(word完整版)高中数学必修二直线与方程及圆与方程测试题.docx
完整版)直线与方程测试题及答案解析
完整版)直线与方程测试题及答案解析1.若过点(1,2)和(4,5)的直线的倾斜角是多少?A。
30° B。
45° C。
60° D。
90°2.如果三个点A(3,1)。
B(-2,b)。
C(8,11)在同一直线上,那么实数b等于多少?A。
2 B。
3 C。
9 D。
-93.过点(1,2),且倾斜角为30°的直线方程是什么?A。
y + 2 = (3/√3)(x + 1) B。
y - 2 = 3/2(x - 1) C。
3x - 3y + 6 - 3 = 0 D。
3x - y + 2 - 3 = 04.直线3x - 2y + 5 = 0和直线x + 3y + 10 = 0的位置关系是?A。
相交 B。
平行 C。
重合 D。
异面5.直线mx - y + 2m + 1 = 0经过一定点,则该点的坐标是多少?A。
(-2,1) B。
(2,1) C。
(1,-2) D。
(1,2)6.已知ab < 0,bc < 0,则直线ax + by + c = 0通过哪些象限?A。
第一、二、三象限 B。
第一、二、四象限 C。
第一、三、四象限 D。
第二、三、四象限7.点P(2,5)到直线y = -3x的距离d等于多少?A。
√(23/2) B。
√(2/23) C。
√(23+5) D。
√(22)8.与直线y = -2x + 3平行,且与直线y = 3x + 4交于x轴上的同一点的直线方程是什么?A。
y = -2x + 4 B。
y = (1/2)x + 4 C。
y = -2x - 3 D。
y = (2/3)x - 39.如果直线y = ax - 2和直线y = (a+2)x + 1互相垂直,则a 等于多少?A。
2 B。
1 C。
-1 D。
-210.已知等腰直角三角形ABC的斜边所在的直线是3x - y + 2 = 0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是什么?A。
3x - y + 5 = 0.x + 2y - 7 = 0 B。
(完整word)高中数学必修二直线与圆的综合问题.doc
直线与圆一.解答题(共10 小题)1.已知直线x﹣ y+3=0 与圆心为( 3,4)的圆 C 相交,截得的弦长为2.(1)求圆 C 的方程;(2)设 Q 点的坐标为( 2,3),且动点 M 到圆 C 的切线长与 | MQ| 的比值为常数 k(k> 0).若动点 M 的轨迹是一条直线,试确定相应的 k 值,并求出该直线的方程.2.已知直线l: y=x+2 被圆 C:(x﹣ 3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径.(1)求圆 C 的方程;(2)已知直线 m:y=x+n 被圆 C:(x﹣3)2+( y﹣2)2=r2( r> 0)截得的弦与圆心构成三角形CDE.若△ CDE 的面积有最大值,求出直线m:y=x+n 的方程;若△ CDE的面积没有最大值,说明理由.3.已知 M (4, 0), N( 1,0),曲线 C上的任意一点P 满足:?=6||(Ⅰ)求点 P 的轨迹方程;(Ⅱ)过点 N(1,0)的直线与曲线 C 交于 A,B 两点,交 y 轴于 H 点,设=λ1,=λ2,试问λ1+λ2 是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由.4.已知动圆 P 与圆 F1:(x+2)2+y2=49 相切,且与圆 F2:( x﹣ 2)2+y2=1 相内切,记圆心P 的轨迹为曲线 C.(Ⅰ)求曲线 C 的方程;(Ⅱ)设 Q 为曲线 C 上的一个不在x 轴上的动点, O 为坐标原点,过点F2作 OQ 的平行线交曲线 C 于 M,N 两个不同的点,求△QMN 面积的最大值.5.已知动圆P 过定点且与圆N:相切,记动圆圆心P 的轨迹为曲线C.(Ⅰ)求曲线 C 的方程;(Ⅱ)过点 D( 3,0)且斜率不为零的直线交曲线 C 于 A,B 两点,在 x 轴上是否存在定点 Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.6.如图所示,在△ABC中, AB 的中点为 O,且 OA=1,点 D 在 AB 的延长线上,且.固定边AB,在平面内移动顶点C,使得圆 M 与边 BC,边 AC 的延长线相切,并始终与AB 的延长线相切于点D,记顶点C 的轨迹为曲线Γ.以AB所在直线为x 轴, O 为坐标原点如图所示建立平面直角坐标系.(Ⅰ)求曲线Γ的方程;(Ⅱ)设动直线l 交曲线Γ于 E、 F 两点,且以EF为直径的圆经过点O,求△ OEF面积的取值范围.7.已知△ ABC的顶点 A(1, 0),点 B 在 x 轴上移动, | AB| =| AC| ,且 BC 的中点在y 轴上.(Ⅰ)求 C 点的轨迹Γ的方程;(Ⅱ)已知过 P( 0,﹣ 2)的直线 l 交轨迹Γ于不同两点 M, N,求证: Q( 1,2)与 M, N 两点连线 QM, QN 的斜率之积为定值.8.已知圆M: x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.(1)求曲线 E 的方程;(2)点 A 是曲线 E 与 x 轴正半轴的交点,点 B、C 在曲线 E 上,若直线 AB、AC的斜率 k1,k2,满足 k1k2=4,求△ ABC面积的最大值.9.已知过点A( 0, 1)且斜率为k 的直线 l 与圆 C:(x﹣ 2)2+(y﹣3)2=1 交于点 M,N 两点.(1)求 k 的取值范围;(2)请问是否存在实数k 使得(其中O为坐标原点),如果存在请求出k 的值,并求 | MN | ;如果不存在,请说明理由.10.已知O 为坐标原点,抛物线C: y2=nx(n> 0)在第一象限内的点P(2, t)到焦点的距离为,C在点P 处的切线交 x 轴于点 Q,直线 l1经过点 Q 且垂直于 x轴.(1)求线段 OQ 的长;(2)设不经过点 P 和 Q 的动直线 l2:x=my+b 交 C 交点 A 和 B,交 l1于点 E,若直线 PA, PB 的斜率依次成等差数列,试问: l2是否过定点?请说明理由.直线与圆参考答案与试题解析一.解答题(共10 小题)1.已知直线x﹣ y+3=0 与圆心为( 3,4)的圆 C 相交,截得的弦长为2.(1)求圆 C 的方程;(2)设 Q 点的坐标为( 2,3),且动点 M 到圆 C 的切线长与 | MQ| 的比值为常数 k(k> 0).若动点 M 的轨迹是一条直线,试确定相应的 k 值,并求出该直线的方程.【分析】(1)求出圆心 C 到直线 l 的距离,利用截得的弦长为2求得半径的值,可得圆 C 的方程;(2)设动点 M( x,y),则由题意可得=k,即=k,化简可得(k2﹣1)?x2+(k2﹣1) ?y2+(6﹣ 4k2) x+(8﹣6k2)y+13k2﹣9=0,若动点 M 的轨迹方程是直线,则k2﹣1=0,即可得出结论.【解答】解:(1)圆心 C 到直线 l 的距离为= ,∵截得的弦长为 2,∴半径为 2,∴圆 C:(x﹣ 3)2+( y﹣4)2=4;(2)设动点 M (x, y),则由题意可得=k,即=k,化简可得( k2﹣ 1)?x2+( k2﹣ 1)?y2+( 6﹣4k2)x+(8﹣ 6k2) y+13k2﹣21=0,若动点 M 的轨迹方程是直线,则 k2﹣ 1=0,∴ k=1,直线的方程为 x+y﹣4=0.【点评】本小题主要考查直线与圆的位置关系,弦长公式的应用,圆的一般式方程,属于中档题.2.已知直线l: y=x+2 被圆 C:(x﹣ 3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径.(1)求圆 C 的方程;(2)已知直线 m:y=x+n 被圆 C:(x﹣3)2+( y﹣2)2=r2( r> 0)截得的弦与圆心构成三角形CDE.若△ CDE 的面积有最大值,求出直线m:y=x+n 的方程;若△ CDE的面积没有最大值,说明理由.【分析】(1)根据直线和圆相交得到的弦长公式求出圆的半径即可求圆 C 的方程;(2)根据直线和圆相交的位置关系,结合△CDE的面积公式即可得到结论.【解答】解:(1)设直线 l 与圆 C 交于 A, B 两点.∵直线 l :y=x+2 被圆 C:(x﹣ 3)2 +(y﹣ 2)2=r2( r>0)截得的弦长等于该圆的半径,∴△ CAB为正三角形,∴三角形的高等于边长的,∴圆心 C 到直线 l 的距离等于边长的.∵直线方程为x﹣y+2=0,圆心的坐标为(3, 2),∴圆心到直线的距离d==,∴r=,∴圆C的方程为:(x﹣3)2+(y﹣2)2=6.(2)设圆心 C 到直线 m 的距离为 h, H 为 DE的中点,连结 CD,CH,CE.在△ CDE中,∵DE=,∴=∴,当且仅当 h2=6﹣h2,即 h2=3,解得h=时,△ CDE的面积最大.∵CH=,∴| n+1| =,∴n=,∴存在n的值,使得△ CDE的面积最大值为3,此时直线 m 的方程为y=x.【点评】本题主要考查直线和圆的位置关系的应用,根据弦长公式是解决本题的关键.3.已知 M (4, 0), N( 1,0),曲线 C上的任意一点P 满足:?=6||(Ⅰ)求点 P 的轨迹方程;(Ⅱ)过点 N(1,0)的直线与曲线 C 交于 A,B 两点,交 y 轴于 H 点,设=λ1,=λ2,试问λ1+λ2 是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由.【分析】(Ⅰ)求出向量的坐标,利用条件化简,即可求点P 的轨迹方程;(Ⅱ)分类讨论,利用=λ1,=λ2,结合韦达定理,即可得出结论.【解答】解:(Ⅰ)设 P( x,y),则=(﹣ 3,0),=( x﹣ 4,y),=(1﹣x,﹣ y).∵?=6|| ,∴﹣ 3×( x﹣ 4)+0× y=6,化简得=1 为所求点 P 的轨迹方程 .4 分(Ⅱ)设 A(x1,y1), B( x2, y2).