【新新导学案】2013-2014学年广东省清远市八年级数学(北师大版)下学期备课导学案:3.1图形的平移(2)

合集下载

2013湘教版八年级下册数学导学案全册

2013湘教版八年级下册数学导学案全册

数学教案——八年级下册姓名:宋群芳班次:七三班2016年9月------2017年1月湘教版八年级下册数学教学计划一.指导思想全面贯彻党的教育方针,以提高民族素质为宗旨,以培养创新精神和实践能力为重点,努力实施新课改。

学习“许市”经验,深化课堂教学改革实践,提高学生的数学素养,让所有的学生学到有价值的富有挑战的数学,让所有的学生学会数学的思考问题,并能积极的参与数学活动,进行自主探索。

二、学情分析本期我继续担任八年级数学教学工作。

通过上学期的学习,学生的自学理解能力,自主探究能力得到发展与培养,逻辑思维与逻辑推理能力得到发展与培养,学生由形象思维向抽象思维转变,抽象思维得到较好的发展,但部分学生没有达到应有水平,学生课外自主拓展知识的能力几乎没有,没有形成对数学学习的浓厚兴趣,不能自行拓展与加深自己的知识面;通过教育与培养,绝大不分学生能够认真对待每次作业并及时纠正作业中的错误,课堂上能专心致志的进行学习与思考,学生的学习兴趣得到了激发和进一步的发展,课堂整体表现较为活跃,积极开动脑筋,乐于合作学习和善于分享交流在学习中的发现与体会,喜欢动手实践。

本学期将继续促进学生自主学习,让学生亲身参与活动,进行探索与发现,以自身的体验获取知识与技能;体现现代信息社会的发展要求,通过各种教学手段帮助学生理解概念,操作运算,扩展思路。

三.教材分析1.教学内容的引入,采取从实际问题情境入手的方式,贴近学生的生活实际,选择具有现实背景的素材,建立数学模型,使学生通过解决问题的过程,获取数学概念,掌握解决问题的技能与方法。

2.教材内容的呈现,创设学生自主探究的学习情境和机会,适当编排探索性和开放性的问题,发挥学生的主动性,给学生留有充分的时间与空间,自主探索实践,促进学生思维能力、创造能力的培养与提高,为学生的终身可持续发展奠定良好的基础。

3.教材内容的编写坚持把握《课程标准》,同时又具有弹性,以满足高程度学生的需要,使得不同水平的学生都得到发展。

北师大版八年级数学下册全册导学案

北师大版八年级数学下册全册导学案

北师大版八年级数学下册全册导学案前言本文档为北师大版八年级数学下册全册的导学案,旨在帮助学生掌握数学的基本知识和方法,提高数学素养,适用于八年级学生和教师使用。

本导学案按照教材的章节顺序编排,每章节包括学习目标、学习内容、课堂要求、课后作业等内容,以帮助学生有效地学习数学知识。

第一章一次函数学习目标1.了解一次函数的定义和性质;2.能够根据函数表、图像和函数式等信息确定一次函数;3.掌握一次函数的图像及其与系数的关系;4.能够解一元一次方程及简单应用。

学习内容1.一次函数的定义及性质;2.函数表和函数图像;3.解一元一次方程及简单应用。

课堂要求1.认真听讲,积极思考;2.熟练掌握函数表和函数图像的绘制方法;3.能够根据函数式计算出函数值;4.能够解一元一次方程。

课后作业1.完成课后习题,巩固知识点;2.思考并尝试解决课外练习。

第二章平面图形的认识学习目标1.掌握平面图形的基本性质和特征;2.熟悉平面图形的正确定义和分类;3.能够求解平面图形的周长和面积。

学习内容1.平面图形的定义和性质;2.平面图形的正确定义和分类;3.计算平面图形的周长和面积。

课堂要求1.认真听讲,积极思考;2.熟悉各种平面图形的特征;3.能够用公式计算平面图形的周长和面积。

课后作业1.完成课后习题,巩固知识点;2.思考并尝试解决课外练习。

第三章空间与立体图形学习目标1.掌握三棱柱、三棱锥、四棱柱、四棱锥、棱台和正六面体的定义和特征;2.熟悉空间中的方向及投影方法;3.能够计算立体图形的表面积和体积。

学习内容1.立体图形的定义和特征;2.空间中的方向及投影方法;3.计算立体图形的表面积和体积。

课堂要求1.认真听讲,积极思考;2.熟悉各种立体图形的特征;3.能够用公式计算立体图形的表面积和体积。

课后作业1.完成课后习题,巩固知识点;2.思考并尝试解决课外练习。

第四章数据的收集和处理学习目标1.掌握数据的收集和处理方法;2.熟悉统计所需的计量尺度和基本术语;3.能够利用频数分布表和统计图形对数据进行描述和分析。

新北师大版八年级数学下册导学案

新北师大版八年级数学下册导学案

第一章三角形的证明本章总体设计介绍本章是八年级上册第七章《平行线的证明》的继续,在“平等线的证明”一章中,我们给出了8 条基本事实,并从其中的几条基本事实出发证明了有关平行线的一些结论. 运用这些基本事实和已经学习过的定理,我们还可以证明有关三角形的一些结论.在这之前,学生已经对图形的性质及其相互关系进行了大量的探索,探索的同时也经历过一些简单的推理过程,已经具备了一定的推理能力,树立了初步的推理意识,从而为本章进一步严格证明三角形有关定理打下了基础.本章所证明的命题都和等腰三角形、直角三角形有关,主要包括:1.等腰三角形的性质和判定定理;2.直角三角形的性质定理和判定定理;3.线段的垂直平分线性质和判定定理;4.角平分线性质定理和判定定理。

