船的速度=________-________.解答过程见教材第55页例2的解答过程.【展示点评】列式表示关系时,一定要搞清“和”、“差”、“积”、“倍”等关系.【小组讨论】用含有字母的式子表示数量关系时,关键是什么?应注意什么问题?【反思小结】用含有字母的式子表示数量关系时,关键是找准题目中的数量关系.注意:1.用字母表示数时,数字与字母,字母与字母相乘,中间的’乘号可以省略不写或用“?”表示;2.字母和数字相乘时,省略乘号,并把数字放到字母前;3.出现除式时,用分数的形式表示;4.结果含加减运算的,需要带单位时,式子要用“”;5.系数是带分数时,带分数要化成假分数.【针对训练】见“学生用书”.四、总结梳理内化目标1.用字母表示数的意义.2.用含有字母的式子表示数量关系的意义.3.用含有字母的式子表示数量关系时要注意的问题.实际问题D→用字母表示数D→用字母表示数量关系《2.1整式》同步练习含答案1. 其中长方形的长为a,宽为b.(1)阴影部分的面积是多少?(2)你能判断它是单项式或多项式吗?它的次数是多少?《2.1整式》课后练习含答案知识要点1.单项式:只含有数和字母的乘积的代数式叫做单项式.•单独的一个数或一个字母也是单项式.它的本质特征在于:(1)不含加减运算;(2)可以含乘、除、乘方运算,但分母中不能含有字母.2.单项式的次数、系数:一个单项式中,•所有字母的指数和叫做这个单项式的次数.单项式中的数字因数叫做这个单项式的系数.3.多项式:几个单项式的和叫做多项式.多项式中,•每个单项式叫做多项式的项,其中不含字母的项叫常数项.一个多项式中,次数最高的项的次数,叫做这个多项式的次数.4.整式:单项和多项式统称整式.七年级上册数学《几何图形》教案共3一、说教材分析1.教材的地位和作用二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。