①当直线 l 与 x 轴不重合时,设直线l 的方程为x=my+1( m≠ 0),则 H( 0,﹣).从而=( x , y +),=( 1 x , y ),由=λ得(x,y +)=λ(1x , y ),111111111 1∴ λ=1+1同理由得λ,2=1+∴ (λ1+λ2)=2+由直与方程立,可得(4+3m2) y2+6my 9=0,∴y1+y2=,y1y2=代入得∴(λ+λ) =2+=,1 2∴λ+λ1 2=②当直 l 与 x 重合, A( 2,0),B(2,0),H(0, 0),λ,1 =.λ2= 2∴λ+λ分1 2=11上,λ1+λ2定.12 分.【点】本考迹方程,考向量知的运用,考直与位置关系的运用,考分的数学思想,属于中档.4.已知P与F1:(x+2)2+y2=49相切,且与F2:( x 2)2+y2=1相内切,心P 的迹曲 C.(Ⅰ)求曲 C 的方程;(Ⅱ) Q 曲 C 上的一个不在x 上的点, O 坐原点,点F2作 OQ 的平行交曲 C 于 M,N 两个不同的点,求△QMN 面的最大.【分析】(I )由已知条件推出| PF1|+| PF2| =8> | F1F2| =6,从而得到心P 的迹以F1,F2焦点的,由此能求出心P 的迹 C 的方程.(II)由 MN∥ OQ,知△ QMN 的面 =△ OMN 的面,由此能求出△QMN 的面的最大.【解答】解:(Ⅰ) P 的半径R,心 P 的坐( x,y),由于 P 与 F1:( x+2)2+y2=49相切,且与F2:( x 2)2+y2=1相内切,所以 P 与F1只能内切.⋯( 1 分)所以 | PF1|+| PF2 | =7 R+R 1=6> | F1F2| =4.⋯(3 分)所以心心P 的迹以F1,F2焦点的,其中 2a=6,2c=4,∴ a=3, c=2, b2=a2c2=5.所以曲 C 的方程=1.⋯(4 分)(Ⅱ) M (x1, y1), N( x2, y2), Q(x3,y3),直 MN 的方程x=my+2,由可得:(5m 2+9) y2+20my 25=0,y 1+y2 =,y1y2=.⋯(5分)所以 | MN | ==⋯(7分)因 MN∥ OQ,∴△ QMN 的面 =△OMN 的面,∵O 到直 MN :x=my+2 的距离 d=.⋯(9分)所以△ QMN 的面.⋯( 10 分)令=t, m2=t21(t ≥0),S==.,.因 t≥ 1,所以.所以,在 [ 1, +∞)上增.所以当 t=1 , f( t )取得最小,其9.⋯( 11 分)所以△ QMN 的面的最大.⋯( 12 分)【点】本考的准方程、直、、与等知,考推理能力、运算求解能力,考函数与方程思想、化与化思想、数形合思想等.5.已知 P 定点且与 N:相切,心P 的迹曲C.(Ⅰ)求曲 C 的方程;(Ⅱ)点 D( 3,0)且斜率不零的直交曲 C 于 A,B 两点,在 x 上是否存在定点Q,使得直AQ, BQ的斜率之非零常数?若存在,求出定点的坐;若不存在,明理由.【分析】(Ⅰ)由意可知丨PM 丨+丨 PN 丨 =4>丨 MN 丨 =2 , P 的迹 C 是以 M ,N 焦点,2=a2 c2=1,即可求得方程;4 的, a=4, c= ,b(Ⅱ)将直线方程代入椭圆方程,考查韦达定理,直线的斜率公式,当且仅当,解得 t= ±2,代入即可求得,定点的坐标.【解答】解:(Ⅰ)设动圆 P 的半径为r,由 N:及,知点M在圆N 内,则有,从而丨 PM 丨 +丨 PN 丨=4>丨 MN 丨=2,∴P 的轨迹 C 是以 M ,N 为焦点,长轴长为 4 的椭圆,设曲线 C 的方程为:(a>b>0),则2a=4,a=4,c=,b2=a2﹣c2=1故曲线 C 的轨迹方程为;(Ⅱ)依题意可设直线AB 的方程为 x=my+3,A( x1,y1),B(x2, y2).,由,整理得:( 4+m2)y2+6my+5=0,则△ =36m2﹣4×5×( 4+m2)> 0,即 m2> 4,解得: m>2 或 m<﹣ 2,由 y 1+y2=﹣,y1y2= , x1+x2=m(y1+y2)+6=,x1x2=(my1 +3)(my2 +3) =m2y1y2+m(y 1+y2)+9=,假设存在定点Q(t ,0),使得直线AQ,BQ 的斜率之积为非零常数,则(x1﹣ t)( x2 ﹣t ) =x1 2﹣ t( x1+x2) +t2= ﹣t ×2= ,x +t∴kAQ?k BQ=?==,要使 k AQ?k BQ为非零常数,当且仅当,解得t=±2,当 t=2 时,常数为=,当 t= ﹣2 时,常数为=,∴存在两个定点Q1(2, 0)和 Q2( 2, 0),使直AQ,BQ 的斜率之常数,当定点 Q1( 2,0),常数;当定点Q2( 2, 0),常数.【点】本考准方程及几何性,的定,考直与的位置关系,达定理,直的斜率公式,考算能力,属于中档.6.如所示,在△ABC中, AB 的中点O,且 OA=1,点 D 在 AB 的延上,且.固定AB,在平面内移点C,使得 M 与 BC, AC 的延相切,并始与AB 的延相切于点D,点C 的迹曲Γ.以AB所在直x , O 坐原点如所示建立平面直角坐系.(Ⅰ)求曲Γ的方程;(Ⅱ)直l 交曲Γ于 E、 F 两点,且以EF直径的点O,求△ OEF面的取范.【分析】(Ⅰ)确定点 C 迹Γ是以 A,B 焦点, 4 的,且挖去的两个点,即可求曲Γ的方程;(Ⅱ)可直,而表示面,即可求△ OEF面的取范.【解答】解:(Ⅰ)依意得AB=2,BD=1,M 与 AC 的延相切于T1,与 BC 相切于 T2,AD=AT1, BD=BT2, CT1=CT2 所以AD+BD=AT+BT=AC+CT +BT=AC+CT+CT=AC+BC=AB+2BD=4> AB=2⋯(2 分)12121 2所以点 C 迹Γ是以A,B 焦点, 4 的,且挖去的两个点.曲Γ的方程.⋯( 4 分)(Ⅱ)由于曲Γ 要挖去两个点,所以直OE, OF 斜率存在且不0 ,所以可直⋯( 5 分)由得,,同理可得:,;所以,又 OE⊥ OF,所以⋯(8分)令t=k2+1,t>1且k 2=t1,所以=⋯(10 分)又,所以,所以,所以,所以,所以△ OEF面的取范.⋯( 12 分)【点】本考迹方程,考直与位置关系的运用,考三角形面的算,考学生分析解决的能力,属于中档.7.已知△ ABC的点 A(1, 0),点 B 在 x 上移, | AB| =| AC| ,且 BC 的中点在y 上.(Ⅰ)求 C 点的迹Γ的方程;(Ⅱ)已知 P( 0, 2)的直 l 交迹Γ于不同两点 M, N,求: Q( 1,2)与 M, N 两点 QM, QN 的斜率之定.【分析】(Ⅰ)利用直接法,求 C 点的迹Γ的方程;(Ⅱ)直 l 的方程 y=kx 2,与抛物方程立,求出斜率,即可明.【解答】解:(Ⅰ) C( x,y)( y≠ 0),因 B 在 x 上且 BC 中点在 y 上,所以 B( x,0),由| AB| =| AC| ,得( x+1)2=(x 1)2+y2,化得y2=4x,所以 C 点的迹Γ的方程y2=4x(y≠ 0).(Ⅱ)直 l 的斜率然存在且不0,直 l 的方程 y=kx 2, M (x1, y1), N( x2, y2),由得 ky24y 8=0,所以,,,同理,,所以 Q(1, 2)与 M ,N 两点的斜率之定4.【点】本考迹方程,考直与抛物位置关系的运用,考学生的算能力,属于中档.8.已知M: x2+y2+2y 7=0和点N(0,1),P点N且与M相切,心P的迹曲E.(1)求曲 E 的方程;(2)点 A 是曲 E 与 x 正半的交点,点 B、C 在曲 E 上,若直 AB、AC的斜率 k1,k2,足 k1k2=4,求△ ABC面的最大.【分析】(1)利用与的位置关系,得出曲 E 是 M, N 焦点,的,即可求曲 E 的方程;(2)立方程得(1+2t2)y2+4mty +2m22=0,利用达定理,合k1k2=4,得出直BC 定点( 3, 0),表示出面,即可求△ABC面的最大.【解答】解:(1) M : x2+y2+2y 7=0 的心 M( 0, 1),半径点 N( 0, 1)在 M内,因 P 点 N 且与 M 相切,所以 P 与 M 内切. P 半径 r,r=| PM| .因 P 点 N,所以 r=| PN| ,>| MN| ,所以曲 E 是 M, N 焦点,的.2=2 1=1,由,得 b所以曲 E 的方程⋯(4分)(Ⅱ)直 BC斜率 0 ,不合意B(x1,y1), C( x2, y2),直 BC:x=ty+m,立方程得( 1+2t 2) y2+4mty +2m22=0,又k 1k2=4,知y1y2=4(x1 1)(x2 1)=4(ty1 +m 1)( ty2+m 1)=.代入得又 m≠ 1,化得( m+1)( 1 4t2)=2( 4mt 2)+2(m 1)( 1+2t 2),解得 m=3,故直 BC 定点( 3, 0)⋯(8 分)由△ >,解得t2> 4 ,=(当且 当取等号).上,△ ABC 面 的最大⋯( 12 分)【点 】 本 考 与 的位置关系,考 的定 与方程,考 直 与 位置关系的运用,考 达定理,属于中档 .9.已知 点 A ( 0, 1)且斜率 k 的直 l 与 C :(x2)2+(y3) 2=1 交于点 M ,N 两点.(1)求 k 的取 范 ;(2) 是否存在 数k 使得 (其中 O 坐 原点),如果存在 求出k 的 ,并求 | MN | ;如果不存在, 明理由.【分析】(1) 出直 方程,利用直 与 的位置关系,列出不等式求解即可.(2) 出 M ,N 的坐 , 利用直 与 的方程 立,通 达定理, 合向量的数量 , 求出直 的斜率,然后判断直 与 的位置关系求解 | MN| 即可.【解答】 解:(1)由 ,可知直 l 的方程 y=kx+1,因 直l 与 C 交于两点,由已知可得C 的 心 C 的坐 ( 2,3),半径 R=1.故由< 1,解得: <k <所以 k 的取 范 得(, )(2) M (x 1 ,y 1),N (x 2,y 2).将 y=kx+1 代入方程:(x 2)2+(y 3) 2=1,整理得( 1+k 2)x 24(1+k ) x+7=0.