本章教学建议对于已有命题的证明,教学过程中要注意引导学生回忆过去的探索、说理过程,从中获取严格证明的思路;对于新增命题,教学过程中要重视学生的探索、证明过程,关注该命题与其他已有命题之间的关系;对于整章的命题,注意关注将这些命题纳入一个命题系统,关注命题之间的关系,从而形成对相关图形整体的认识。

对于证明的方法,除了注重启发和回忆,还应注意关注证明方法的多样性,力图通过学生的自主探索,获得多样的证明方法,并在比较中选择适当的方法。

证明过程中注意揭示蕴含其中的数学思想方法,如转化、归纳、类比等。

作为初中阶段几何证明的最后阶段,教学中应要求学生掌握综合法和分析法证明命题的基本要求,掌握规的证明表述过程,达成课程标准对证明表述的要求。

1.等腰三角形(一)一、学生知识状况分析在八年级上册第七章《平行线的证明》,学生已经感受了证明的必要性,并通过平行线有关命题的证明过程,习得了一些基本的证明方法和基本规,积累了一定的证明经验;在七年级下,学生也已经探索得到了有关三角形全等和等腰三角形的有关命题,这些都为证明本节有关命题做了很好的铺垫。

二、教学任务分析本节将进一步回顾和证明全等三角形的有关定理,并进一步利用这些定理、公理证明等腰三角形的有关定理,由于具备了上面所说的活动经验和认知基础,为此,本节可以让学生在回顾的基础上,自主地寻求命题的证明,为此,确定本节课的教学目标如下:1.知识目标:理解作为证明基础的几条公理的容,应用这些公理证明等腰三角形的性质定理;在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理;熟悉证明的基本步骤和书写格式。

【新新导学案】2013-2014学年广东省清远市八年级数学(北师大版)下学期备课导学案:61平行四边形的性质(1

【新新导学案】2013-2014学年广东省清远市八年级数学(北师大版)下学期备课导学案:61平行四边形的性质(1

一、预习案:1.如图,a//b,m//n,则∠1与∠2, ∠3, ∠4有什么关系?(请用∠1表示出来) m na A B1 2b 3 4C D(第1题图) (第2题图)2.两组对边的四边形叫做平行四边形;平行四边形ABCD记作,读作 .3.平行四边形不相邻的两个顶点连成的线段叫做它的 .4.平行四边形是中心对称图形, 是它的对称中心.5.如图,在ABCD中,有哪些相等的线段,哪些相等的角?你是如何得到的?A DB C定理:二、训练案:1. 下列两个图形,能组成平行四边形的是()A. 两个等腰三角形B. 两个直角三角形C. 两个锐角三角形D. 两个全等三角形2. 已知ABCD的周长是38cm,则AB+BC=()cm.A.20 B. 19.5 C. 19 D. 183. 在ABCD中,已知∠A+∠C=200ο,则∠B=()A.100ο B. 90ο C. 80ο D. 70ο三、例题讲解案:例1.如图,AB//CD,AD//BE,AB=5,BC=10,∠B=60ο,∠CAD=40ο,则AD= ,CD= ,∠BAC= ,∠D= ,∠DCE= .A DB C E例2.如图,在ABCD中, E、F是对角线AC上的两点,并且AE=CF,求证:BE=DF.A DEFB C四、课堂检测案:1. (2012•泰安)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠B CE的度数为()A.53° B.37° C.47° D.123°2.ABCD的周长是18cm, △ABC的周长是14cm,则对角线AC的长是 cm.3.如图,E、F是ABCD的对角线AC上的两点,BE//DF,你认为AE与CF相等吗?为什么?A DEFB C4.(2012•广安)如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.。

dahuasan北师版八下等腰三角形(三)导学稿

dahuasan北师版八下等腰三角形(三)导学稿

2013—2014学年度第二学期八年级新北师版数学导学案§1.1 等腰三角形(三)【教学目标】:1. 理解并掌握等腰三角形的判别,证明的基本步骤和书写格式。

2.理解反证法。

【学习重点】:会证明等腰三角形的判定定理,即:“等角对等边”。

【学习难点】:区别等腰三角形性质定理和判定定理的证明。

【学习过程】【温故知新】已知:如图,∠CAE 是△ABC 的外角,AD ∥BC ,且AB=AC 。

求证:∠1=∠2【自主学习,合作探究】;1.证明:等腰三角形判定定理:有两个 相等的三角形是等腰三角形(简称:等 对等 ) 已知:在△ABC 中,∠B =∠C ,证明:AB =AC ,1 2 EA DB CAAB C E D例1:如图在△ABC 中,AB=AC ,BE 为角平分线,DE ∥BC 。

求证:①BD=DE;②BD=CE; ③CD 平分∠ACB.例2:已知:∠ABC,∠ACB 的平分线相交于F,过F 作DE ∥BC,交AB 于D,交AC 于E(1) 找出图中的等腰三角形(2) BD,CE,DE 之间存在着怎样的关系?(3) 证明以上的结论。