初中数学 第4章 几何图形初步 教案及试题

初中数学 第4章 几何图形初步 教案及试题

第四章几何图形初步基础知识通关4.1几何图形1.几何图形:长方体、圆柱、球、长(正)方形、圆、线段、点等,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的,它们都是几何图形.2.立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在内,它们是立体图形.3.平面图形:有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在内,它们是平面图形.4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成 .这样的平面图形称为相应立体图形的展开图.5.点、线、面、体:(1)体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥几何体.几何体也简称体;(2)面:包围着体的是面;(3)线:面和面相交的地方形成线;(4)点:线和线相交的地方是点.4.2直线、射线、线段6.两点确定一条直线:经过两点有一条直线,并且只有一条直线.简单说成:................7.交点:当两条不同的直线有一个公共点时,我们就称这两条直线,这个叫做它们的交点.8.尺规作图:在数学中,我们常限定用和作图,这就是尺规作图.9.中点:点 M 把线段 AB 分成的两条线段AM 与MB,点 M 叫做线段 AB 的中点.10.两点的所有连线中,最短.简单说成:两点之间,线段最短.11.距离:连接两点间的,叫做这两点的距离.4.3角12.角:角也是一种基本的几何图形.13.度、分、秒:(1)把一个周角 360 等分,每一份就是 1 度的角,记作;(2)把一度的角 60 等分,每一份叫做 1 分的角,记作;(3)把1 分的角60 等分,每一份叫做1 秒的角,记作 ..14.角的平分线:一般地,从一个角的顶点出发,把这个角分成两个的角的射线,叫做这个角的平分线.15.余角:一般地,如果两个角的和等于(直角),就说这两个角互为余角.16.补角:类似地,如果两个角的和等于(平角),就说这两个角互为补角.17.余角的性质:同角(等角)的余角 ....18.补角的性质:同角(等角)的补角 ....19.角的运算:如果一个角的度数是另两个角的度数的和,那么这个角就叫做另两个角的和;如果一个角的度数是另两个角的度数的差,那么这个角就叫做另两个角的差.4.4课题学习-设计制作长方体形状的包装纸盒单元检测一.选择题(共 10 小题)1.某正方体的每个面上都有一个汉字,如图所示的是它的展开图,那么在原正方体中,与“神“字所在面相对的面上的汉字是()A.认B.眼C.确D.过2.下列几何体中,其侧面展开图为扇形的是()A.B.C.D.3.下列说法错误的个数为()①57.18°=57°10′48″②三条直线两两相交,有三个交点③x=0 是一元一次方程④若线段 PA=PB,则点 P 是线段 AB 的中点⑤连接两点间的线段,叫做两点间的距离.A.1 个B.2 个C.3 个D.4 个4.在平面内有A、B、C、D 四点,过其中任意两点画直线,则最多可以画()A.4 条B.6 条C.8 条D.无数条5.下列换算中,错误的是()A.0.25°=900″B.16°5′24″=16.09°C.47.28°=47°16′48″D.80.5°=80°50′6.已知互为补角的两个角的差为 35°,则较大的角是()A.107.5°B.108.5°C.97.5°D.72.5°7.如图,在A、B 两处观测到 C 处的方位角分别是()A.北偏东65°,北偏西40°B.北偏东65°,北偏西50°C.北偏东25°,北偏西40°D.北偏东 35°,北偏西 50°8.如图,∠AOB=130°,射线 OC 是∠AOB 内部任意一条射线,OD、OE 分别是∠AOC、∠BOC 的角平分线,下列叙述正确的是()A.∠DOE 的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=65°D.∠BOE=2∠COD9.