所以 x 1+x 2=,x 1x 2 =,? =x 1x 2 +y1y 2 =(1+k 2)( x1x 2)+k ( x +x ) +1==12,1 2解得 k=1,所以直l 的方程 y=x+1.故 心 C 在直 l 上,所以 | MN | =2.【点 】 本 主要考 直 和 的位置关系的 用,以及直 和 相交的弦 公式的 算,考 学生的 算能力,是中档 .10.已知 O 坐 原点,抛物C : y 2=nx (n > 0)在第一象限内的点P (2, t )到焦点的距离 ,C 在点 P 的切 交 x 于点 Q ,直 l 1 点 Q 且垂直于 x .(1)求 段 OQ 的 ;(2)不点 P 和 Q 的直 l2:x=my+b 交 C 交点 A 和 B,交 l1于点 E,若直 PA, PB 的斜率依次成等差数列,: l2是否定点?明理由.【分析】(1)先求出 p 的,然后求出在第一象限的函数,合函数的数的几何意求出N 的坐即可求段 OQ 的;(2)立直和抛物方程行消元,化关于y 的一元二次方程,根据根与系数之的关系合直斜率的关系建立方程行求解即可.【解答】解:(Ⅰ)由抛物 y2=nx(n>0)在第一象限内的点P(2, t)到焦点的距离,得 2+ = ,∴ n=2,抛物 C 的方程 y 2=2x,P(2,2).⋯(2 分)C 在第一象限的象的函数解析式y= , y′=,故 C 在点 P 的切斜率,切的方程y 2= ( x 2),令 y=0 得 x= 2,所以点 Q 的坐( 2,0).故段 OQ 的 2.⋯( 5 分)(Ⅱ)l2恒定点( 2, 0),理由如下:由意可知 l 1的方程 x= 2,因 l2与 l1相交,故 m≠ 0.由 l 2: x=my+b,令 x= 2,得 y= ,故 E( 2,)A( x1,y1),B(x2,y2)由消去 x 得: y22my2b=0y 1+y2 =2m,y1y2= 2b ⋯( 7 分)直 PA的斜率,同理直 PB 的斜率,直 PE的斜率.因直 PA,PE,PB 的斜率依次成等差数列,所以+=2×⋯(10分)整理得:=,因 l2不点 Q,所以 b≠ 2,所以 2m b+2=2m,即 b=2.故 l 2的方程x=my+2,即 l2恒定点( 2, 0).⋯(12 分)【点】本主要考直和抛物的位置关系,利用直和抛物方程,化一元二次方程,合达定理,利用而不求的思想是解决本的关.。
(word完整版)高中数学必修二直线与方程及圆与方程测试题
一选择题(共55分,每题5分)1.已知直线经过点 A (0,4)和点B (1, 2),则直线AB 的斜率为( )ABCD4.若直线 x+ay+2=0和2x+3y+1=0互相垂直,则 a=()2233 A .B.C.D.-33 225.过(x 1, y 1)和(x 2, y 2)两点的直线的方程是()A . y y 1 x %Y 2y 1 x2x1B . y y 1 x x y 2 y 1x X2&与直线2x+3y-6=0关于点(1,-1)对称的直线是()A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0A . x 2y 70 B. 2x y 1 0C . x 2y 50 D . 2x y 53.在同一直角坐标系中, 表示直线y ax 与 y x a 正确的是()0的直线方程为( )A.3B.-2C. 2D.不存在2•过点(1,3)且平行于直线x 2y 3 C.( y 2y 1)(x X 1) (X 2 xj(y y 1)D.gxj(xxj(y 2 yJ(y yJ6、若图中的直线 L 1、A 、 K 1< K 2< K 3B 、K 2< K 1< K 3 K 3< K 2< K 1D 、K 1 < K 3< K 2 7、直线2x+3y-5=0关于直线y=x 对称的直线方程为( A 、3x+2y-5=0 B 、2x-3y-5=0 C 、3x+2y+5=0D 、3x-2y-5=0匕、L 3的斜率分别为9、直线5x-2y-10=0在x轴上的截距为a,在y轴上的截距为b,则(10、直线2x-y=7与直线3x+2y-7=0的交点是( )A (3,-1)B (-1,3)C (-3,-1)D (3,1)11、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A 4x+3y-13=0B 4x-3y-19=0C 3x-4y-16=0D 3x+4y-8=01填空题(共20分,每题5分)12. __________________________________________________________________________过点(1 , 2)且在两坐标轴上的截距相等的直线的方程 _______________________________________13两直线2x+3y — k=0和x — ky+12=0的交点在 y 轴上,则 k 的值是 ____________ 15空间两点 M1 (-1,0,3) ,M2(0,4,-1)间的距离是 _____________________ 三计算题(共71分)16、(15分)已知三角形 ABC 的顶点坐标为 A (-1, 5)、B (-2, -1 )、C (4, 3) , M 是BC 边上的中点。
(完整word版)高中数学必修二直线与圆基础题
高中数学必修二测试题七一、选择题(每小题5分,共50分. 以下给出的四个备选答案中,只有一个正确)1. 1.直线20x y --=的倾斜角为( )A .30︒ ;B .45︒ ; C. 60︒ ; D. 90︒;2.将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所得到的直线为( )A.1133y x =-+ ;B. 113y x =-+ ; C.33y x =- ; D.31y x =+;30y m -+=与圆22220x y x +--=相切,则实数m 等于( )A .-;B .-C 或;D .或4.过点(0,1)的直线与圆224x y +=相交于A ,B 两点,则AB 的最小值为( )A .2 ;B .;C .3 ;D .5.若圆C 的半径为1,圆心在第一象限,且与直线034=-y x 和x 轴都相切,则该圆的标准方程是( ) A. 1)37()3(22=-+-y x ; B. 1)1()2(22=-+-y x ;C. 1)3()1(22=-+-y x ;D. 1)1()23(22=-+-y x ;6.已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为( )A.2(2)x ++2(2)y -=1 ;B.2(2)x -+2(2)y +=1;C.2(2)x ++2(2)y +=1;D.2(2)x -+2(2)y -=17.已知圆C 与直线0=-y x 及04=--y x 都相切,圆心在直线0=+y x 上,则圆C 的方程为( )A.22(1)(1)2x y ++-= ;B. 22(1)(1)2x y -++=C. 22(1)(1)2x y -+-= ;D. 22(1)(1)2x y +++=8.设A 在x 轴上,它到点P 的距离等于到点(0,1,1)Q -的距离的两倍,那么A 点的坐标是( )A.(1,0,0)和( -1,0,0) ;B.(2,0,0)和(-2,0,0);C.(12,0,0)和(12-,0,0) ; D.(2-,0,0)和(2,0,0)9.直线012=--y x 被圆2)1(22=+-y x 所截得的弦长为( ) A.30 ; B .355; C .230 ;D .655; 10.若直线y x b =+与曲线234y x x =--有公共点,则b 的取值范围是( )A.[122-,122+];B.[12-,3] ;C.[-1,122+] ;D.[122-,3];二、填空题(每小题5分,共25分. 将你认为正确的答案填写在空格上)11.设若圆422=+y x 与圆)0(06222>=-++a ay y x 的公共弦长为32,则a =______.12.已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线1:-=x y l 被该圆所截得的弦长为22,则圆C 的标准方程为_________ ___.13.已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 .14.已知直线2310x y +-=与直线40x ay += 平行,则a = .15.直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为22,则m 的倾斜角可以是①15o ;②30o ;③45o ;④60o;⑤75o . 其中正确答案的序号是 .三、解答题(本大题共6小题,共75分,解答应写出文字说明.证明过程或演算步骤)16(1).已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,求圆C 的方程..(2)求与圆014222=++-+y x y x 同心,且与直线012=+-y x 相切的圆的方程.17.已知圆22:(3)(4)4C x y -+-=,(Ⅰ)若直线1l 过定点A (1,0),且与圆C 相切,求1l 的方程;(Ⅱ) 若圆D 的半径为3,圆心在直线2l :20x y +-=上,且与圆C 外切,求圆D 的方程.18..在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=9.(1)判断两圆的位置关系;(2)求直线m 的方程,使直线m 被圆C 1截得的弦长为4,与圆C 2截得的弦长是6.19.已知圆C :,25)2()1(22=-+-y x 直线)(47)1()12(:R m m y m x m l ∈+=+++(1)证明:不论m 取何实数,直线l 与圆C 恒相交;(2)求直线l 被圆C 所截得的弦长的最小值及此时直线l 的方程;20.