2.证明:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等。

AC AB C B ,ABC :≠∠≠∠∆:,求证中在已知 AC AB CB B ACAB ∴∠≠∠∠=∠∴=相矛盾已知又假设证明 )(: (以上的证明过程用了反证法)反证法的一般步骤:1、假设 不成立;2、由假设推出 ;3、 错误,原命题正确。

【巩固训练】:完成课本第9页的随堂练习1,2题。

【归纳总结】:【作业布置】1. 完成课本第8页的例2题。

2. 完成课本第9--10页的习题1.3的第1,2,3,4题。

A B C。

广东省清远市八年级数学下册 4.1 因式分解导学案(无答案) (新版)北师大版(1)

广东省清远市八年级数学下册 4.1 因式分解导学案(无答案) (新版)北师大版(1)

第四章 因式分解4.1因式分解一、问题引入:1.把一个多项式化成 的形式,这种变形叫做因式分解.2.分解因式与整式乘法的关系是 .二、基础训练:1.下面式子从左边到右边的变形是因式分解的是( )A .x 2﹣x ﹣2=x (x ﹣1)﹣2B .(a+b )(a ﹣b )=a 2﹣b 2C .x 2﹣4=(x+2)(x ﹣2)D .x 2-21y =(x +y 1)(x -y 1)2.下列各式分解因式正确的是( )A .a+b=b+aB .4x 2y –8xy 2+1=4xy(x –y)+1C .a(a –b)=a 2–abD .a 2–2ab+2a = a(a –2b+2)3.计算2976971397⨯+⨯-⨯的结果是__________.三、例题展示:例1:下列各式从左到右的变形,哪些是因式分解?(1)4a (a+2b )=4a 2+8ab ;(2)6ax -3ax 2=3ax (2-x );(3)a 2-4=(a+2)(a -2);(4)x 2-3x+2=x (x -3)+2.例2:993-99能被100整除吗?四、课堂检测:1.看谁连得准x2-y2 (x+1)29-25x 2 y(x -y)x 2+2x+1 (3-5x)(3+5x)xy-y2 (x+y)(x-y)2.已知公式V=IR1+IR2+IR3,当R1=22.8,R2=31.5,R3=33.7,I=2.5,求V的值3.利用简便方法计算:(1)992–1 (2)-2.67×132+25×2.67+7×2.67 4.19992+1999能被1999整除吗?能被2000整除吗?5.已知a为正整数,试判断a2+a是奇数还是偶数,请说明理由。

【新新导学案】2013-2014学年 八年级数学(北师大版)下学期备课导学案:第1章《三角形的证明》单元检测

【新新导学案】2013-2014学年 八年级数学(北师大版)下学期备课导学案:第1章《三角形的证明》单元检测

第一章 单 元 检 测一、填空题(每小题3分):1.如图,修建抽水站时,沿着倾斜角为300的斜坡铺设管道,若量得水管AB 的长度为80米,那么点B 离水平面的高度BC 的长为 米.2. 如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是 三角形.3. 如图,已知AC=DB ,要使△ABC ≌△DCB ,只需增加的一个条件是 或 .4. 命题:“全等三角形的对应角相等”的逆命题是 ___________________________________ ___.这条逆命题是______命题(填“真”或“假”)5. 如图,一个顶角为40º的等腰三角形纸片,剪去顶角后,得到一个四边形,则=∠+∠21_________ ;6. 在△ABC 中,已知AB =AC ,AD 是中线,∠B =70°,BC =15cm ,则∠BAC = ,∠DAC = ,BD = cm ;7. 已知,如图,O 是△ABC 的∠ABC.∠ACB 的角平分线的交点,OD ∥AB交BC 于D ,OE ∥AC 交BC 于E ,若BC = 10,则△ODE 的周长为 .8. 如图,在Rt △ABC 中,∠B=90°,∠A=40°,AC 的垂直平分线MN 与AB 相交于D 点,则∠BCD 的度数是 .9. △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D.若DC=7,则D 到AB 的距离是 .10. 如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD的长为 .二、选择题(每小题3分)1.等腰三角形底边上的高与底边的比是1∶2,则它的顶角等于( )A.90°B.60°C.120°D.150°2.下列两个三角形中,一定全等的是 ( )A.有一个角是40°,腰相等的两个等腰三角形第18题图C B A 第1题 第5题B.两个等边三角形C.有一个角是100°,底相等的两个等腰三角形D.有一条边相等,有一个内角相等的两个等腰三角形3. 到△ABC 的三个顶点距离相等的点是△ABC 的( )A.三边中线的交点B.三条角平分线的交点C.三边上高的交点D.三边垂直平分线的交点4. △ABC 中,∠A ∶∠B ∶∠C=1∶2∶3,CD ⊥AB 于点D 若BC=a ,则AD 等于( ) A.21a B.23a C.23a D.3a 5. 如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为( )A.30°B.36°C.45°D.70°三、解答题(每题12分)1. 如图,AD ⊥CD ,AB=10,BC=20,∠A=∠C=30°.求:(1)∠ABC 的度数(2)AD 和CD 的长.2.已知:如图,△ABC 中,AB=AC ,∠A=120°.(1)用直尺和圆规作AB 的垂直平分线,分别交BC. AB 于点M.N(保留作图痕迹,不写作法).(2)猜想CM 与BM 之间有何数量关系,并证明你的猜想.四、证明题(每题10分)1.已知:如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD.求证:D 在∠BAC 的平分线上.2. 已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.五、(本题11分)阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法提示,请任意选择其中一种,对原题进行证明.。

