组合图形的面积练习题
五年级组合图形的面积精选32题
1、如图,两个完全相同的直角三角形部分重叠,已知AB=10厘米,BD=4厘米,EF=3厘米。
求阴影部分的面积。
2、如图,两个完全相同的直角梯形部分重叠,已知AB=7.5厘米,BC=10厘米,DE=2厘米。
求阴影部分的面积。
3、如图,大小两个正方形的边长都是10厘米和6厘米,求阴影部分的面积。
ABCDEFADEBC107.524、如图,大小两个正方形的边长都是10厘米和6厘米,求阴影部分的面积。
5、如图,由长方形ABCD 和直角梯形BEFC 组成,其中阴影部分的面积是36.5平方厘米,CD 是5厘米。
求长方形ABCD 的面积。
6、如图,平行四边形ABCD 的底BC 长12厘米,线段EF 长8.3厘米,求图中阴影部分的面积总和是多少平方厘米?ABCDEFABCDFEG7、如图,梯形上底长5.4厘米,下底长8.6厘米,高长4厘米,求三角形甲的面积比三角形乙的面积小多少平方厘米?8、如图,ABCD 是长方形,AB=8厘米,BC=6厘米,三角形ABF 的面积比三角形DEF 的面积大12平方厘米,求DE 长多少厘米?9、如图,平行四边形ABCD 的底BC 长10厘米,直角三角形FBC 的直角边FC 长8厘米。
已知阴影部分的总面积比三角形EFG 的面积大10平方厘米。
求EF 的长度。
甲乙ABCDEF8681010、如图,△ABC 和△DCB 都是直角三角形,已知AB=3.4厘米,BC=7.2厘米,且甲比乙的面积大3.6平方厘米,求CD 的长。
11、如图,CA=AB=4厘米,三角形ABE 的面积比三角形CDE 的面积小2平方厘米,求CD 的长。
12、如图,甲的面积比乙的面积大36平方厘米,已知AB 长8厘米,BC 长12厘米,CD 长6厘米,求DE 的长。
ABCD甲乙7.23.4ABCDE4ABCDE 甲乙812613、如图,D 是AC 的中点,E 、F 是BC 边上的三等分点,已知阴影部分的面积为20平方厘米,求三角形ABC 的面积。
北师大版数学五年级上册 第六单元《组合图形的面积》测试卷(含答案)
第六单元《组合图形的面积》测试卷一.选择题1.如图阴影部分的面积与空白部分的面积相比较,它们()A.相等B.不相等C.无法比较2.如图,空白部分面积是阴影部分面积的()A.一半B.2倍C.无法确定3.图中每个方格的面积是1cm2,估计阴影部分的面积,在()之间.A.20cm2~25cm2B.25cm2~30cm2C.30cm2~35cm24.下列图形中,每个小正方形都是边长1cm,图中阴影面积最大的是()A.B.C.5.如果每间教室以50平方米计算,那么1公顷的地方相当于有()间这样A.20 B.200 C.2000 D.506.北京故宫的占地面积是720000平方米,合()公顷。
A.72 B.720 C.72007.平方千米和公顷之间的进率是()A.10 B.100 C.1000 D.100008.乐乐在计算如图中树叶的面积时作了一些标记。
如果每个方格的面积是1平方厘米,这片树叶的面积大约是()平方厘米。
A.22 B.40 C.70二.填空题9.如图中阴影部分的面积大约是cm2(每个小格是1cm2).10.把两个完全一样的正方体拼成一个长方体,拼成的长方体的表面积是原来两个正方体表面积和的.11.如图,大小两个正方形拼在一起,阴影部分面积为28平方厘米,小正方形边长为4厘米,则图中空白部分的面积是平方厘米.12.2公顷= 平方米 90000平方米= 公顷17平方千米= 公顷 400公顷= 平方千米13.一个风景区的占地面积是4平方千米50公顷,合起来是公顷,也就是平方米。
14.如图,AB=BC=CD=4厘米,DF=3厘米,则阴影部分的面积是平方15.用方格纸估计一个不规则图形的面积时,数出这个图形一共包含58个整格和26个不满整格.如果每个小方格表示1平方分米,这个图形的实际面积比平方分米大一些,比平方分米小一些.16.一个零件的横截面如图(单位:厘米),它的面积是.三.判断题17.一间教室的面积约为50平方米,那么200间这样的教室总面积约为1公顷.()18.3滴水有1升.()19.小学生的一步大约长50厘米.()20.是一个仓库侧面墙的示意图.要给这面墙粉刷涂料,粉刷的面积可以用长方形的面积加上梯形的面积.()21.计算的面积,只能把它分成一个正方形和一个三角形来计算.()四.计算题22.算出图形的面积。
2022年人教版五年级上册数学求组合图形的面积专题训练(含答案)
27.用不同的方法计算下面图形的面积。(单位:米)
参考答案
1.63平方厘米;80平方厘米
2.76平方厘米
3.375cm2
4.230平方米
5.1208平方毫米
6.350cm方厘米
8.384平方厘米
9.90平方厘米
16.求下列图形中阴影部分的面积。
17.求阴影部分面积。(单位:厘米)
18.求阴影部分的面积。
19.求阴影部分面积。(单位:m)
20.计算下列图形的面积。
21.计算下面图形的面积。
22.计算图中阴影部分的面积。(单位:厘米)
23.求梯形面积。
24.计算下面阴影部分的面积。(单位:cm)
25.求阴影部分的面积。
2022年人教版五年级上册数学求组合图形的面积专题训练
1.寻找合适的条件,求出下图中涂色部分的面积。(单位:cm)
2.计算下图的面积。(单位:厘米)
3.求大梯形中阴影部分的面积。(单位:厘米)
4.计算下面组合图形的面积。(单位:米)
5.求阴影部分的面积。(单位:毫米)
6.求下列阴影部分的面积。(单位:cm)
26.44 cm2
27.84平方米
10.340平方厘米;260平方米
11.1350平方厘米
12.60平方厘米
13.325平方厘米
14.54平方分米
15.3平方厘米
16.52.5平方分米
17.26平方厘米
18.32平方米