已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点. (1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若OM =ON ,求圆C 的方程;21.在平面直角坐标系xOy 中,已知圆2212320x y x +-+= 的圆心为Q ,过点(02)P ,且斜率为k 的直线与圆Q 相交于不同的两点A B ,.(Ⅰ)求k 的取值范围;(Ⅱ)以OA,OB 为邻边作平行四边形OADB,是否存在常数k ,使得直线OD 与PQ 平行?如果存在,求k 值;如果不存在,请说明理由.高中数学必修二测试题七(直线和圆)参考答案:一、选择题答题卡:题号 12 3 4 5 6 7 8 9 10 答案 BA AB B B B A D D 二、填空题11. _1__. 12.4)3(22=+-y x . 13.18)1(22=++y x . 14. 6 15. ①⑤ .三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤)16.解:(1)(x -2)2+y 2=10 ;(2)5)2()1(22=++-y x ;17.(Ⅰ)①若直线1l 的斜率不存在,即直线是1x =,符合题意.②若直线1l 斜率存在,设直线1l 为(1)y k x =-,即0kx y k --=.由题意知,圆心(3,4)到已知直线1l 的距离等于半径2,即 2= 解之得 34k =.所求直线方程是1x =,3430x y --=. (Ⅱ)依题意设(,2)D a a -,又已知圆的圆心(3,4),2C r =,由两圆外切,可知5CD =∴可知5, 解得 2,3-==a a 或, ∴ (3,1)D -或(2,4)D -,∴ 所求圆的方程为9)4()29)1()32222=-++=++-y x y x 或((. 18.解 (1)圆C 1的圆心C 1(-3,1),半径r 1=2;圆C 2的圆心C 2(4,5),半径r 2=2.∴C 1C 2=72+42=65>r 1+r 2,∴两圆相离;(2)由题意得,所求的直线过两圆的圆心,即为连心线所在直线,易得连心线所在直线方程为:4x -7y +19=0.19.解:(1)证明:直线)(47)1()12(:R m m y m x m l ∈+=+++可化为:04)72(=-++-+y x y x m ,由此知道直线必经过直线072=-+y x 与04=-+y x 的交点,解得:⎩⎨⎧==13y x ,则两直线的交点为A (3,1),而此点在圆的内部,故不论m 为任何实数,直线l 与圆C 恒相交。
必修2专题--直线与圆的方程试卷及答案
必修2专题--直线与圆的方程试卷及答案高二文数专题复习——直线与方程一、选择题1.直线2x +ay +3=0的倾斜角为120°,则a 的值是 ( )223A. B C .23 D .-3332. 若A (1, 5) 、B (-2, -1) 、C (-1, m ) 三点共线,则m 的值为 ( ) A . 0 B .1 C . -2 D . 23.已知过A (-1,a ) 、B (a, 8) 两点的直线与直线2x -y +1=0平行,则a的值为( )A .-10 B.17 C.5 D .24.直线l 过点(-1,2) 且与直线2x -3y +4=0垂直,则l 的方程是 ( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=5.已知直线l 1:(k -3) x +(4-k ) y +1=0与l 2:2(k -3) x -2y +3=0平行,则k 的值是( )A .1或3 B.1或5 C.3或5 D.1或26.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是 ( )A .相离 B.相交 C.外切 D .内切7.若直线ax +by +c =0过第一、二、三象限,则 ( )A .ab >0,bc <0B .ab >0,bc >0C .ab <0,bc >0D .ab <0,bc <8.直线Ax +By -1=0在y 轴上的截距是-13x -y =33的倾斜角的2倍,则 ( ) A .A 3,B =1 B .A =-3,B =-1 C .A 3,B =-1 D .A =-3,B =19.已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,则过点M 的最短弦所在的直线方程是( )A .x +y -1=0 B.x -y -1=0 C.x -y +1=0 D.x +y +2=0110、圆x 2-6x +y 2+2y =0关于直线方程为y = x 对称的圆的方程 ( ).222A 、(x+1) +(y -3) =10 B、 (x -1) 2+(y +3)2=10 C 、(x -1) 2+(y -3) 2=10 D 、(x -1) 2+(y -3) 2=100二、填空题11.直线5x -4y -20=0在x 、y 轴上的截距分别是________.12.直线l 过点(-2,4) ,且在x 轴、y 轴上的截距相等,则l 的方程是________.13.不论m 怎么变化,直线(m-2) x -(2m+1)y -(3m+4)=0恒过定点________.14.若直线y =x -m 与曲线y =1-x 有两个不同的交点,则m 的取值范围是_______.三、解答题15.已知直线l 1的方程为3x +4y -12=0.(1)若直线l 2与l 1平行,且过点(-1,3) ,求直线l 2的方程;(2)若直线l 2与l 1垂直,且l 2与两坐标轴围成的三角形面积为4,求直线l 2的方程.16、. 已知三角形的三个顶点A (-2, -3) ,B (2,-1)C(0, 2), (1)求直线AB 的方程;(2)求直线AB 的垂直平分线的方程CD ;(3)求△ABC 面积。
高中数学-人教版-必修二-直线与圆的方程综合复习题(含答案)
直线与圆的方程综合复习(含答案)一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是( C ) A3B6C 23D 562.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C )A 0B 2C -8D 103.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于( D ) (A -1或2 B23C 2D -1 4.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 (a 1,b 1)和(a 2,b 2)所确定的直线方程是( A ) +1=0 +1=0=0 =05.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,0 6.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B )A 充分必要条件B 充分而不必要条件 `C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且1l2l,则直线2l 的方程为( B )A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为( A )A y=-3x 或y=13x B y=3x 或y= -13x C y=-3x 或y= -13x D y=3x 或y= 13x 10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是(A ):A (02-1,)B (2-1,2+1) C (-2-1,2-1) D (0,2+1)11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为(D ), A2x+2y +2x=0 B 2x +2y +x=0 C2x+2y -x=0 D2x+2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所包围的面积等于( B )A B 4 C 8 D 9 `14.若直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为( B )A 1B -1C 3D -315.若直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba11+的最小值是( C ) A.41D.2116.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是( A ) A.⎥⎦⎤ ⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,0 <17.设两圆1C ,2C 都和两坐标轴相切,且过点(4,1),则两圆心的距离︱1C 2C ︱等于( C )A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c 的一个值为 ( C )B.5519.若直线by ax +=1与圆x 2+y 2=1有公共点,则( D ) +b 2≤1+b 2≥1C.2211ba +≤1D.2211ba +≥1—20.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为( B )A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522, D.⎪⎭⎫⎝⎛522,0 21.直线y=kx+3与圆2(3)x+2(2)y =4相交于M 、N 两点,若︱MN ︱≥3则k 的取值范围是( A ) A [-34,0] B [-∞,-34][0,∞) 33] D [-23,0] 22.(广东理科2)已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则AB 的元素个数为(C )A .0B .1C .2D .3 23.(江西理科9)若曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B )— A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。