广东省清远市八年级数学下册 1.4 角平分线导学案(1)(无答案) (新版)北师大版(1)

广东省清远市八年级数学下册 1.4 角平分线导学案(1)(无答案) (新版)北师大版(1)

1.4角平分线(一)一、提出问题:1. 角平分线的定义:______________________________________2. 问题1:还记得角平分线上的点有什么性质吗?你是怎样得到的?你能证明它吗?定理归纳:问题2:你能写出这个定理的逆命题?它是真命题吗?如果是,你能证明它?定理归纳:二、基础训练:用尺规怎样做已知角的平分线呢?并对自己的做法加以证明.三、例题解释:例:如图,已知AD为△ABC的角平分线,∠ABC=90°,E F⊥AC,交BC于点D,垂足为F,DE=DC,求证:BE=CF.FE DCB A四、课堂检测1. OM平分∠BOA,P是OM上的任意一点,PD⊥OA,PE⊥OB,垂足分别为D.E,下列结论中错误的是()A:PD=PE B:OD=OE C:∠DPO=∠EPO D:PD=OD2、如图所示,AD平分∠BAC,DE⊥AB,垂足为E,DF⊥AC,垂足为F,则下列结论不正确的是()A:△AEG≌△AFG B:△AED≌△AFDC:△DEG≌△DFG D:△BDE≌△CDF3. △ABC中, ∠ABC.∠ACB的平分线交于点O,连结AO,若∠OBC=25°,∠OCB=30°,则∠OAC=_____________°4. 与相交的两直线距离相等的点在()A:一条直线上 B:一条射线上C:两条互相垂直的直线上 D:以上都不对5. ∠AOB的平分线上一点M,M到OA的距离为2CM,则M到OB的距离为_________.6. 在RT△ABC中,∠C=90°,AD是∠BAC的平分线,若BC=16,BD=10,则D到AB的距离是________.7. 如图在两条交叉的公路L1与L2之间有两家工厂A.B,现在要修一个货物中转站,使它到两条公路的距离相等,以及到两个工厂距离相等,你能帮助确定中转站的地址吗?请试试.中考真题:如图,梯形ABCD,ABCD,AD=DC=CB,AD.BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F,(1)请写出图中4组相等的线段(已知的相等线段除外)(2)选择(1)中你所写的一组相等的线段,说说它们相等的理由.。