19.120m2
20.24平方厘米
21.52平方米
22.36平方厘米
23.170平方厘米
24.18cm²
25.832平方分米;180平方厘米
(完整版)五年级组合图形的面积典型例题
五年级上册组合图形面积计算题1:一个等腰直角三角形,最长的边是10 厘米,这个三角形的面积是多少平方厘米?【巩固练习1】:如图正方形中套着一个长方形,正方形的边长是12 厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的 2 倍。
求中间长方形的面积。
2:求右面平行四边形的周长。
5412巩固练习2】:求右面三角形的AB上的高典型例题3:求右图等腰直角三角形中阴影部分的面积。
单位:厘米)10巩固练习3】:求四边形ABCD的面积。
(单位:厘米)典型例题4:有一种将正方形内接于等腰直角三角形。
已知等腰直角三角形的面积是72 平方厘米,正方形的面积分别是多少?巩固练习4】:有一种将正方形内接于等腰直角三角形。
已知等腰直角三角形的面积是72 平方厘米,正方形的面积分别是多少?典型例题5:图中两个正方形的边长分别是10厘米和 6 厘米,求阴影部分的面积。
【巩固练习5】:图中两个正方形的边长分别是阴影部分的面积。
巩固练习6】求右图等腰直角三角形中阴影部分的面积。
(单位:厘米)典型例题7:在一个直角三角形铁皮上剪下一块正方形,剩三角形,已知AD=3cm,DB=4cm,两个三角形面积和是多少?2、已知正方形ABCD的边长是7 厘米,求正方形EFGH的面积A下两个3、求下图长方形ABCD的面积(单位:厘米)4、如图,用48m长的篱笆靠墙围了一个梯形养鸡场,求养鸡场的面积?5、在一个直角三角形铁皮上剪下一块正方形,剩下两个三角形,已知AD=4cm,DB=6cm,两个三角形面积和是多少?A【练一练】如果用铁丝围成如下图一样的平行四边形,需要用多少厘米铁丝?(单位:厘米)例2 】下图中甲和乙都是正方形,求阴影部分的面积。
单位:厘米)【练一练】平行四边形ABCD 的边长BC=10厘米,直角三角形BCE 的直角边EC 长8厘米,已知阴影部分的面积比三角形EFG 的面积大10 平方厘米。
求CF 的长。
【例4】两条对角线把梯形ABCD 分割成四个三角形。
组合图形的面积练习题
三、应用 1、右图是两个相同的直角三角形叠在一起,求阴影部分的面积。(单 位:厘米)
2、如图,这个长方形的长是9厘米,宽是8厘米,A和B是宽的中点,求 长方形内阴影部分的面积。
3、
右图是一块长方形公园绿地,绿地长24米,宽16米,中间有一条宽为2 米的道路,求草地(阴影部分)的面积。
4、
如图长方形,长18厘米,宽12厘米,AE、AF两条线段把长方形面积三 等分,求三角形AEF的面积。
组合图形的面积练习题 姓名: 一、计算下列组合图形的面积
⑴
⑵
18
12
⑶
⑷
二、计算下面图形中阴影部分的面积。 30dm
12dm
3m
25dm
5m 5m
求S阴。
13cm 16cm 8dm 3dm已知S平=48dm2,
24平方厘米, 4dm 8dm
12cm 7cm
已知:阴影部分的面积为 求梯形的面积。
5、图中三角形ABC的面积是36平方厘米,AC长8厘米,DE长3厘米,求阴 影部分的面积(ADFC不是正方形)。
五年级数学(上册)《组合图形的面积》试题及答案
五年级数奥数:《组合图形的面积》1、求图形的面积(单位:厘米)梯形面积:三角形面积:(8+12)×8.5÷2 12×3÷2= 20×8.5÷2 = 36÷2= 170÷2 = 18(cm2)= 85(cm2)图形面积= 梯形面积–三角形面积:85-18=67(cm2)2、校园里有两块花圃(如图),你能计算出它们的面积吗?(单位:m)图形面积=长方形面积6×(5-2)+ 正方形面积(2×2)图形面积=长方形面积 - 梯形面积6×(5-2)+ 2×2 10×6 –[(3+6)×2÷2 ]= 6×3 + 4 = 60 -[ 9×2÷2 ]= 18 + 4 = 60 - 9= 22(m2)= 51(m2)3、下图直角梯形的面积是49平方分米,求阴影部分的面积。
直角梯形的高=直角三角形的高(阴影部分面积)直角梯形的高= 49÷(6+8)×2 直角三角形面积= 6×7÷2= 49÷14×2 = 42÷2= 3.5×2 = 21(dm²)= 7(dm²)4、图中梯形中空白部分是直角三角形,它的面积是45平方厘米,求阴影部分面积。
直角梯形的高=直角三角形的高梯形面积=(5+12)×7.5÷2= 45÷12×2= 17×7.5÷2= 3.75×2 = 127.5÷2= 7.5(cm2)= 63.75(cm2)阴影部分面积=梯形面积–空白部分面积:63.75 - 45 = 18.75(cm2)5、阴影部分面积是40平方米,求空白部分面积。
(单位:米)梯形的高=三角形的高(阴影部分三角形)梯形面积=(6+10)×8÷2= 40÷10×2 = 16×8÷2= 4×2 = 128÷2= 8(m2)= 64(m2)空白部分面积=梯形面积–阴影部分面积:64–40 = 24(m2)6、如图,平行四边形面积240平方厘米,求阴影部分面积。
五年级上册数学《组合图形面积》应用题