周考3(必修二 直线与方程,圆与方程)
中学2011-2012学年数学理科(普通班)第四次周考(考试时间:100分钟 试卷分值:100分)出卷人: 审卷人:第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在空间直角坐标系O xyz -中,点(2,4,3)A -关于坐标平面yOz 对称的点是( )A .(2,4,3) B. (2,4,3)- C. (2,4,3)-- D. (2,4,3)--2.点P 在直线3x+y-5=0上,且点P 到直线x-y-1=0,则P 点坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-2,1)3.过点(-1,3)且垂直于直线x -2y +3=0的直线方程是( )A .x -2y +7=0B .2x +y -1=0C .x -2y -5=0D .2x +y -5=04.若P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为( )A .x -y -3=0B .2x +y -3=0C .x +y -1=0D .2x -y -5=05.已知圆C 1:(x -3)2+y 2=1,圆C 2:x 2+(y +4)2=16,则圆C 1,C 2的位置关系为( )A .相交B .相离C .内切D .外切6. 设点P(a ,b),Q(c ,d)是直线y=mx +k 上两点,则︱PQ ︱等于 ( )A .︱a -c ︱21m +B .︱a +c ︱21m +C .︱b -d ︱21m +D .︱b +d ︱21m +7.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,半径为5的圆的方程为( )A .x 2+y 2-2x +4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =08.过点M (-2,4)作圆C :(x -2)2+(y -1)2=25的切线l ,且直线l 1:ax +3y +2a =0与l 平行,则l 1与l 间的距离是( )A.85B.25C.285D.1259.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点有( )A.1个B.2个C.3个D.4个10.设P (x ,y )是圆x 2+(y +4)2=4上任意一点,则()()2211y x -+-的最小值为( ) A.26+2 B.26-2 C .5 D .6二、填空题(本大题共4小题,每小题4分,共16分)11.圆x 2+y 2+Dx +Ey +F =0关于直线l 1:x -y +4=0与直线l 2:x +3y =0都对称,则D =_____,E =_____.12.经过点P (1,2)的直线,且使A (2,3),B (0,-5)到它的距离相等的直线方程为________.13.若过点(3,1)总可以作两条直线和圆22(2)()(0)x k y k k k -+-=>相切,则k 的取值范围是________14. △ABC 中,a 、b 、c 是内角A 、B 、C 的对边,且lgsin A ,lgsin B ,lgsin C 成等差数列,则下列两条直线l 1:(sin 2A )x +(sin A )y -a =0,l 2:(sin 2B )x +(sin C )y -c =0的位置关系是____________.三、解答题(本大题共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)15.(10分)已知直线l 经过直线3420x y +-=与直线220x y ++=的交点P ,且垂直于直线210x y +-=.(1)求直线l 的方程; (2)求直线l 与两坐标轴围成的三角形的面积16.(10分)已知圆的半径为10,圆心在直线y =2x 上,圆被直线x -y =0截得的弦长为42,求圆的方程.17(10分)直线13y x =-+和x 轴,y 轴分别交于点,A B ,线段AB 为边在第一象限内作等边△A B C ,如果在第一象限内有一点1(,)2P m 使得△ABP 和△A B C 的面积相等,求m 的值18(14分).已知圆221:2280C x y x y +++-= 与222:210240C x y x y +-+-= 相交于,A B 两点,(1)求公共弦AB 所在的直线方程及其长度(2)求圆心在直线y x =-上,且经过,A B 两点的圆的方程;(3)求经过,A B 两点且面积最小的圆的方程。
高二数学直线与方程试题
高二数学直线与方程试题1.已知倾斜角为的直线L经过抛物线的焦点F,且与抛物线相交于、两点,其中坐标原点.(1)求弦AB的长;(2)求三角形的面积.【答案】(1);(2)。
【解析】(1)由题意得:直线L的方程为,(2分)代入,得:. (4分)设点,,则:. 6分)由抛物线的定义得:弦长. (9分)(2)点到直线的距离,(12分)所以三角形的面积为.(14分【考点】抛物线的定义;抛物线的简单性质;直线与抛物线的综合应用;点到直线的距离公式。
点评:本题考查抛物线的简单性质和弦长的运算,解题时要注意抛物线性质的灵活运用和弦长公式的合理运用。
在求直线与圆锥曲线相交的弦长时一般采用韦达定理设而不求的方法,在求解过程中一般采取步骤为:设点→联立方程→消元→韦达定理→弦长公式。
2.过点(1,0)且与直线平行的直线方程是()A.B.C.D.【答案】A【解析】与直线x-2y-2=0平行所以是x-2y+a=0过P1+a=0a=-1x-2y-1=03.若过定点且斜率为的直线与在第一象限内的部分有交点,则的取值范围是()A.B.C.D.【答案】A【解析】4.与平行线和等距离的直线的方程为【答案】2x-7y+1=0【解析】略5.从点向圆引切线,则圆的切线方程为______________________________【答案】或【解析】略6.直线L的斜率为k,倾斜角为,若-1<k<1,则的范围是( )A.B.C.D.【答案】B【解析】所以故选B7.已知直线过点P(5,10),且原点到它的距离为5,则直线的方程为【答案】x=5或3x-4y+25=0【解析】略8.(本题10分)如图,已知点A(2,3), B(4,1),△ABC是以AB为底边的等腰三角形,点C在直线l:x-2y+2=0上(Ⅰ)求AB边上的高CE所在直线的方程(Ⅱ)求△ABC的面积【答案】解:(Ⅰ)由题意可知,E为AB的中点,∴E(3,2),且,∴CE:y-2=x-3,即x-y-1=0.(Ⅱ)由得C(4,3),∴|AC|=|BC|=2,AC⊥BC,∴.【解析】略9.已知点和在直线的两侧,则实数的取值范围是 ( )A.B.C.D.【答案】C【解析】直线两侧的点使式子的值一正一负,所以点和坐标代入式子得值一正一负,即,解得,故选择C.10.已知过点和的直线与直线平行,则的值为()A.0B.-8C.2D.10【答案】B【解析】本题考查斜率公式,两直线平行的充要条件.直线的斜率为-2,由题意知直线的斜率存在且为于是解得故选B。
高中数学人教版必修二直线与圆的方程综合复习题(含答案)
高中数学人教版必修二直线与圆的方程综合复习题(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN直线与圆的方程综合复习(含答案)一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是( C ) A 3B 6C 23D 562.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C )A 0B 2C -8D 103.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于( D ) A -1或2 B23C 2D -1 4.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 (a 1,b 1)和(a 2,b 2)所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=0 5.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4 C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B )A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且1l 2l ,则直线2l 的方程为( B )A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=09. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为( A )A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13x D y=3x 或y=13x 10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是(A )A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为(D ), A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所包围的面积等于( B )A B 4 C 8 D 914.