将长方形纸片按如图所示的方式折叠,BC、BD 为折痕,若∠ABC=35°,则∠DBE 的度数为()A.55°B.50°C.45°D.60°10.在图所示的4×4 的方格表中,记∠ABD=α,∠DEF=β,∠CGH=γ,则()A.β<α<γB.β<γ<αC.α<γ<βD.α<β<γ二.填空题(共 10 小题)11.下面的几何体中,属于柱体的有个.12.已知角A 的余角比它的补角的还少10°,则∠A=.13.已知:∠A 的余角是 52°38',则∠A 的补角是.14.计算:48°59′+67°31′﹣21°12′=.15.如图所示,在一条笔直公路 l 的两侧,分别有 A、B 两个小区,为了方便居民出行,现要在公路 l 上建一个公共自行车存放点,使存放点到A、B 小区的距离之和最小,你认为存放点应该建在处(填“C”“E”或“D”),理由是.16.已知,在直线 AB 上有一点 C,BC=3cm,AB=8cm,M 为线段 AB 的中点,N 为线段 BC 的中点,则 MN=.17.如图,∠AOB=140°,如果点 A 在点O 的北偏东 20°,那么点 B 在点O 的南偏西°.第 17 题图第 18 题图18.如图,∠AOD=135°,∠AOC=75°,∠DOB=105°,则∠BOC=.19.正方体切去一个块,可得到如图几何体,这个几何体有条棱.20.已知 A、B、C 三点都在直线 l 上,AC 与BC 的长度之比为 2:3,D 是AB 的中点.若 AC=4cm,则 CD 的长为cm.三.解答题(共 5 小题)21.如图,B、C 两点把线段 MN 分成三部分,其比为 MB:BC:CN=2:3:4,点 P 是MN 的中点,PC =2cm,求 MN 的长.22.如图,已知OD 平分∠AOB,OE 在∠BOC 内,且∠BOE=∠EOC,∠AOC=170°.(1)若知∠AOB=70°,求∠EOC 的度数;(2)若知∠DOE=70°,求∠EOC 的度数.23.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线 AB;(2)画射线 AC;(3)连接 BC 并延长 BC 到E,使得 CE=AB+BC;(4)在线段 BD 上取点 P,使 PA+PC 的值最小.24.已知线段AB=m(m 为常数),点C 为直线AB 上一点,点P、Q 分别在线段BC、AC 上,且满足CQ=2AQ,CP=2BP.(1)如图,当点C 恰好在线段AB 中点时,则PQ=(用含m 的代数式表示);(2)若点 C 为直线 AB 上任一点,则 PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ﹣2PQ 与1 的大小关系,并说明理由.25.如图 1,将一副直角三角尺的顶点叠一起放在点 A 处,∠BAC=60°,∠DAE=45°,保持三角尺ABC 不动,三角尺 AED 绕点A 顺时针旋转,旋转角度小于 180°.(1)如图 2,AD 是∠EAC 的角平分线,直接写出∠DAB 的度数;(2)在旋转的过程中,当∠EAB 和∠DAC 互余时,求∠BAD 的值.四、附加题26.如果两个锐角的和等于 90°,就称这两个角互为余角.类似可以定义:如果两个角的差的绝对值等于 90°,就可以称这两个角互为垂角,例如:∠l=120°,∠2=30°,|∠1﹣∠2|=90°,则∠1 和∠2 互为垂角(本题中所有角都是指大于0°且小于180°的角).(1)如图,O 为直线 AB 上一点,OC 丄 AB 于点 O,OE⊥OD 于点 O,请写出图中所有互为垂角的角有;(2)如果有一个角的垂角等于这个角的补角的,求这个角的度数.27.P 是线段 AB 上一点,AB=12cm,C,D 两点分别从 P,B 同时向 A 点运动,且 C 点的运动速度为2cm/s,D 点的运动速度为 3cm/s,运动的时间为 ts.(1)如图若 AP=8cm,①运动 1s 后,求 CD 的长;②当 D 在线段 PB 上运动时,试说明线段 AC 和线段 CD 的数量关系;(2)如果t=2 时,CD=1.5cm,试探索 AP 的值.2.同一平面3.同一平面4.平面图形6.两点确定一条直线7.相交,公共点8.无刻度的直尺,圆规9.相等10.线段11.线段的长度13.1°,1′,1″14.