《组合图形面积》应用题1、一个果园形状如图,一棵果树占地5m²,这个果园一共可以种多少棵树?30×10+(30-16)×(20-10)÷2=300+14×10÷2=300+70=370(平方米)370÷5=74(棵)2、李大爷家有一块菜地(如图),这块菜地的面积有多少平方米?(19+9)×9+(21-9)×9=28×9+12×9=252+108=360(平方米)答:这块菜地的面积有360平方米.3、下面的组合图形你一定很熟悉吧,那就请你动起手来,试一试吧如图阴影部分是梯形,左面长方形长4厘米,宽3厘米,A为宽中点.求阴影部分的面积?3×4-3×(4÷2)÷2=12-3×2÷2=12-3=9(平方厘米)答:阴影部分的面积是9平方厘米《组合图形面积》应用题4、学校要油漆60扇教室的门的外面(门的形状如图,单位:米).(1)需要油漆的面积一共是多少?0.8×2-0.4×0.3=1.6-0.12=1.48(平方米)1.48×60=88.8(平方米)答:需要油漆的面积一共是88.8平方米.(2)如果油漆每平方米需要花费10元,那么学校一共要花费多少元?88.8×10=888(元)答:学校一共要花费888元.5、王爷爷家有一块地,他分别用来种植高粱、土豆和玉米(如下图).其中土豆和玉米的种植面积相等,都是21m².请计算出王爷爷家这块地的面积.21×2÷6=7(米)(9.3+9.3+6+6)×7÷2=30.6×7÷2=107.1(平方米)答:王爷爷家这块地的面积是107.1平方米.。
五年级数学上册《组合图形的面积》测试卷及答案-北师大版
五年级数学上册《组合图形的面积》测试卷及答案-北师大版一.选择题(共8小题)1.如图,边长相等的两个正方形中,画了甲、乙两个三角形(用阴影表示),它们的面积相比()A.甲的面积大B.乙的面积大C.相等2.点A是长方形内任意一点,阴影部分的总面积与空白部分总面积比较,哪个的面积较大?A.阴影部分面积大B.空白部分面积大C.一样大D.无法确定3.图中每个小方格的面积是1cm2.请你估计一下,这个脚印的面积约是()A.45B.35C.254.下面图形中涂色部分面积与其它不同的一个是()5.中心广场的占地面积约为5公顷,()个中心广场的面积约为1平方千米.A.2 B.20 C.2006.丫丫家的面积有110平方分米.她家所在的小区有300平方千米.丫丫最喜欢楼下的游乐场了,它有10公顷那么大呢.这段话里有()处错误.A.1 B.2 C.37.“6平方千米〇601公顷”,比较大小,在〇里应填的符号是()A.>B.<C.=D.×8.如图:树叶的面积约是()(每个小方格的面积是1cm2)A.15cm2~25cm2B.35cm2~45cm2C.55cm2~65cm2二.填空题(共8小题)9.如图是一个不规则的土地,估测一下,它的面积大约是平方米.10.如图,平行四边形中,阴影部分的面积是36.5dm2,平行四边形的面积是平方分米.11.右图平行四边形的面积是25平方厘米,阴影部分的面积是平方厘米.12.如果1平方米能站9人,那么1公顷能站人,1平方千米能站人.13.260000000平方米=公顷=平方千米800平方千米=公顷=平方米14.如下图所示,平行四边形的面积是28cm2,阴影部分的面积是cm2.15.如图中这片树叶的面积约是cm2.16.如图是一个平行四边形被分成了三个三角形,涂色图形的面积是40cm2,没涂色的三角形的面积是cm2.三.判断题(共5小题)17.200个50平方米的教室面积是1公顷.(判断对错)18.100个1角的硬币大约重1千克.(判断对错)19.一张床的周长估计是2米.(判断对错)20.计算的面积,只能把它分成一个正方形和一个三角形来计算.(判断对错)21.如图中阴影部分的面积是14平方厘米.(判断对错)四.计算题(共2小题)22.求下面组合图形的面积.(单位:dm)23.如图,阴影部分是两个正方形,周长分别为12厘米和32厘米.求空白部分的总面积是多少平方厘米?五.操作题(共2小题)24.先估计下面图形的面积,再用1平方厘米的正方形学具量一量,填在括号里.25.分割组合图形(不计算):你有哪几种分割方法便于计算其面积,请画出分割示意图.六.应用题(共6小题)26.某街心广场有一块地(如图所示),李叔叔要在这块地上铺满草坪.(1)他需要购买多少平方米草皮?(2)如果每平方米草皮需要68元,请你估计一下,李叔叔要带多少元钱才能一次性把草皮买够?请写出你的估计过程.27.王大伯从平行四边形菜地中划出一块三角形地种西红柿,其余地方种黄瓜(如图),这块黄瓜地的面积是多少平方米?28.一个果园形状如图,一棵果树占地5m2,这个果园一共可以种多少棵树?29.李阿姨家有一块菜地,(如图)这块菜地的面积有多少平方米?30.王村有一块梯形果园,村里进行道路规划时,有一条公路穿过了这个果园.这个果园的实际面积是多少平方米?31.下面三个大正方形的边长都是32厘米,先计算每个正方形中一个小方格的面积,再估计出荷叶的面积.你觉得哪幅图估计得最接近实际面积?参考答案一.选择题(共8小题)1.解:两个阴影三角形的底等于正方形的边长,三角形的高也等于正方形的边长,因此两个三角形等底等高,所以面积相等;故选:C.2.解:阴影部分两个三角形的高等于长方形宽,底等于长方形的长,空白部分两个三角形的高等于长方形的长,底等于长方形的宽,所以阴影部分的面积与空白部分的面积相等。
(完整版)《组合图形的面积》练习题(含答案)
(完整版)《组合图形的面积》练习题(含答
案)
-CAL-FENGHAI.-(YICAI)-Company One1
组合图形的面积
测试题
1、下面的图形是由两个三角形组成的,请画出这两个三角形。
A
B D
C
2、已知平行四边形的面积是48平方分米,求阴影部分的面积。
3dm
8dm
3、求下面个图形的面积、(单位:分米)
(1)(2) 14
8
6 6
12
3 6
12
(3)(4) 8
2.5
5.4 4 1.5
4.2 6
3
4、如图所示,梯形的周长是52厘米,求阴影部分的面积。
16
5、校园里有一块花圃,(如图所示),算出它的面积。
(单位:米)
6 2
2
5
6、大小正方形如图放置,阴影部分为重叠部分,求空白部分面积。
(单位:厘米)
7
7
22
7、有一块土地如图所示,你能用几种方法求出它的面积(
单位:米)
12
15
8
22
7、如图所示,一个平行四边形背分成A、B两被封,A的面积比B的面积打40平方米,A的上底是多少?