2014学年八年级数学下册导学案(教师版)修改过的

2014学年八年级数学下册导学案(教师版)修改过的

课题 1.1等腰三角形(一)教师二备一、问题引入(建议老师们在这里引导学生证明三角形全等的判定定理)1.公理:两边及其对应的两个三角形全等().2.公理:两角及其对应的两个三角形全等().3.公理:对应相等的两个三角形全等().4.定理:及其中一角的对边对应相等的两个三角形全等( ).5.公理:全等三角形的对应边,对应角.6.定理:等腰三角形的相等.简称为:“.7.推论:等腰三角形、及互相重合.习惯上称作等腰三角形“”.二、基础训练1. 如图1,若⊿AB E≌⊿ADC,则AD = AB,DC = ;∠D = ∠;∠BAE = ∠.2.如图2,在△ABC中,AD=DE,AB=BE,∠A=80°,则∠DEC=.3.等腰三角形的两边分别是7cm和3cm,则它的周长为.4.等腰三角形的顶角为50°,则它的底角为.三、例题展示(本题为一题多解,可以通过证三角形全等,也可以利用等腰三角形三线合一)例1 如图3,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.图3四、课堂检测1.如图4,已知:AB ∥CD ,AB=CD ,若要使△ABE ≌△CDF,仍需添加一个条件,下列条件中,哪一个不能使△ABE ≌△CDF 的是( ).A .∠A=∠B B . BF=CEC .AE ∥DFD .AE=DFEDCABHFG2.如图5,AB ∥CD ,点E 在BC 上,且CD=CE ,∠D=74°,则∠B 的度数为( ).A . 68°B . 32°C .22°D .16°3.已知△ABC ,AB =AC ,∠A=80°,∠B 度数是_________.4.如图6,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是 . 5.如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,且DE ⊥AB ,DF ⊥AC .求证:∠DEF=∠DFE .6.(选做题)如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数.教学反思EDCBA 图5 图4 图6AB CDEF课题 1.1 等腰三角形(二)教师二备一、问题引入1. 等腰三角形两个底角的平分线;等腰三角形腰上的高;等腰三角形腰上的中线.2. 证明两条线段相等或两个角相等的一般方法为.3.等边三角形的三个内角都,并且每个内角都等于°.二、基础训练1.△ABC中,AB=AC,∠A=∠C,则∠B=_______.2.已知AD是等边△ABC的高,BE是AC边的中线,AD与BE交于点F,则∠AFE=______.3.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于()A.60°B.90°C.120°D.150°4.如图1,已知∠1=∠2,则下列条件中,不能使△ABC≌△DBC成立的是()A.AB=CD B.AC=BD C.∠A=∠D D.∠ABC=∠DBC图1三、例题展示(讲解完本例后,老师们再按议一议的要求展开)例1 证明:等腰三角形的两底角的平分线相等.已知:如图2,△ABC中,AB=AC,BF,CE分别是∠ABC,∠ACB的角平分线.求证:BF=CE.图2四、课堂检测1.边长为4的正三角形的高为()A.2 B.4 C.3D.322.如图3,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180° B.220° C.240° D.300°3.如图4,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=_________度.4.如图5,等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是.5.如图6,已知△ABC和△BDE都是等边三角形,求证:AE=CD.6.已知:如图7,P,Q是△ABC边上BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.教学反思图3 图4AQ CPB图7图6课题 1.1 等腰三角形(三) 教师二备 一、问题引入(讲解定理时,老师们多强调文字、图象、符号语言的结合) 1.等腰三角形的性质定理: . 简称为:“ ” . 符号语言:如图,∵ ,∴ . 2.等腰三角形的判定定理: .简称为:“ ” . 符号语言:如图,∵ ,∴ . 3.先假设命题的结论 ,然后推导出与定义、基本事实、已有定理或已知条件 的结果,从而证明命题的结论 成立,这种证明方法称为反证法.二、基础训练 1.如图1,∠B=30°,若AB ∥CD ,CB 平分∠ACD,则∠ACD=_______度. 2.在△ABC 中,∠A =∠B =21∠C ,则△ABC 是__________三角形. 3.(2013•成都)如图2,在△ABC 中,∠B=∠C ,AB=5,则AC 的长为( ) A .2 B .3 C .4 D .54.用反证法证明“△ABC 中,若∠A ﹥∠B ﹥∠C ,则∠A ﹥60°”,第一步就假设( ) A .∠A=60° B .∠A ﹤60° C .∠A ≠60° D .∠A ≤60°三、例题展示例1 已知:如图,在△ABC 中,D 为BC 上的一点,AD 平分∠EDC ,且∠E=∠B ,DE=DC ,求证:AB=AC .AB C 图2 图1图3四、课堂检测1.(2013•武汉)如图4,△ABC 中,AB=AC ,∠A=36°,BD 是AC 边上的高,则∠DBC 的度数是( )A .18°B .24°C .30°D .36°2.如图5,在△ABC 中,∠B=∠C=40°,D ,E 是BC 上两点,且∠ADE=∠AED=80°,则图中共有等腰三角形( ) A .6个 B .5个C .4个D .3个3.如图6,已知△ABC 中,CD 平分∠ACB 交AB 于D ,又DE ∥BC ,交AC 于E ,若DE=4 cm ,AE=5 cm ,则AC 等于( ) A .5 cm B .4 cm C .9 cm D .1 cm4.用反证法证明命题“若b a ≠,则b a ≠”时,应假设 . 5.用反证法证明“三角形三角内角中,至少有一个内角小于或等于60°” .6.如图7,△ABC 中BA=BC ,点D 是AB 延长线上一点,DF ⊥AC 于F 交BC 于E ,求证:△DBE 是等腰三角形.ED CABF教学反思图4图5图6图7课题1.1 等腰三角形(四)教师二备 一、问题引入1.等边三角形的判定定理1:三个角 的三角形是等边三角形. 2.等边三角形的判定定理2:有一个角等于 °的 是等边三角形.3.等边三角形是特殊的 三角形,它具有等腰三角形的一切性质,除此之外,它不具有每个角都是 °的特殊性质.4.定理:在直角三角形中,如果一个锐角等30°,那么它所对的直角边等于斜边的 . 二、基础训练1.如图1,BC=AC ,若 ,则△ABC 是等边三角形.2.如图2,在Rt △ABC 中,∠B=30°,AC=6,则AB= ;若AB=7,则AC= .3.在△ABC 中,∠B=60°,AB=AC ,,BC=3,则△ABC 的周长为( ) A .9 B .8 C .6 D .124.下列命题不正确的是( ) A.等腰三角形的底角不能是钝角. B.等腰三角形不能是直角三角形.C.若一个三角形有三条对称轴,那么它一定是等边三角形.D.两个全等的且有一个锐角为30°的直角三角形可以拼成一个等边三角形. 三、例题展示例 求证:如果等腰三角形的底角为15°,那么腰上的高是腰长的一半.ABC图1ABC图2四、课堂检测1.在Rt △ABC 中,∠ACB=90°, ∠A =30°,CD ⊥AB 于点D ,BD=1,则AB= .2.在△ABC 中,AB=AC ,∠BAC=120°,D 是BC 的中点, DE ⊥AC 于点E ,则AE :EC= . 3.等腰三角形的底角等15°,腰长为20,则这个三角形腰上的高是 . 4.