相等15.90°16.180°17.相等18.相等一.选择题(共 10 小题)基础知识通关答案单元检测答案1.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“神”与“确”是相对面.故选:C.【知识点】2,42.【分析】根据特殊几何体的展开图,可得答案.【解答】解:A、圆柱的侧面展开图是矩形,故 A 错误;B、三棱柱的侧面展开图是矩形,故 B 错误;C、圆锥的侧面展开图是扇形,故 C 正确;D、三棱锥的侧面展开图是三角形,故 D 错误.故选:C.【知识点】2,43.【分析】依据度分秒的换算,相交线,一元一次方程的定义,线段的中点的定义、两点间的距离的概念进行判断即可.【解答】解:①57.18°=57°10′48″,正确;②三条直线两两相交,有一个或三个交点,错误;③x=0 是一元一次方程,正确;④若线段 PA=PB,则点 P 不一定是线段 AB 的中点,错误;⑤连接两点间的线段的长度,叫做两点间的距离,错误.故选:C.【知识点】7,9,11,134.【分析】没有明确平面上四点是否在同一直线上,需要运用分类讨论思想.分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:1、四点在同一直线上时,只可画 1 条;2、当三点在同一直线上,另一点不在这条直线上,可画 4 条;3、当没有三点共线时,可画 6 条.所以最多可以画 6 条.故选:B.【知识点】6,75.【分析】直接利用度分秒转换法则分别计算得出答案.【解答】解:A、0.25°=15′=900″,正确,不合题意;B、16°5′24″=16°5.4′=16.09°,正确,不合题意;C、47.28°=47°16′48″,正确,不合题意;D、80.5°=80°30′,错误,符合题意.故选:D.【知识点】136.【分析】设较大的角为 x,根据互为补角的两个角的和等于 180°表示出较小的角,然后列出方程求解即可.【解答】解:设较大的角为 x,则较小的角为 180°﹣x根据题意得,x﹣(180°﹣x)=35°解得 x=107.5°故选:A.【知识点】167.【分析】根据方向角的定义即可判断.【解答】解:A 处观测到的 C 处的方向角是:北偏东 65°B 处观测到的C 处的方向角是:北偏西 50°.故选:B.【知识点】12,138.【分析】依据 OD、OE 分别是∠AOC、∠BOC 的平分线,即可得出∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°,结合选项得出正确结论.【解答】解:∵OD、OE 分别是∠AOC、∠BOC 的平分线∴∠AOD=∠COD,∠EOC=∠BOE又∵∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°∴∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°故选:C.【知识点】149.【分析】将一张长方形纸片按如图所示的方式折叠,BC,BD 为折痕,则∠CBD 的度数为 90°,然后根据平角的定义即可得到结论.【解答】解:∵一张长方形纸片沿 BC、BD 折叠∴∠ABC=∠A′BC,∠EBD=∠E′BD而∠ABC+∠A′BC+∠EBD+∠E′BD=180°∴∠A′BC+∠E′BD=180°×=90°即∠ABC+∠DBE=90°∵∠ABC=35°∴∠DBE=55°【知识点】1610.【分析】根据题意和图得出:∠DGC=∠DCG=45°,∠HGF=∠GHF=45°,再根据∠DGC+∠HGF+γ=180°,从而得出γ=90°,然后结合图观察出α>90°,β<90°,最后比较大小即可.【解答】解:由题意知:∠DGC=∠DCG=45°同理∠HGF=∠GHF∠=45°又∵∠DGC+∠HGF+γ=180°∴γ=90°由图可知α>90°,β<90°∴β<γ<α故选:B.【知识点】16二.填空题(共 10 小题)1.【分析】解这类题首先要明确柱体,椎体、球体的概念,然后根据图示进行解答.【解答】解:柱体分为圆柱和棱柱,所以柱体有第一个图形正方体、第三个图形圆柱、第五个图形六棱柱,第六个图形三棱柱共 4 个.故答案为:4.【知识点】212.