若直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为( B )A 1B -1C 3D -315.若直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba 11+的最小值是( C ) A.41B.2C.4D.2116.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是( A )A.⎥⎦⎤⎝⎛43,125B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤ ⎝⎛43,21D.⎪⎭⎫⎝⎛125,17.设两圆1C ,2C 都和两坐标轴相切,且过点(4,1),则两圆心的距离 ︱1C 2C ︱等于( C )A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c 的一个值为 ( C ) A.2 B.5C.3D.3519.若直线by ax +=1与圆x 2+y 2=1有公共点,则( D ) A.a 2+b 2≤1 B.a 2+b 2≥1 C.2211ba +≤1D.2211ba +≥120.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为( B ) A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522, D.⎪⎭⎫ ⎝⎛522,0 21.直线y=kx+3与圆2(3)x+2(2)y =4相交于M 、N 两点,若︱MN ︱≥3则k 的取值范围是( A )A [-34,0] B [-∞,-34] [0,∞)33] D [-23,0] 22.(广东理科2)已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则AB 的元素个数为(C )A .0B .1C .2D .3 23.(江西理科9)若曲线02221=-+x y x C :与曲线0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。
高中数学必修二单元测试:直线与圆的方程word版含答案
直线与圆的方程单元测试1.(2013·天津高考)已知过点P (2,2) 的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,则a =( )A .-12B .1C .2D.12解析:选C 由切线与直线ax -y +1=0垂直,得过点P (2,2)与圆心(1,0)的直线与直线ax -y +1=0平行,所以2-02-1=a ,解得a =2.2.(2014·福建高考)已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0 垂直,则l 的方程是 ( )A .x +y -2=0B .x -y +2=0C .x +y -3=0D .x -y +3=0解析:选D 依题意,得直线l 过点(0,3),斜率为1,所以直线l 的方程为y -3=x -0,即x -y +3=0.故选D.3.(2016·上海高考)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距离为________.解析:因为l 1∥l 2,所以两直线的距离d =|-1-1|5=255.答案:2551.(2015·北京高考)圆心为(1,1)且过原点的圆的方程是( )A .(x -1)2+(y -1)2=1 B .(x +1)2+(y +1)2=1 C .(x +1)2+(y +1)2=2 D .(x -1)2+(y -1)2=2解析:选D 圆的半径r =1-02+1-02=2,圆心坐标为(1,1),所以圆的标准方程为(x -1)2+(y -1)2=2.2.(2015·全国卷Ⅱ)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A. 53 B .213C. 253D. 43解析:选B ∵A (1,0),B (0,3),C (2,3), ∴AB =BC =AC =2,△ABC 为等边三角形, 故△ABC 的外接圆圆心是△ABC 的中心, 又等边△ABC 的高为3,故中心为⎝ ⎛⎭⎪⎫1,233, 故△ABC 外接圆的圆心到原点的距离为1+⎝ ⎛⎭⎪⎫2332=213.3.(2016·全国卷Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.解析:如图所示,∵直线AB 的方程为x -3y +6=0,∴ AB =33,∴∠BPD =30°, 从而∠BDP =60°. 在Rt △BOD 中,∵|OB |=23,∴|OD |=2.取AB 的中点H ,连接OH ,则OH ⊥AB , ∴OH 为直角梯形ABDC 的中位线, ∴|OC |=|OD |,∴|CD |=2|OD |=2×2=4. 答案:44.(2015·山东高考)过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA ―→·PB ―→=________.解析:如图所示,可知OA ⊥AP ,OB ⊥BP ,|OP |=1+3=2,又|OA |=|OB |=1,可以求得|AP |=|BP |=3,∠APB =60°, 故PA ―→·PB ―→=3×3×cos 60°=32.答案:325.(2016·全国卷Ⅰ)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.解析:圆C :x 2+y 2-2ay -2=0化为标准方程为x 2+(y -a )2=a 2+2,所以圆心C (0,a ),半径r =a 2+2, 因为|AB |=23,点C 到直线y =x +2a , 即x -y +2a =0的距离d =|0-a +2a |2=|a |2, 由勾股定理得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|a |22=a 2+2,解得a 2=2,所以r =2,所以圆C 的面积为π×22=4π. 答案:4π6.(2017·江苏高考)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上.若PA ―→·PB ―→≤20,则点P 的横坐标的取值范围是________.解析:设P (x ,y ),则PA ―→·PB ―→=(-12-x ,-y )·(-x ,6-y )=x (x +12)+y (y -6)≤20. 又x 2+y 2=50,所以2x -y +5≤0,所以点P 在直线2x -y +5=0的上方(包括直线上). 又点P 在圆x 2+y 2=50上,由⎩⎪⎨⎪⎧y =2x +5,x 2+y 2=50,解得x =-5或x =1,结合图象,可得-52≤x ≤1,故点P 的横坐标的取值范围是[-52,1]. 答案:[-52,1]7.(2015·全国卷Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.解析:由题意知a =4,b =2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x 轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x -m )2+y 2=r 2(0<m <4,r >0),则⎩⎪⎨⎪⎧m 2+4=r 2,4-m 2=r 2,解得⎩⎪⎨⎪⎧m =32,r 2=254.所以圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.答案:⎝ ⎛⎭⎪⎫x -322+y 2=2548.(2016·全国卷Ⅲ)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.若|AB |=23,则|CD |=________.解析:由直线l :mx +y +3m -3=0知其过定点(-3,3),圆心O 到直线l 的距离为d =|3m -3|m 2+1.由|AB |=23得⎝ ⎛⎭⎪⎫3m -3m 2+12+(3)2=12,解得m =-33. 又直线l 的斜率为-m =33,所以直线l 的倾斜角α=π6.画出符合题意的图形如图所示, 过点C 作CE ⊥BD ,则∠DCE =π6. 在Rt △CDE 中,可得|CD |=|AB |cos π6=23×23=4.答案:49.(2017·全国卷Ⅲ)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程. 解:(1)证明:设A (x 1,y 1),B (x 2,y 2),l :x =my +2.由⎩⎪⎨⎪⎧x =my +2,y 2=2x 可得y 2-2my -4=0,则y 1y 2=-4.又x 1=y 212,x 2=y 222,故x 1x 2=y 1y 224=4.因此OA 的斜率与OB 的斜率之积为y 1x 1·y 2x 2=-44=-1,所以OA ⊥OB .故坐标原点O 在圆M 上.(2)由(1)可得y 1+y 2=2m ,x 1+x 2=m (y 1+y 2)+4=2m 2+4. 故圆心M 的坐标为(m 2+2,m ), 圆M 的半径r =m 2+22+m 2.由于圆M 过点P (4,-2),因此AP ―→·BP ―→=0,故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0, 即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0. 由(1)知y 1y 2=-4,x 1x 2=4.所以2m 2-m -1=0,解得m =1或m =-12.当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10,圆M 的方程为(x -3)2+(y -1)2=10.当m =-12时,直线l 的方程为2x +y -4=0,圆心M 的坐标为⎝ ⎛⎭⎪⎫94,-12,圆M 的半径为854,圆M 的方程为⎝ ⎛⎭⎪⎫x -942+⎝ ⎛⎭⎪⎫y +122=8516.10.(2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下: 设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2. 又C 的坐标为(0,1), 故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12, 所以不能出现AC ⊥BC 的情况.(2)证明:由(1)知BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12, 可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22. 由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2. 联立⎩⎪⎨⎪⎧x =-m 2,y -12=x 2⎝ ⎛⎭⎪⎫x -x 22,x 22+mx 2-2=0,可得⎩⎪⎨⎪⎧x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.。