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( )A .①②③B .①②④C .①③D .①②③④5.在Rt △ABC 中,如图4所示,∠C=90°,∠CAB=60°,AD 平分∠CAB ,点D 到AB 的距离DE=3.8 cm ,则BC 等于( )A .3.8 cmB .7.6 cmC .11.4 cmD .11.2 cm6.已知:如图5,△ABC 中,∠ACB=90°,AD=BD ,∠A=30°, 求证:△BDC 是等边三角形.8.(选做题)如图6,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE都是等边三角形.BE 交AC 于F ,AD 交CE 于H ,①求证:△BCE ≌△ACD ;②求证:CF=CH ;③判断△CFH 的形状并说明理由.EDCABHF教学反思 图3图4 图5图6课题 1.2 直角三角形(一)教师二备一、问题引入1.直角三角形两锐角.2.有两个角的三角形是直角三角形.3.勾股定理:直角三角形两条直角边的等于.4.在两个命题中,如果一个命题的分别是另一个命题的,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.5.勾股定理逆定理:如果三角形两边的等于,那么这个三角形是直角三角形.6.写出四组你知道的勾股数、、、.二、基础训练1.以下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10B.5,12,13C.9,40,41D.5,6,72.在△ABC中,BC︰AC︰AB=1︰1︰2,则△ABC是()A.等腰三角形B.钝角三角形C.直角三角形D.等腰直角三角形3.已知直角三角形两直角边长分别为6和8,则斜边长为_______,斜边上的高为.4.命题“如果ab=0,那么a=0,b=0.”的逆命题是.5.如图1,在△ABC中,AB=5 cm,BC=6 cm,BC边上的中线AD=4cm,则∠ADC的度数是度.图1三、例题展示例网格图中每个方格都是边长为1的正方形,若A,B,C都是格点,(1)判断△ABC的形状并说明理由;(2)求△ABC的面积.四、课堂检测1.已知三组数据:①2,3,4;②3,4,5;③1,3,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有()A.只有②B.①②C.①③D.②③2.如果直角三角形的三条边为2,4,a,那么a的取值可以有( ) A.0个 B.1个 C.2个 D.3个3.以下命题的逆命题属于假命题的是()A.两底角相等的两个三角形是等腰三角形. B.全等三角形的对应角相等.C.两直线平行,内对角相等.D.直角三角形两锐角互等.4.一个直角三角形两条直角边的比是3:4,斜边的长为10cm,则这个直角三角形的面积是________cm2,斜边上的高为________cm.5.命题:等腰三角形两腰上的高相等的逆命题是_______________________ _.6.如图2,为修铁路需凿通隧道AC,测得∠A=50°,∠B=40°,AB=5 km,BC=4 km,若每天凿隧道0.3 km,问几天才能把隧道凿通?7.已知某开发区有一块四边形的空地ABCD,如图3所示,现计划在空地上种植草皮,经测量∠A=90°,AB=30m,BC=120m,CD=130m,DA=40m,若植草皮的单价为30元/m2,问:将这块空地植满草皮,开发区需要投入多少元? 教学反思图2 图3课题 1.2 直角三角形(二)教师二备一、问题引入1.一般三角形全等的判定方法有:.2.直角三角形的判定:①有一个角是的三角形叫做直角三角形.②有两个角互余的三角形是三角形.③如果三角形两边的等于第三边的,那么这个三角形是三角形.3.斜边和一条对应相等的两个三角形全等.(简称“斜边、直角边”或“”).二、基础训练1.如图1,Rt△ABC和Rt△DEF,∠C=∠F=90°.图1(1)若∠A=∠D,BC=EF,则Rt△ABC≌Rt△DEF的依据是__________.(2)若∠A=∠D,AC=DF,则Rt△ABC≌Rt△DEF的依据是__________.(3)若∠A=∠D,AB=DE,则Rt△ABC≌Rt△DEF的依据是__________.(4)若AC=DF,AB=DE,则Rt△ABC≌Rt△DEF的依据是__________.(5)若AC=DF,CB=FE,则Rt△ABC≌Rt△DEF的依据是__________.2.下列条件不可以判定两个直角三角形全等的是( )A.两条直角边对应相等B.有两条边对应相等C.一条边和一锐角对应相等D.一条边和一个角对应相等三、例题展示例如图2所示,有两个长度相等的滑梯,左边滑梯BC的高AC与右边滑梯EF水平方向的长度DF相等,两滑梯倾斜角∠ABC和∠DFE有什么关系?图2四、课堂检测1.下列各选项中的两个直角三角形不一定全等的是()A.两条直角边对应相等的两个直角三角形.B.两条锐角边对应相等的两个直角三角形.C.斜边和一条直角边对应相等的两个直角三角形.D.有一个锐角及这个锐角的对边对应相等的两个直角三角形全等.2.如图3,O是∠BAC内一点,且点O到AB,AC的距离OE=OF,则△AEO≌△AFO的依据是( )A.HL B.AAS C.SSS D.ASA3.已知:如图4,AB=CD,DE⊥AC于E,BF⊥AC于F,且DE=BF,∠D=60°,则∠A=______°.4.如图5,在Rt△ABC和Rt△DCB中,AB=DC,∠A=∠D=90°,AC与BD交于点O,则有△_________≌△_________,其判定依据是__________,还有△__________≌△__________,其判定依据是__________.5.如图6,CD⊥AD,CB⊥AB,垂足分别为D和B,AB=AD.求证:CD=CB.6.如图7,在Rt△ABC中,∠C = 90°,且DE⊥AB于点E,CD = ED.求证:AD是∠BAC的角平分线教学反思图3图4图5图6图7课题 1.3 线段的垂直平分线(一) 教师二备 一、问题引入(在讲垂直平分线的判定定理,建议老师们结合例题作具体分析定理的意思) 1.垂直平分线:垂直且 一条线段的直线是这条线段的垂直平分线. 2.垂直平分线的性质定理:线段垂直平分线上的 到这条线段两个端点的距离相等.符号语言:∵∴ 3.垂直平分线的判定定理:到一条线段两个端点距离 的点,在这条线段的 线上. 符号语言:∵ ∴二、基础训练 1.(2013•广州市)点P 在线段AB 的垂直平分线上,PA=7,则PB=______________ .2.如图1,等腰△ABC 中,AB=AC ,∠A=20°.线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于( )A .80°B .70°C .60°D .50° 3.如图2,在Rt △ABC 中,∠C=90°,∠B=30°.AB 的垂直平分线DE 交AB 于点D ,交BC 于点E ,则下列结论不正确的是( ) A .AE=BE B .AC=BE C .CE=DE D .∠CAE=∠B三.例题展示例:已知,如图,在△ABC 中,AB=AC ,O 是△ABC 内一点,且OB=OC . 求证:直线AO 垂直平分线段BC .NM P CA B 图1 图2图3四、课堂检测1.已知:线段AB及一点P,PA=PB,则点P在上.2.如图4,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC=______度.3.如图5,在△ABC中,∠B=30°,ED垂直平分BC,ED=3,则CE长为_______.4.如图6,DE为△ABC的AB边的垂直平分线,D为垂足,DE交BC于E,AC = 5,,BC = 8,求△AEC的周长________.5.如图7,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.6.如图8,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,求线段DE的长。