【分析】根据题意和余角、补角的概念列出方程,解方程即可.【解答】解:设∠A=a由题意得90°﹣a=(180°﹣a)﹣10°,解得a=60°.故答案为:60°.【知识点】15,1613.【分析】根据一个角的补角比它的余角多 90°求解即可.【解答】解:∠A 的余角为:90°﹣∠A,∠α的补角为:180°﹣∠A∴∠A 的补角比∠A 的余角大 90°∴∠A 的补角为:52°38′+90°=142°38′故答案为:142°38′【知识点】15,1614.【分析】根据度分秒加减法计算法则进行解答.【解答】解:48°59′+67°31′﹣21°12′=116°30′﹣21°12′=95°18′.故答案为:95°18′【知识点】1315.【分析】根据两点之间线段最短可得公共自行车存放点的位置是 E 处.【解答】解:公共自行车存放点应该建在 B 处,理由是两点之间线段最短.故答案为:E,两点之间线段最短.【知识点】1016.【分析】根据中点的定义,可分别求出 AM、BN 的长度,点C 存在两种情况,一种在线段 AB 上,一种在线段 AB 外,分类讨论,即可得出结论.【解答】解:依题意可知,C 点存在两种情况,一种在线段 AB 上,一种在线段 AB 外.①C 点在线段 AB 上,如图 1:∵点 M 是线段 AB 的中点,点 N 是线段 BC 的中点,∴AM==4cm,BN==1.5cm, MN=AB﹣AM﹣BN=4﹣1.5=2.5cm;②C 点在线段 AB 外,如图 2::∵点 M 是线段 AB 的中点,点 N 是线段 BC 的中点∴AM==4cm,BN==1.5cmMN=AB﹣AM+BN=8﹣4+1.5=5.5cm综上得 MN 得长为 2.5cm 或 5.5cm故答案为:2.5cm 或5.5cm【知识点】917.【分析】结合图形,然后求出 OB 与西方的夹角的度数,即可得解.【解答】解:如图,根据题意得,∠AOC=20°,∠COD=90°∴∠BOD=∠AOB﹣∠AOC﹣∠COD=30°∴点 B 在点O 的南偏西 60°故答案为:60【知识点】15,1918.【分析】根据图中角与角之间的关系即可求出答案.【解答】解:∵∠AOD=135°,∠DOB=105°∴∠AOB=∠AOD﹣∠DOB=135°﹣105°=30°∵∠AOC=75°∴∠BOC=∠AOC﹣∠AOB=75°﹣30°=45°故答案为:45°.【知识点】1919.【分析】通过观察图形即可得到答案.【解答】如图,把正方体截去一个角后得到的几何体有 12 条棱.故答案为:12.【知识点】2,520.【分析】抓住 A、B、C 三点都在直线 l 上,没有给顺序也没有给图,基本确定题目多解;确定两条线段:AC=4,BC=6,画出图,根据题中的中点条件和和差关系即可解决问题【解答】解:∵AC 与BC 的长度之比为 2:3,AC=4 ∴BC=6如图,C 在AB 之间时,AB=AC+BC=10D 是AB 的中点,AD=DB=5CD=AD﹣AC=5﹣4=1如图,C 在AB 外面时,AB=BC﹣AC=2D 是AB 的中点,AD=DB=1CD=AD+AC=1+4=5故答案:1 或 5【知识点】9三.解答题(共 5 小题)21.【分析】根据比例设 MB=2x,BC=3x,CN=4x,然后表示出 MN,再根据线段中点的定义表示出PN,再根据 PC=PN﹣CN 列方程求出 x,从而得解.【解答】解:∵MB:BC:CN=2:3:4∴设 MB=2xcm,BC=3xcm,CN=4xcm∴MN=MB+BC+CN=2x+3x+4x=9xcm∵点 P 是MN 的中点∴PN=MN=xcm∴PC=PN﹣CN即x﹣4x=2解得 x=4所以,MN=9×4=36cm.【知识点】9,112.【分析】(1)可以设∠BOE 为x,根据条件列方程解决,求出∠BOE;(2)设∠BOE=a,则∠ECO=3a,根据条件列方程解决,求出∠BOE.【解答】解:∵∠AOC=170°,∠AOB=70°∴∠BOC=100°设∠BOE=x,则∠ECO=3x∴∠BOC=∠BOE+∠EOC=x+3x=100°∴x=25°∴∠EOC=25°(2)设∠BOE=a,则∠ECO=3a∵∠DOE=70°,OD 平分∠AOB∴∠AOD=∠BOD=∠DOE-∠BOE=70°﹣a∴∠AOC=2∠AOD+∠BOE+∠EOC=2(70°﹣a)+a+3a=170°∴a=15°∴∠EOC=3a=45°【知识点】14,1923.