B
A
8米
【参考答案】。
数学五年级上册《组合图形的面积》同步训练(含答案)
第六单元《多边形的面积》第4课时组合图形的面积一.选择题1.(2012•碑林区校级自主招生)如图,三角形ADF与三角形ABE、四边形AFCE的面积相等,9BC=厘米,6CD=厘米,求阴影部分的面积()A.5(平方厘米)B.25(平方厘米)C.15(平方厘米)D.10(平方厘米)2.(2012•康县)如图中,两三角形的面积之和占长方形面积的()A.12B.13C.14D.163.(2012•常熟市自主招生)如图所示,甲和乙两幅图的面积相等,其阴影面积相比,下列说法正确的是()A.甲>乙B.甲<乙C.甲=乙4.(2019秋•大兴区期末)如图所示,把一个长方形分成一个梯形和一个三角形.已知梯形的面积比三角形的面积大18厘米2,那么梯形的上底长为()厘米.A.2B.3C.4D.65.如图ABCD是长方形,已知4AB=厘米,6BC=厘米,三角形EFD的面积比三角形ABF的面积大6平方厘米,求(ED=)厘米.A.9B.7C.8D.6二.填空题6.(2019春•海淀区月考)如图,有一块长方形场地,长62=,从A、B两处入口的小路宽都AD mAB m=,宽41是1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪面积为2m.7.(2019春•静安区月考)如图的三角形分成两部分,甲的面积是210cm,乙的面积是2cm.8.(2019•徐州)如图中,阴影部分的面积占大长方形的.9.(2019春•湖北月考)如图,梯形的面积是.10.(2019•长沙县)如图,D是BC的三等分点,E是AC的四等分点,三角形ABC的面积是三角形ADE的面积的 倍.11.(2019春•杨浦区月考)如图,已知AE EC =,:2:3BD DC =,AFE ∆的面积比BFD ∆的面积多2,则ABC ∆的面积是12.(1999•广州自主招生)一个宽是3厘米的长方形,如果将长和宽都增加3厘米,那么面积增加81平方厘米;如果将长和宽都减少2厘米,那么面积减少 平方厘米.三.判断题13.如图所示,梯形的上底长等于下底长的一半,空白面积也等于阴影部分面积的一半. (判断对错)四.计算题14.(2018秋•环江县期末)计算下面图中阴影部分的面积.(单位:分米)15.(2019•武侯区)计算下面图形的面积.(单位:)cm16.(2017•西安模拟)求图中阴影部分的面积(单位:厘米) 17.(2015秋•徐州月考)求下列各图形面积18.(2017秋•栖霞区校级期中)求阴影部分面积.19.(2016秋•贵州月考)计算如图各图形的面积.20.计算下面图形中阴影部分的面积.(单位:分米)五.应用题21.(2019春•无棣县期末)在一块长方形地上,种上三种不同的蔬菜,如图.(1)黄瓜地的周长是多少米?(2)西红柿地的面积是多少?22.(2017•武汉模拟)如图,在直角三角形ABC里面裁剪一个正方形CDEF,剩下两个三角形,已知=,则图中阴影部分的面积是多少平方厘米?BE cm=,43AE cm23.(2017秋•巴南区期中)有一块长方形的地如图,中间有两条2m宽的水泥小路,其余部分为草坪,求草坪的面积?24.实验小学评比“卫生文明班级”需要制作一些流动红旗(如图)。
五年级组合图形的面积精选32题
1、如图,两个完全相同的直角三角形部分重叠,已知
AB=10厘米,
BD=4厘米,EF=3厘米。
求阴影部分的面积。
2、如图,两个完全相同的直角梯形部分重叠,已知AB=7.5厘米,BC=10厘米,DE=2厘米。
求阴影部分的面积。
3、如图,大小两个正方形的边长都是
10厘米和6厘米,求阴影部分的面积。
A B C
D E
F A
D
E B C
107.52
4、如图,大小两个正方形的边长都是
10厘米和6厘米,求阴影部分
的面积。
5、如图,由长方形ABCD 和直角梯形BEFC 组成,其中阴影部分的面积是36.5平方厘米,CD 是5厘米。
求长方形ABCD 的面积。
6、如图,平行四边形ABCD 的底BC 长12厘米,线段EF 长8.3厘米,求图中阴影部分的面积总和是多少平方厘米?