高二数学直线与方程试题
高二数学直线与方程试题1.直线与曲线交于两点,若的面积为1,求直线的方程.【答案】.【解析】首先将直线与曲线联立,求出的长度,再利用点到直线的距离公式求出到直线的距离:即为的高,进而求得,即可求出m.解:由到直线的距离:,所以所求直线方程为:.【考点】1.直线方程;2.直线与圆的方程.2.已知方程,它们所表示的曲线可能是()A. B. C. D.【答案】B【解析】方程ax2+by2=ab化成:,ax+by+c=0化成:y=,对于A:由双曲线图可知:b>0,a<0,∴>0,即直线的斜率大于0,故错;对于C:由椭圆图可知:b>0,a>0,∴<0,即直线的斜率小于0,故错;对于D:由椭圆图可知:b>0,a>0,∴<0,即直线的斜率小于0,故错;故选B.【考点】圆锥曲线的轨迹问题.3.直线的倾斜角的范围是()A.B.C.D.【答案】C【解析】由题意可知,当时,直线方程为,此时直线的倾斜角为,当时,直线的斜率为,当时,,当时,,总是所示,直线的倾斜角的取值范围为.【考点】本小题主要考查含参数的直线的倾斜角的取值范围的求解,考查学生的运算能力和数形结合思想的应用.点评:解决本题,不要漏掉讨论,用基本不等式求最值时,不要忘记适用条件.4.点关于直线的对称点的坐标是_____.【答案】【解析】设关于直线的对称点为,所以直线与已知直线垂直,线段的中点在已知直线上,利用这两个条件可以求出对称点的坐标为.【考点】本小题主要考查点关于直线对称的点的求法,考查学生的计算能力.点评:求点关于直线的对称的点,要用到两个条件:一是垂直,一是中点在已知直线上,这两个条件是最简单的.5.若直线:+与直线:互相垂直,则的值为()A.B.C.或D.1或【答案】D【解析】直线:+与直线:互相垂直,则需要,解得的值为1或.【考点】本小题主要考查两直线垂直的条件的应用,考查学生的运算求解能力.点评:两直线垂直最好用条件,这样可以避免讨论直线的斜率是否存在.6.如果直线与直线平行,则系数()A.B.C.-3D.-6【答案】D【解析】两条直线平行,则两条直线斜率相等,所以【考点】本小题主要考查两条直线平行的条件的应用.点评:不重合的两条直线平行与垂直时斜率的条件要掌握并灵活应用.7.过点和的直线斜率为1,那么的值为____________【答案】1【解析】根据两点间的斜率公式可知【考点】本小题主要考查两点间斜率公式的应用,考查学生的运算求解能力.点评:两点间的斜率公式经常用到,要灵活应用.8.(本题满分12分) 已知直线经过两条直线的交点,且与直线垂直,求(1)交点的坐标(2)直线的方程.【答案】(1)(2)【解析】(1)由,得,. ……6分(2)设与垂直的直线为,直线过,,,直线的方程为:. ……12分【考点】本小题主要考查两条直线的交点的求法、两条直线的位置关系的应用和直线方程的求法,考查学生的运算求解能力.点评:注意到解决此题时,与垂直的直线设为可以简化计算,要注意灵活应用此种设法.9.若圆的半径为4,a、b、c为圆的内接三角形的三边,若abc=16,则三角形的面积为() A.2B.8C.D.【答案】C【解析】根据正弦定理可知.10.已知方程的一个根在区间内,另一根在区间内,则的最小值是()A.3B.4C.9D.16.【答案】B【解析】解:设f(x)=x2+ax+b由函数图象可知:f(0)>0, f(1)<0,f(-1)<0三者同时成立,求解得b>0,a+b+1<0,1-a +b<0,由线性规划的知识画出可行域:以a为横轴,b纵轴,然后分析区域内点到点(0,-3)的距离的平方的最下值问题,那么先求距离的最小值为2,那么可知的最小值是4,选B。
2019-2020学年高中数学必修二《第3章直线与方程》测试卷及答案解析
2019-2020学年高中数学必修二《第3章直线与方程》测试卷一.选择题(共30小题)
1.直线y﹣3=﹣(x+4)的斜率为k,在y轴上的截距为b,则有()A.k =﹣,b=3B.k =﹣,b=﹣2C.k =﹣,b=﹣3D.k =﹣,b=﹣3 2.若直线过点(1,2),(4,2+)则此直线的倾斜角是()
A .
B .
C .
D .
3.已知点A(1,3)、B(﹣2,﹣1),若过点P(2,1)的直线l与线段AB相交,则直线l的斜率k的取值范围是()
A.k ≥B.k≤﹣2C.k或k≤﹣2D.﹣2≤k ≤
4.若点A(﹣2,﹣3),B(﹣3,﹣2),直线L过点P(1,1)且与线段AB相交,则L的斜率k的取值范围是()
A.k ≤或k ≥B.k ≤﹣或k ≥﹣
C .≤k ≤
D .﹣≤k ≤﹣
5.与直线垂直,且过(2,0)点的直线方程是()
A.y=﹣2x+4B .C.y=﹣2x﹣4D .
6.已知O为△ABC 内一点,且,,若B,O,D三点共线,则t 的值为()
A .
B .
C .
D .
7.若直线l1:ax+2y+a+3=0与l2::x+(a+1)y+4=0平行,则实数a的值为()A.1B.﹣2C.1或﹣2D.﹣1或2
8.下列说法正确的是()
A.一条直线的斜率为k=tanα,则这条直线的倾斜角是α
B.过点A(x1,y1)和点B(x2,y2)的直线的方程为=
C.若两直线平行,则它们的斜率相等
D.若两直线斜率之积等于﹣1,则两直线垂直
第1 页共18 页。
第06讲:必修2第三章《直线与方程》单元检测题-高中数学单元检测题及详细解析.doc
必修2第三章《直线与方程》单元检测题本试卷分第I卷(选择题)和第II卷(非选择题)两部分.满分150分.考试时间120分钟.第I卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共6()分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,2), (4,2+萌),则此直线的倾斜角是()A.30°B. 45。
C. 60°D. 90°2.如果直线处+2y+2=0与直线3匕一丿一2=0平行,则系数。
为()3 2A.—3B. —6C. —2D.亍3.下列叙述屮不正确的是()A.若直线的斜率存在,则必有倾斜角与之对应B.每一条直线都有唯一对应的倾斜角C.与坐标轴垂直的直线的倾斜角为0。
或90。
D.若直线的倾斜角为u,则直线的斜率为怡z4.在同一直角坐标系中,表示直线),=做与直线>,=兀+。
的图象(如图所示)正确的是()5.若三点A(3,l), B(—2, b), C(&11)在同一直线上,则实数b等于()A. 2B. 3C. 9D. -96.过点(3, —4)且在两坐标轴上的截距相等的直线的方程是()A.卄),+1=0B.4兀一3)=0C.4x+3y=0D.4兀+3y=0 或x+y+l=07.已知点4(兀,5)关于点(1, y)的对称点为(一2, 一3),则点P(x, y)到原点的距离是()A. 4 B・竝C・飒 D. 08.设点4(2, -3), 3( — 3, -2),直线过P(l,l)且与线段43相交,则/的斜率殳的取值范围是()3 3A. &玄或 4B. —3C. 一3才WRW4 D・以上都不对9.已知直线1\: ov+4y—2=0与直线2x—5y-\~b=0互相垂直,垂足为(1, c),则a + b+c的值为( )A. -4B. 20C. 0D. 2410.如果4(1,3)关于直线/的对称点为B(—5,1),则直线I的方程是()A. 3兀+y+4=0B. x—3y+8 = 0C. x+3y—4=QD. 3x~y+S=011.直线mx+ny+3=0在y轴上截距为一3,而且它的倾斜角是直线伍一y=3也倾斜角的2倍,则( )A. m = _甫,n= 1B. 〃?=—羽,n=~3C. » n =—3D. ~*^3, ~ 112.过点A(0,彳)与B(7,0)的直线厶与过点(2,1),⑶R+1)的直线人和两坐标轴围成的四边形内接于一个圆,则实数£等于()A. —3B. 3C. —6D. 6第II卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知厶:2x+my+1 = 0与人:y=3兀一1,若两直线平行,则加的值为____________ .14.若直线加被两平行线厶:x-y+\=0与念x-y+3=0所截得的线段的长为2迈,则加的倾斜角可以是________ •(写出所有正确答案的序号)① 15。
直线方程复习卷2