【分析】根据直线、射线、线段的概念、两点之间,线段最短画图即可.【解答】解:如图所画:【知识点】8,1024.【分析】(1)根据已知AB=m(m 为常数),CQ=2AQ,CP=2BP,以及线段的中点的定义解答;(2)根据已知AB=m(m 为常数),CQ=2AQ,CP=2BP;(3)根据题意,画出图形,求得 2AP+CQ﹣2PQ=0,即可得出 2AP+CQ﹣2PQ 与1 的大小关系.【解答】解:(1)∵CQ=2AQ,CP=2BP∴CQ=AC,CP=BC∵点 C 恰好在线段 AB 中点∴AC=BC=AB∵AB=m(m 为常数)∴PQ=CQ+CP=AC+ BC=×AB+ × AB= AB= m;故答案为:m;(2)∵CQ=2AQ,CP=2BP∴CQ=AC,CP=BC∵AB=m(m 为常数)∴PQ=CQ+CP=AC+ BC=×(AC+BC)=AB= m;故PQ 是一个常数,即是常数m;(3)如图:∵CQ=2AQ,∴2AP+CQ﹣2PQ=2AP+CQ﹣2(AP+AQ)=2AP+CQ﹣2AP﹣2AQ=CQ﹣2AQ=2AQ﹣2AQ=0∴2AP+CQ﹣2PQ<1.【知识点】9,1125.【分析】(1)依据 AD 是∠EAC 的角平分线,即可得出∠DAE=∠CAD=45°,再根据∠BAC=60°,即可得到∠DAB 的度数;(2)分两种情况讨论,设∠BAD=α,依据∠EAB 和∠DAC 互余,列方程求解即可.【解答】解:(1)如图2,∵AD 是∠EAC 的角平分线∴∠DAE=∠CAD=45°∵∠BAC=60°∴∠DAB=60°﹣45°=15°;(2)分两种情况讨论:①如图,当∠EAB 和∠DAC 互余时,设∠BAD=α则∠BAE=45°﹣α,∠CAD=60°﹣α∴45°﹣α+60°﹣α=90°解得α=7.5°;②如图,当∠EAB 和∠DAC 互余时,设∠BAD=α则∠BAE=α﹣45°,∠CAD=α﹣60°∴α﹣45°+α﹣60°=90°解得α=97.5°;综上所述,当∠EAB 和∠DAC 互余时,∠BAD 的值为 7.5°或 97.5°.【知识点】14,15,19四、附加题26.【分析】(1)根据互为垂角的定义即可求解;(2)利用题中的“一个角的垂角等于这个角的补角的”作为相等关系列方程求解.【解答】解:(1)互为垂角的角有 4 对:∠EOB 与∠DOB,∠EOB 与∠EOC,∠AOD 与∠COD,∠AOD 与∠AOE;(2)设这个角的度数为x 度,则①当 0<x<90 时,它的垂角是(90+x)度,依题意有90+x=(180﹣x),解得x=30;②当 90<x<180 时,它的垂角是(x﹣90)度,依题意有x﹣90=(180﹣x),解得x=130.故这个角为 30 度或130 度.故答案为:∠EOB 与∠DOB,∠EOB 与∠EOC,∠AOD 与∠COD,∠AOD 与∠AOE.【知识点】15,18,1927.【分析】(1)①先求出 PB、CP 与DB 的长度,然后利用 CD=CP+PB﹣DB 即可求出答案.②用t表示出 AC、DP、CD 的长度即可证明 AC=2CD;(2)当 t=2 时,求出 CP、DB 的长度,由于没有说明 D 点在 C 点的左边还是右边,故需要分情况讨论.【解答】解:(1)①由题意可知:CP=2×1=2(cm),DB=3×1=3(cm)∵AP=8 cm,AB=12 cm∴PB=AB﹣AP=4 cm∴CD=CP+PB﹣DB=2+4﹣3=3(cm)②∴AP=8 cm,AB=12 cm∴BP=4 cm,AC=(8﹣2t)cm∴DP=(4﹣3t)cm∴CD=CP+DP=2t+4﹣3t=(4﹣t)cm.∴线段 AC 是线段 CD 的二倍.(2)当t=2 时,CP=2×2=4(cm),DB=3×2=6(cm)当点 D 在点C 的右边时,如图所示:∵CD=1.5 cm∴CB=CD+DB=7.5 cm∴AC=AB﹣CB=4.5 cm∴AP=AC+CP=8.5 cm.当点 D 在点 C 的左边时,如图所示:∴AD=AB﹣DB=6 cm∴AP=AD+CD+CP=11.5 cm综上所述:AP=8.5cm 或 AP=11.5cm【知识点】11。