A
B
C D E F
A
B C D F E G。
(完整版)人教版小学五年级组合图形面积练习题.doc
1、填表。
图形名称面积公式 ( 文字 )面积公式(字母)
长方形
正方形
平行四边形
三角形
梯形
2、求下面图形的面积(单位:m)。
你能想出几种方法。
10
15
30
40
1 、求下面图形的面积。
(单位: cm)
4
10 4 3 2
10 8
20 6
15
322012
2、计算下面图形中阴影部分的面积。
30dm
12dm5m
3m 25dm5m
七、求下列阴影部分的面积。
①②已知 S 平=48dm2,求 S 阴。
3dm
13cm
16cm
8dm
③已知:阴影部分的面积为 24 ④求 S 阴。
平方厘米,求梯形的面积。
7cm 8dm
4dm 3、求下面各图形的面积。
(单位:分米)
12cm
三、“实践操作”显身手: 10 分
1、求下面图形中阴影部分的面积。
2、求下面图形的面积。
14cm
10m
24m
12cm
8m
16cm
1、测量并计算下列图形的面积
2、计算下列组合图形的面积。
(原创)人教版五年级上册组合图形的面积专项练习含参考答案
组合图形的面积1一、图形计算题(每题分,计分)1.计算下面组合图形的面积。
(单位:cm)2.计算如图所示各图中阴影部分的面积.3.如图,梯形的面积为40cm 2,求阴影部分的面积.4.求下面阴影部分的面积。
(单位:m)5.求下面图形中阴影部分的面积。
(单位:厘米)6.计算组合图形的面积。
(单位:cm)7.计算下面组合图形的面积。
(单位:cm)8.右图所示,梯形的面积是90cm2,上底是12cm,下底是18cm,求阴影部分的面积。
9.求下列图形的面积.(每个小方格的边长表示1cm)______cm2______cm2二、解答题(每题分,计分)10.下面是一幢楼房占地的平面图,算一算它的占地面积有多大?(单位:m)11.下图阴影部分是实验小学门前的一个花坛,你能算出这个花坛占地多少平方米吗?(单位:m)12.张爷爷家有一块平行四边形菜地,地的底长80米,高是50米,张爷爷准备在地中间修一条宽3米的路,修完路后,这块地实际种菜面积是多少平方米?13.王大伯家有一块梯形的菜地,中间有一个三角形的水池(单位:米),这块菜地种菜的面积是多少平方米? 14.一块玉米地的形状如图(单位:米)。
它的面积是多少平方米。
15.少先队大队部做了两个标语牌(如下图),请算出它们各用了多少铁板?(单位:m)16.求下图阴影部分(平行四边形)的面积。
17.如图是一种边长为4dm的正方形地板砖,图中阴影部分是地板砖上的花纹,A. B. C. D是各边中点,请你求出花纹部分的面积.18.如图,长方形的长是8,宽是6,A和B是宽的中点,求长方形内阴影部分的面积.参考答案:一、计算题(每题分,计分)1.(35+45)×15÷2+45×14÷2=600+315=915(cm2)(8+14)×6÷2+14×7=66+98=164(cm2)2. (1)(9+14)×10÷2-9×10÷2,=23×10÷2-9×10÷2,=115-45,=70(cm2),答:阴影部分面积是70cm2(2)(5+10)×12÷2-5×12÷2,=15×12÷2-5×12÷2,=90-30,=60(cm2),3. 40×2÷4-8,=80÷4-8,=20-8,=12(厘米),12×4÷2=24(平方厘米);答:阴影部分的面积是24平方厘米.4.(1)8×10÷2=40(m2)(2)52×28-(20+30)×10÷2=1206( m2)5. 300cm26. 5×3.6-5×1.4÷2=18-3.5=14.5(cm2)20×16-(3+9)×5÷2=320一30=290(cm2)7.(1)10×15÷2+(10+15)×12÷2=225(cm2)(2)(10+14)×6÷2=72(cm2)14×8=112(cm2)72+112=184 (cm2)(3)2.4×6÷2=7.2(cm2)5×6-7.2=22.8(cm2)8.36cm29.①画图表示如下:(2+3)×3÷2+(2+3)×1÷2×2,=7.5+5,=12.5(平方厘米);②4×2+(1+3)×1÷2,=8+2,=10(平方厘米);故答案为:12.5,10.二、解答题(每题分,计分)10. 30×48+(48+72)×(60-30)÷2=1440+1800=3240(m2)答:它的占地面积有3240平方米。
求组合图形面积专项练习30题 不含曲线图形(有答案)ok
求组合图形的面积专项练习30题(有答案) 1.求下面各图形中涂色部分的面积2.求下图阴影部分的面积:(单位:厘米)3.如图,平行四边形面积是50平方厘米,底是10厘米,求阴影部分面积.4.如图是某街道全民健身区的平面图,这个健身区的占地面积是多少平方米?5.如图是一个机器零件的横截面图,求出阴影部分面积是多少平方分米?(单位:分米)6.求阴影部分的面积(单位:厘米)7.计算图中阴影部分的面积.(单位:厘米)8.图中梯形的面积是144cm2,求阴影部分的面积.9.边长分别为3厘米与5厘米的两个正方形拼在一起(如图).求阴影部分的面积?10.一块长方形草地,长方形的长是15米,宽是10米,中间铺了一条石子路(如图).那么草地部分面积有多大?11.求如图中阴影部分的面积(单位:分米)12.求如图阴影部分的面积(单位:厘米)13.求组合图形的面积.(在图中标出割补方法后再计算).14.如图中平行四边形的面积是90平方分米.求阴影部分的面积.15.