【新新导学案】2013-2014学年广东省清远市八年级数学(北师大版)下学期备课导学案:2.4一元一次不等式(2)

【新新导学案】2013-2014学年广东省清远市八年级数学(北师大版)下学期备课导学案:2.4一元一次不等式(2)

2.4一元一次不等式(二)一、问题引入:1.不等式的左右两边都是,只含有未知数,并且未知数的,像这样的不等式,叫做一元一次不等式.2.解一元一次不等式的一般步骤是:①;②;③;④;⑤.3.列一元一次不等式解决实际问题的一般步骤是:①;②;③;④;⑤.二、基础训练:1.2x+1是不小于-3的负数,表示为()A.-3≤2x+1≤0 B.-3<2x+1<0 C.-3≤2x+1<0 D.-3<2x+1≤02.不等式732122x x--+<的负整数解有()A.1个 B.2个 C.3个 D.4个3.亮亮准备用自己节省的零花钱买一台英语复读机,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.设x个月后他至少有300元,则可以用于计算所需要的月数x的不等式是()A.30x-45≥300 B.30x+45≥300 C.30x-45≤300 D.30x+45≤300 三、例题展示:例1:一次环保知识竞赛共有25道题目,规定答对一题得4分,答错或者不答一道题扣1分.在这次竞赛中,小明被评为优秀(85分或者85分以上),小明至少答对了几道题目?例2:小王准备用21元钱买笔和笔记本,已知每支笔3元钱,每个笔记本2.2元钱,他买了2个笔记本,请你帮他算一算,她还可以买几支笔?四、课堂检测:1.(2007年佛山市)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买( )支笔.A 、1B 、2C 、3D 、42.(2007年潍坊市)幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 _____________件.3.(2012陕西)小宏准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小红最多能买 瓶甲饮料。

4.(2013江苏淮安)解下列不等式:221+≥+x x ,并把解集在数轴上表示出来.5. 当x 为何值时,代数式的值。

【新新导学案】2013-2014学年广东省清远市八年级数学(北师大版)下学期备课导学案:63平行四边形的判定(1

【新新导学案】2013-2014学年广东省清远市八年级数学(北师大版)下学期备课导学案:63平行四边形的判定(1

学习过程
一、预习案:
1.下列几个条件中,不能判定一个四边形是平行四边形的是()
A.一组对边相等 B. 一组对边平行且相等
C.两组对边分别平行 D. 两组对边分别相等
2.小明拼成的四边形如图所示,图中的四边形ABCD是平行四边形吗?
3. 如图,四边形ABCD中,AB//CD,且AB=CD,则四边形ABCD是___ ________,理由是_______________________ ________.
二、基础训练案:
1.下列几个条件中,能判定一个四边形是平行四边形的是()
A.一组对边相等 B. 一组对边平行,另一组对边相等
C.一组对边平行 D. 两组对边分别平行
2.四边形ABCD中,AD∥BC,且AD=BC,AB=2cm,则DC= cm
三、例题展示案:
例1.如图,在ABCD中,E、F分别为AD和CB的中点.求证:四边形BFDE是平行四边形.
A E D
B F C
例2.在图中,AC=BD, AB=CD=EF,CE=DF.图中有哪些互相平行的线段?为什么.
A
B C
D
A1
A2 A4
A3
A6 A5
四、课堂检测案:
1.已知.四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,需添加一个条件是. (只需填一个你认为正确的条件即可).
2.如图,AC//ED,点B在AC上且AB=ED=BC,找出图中的平行四边形.
3.如图,四个全等三角形拼成一个大的三角形,找出图中所有的平行四边形,并
说明理由.
五:作业布置:
六:教学反思:。

北师大版 八年级数学 下册第二学期(导学案)第一章 三角形的证明 1.2 第1课时 直角三角形的性质与判定

北师大版  八年级数学 下册第二学期(导学案)第一章 三角形的证明 1.2 第1课时 直角三角形的性质与判定

1.2 直角三角形第1课时 直角三角形的性质与判定学习目标:1、进一步掌握推理证明的方法,发展演绎推理能力;2、了解勾股定理及其逆定理的证明方法;3、结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立。