初中数学4.1几何图形 教案word版

初中数学4.1几何图形 教案word版

第四章图形的认识§4.1 几何图形(1)教学目标1.在具体情景中懂得欣赏一个几何图形,并能发现图形的对称美。

2.通过剪一些简单图形,知道怎样构造轴对称图形。

3.能利用旋转和拼凑等方法,由一些基本图形构造其它图案,学会化繁为简。

教学重、难点重点:由生活中所见的图形总结出图形的特点,从而认识图形的本质。

难点:构造图案.教学过程一、图形欣赏,感受几何学中的对称美1.投影课本P112的彩图。

教师活动:提问,(1)欣赏完这三幅图后,大家有什么感受?(2)这些图有什么特征?学生活动:学生各抒已见,大胆表达自己的见解。

2.教师指出:由图案的“漂亮”到图形的“对称”,说明大家已经从一个更深的层次来认识几何图形,对称在建筑、镶边等艺术中具有巨大的作用。

现实世界的许多图形都具有对称美.二、做一做,进一步领悟图形对称性的运用1.教师活动:提问,(1)你亲戚或邻居结婚时窗户、门上都贴了什么?(2)你能剪出一个双“喜”字吗? P116 5学生活动:学生动手操作.教师引导学生怎样画才能剪出一个双“喜”字,让学生在动手实践中获取知识,提高能力、开发思维的广阔性。

2.学生活动:剪一种简单的花边,并进行对照比较、交流讨论.教师活动:(1)鼓励学生发挥想象的空间,剪出丰富多彩的不同图案;(2)利用课余时间把较好的作品张贴在黑板报上,从而激发学生学习几何的兴趣。

三、想一想,如何进行图案设计1.(出示投影2).投影显示课本P112图4—12.下图是一个戴头巾的儿童的头像,你能画出它吗?学生活动:先把握好图形的位置特征,形像特征再动手画,比一比,谁画得最好。

3.小明家的地面设计图为左下图所示的图案(局部),能否只用右下图设计地面砖?是否还可以将地面砖设计得更小一些?4.用下图为基本单元,拼出图案来。

四、随堂练习课本习题.五、小结本节课通过欣赏图形,发现图形的对称美,再利用图形对称美设计一些美丽的图案,从一个更深的层次去认识了图形。

初中数学 教学设计1:几何图形

初中数学 教学设计1:几何图形

几何图形课题几何图形
课时安排 1
教学目标
1、理解几何图形与点、线、面、体的关系,理解立体图形、平面图形的区别。

2、能准确说出不同的几何体,能判断几何图形和立体图形的区别。

3、从这节课开始接触几何图形,通过这节课对图形的探索,激发学生的求知欲望,并且通过七巧板的讲述,增强学生的爱国主义情感。

重点由点、线、面组成的几何图形的概念与判断是本节的重点。

难点点、线、面、体之间的关系,尤其是由面旋转成体是本节难点。

教具准备多媒体,投影仪
教学过程
(一)由旧导新:
你们认识下面这些几何体吗?你能举出一些在
日常生活中形状与上述几何体类似的物体吗?
由此引入新课:这节课开始我们学习与前面不同
的知识:几何图形
(二)几何图形的概念:
1、合作学习:你们在上面的图形中,发现了那些
面,那些是平面,那些是曲面?那么黑板呢,平静的
湖面呢?篮球、水桶呢?
天上的星星和地图上的城市给我们以什么概念?
地图上的河流、公路呢?
以上问题可以让学生回答、思考、改错,并进行
讨论,由教师总结。

2、几何图形的概念:点、线、面、体这些基本图
形可帮助人们有效地刻画错综复杂的现实世界,他们
课后反馈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章图形的认识
§4.1 几何图形(1)
教学目标
1.在具体情景中懂得欣赏一个几何图形,并能发现图形的对称美。

2.通过剪一些简单图形,知道怎样构造轴对称图形。

3.能利用旋转和拼凑等方法,由一些基本图形构造其它图案,学会化繁为简。

教学重、难点
重点:由生活中所见的图形总结出图形的特点,从而认识图形的本质。

难点:构造图案.
教学过程
一、图形欣赏,感受几何学中的对称美
1.投影课本P112的彩图。

教师活动:提问,(1)欣赏完这三幅图后,大家有什么感受?(2)这些图有什么特征?
学生活动:学生各抒已见,大胆表达自己的见解。

2.教师指出:由图案的“漂亮”到图形的“对称”,说明大家已经从一个更深的层次来认识几何图形,对称在建筑、镶边等艺术中具有巨大的作用。

现实世界的许多图形都具有对称美.
二、做一做,进一步领悟图形对称性的运用
1.教师活动:提问,(1)你亲戚或邻居结婚时窗户、门上都贴了什么?
(2)你能剪出一个双“喜”字吗? P116 5
学生活动:学生动手操作.教师引导学生怎样画才能剪出一个双“喜”字,让学生在动手实践中获取知识,提高能力、开发思维的广阔性。