如图是一块长方形草坪,长是16米,宽是10米,中间有两条小路,一条是长方形,一条是平行四边形,那么有草部分(阴影部分)的面积有多大?(单位:米)16.计算阴影部分面积(单位:厘米).17.图中三个正方形的边长分别是4厘米、6厘米、5厘米.求涂色部分的面积.18.计算图形中阴影部分的面积.(单位:厘米)19.火车站广场长95米,宽80米.中间留下边长12米的正方形花坛,其余都铺彩色地砖.彩色地砖铺了多少平方米?20.下面梯形中空白部分的面积是25平方厘米,求梯形的面积.21.图中阴影部分的面积是多少?22.如图,一个正方形中套着一个长方形,已知正方形的边长是16分米,长方形的四个角的顶点恰好把正方形四条边都分成两段,其中长的一段是短的3倍.阴影部分的面积是多少?23.求图中阴影部分的面积24.如图,正方形ABCD的面积为1,M是AD边上的中点,求图中阴影部分的面积.25.如图,梯形ABCD的面积是35平方厘米,AE=ED,图中三角形甲、乙、丙的面积相等,求阴影部分的面积.26.如图,在长方形ABCD中,AB=6厘米,BE=8厘米,EC=2厘米,F是DE 的中点.求四边形ABFD(阴影部分)的面积是多少平方厘米?27.图中大小正方形的边长分别是9厘米和5厘米,求阴影部分的面积.28.求图形阴影部分的面积29.已知△ABC和△DEF是两个完全相等的直角三角形,根据图中所标数据,求图中阴影部分的面积(单位:厘米)30.求图中阴影部分的面积.参考答案:1.如图,4×4+15×(7﹣4)=16+45=61(平方厘米);答:涂色部分的面积是61平方厘米.2.2×3÷2=6÷2=3(平方厘米).答:阴影部分的面积是3平方厘米.3. 如图:平行四边形ABDC与三角形ABF等底等高,所以三角形ABF的面积是平行四边形ABDC的面积的一半,所以阴影部分的面积是平行四边形ABDC面积的一半.50÷2=25(平方厘米),答:阴影部分的面积是25平方厘米4.30×15÷2+30×10÷2=225+150=375(平方米);答:这个健身区的占地面积是375平方米5.10×10﹣(5+10)×5÷2=100﹣37.5=62.5(平方分米),答:阴影部分面积是62.5平方分米 6.4.5×4.5+8.2×8.2﹣(4.5+8.2)×4.5÷2=20.25+67.24﹣28.575=58.915(平方厘米);答:阴影部分的面积是58.915平方厘米 7.4×8÷2=16(平方厘米);答:阴影部分的面积是16平方厘米8. 由题意可知:图形的面积已知,于是可以求出梯形的高,也就是阴影部分的高,从而利用三角形的面积公式即可求解144×2÷(8+12)=288÷20=14.4(厘米),8×14.4÷2=115.2÷2=57.6(平方厘米);答:阴影部分的面积是57.6平方厘米.9.由图意可知:阴影部分的面积就等于两个正方形的面积和减去两个空白三角形的面积,利用正方形和三角形的面积公式即可求解3×3+5×5﹣3×(3+5)÷2﹣5×5÷2=9+25﹣12﹣12.5=9.5(平方厘米);答:阴影部分的面积是9.5平方厘米 10. 由题意可知:草地部分的面积就等于长方形草地的面积减去小路的面积,长方形草地的面积可以利用长方形的面积公式求出,而小路是一个平行四边形,于是可以利用平行四边形的面积公式求出小路的面积,问题即可得解. 15×10﹣1×15=150﹣15=135(平方米);答:草地部分面积是135平方米.11.由题意可知:如图所示,阴影部分面积=平行四边形ABCD的面积﹣三角形ADE的面积,依据题目中的数据即可求解.4×7﹣4×(7﹣5)÷2=28﹣8÷2=28﹣4=24(平方分米);答:阴影部分的面积是24平方分米. 12.如图所示:阴影部分的面积=S△DBG+S△GBE,将已知数据分别代入此等量关系即可求解.阴影部分的面积:(20﹣10)×20÷2+10×(20﹣10)÷2=10×20÷2+10×10÷2=200÷2+100÷2=150(平方厘米);答:阴影部分的面积是150平方厘米13.画图如下:5×6+(5+10)×5÷2=30+37.5=67.5(平方厘米);答:组合图形的面积是67.5平方厘米 14. 观察图形可知:图中有平行四边形ADEF,长方形ABCF,等腰直角三角形ABD和CDG;而阴影部分是一个梯形:只要求出这个梯形的上下底CG、AB和高BC的长度即可解答问题.AB的长度是:90÷6=15(分米),则BD的长度也是15分米,因为BC=AF=6分米,所以CD=DG=15﹣6=9(分米),所以阴影部分的面积是:(9+15)×6÷2=24×3=72(平方分米);答:阴影部分的面积是72平方分米 15.由题意可知:求阴影部分的面积,实际上就是求长为(16﹣2)米,宽为(10﹣2)米的长方形的面积,利用长方形的面积公式即可求解(16﹣2)×(10﹣2)=14×8=112(平方米);答:阴影部分的面积是112平方米.16.如图所示,阴影部分的面积=平行四边形的面积﹣三角形①的面积,平行四边形的底和高分别为10厘米和15厘米,三角形①的底和高分别为10厘米和(15﹣7)厘米,利用平行四边形和三角形的面积公式即可求解.10×15﹣10×(15﹣7)÷2=150﹣40=110(平方厘米);答:阴影部分的面积是110平方厘米17.(5+4+6+5)×6÷2﹣5×(6﹣5)÷2﹣(4+6+5)×5÷2=60﹣2.5﹣37.5=20(平方厘米);答:阴影部分的面积是20平方厘米.18.