学习过程:一、 前置准备角1、直角三角形的两个锐角 ;2、有两个角互余的三角形是 .边1、说出你知道的勾股数2、勾股定理的内容是:_____________________________;它的条件是:______________________________________;结论是:__________________________________________。

二、自主学习:将勾股定理的条件和结论分别变成结论和条件,其内容是:下面试着将上述命题证明:已知在△ABC 中,AB 2+AC 2=BC 2求证:△ABC 是直角三角形。

得出定理:如果三角形两边的__________等于__________,那么这个三角形是直角三角形。

三、合作交流:1、观察勾股定理及上述定理,它们的条件和结论之间有怎样的关系?然后观察下列每组命题,是否也在类似关系(1)如果两个角是对顶角,那么它们相等。

如果两个角相等,那么它们是对顶角。

(2)如果小明患了肺炎,那么他一定会发烧。

如果小明发烧,那么他一定患了肺炎。

(3)三角形中相等的边所对的角相等。

三角形中相等的角所对的边相等。

像上述每组命题我们称为互逆命题,即一个命的条件和结论分别是另一个命题的__________和__________。

2、阅读课本P16“想一想”,回答下列问题:①一个命题是真命题,那么它的逆命题也一定是真命题吗?②什么是互逆定理?③是否任何定理都有逆定理?④思考我们学过哪些互逆定理?四、归纳总结:1、勾股定理和逆定理的内容分别是什么?2、什么是互逆定理,什么是互逆命题?五、当堂训练:1、判断A:每个命题都有逆命题,每个定理也都有逆定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1 图形的平移(二)
一、问题展示:
平移中的坐标变化:在平面直角坐标中,图形平移前后对应点的坐标变化规律(1)若图形向右(或向左)平移a (a >0)个单位长度,则各点的纵坐标 ,横坐标分别加(或减)a ;(2)若图形向上(或向下)平移a (a >0)个单位长度,则各点的横坐标 ,纵坐标分别加(或减)a ;(3)若图形先向右(或向左)平移a (a >0)个单位长度,再向上(或向下)平移m(m >0)个单位长度,则各点的横坐标分别加(或减) ,纵坐标分别加(或减) . 二、基础练习:
1.(2013.湖南湘西)在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度后,那么平移后对应点A 1的坐标是 .
2.在平面直角坐标系中,线段A 1B 1是由线段AB 平移得到的,已知A.B 两点的坐标分别为
(-2,3),(-3,1),若点A 1的坐标为(3,4),则点B 1的坐标为 . 三、例题讲解:
例1: 如图中的鱼是将坐标为(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)的点用线段依次连接而成的“鱼”,将这条“鱼”向右平移5个单位长度. (1)画出平移后的“新鱼”;
(2)在图中尽量多选取几组对应点,并将它们的坐标填入下表: 原来的“鱼”
( , ) ( , ) ( , )
( , ) 向右平移5个单位长度的“新鱼”
( , ) ( , ) ( , ) ( , )
(3)你发现对应点的坐标之间有什么关系?
如果将原来的“鱼”向左平移4个单位长度呢?如果将上图中的“鱼”向上平移3个单位长度,那么平移后的两条“鱼”中,对应点的坐标之间有什么关系?如果向下平移2个单位长度呢?
7-2
-110
9866543
32210x
y
7-2
-110
9866
543
32210x
y
例2:将上图中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别加3,再将得到的点用线段依次接起来,从而画出一条“新鱼”,这条“新鱼”与原来的“鱼”相比有什么变化?如果纵坐
标保持不变,横坐标分别减2呢?
(2)将图中的每个“顶点”的横坐标保持不变,纵坐标分别加3,所得到的“新鱼”与原来“鱼”的相比又
有什么变化?如果横坐标不变,纵坐标分别减2呢?
-4
-3-2-1-4-3-2-16
54321
6
54321O y
x
四、课堂检测:
1.(2012年山东青岛)如图6-2-10,将四边形ABCD 先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A ′的坐标是( )
A .(6,1)
B .(0,1)
C .(0,-3)
D .(6,-3) 2.四边形ABCD 的顶点坐标分别是A(0,3),B(-2,0),C(0,-3),D(3,0)
(1)将四边形ABCD 向右平移6个单位长度,得到四边形A 1B 1C 1D 1,写出四边形
A 1
B 1
C 1
D 1,各顶点的坐标;
7-2
-110
9866
543
32210x
y 7-2
-110
986654
3
32210x
y
(2)将四边形A
1B
1
C
1
D
1
,向上平移6个单位长度,得四边形A
2
B
2
C
2
D
2
,写出四边形
A 2B
2
C
2
D
2
各顶点的坐标.
3.(1)将上题中的四边形A
2B
2
C
2
D
2
各顶点的纵坐标不变,横坐标分别减4,得到
四边形A
3B
3
C
3
D
3
,它与四边形A
2
B
2
C
2
D
2
相比有什么变化?
(2)将四边形A
3B
3
C
3
D
3
各顶点的横坐标不就,纵坐标分别减鱼4,得到四边形
A 4B
4
C
4
D
4
,它四边形A
3
B
3
C
3
D
3
相比有什么变化?。

相关文档
最新文档