2.学生活动:剪一种简单的花边,并进行对照比较、交流讨论.
教师活动:(1)鼓励学生发挥想象的空间,剪出丰富多彩的不同图案;(2)利用课余时间把较好的作品张贴在黑板报上,从而激发学生学习几何的兴趣。

三、想一想,如何进行图案设计
1.(出示投影2).
投影显示课本P112图4—1
2.下图是一个戴头巾的儿童的头像,你能画出它吗?
学生活动:先把握好图形的位置特征,形像特征再动手画,比一比,谁画得最好。

3.小明家的地面设计图为左下图所示的图案(局部),能否只用右下图设计地面砖?是否还可以将地面砖设计得更小一些?
4.用下图为基本单元,拼出图案来。

四、随堂练习
课本习题.
五、小结
本节课通过欣赏图形,发现图形的对称美,再利用图形对称美设计一些美丽的图案,从一个更深的层次去认识了图形。

六、作业: 课本练习
§4.1 几何图形(2)
教学目标
1.在现实的情景中认识平面图形与立体图形.
2.掌握几何体的基本单元点、线、面之间的区别和联系.
教学重、难点
重点:正确认识简单的平面图形和几何体,并能对它们进行简单的分类。

难点:欧拉公式的理解.
教学过程
一、观察图形,认识基本几何体
1.投影课本P113的图4-2,让学生说出他们所熟悉的图形。

2.教师展示三棱锥、正方体、圆柱、球的模型并提问:
(1)怎样由正方形得到正方体?
(2)怎样由圆得到圆柱?
(3)怎样由圆得到球?
学生活动:学生通过对几组平面图形与空间图形进行观察、比较、讨论,得出结论。

教师指出:空间图形是由平面图形围成的几何体,它的任何一个截面都是平面图形.但平面图形是在同一个平面内,由线围成的封闭图形,而空间图形是在空间中由面围成的封闭几何体。

二、议一议,认识几个平面图形
投影课本P113的图4-3.
提问:这三个平面图形有什么特点?
学生活动:讨论,尽量说出它们各自的特征.
归纳:
三、做一做,认识立体图形
1.学生活动:用透明胶、剪刀和硬纸板制作一个正四面体和正方体.
2.投影课本P114的图4-5.
教师活动;由4个完全一样的正三角形围成的空间图形称为正四面体,这些三角形的顶点、边分别称为正四面体的顶点、棱,类似的,还有正六面体、正八面体、正十二面体和正二十面体。

观察图形且提问:(1)数一数经过正四面体的每一个顶点有几条棱?正六面体和正八面体
呢?(2)数一数正四面体、正六面体和正八面体的顶点数以及棱的条数.(3)填表:课本.(4)从上表中看到了什么特点?
学生活动:学生数一数顶点、面和棱的数量填充表格并讨论其规律。

四、随堂练习
用橡皮泥制作圆柱、圆锥(或圆台)等模型.
练习
五、小结
本节课认识了一些基本的平面图形和空间图形,立体图形中的多面体顶点、棱、面的数量关系满足欧拉公式:顶点数十面数一棱数=2。

六、作业:1.课本P115习题A 组第1题.补充题
一、填空题.
1.写出下列实物最类似的几何体的名称.
(1)西瓜 (2)杯子 (3)皮箱
2.写出下图中平面图形的名称:
二、解答题.
在正方体两个相距最远的顶点处逗留着一只苍蝇和一只蜘蛛,蜘蛛可以沿正方体表面上哪条⑴__________⑵__________⑶__________
最短的路径爬到苍蝇处?说明你的理由。

相关文档
最新文档