(2+2.5)×2÷2=4.5(平方厘米);答:阴影部分的面积是4.5平方厘米. 19.95×80﹣12×12=7600﹣144=7456(平方米);答:彩色地砖铺了7456平方米20.25×2÷5=10(厘米),所以梯形的面积是(5+9)×10÷2=14×5=70(平方厘米),答:这个梯形的面积是70平方厘米 21.2×2×7=28(平方米);答:阴影部分的面积是28平方米 22.由题意可得:BC=CD=FG=HG=AB=AC=×16=4(厘米),AB=AH=EF=DE=AC=×16=12(厘米),所以长方形DBHF的面积是:16×16﹣4×4﹣12×12=196﹣16﹣144=36(平方厘米);答:长方形的面积是36平方厘米23.9×6÷2=27(平方厘米);答:图中阴影部分的面积是27平方厘米24.AM=MD,则AM=AD=BC,即AM:BC=1:2,则ME:BE=1:2,S△BAE=S△BAM,又因S△BAM=S正方形ABCD,则S△BAE=×S正方形ABCD=,而S△BAE=S△EMC,所以阴影部分的面积为:×2=;答:图中阴影部分的面积是25.因为AE=ED,又因为甲的面积=乙的面积,所以甲和乙一定等底等高,所以AD∥BF,又因为ABCD是梯形,所以AB∥CD,所以ABFD是平行四边形,所以阴影的面积=2个乙的面积,把梯形ABCD的面积分成5份,阴影占2份,所以阴影的面积=35÷5×2=14(平方厘米).答:阴影部分的面积是14平方厘米26.(8+2)×6﹣8×(6÷2)÷2﹣2×6÷2=60﹣12﹣6=42(平方厘米);答:阴影部分的面积是42平方厘米27.因为CE:AB=FE:FB=5:9,则FE=BE=×5=(厘米),所以阴影部分的面积=S△AFD+S△CDE=×(9﹣5)×5+×(9﹣5+)×9=10+=36(平方厘米);答:阴影部分的面积约是36平方厘米28.①(10+20)×12÷2﹣10×12÷2=180﹣60=120;②5×3÷2=15÷2=7.5;③5×5+4×4﹣(2+5)×(5+4)÷2=41﹣7×9÷2=41﹣31.5=9.5 29. [(25﹣5)+25]×15÷2=(20+25)×15÷2=45×15÷2=675÷2=337.5 (平方厘米);答:图中阴影部分的面积是337.5平方厘米30.如图所示,阴影部分的面积=S平行四边形ABCD﹣S△ABE,又因平行四边形的底和高分别为10和15,三角形ABE的底和高分别为10和(15﹣7),分别利用平行四边形和三角形的面积公式即可求解.10×15﹣10×(15﹣7)÷2,=150﹣40,=110;答:阴影部分的面积为110。
人教版小学数学组合图形的面积 (经典例题含答案)
班级小组姓名成绩(满分120)一、组合图形的面积(一)组合图形的面积计算(共4小题,每题3分,共计12分)例1.求下面图形的面积。
(单位:cm)32×10÷2+32×203×4÷2+(5+10)×5÷210×12-(4+8)×2÷2=160+640=6+37.5=120-12=800(cm²)=43.5(cm²)=108(cm²)例1.变式1.先回答问题,再计算图形的面积。
(单位:cm)(1)组合图形的面积=(长方形)面积+(三角形)面积36×24+24×21÷2=1116(平方厘米)(2)52阴影部分的面积=(梯形)面积-(三角形)面积(30+52)×28÷2-30×28÷2=728(cm²)例1.变式2.计算下面图形的面积,你能用不同的计算方法吗?5×2.5+(3+5)×(5-2.5)÷2=5×2.5+8×2.5÷2=12.5+10=22.5(平方米)5×3+(2.5+5)×(5-3)÷2=5×3+7.5×2÷2=15+7.5=22.5(平方米)例1.变式3.如图,左边阴影部分的面积是60平方厘米。
求右边空白部分(梯形)的面积。
(单位:厘米)60×2÷8=15(厘米)(16+16+8)×15÷2=40×15÷2=300(平方厘米)答:空白部分的面积是300平方厘米.(二)组合图形的面积计算(共4小题,每题3分,共计12分)例2.计算下列组合图形的面积。
(单位:cm)(8.5+15)×13÷2-8.5×4÷2=135.75(cm²)例2.变式1.解决问题。
六年级图形组合面积练习题
六年级图形组合面积练习题题目一:矩形与正方形的组合在一块长为8厘米,宽为6厘米的长方形纸板中,有一个边长为4厘米的正方形窗孔,求纸板的面积。
解析:首先,计算正方形窗孔的面积:正方形的面积 = 边长 ×边长 = 4厘米 × 4厘米 = 16平方厘米然后,计算剩下的长方形部分的面积:长方形的面积 = 长 ×宽 = 8厘米 × 6厘米 = 48平方厘米最后,计算纸板的面积:纸板的面积 = 长方形的面积 - 正方形的面积 = 48平方厘米 - 16平方厘米 = 32平方厘米因此,纸板的面积为32平方厘米。
题目二:三角形与梯形的组合在一张底边长为10厘米,高度为6厘米的梯形中,有一个底边长为4厘米,高度为4厘米的三角形突出部分,求梯形的面积。
解析:首先,计算三角形突出部分的面积:三角形的面积 = 底边 ×高度 / 2 = 4厘米 × 4厘米 / 2 = 8平方厘米然后,计算梯形的面积:梯形的面积 = (上底边 + 下底边) ×高度 / 2 = (10厘米 + 4厘米) × 6厘米 / 2 = 84平方厘米因此,梯形的面积为84平方厘米。
题目三:圆与矩形的组合在一张长宽分别为8厘米的矩形纸板中,有一个直径为6厘米的圆形突出部分,求纸板的面积。
解析:首先,计算圆形突出部分的面积:圆形的面积= π × 半径 ×半径 = 3.14 × 3厘米 × 3厘米 = 28.26平方厘米然后,计算剩下的矩形部分的面积:矩形的面积 = 长 ×宽 = 8厘米 × 8厘米 = 64平方厘米最后,计算纸板的面积:纸板的面积 = 矩形的面积 - 圆形的面积 = 64平方厘米 - 28.26平方厘米 = 35.74平方厘米因此,纸板的面积为35.74平方厘米。
总结:通过以上三个练习题,我们学习了图形组合面积的计算方法。
五年级数学 组合图形的面积 练习题(含答案)
人教版数学五年级上册6.4 组合图形的面积练习卷一、选择题1.如图,阴影部分的面积是16dm2,平行四边形的面积是()dm2.A.48B.32C.642.下图为一幅图形的密铺方案,则此影阴部分的面积与空白部分的面积比为()A.2∶1B.7∶9C.1∶1D.3∶43.如图,长方形ABCD中,AB=12厘米,BC=8厘米,平行四边形BCEF的一边BF 交CD于G,若梯形CEFG的面积为64平方厘米,则DG长为()A.3B.4C.5D.64.图中每个小方格的面积为1cm2,脚印的面积大约是()。
A.5cm2——50cm2B.10cm2——28cm2C.28cm2——50cm2 5.如下图,每个方格的面积为1平方厘米。
请你估一估,这个图案的面积约为()。
A.20平方厘米B.11平方厘米C.9平方厘米D.7平方厘米6.估计一下,下图不规则土地的面积约是()。
A.216m 36m B.224m C.2二、图形计算7.[多种思路求面积].你能计算出图中这个多边形的面积吗?8.计算下面图形的面积。
(单位:厘米)三、填空题9.如图,两个正方形的边长分别是6厘米、4厘米,阴影部分的面积是_____平方厘米。
10.如图,A是平行四边形BC边上的中点,阴影部分面积是2平方厘米,则平行四边形的面积是平方厘米.11.下图中,长方形长10厘米,宽6厘米,E为AB边上任一点,三角形EDC(即阴影部分)的面积是________平方厘米.12.如图,5个相同的小长方形拼成一个周长是88厘米的大长方形,那么大长方形的面积是_____平方厘米。
13.下图中每个小方格的面积表示21cm,估算一下,阴影部分的面积大约是( )2cm。
14.如图中三个正方形的边长分别为10,20,30,那么图中阴影部分的面积是.15.如图,大小两个正方形拼在一起,阴影部分面积为28平方厘米,小正方形边长为4厘米,则图中空白部分的面积是平方厘米.16.如图,四边形ABCD是一个梯形,由三个直角三角形拼成;它的面积是_____cm2。
(完整版)五年级组合图形的面积练习题.docx
组合图形的面积一、计算下面图形的面积(单位:cm)203104560 38306680二、计算图中阴影部分的面积。
(单位: cm)604053三、解决问题1、新风小学有一块菜地,形状如图,这块菜地的面积是多少平方米?35m12m33m50m2、一张指示牌的形状是一个组合图形,求它的面积。
201020108 米的正方形花圃,其余铺草坪。
草坪的2. 一块长 20 米,宽 18 米的空地中间建一个边长为面积是多少平方米?( 6 分)3.如图,这个长方形的长是 9 厘米,宽是 8 厘米, A 和 B 是宽的中点,求长方形内阴影部分的面积。
( 7 分)A B4. 梯形面积是 48 平方厘米,阴影部分比空白部分12 平方厘米,求阴影部分面积。
25. 阴影部分比空白部分大6cm,求 S 阴26. 平行四边形的面积是30cm,求阴影部分的面积。
组合图形的面积综合测试A一、填空。
(18 分)1.一个梯形,它的下底是 8 厘米,如果将他的上底增加 3 厘米,正好变成一个平行四边形,这时面积增加 15 平方厘米,原来的梯形面积是()平方厘米。
2. 如图,平行四边形的底是10 厘米,高是 6 厘米,阴影部分的面积和是()平方厘米。
3. 1d㎡ =()c ㎡5公顷 =()㎡200d㎡ =()㎡12k㎡ =()公顷1000公顷 =()k ㎡ 1400c㎡=()d ㎡1k㎡=()㎡ =()公顷2㎡ =() c ㎡4.在○里填上“>”“小于”“等于”。
5 公顷○ 5 平方米800平方厘米○8 平方分米9平方米○ 90 平方分米588 平方分米○6 平方米400公顷○ 4000平方米1平方千米○ 100000平方米5.如图,两个两个大三角形等底等高,有部分重叠在一起,甲、乙两个图形的面积相比,甲()乙。
(填“大于”“小于”“=”)甲乙二、估计下面图形的面积。
(每个小方格的面积表示 1 厘米)(9 分)面积约为()面积约为()面积约为()三、求下面组合图形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合图形的面积练习题姓名:
一、填空
(1)两个完全一样的梯形可以拼成一个()形。
(2)一个梯形上底与下底的和是15厘米,高是8.8厘米,面积是()平方厘米。
(3)平行四边形的底是2分米5厘米,高是底的1.2倍,它的面积是()平方厘米。
(4)有一堆圆木堆成梯形,最上面一层有3根,最下面一层有7根,一共堆了5层,这堆圆木共有()根。
二、判断题
(1)平行四边形的面积大于梯形面积。
()
(2)梯形的上底下底越长,面积越大。
()
(3)任何一个梯形都可以分成两个等高的三角形。
()
(4)两个形状相同的三角形可以拼成一个平行四边形。
()
三、测量并计算下列图形的面积
四、计算下列组合图形的面积
五、有一块青菜地,中间是有两个小池塘,如右图,平均每平方米菜地能生产出8千克的青菜,这块地的面积是多少平方米?这块地能产出多少千克的青菜?。