必修二 第三章 直线与方程复习卷一、单项选择1、已知直线的倾斜角为45°,在y 轴上的截距为2,则此直线方程为( ) A .2y x =-+ B .2y x =+ C .2y x =- D .2y x =--2、如右图所示,直线123,,l l l 的斜率分别为123,,k k k 则( ) A .123k k k << B .312k k k << C .132k k k << D .321k k k <<3、直线()()21210a x ay a R +-+=∈的倾斜角不可能为( )A .4πB .3πC .2πD .56π4、与直线23y x =-+平行,且与直线34y x =+交于x 轴上的同一点的直线方程是( )A .823y x =--B .142y x =+ C .1823y x =- D .24y x =-+ 5、已知直线10ax by ++=与直线4350x y ++=平行,且10ax by ++=在y 轴上的截距为13,则+a b的值为( )A.7-B.1-C.1D.76、已知直线 310x y +-=与直线2330x my ++=平行,则它们之间的距离是( ) A.1 B.45C.3D.4 7、以(1,3)A ,(5,1)B -为端点的线段的垂直平分线方程是( ) A .38=0+x y - B .3=+0+4x y C .36=0+x y - D .3=+0+3x y 8、l :2360x y +-=与两坐标轴所围成的三角形的面积为( )A .6B .1C .52 D .39、已知直线过点()1,2-且与直线2340x y -+=垂直,则该直线方程为()A .3210x y +-=B .2310x y +-=C .3210x y ++=D .2310x y +-=10、已知直线()1:4410l m x y -++=和()()2:4110l m x m y +++-=,若12l l ⊥,则实数m 的值为( )A .1或3-B .12或13-C .2或6-D .12-或2311、已知过点(2,)A m -和点(,4)B m 的直线为1l ,2:210l x y +-=,3:10l x ny ++=.若12l l //,23l l ⊥,则m n +的值为( ) A .10-B .2-C .0D .812、若光线从点(3,3)P -射到y 轴上,经y 轴反射后经过点(1,5)Q --,则光线从点P 到点Q 走过的路程为( )A .10B .5+17C .45D .217 13、与直线关于x 轴对称的直线方程为A.B.C.D.14、已知直线l 的方程是y =2x +3,则l 关于y =-x 对称的直线方程是( ) A .x -2y +3=0 B .x -2y =0 C .x -2y -3=0 D .2x -y =0 15、若直线1:(4)l y k x =-与直线l 2关于点(2,1)对称,则直线l 2过定点( )A .(0,4)B .(0,2)C .(2,4)-D .(4,2)-16、P 、Q 分别为3x +4y12=0与6x +8y +6=0上任一点,则|PQ|的最小值为( ) A.95B.185C .3D .617、已知直线:20l kx y -+=过定点M ,点(,)P x y 在直线210x y +-=上,则||MP 的最小值是( )A.10 B .55 C.6 D.3518、已知实数满足250x y ++=,那么22x y +的最小值为( )A .5B .5C .25D .5519、设点3(2,)A -,(3,2)B --,直线l 过(1,1)P 且与线段AB 相交,则l 的斜率k 的取值范围是( )A .34k ≥或4k -… B .344k-剟 C .344k -剟 D .以上都不对20、设直线1:210l x y -+=与直线2:30l mx y ++=的交点为A ; ,P Q 分别为12,l l 上任意两点,点M为,P Q 的中点,若12AM PQ =,则m 的值为( ) A .2 B .2- C .3 D .3-21、己知()3,1A ,()1,2B -,若ACB ∠的角平分线所在直线方程是1y x =+,则直线AC 方程为( )A .210x y --=B .1522y x =-+C .25y x =-D .270x y +-= 22、过点()3,1A -且在两坐标轴上截距相等的直线有( ) A .1条 B .2条 C .3条 D .4条二、填空题23、已知ABC ∆的顶点为()()()1,2,3,1,3,4A B C ,则AB 边的中线所在直线的斜率为__________.24、若(2,3),(3,2),(4,)A B C m --三点共线则m 的值为________. 25、点(3,4)A -与点(1,8)B -关于直线l 对称,则直线l 的方程为______.26、过两直线310x y -+=和330x y +-=的交点,并且与原点的最短距离为12的直线的方程为________.27、光线从点(1,4)射向y 轴,经过y 轴反射后过点(3,0),则反射光线所在的直线方程是________. 28、直线1l 过点(2,0)-且倾斜角为30°,直线2l过点()2,0且与1l 垂直,则1l 与2l 的交点坐标为____三、解答题29、求满足下列条件的直线的方程:(1)求与直线20x y -=平行,且过点(2)3,的直线方程; (2)已知正方形的中心为直线220x y -+=和10x y ++=的交点,其一边所在直线的方程为350x y +-=,求其他三边的方程.30、已知直线1:330l mx y m +++=,直线()2:220l x m y +-+=.求当m 为何值时,直线1l 与2l分别有如下位置关系:(1)平行; (2)垂直.31、已知ABC △的顶点()4,3A ,AB 边上的高所在直线为30x y --=,D 为AC 中点,且BD 所在直线方程为370x y +-=.(1)求顶点B 的坐标; (2)求BC 边所在的直线方程。
数学必修二直线与方程 圆与方程测试题
数学必修二直线与方程、圆与方程测试题姓名: 班级: 总分:一、选择题(本大题共12小题,每小题5分,共60分)1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值依次为( ) 、4、4; 、4、4; 、-4、4; 、-4、-4 2 直线0=++c by ax 同时经过第一,二,四象限,则c b a 、、应满足( )A .0,0<>bc abB .0,0<>bc ab C.0,0>>bc ab D .0,0<<bc ab3.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为 ( )A 、1,-1B 、2,-2C 、1D 、-1 4 已知直线)0(0≠=++abc c by ax 与圆122=+y x 相切,则三条边长分别为c b a 、、的三角形( )A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在5.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( ) A.22 C.246.过原点的直线与圆x 2+y 2+4x+3=0相切,若切点在第三象限,则该直线的方程是( )A 、x y 3=B 、x y 3-=C 、x y 33=D 、x y 33-= 7.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( )A. 11<<-aB. 10<<aC. 11>-<a a 或D. 1±=a8.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( ) A. 5 B. 3 C. 10 D. 59.已知M (-2,0), N (2,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( )A.222=+y xB.422=+y xC.)2(222±≠=+x y xD.)2(422±≠=+x y x10.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是( )A 、6πB 、4πC 、3πD 、2π 11 由422=+=y x x y 和圆所围成的较小图形的面积是( )A .4πB .πC .43πD .23π 12 动点在圆122=+y x 上移动时,它与定点)0,3(B 连线的中点的轨迹方程是( )A .4)3(22=++y xB .1)3(22=+-y xC .14)32(22=+-y xD .21)23(22=++y x 二、填空题(本大题共4小题,每小题5分,共20分) 13 三点)2,5()3,4(32k 及),,(-在同一条直线上,则k 的值等于 . 14.以点A(1,4)、B(3,-2)为直径的两个端点的圆的方程为 . 15.设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线05=--y x 的最大距离为______. 16.设a ,b 满足a +2b =1,则直线ax +3y +b =0必过定点 .三、解答题(第17题10分,其余各题每题均12分,共70分)17.求斜率为43,且与坐标轴所围成的三角形的周长是12的直线方程.18.求过两圆x 2+y 2-x+y-2=0,x 2+y 2=5的交点,且圆心在直线3x+4y-1=0上的圆的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一选择题(共 55 分,每题 5 分)1. 已知直线经过点A(0,4)和点 B ( 1, 2),则直线 AB 的斜率为( )A.3B.-2C. 2D. 不存在2.过点 ( 1,3) 且平行于直线 x2 y3 0 的直线方程为()A . x 2y7 0 B . 2x y 1 0 C . x 2y 5 0 D . 2x y 5 0 3. 在同一直角坐标系中,表示直线y ax 与 yx a 正确的是()yyyyOxOxOxO xABCD4.若直线 x+ay+2=0 和 2x+3y+1=0 互相垂直,则a=()A .2B .2 C .33332D .(25.过 (x , y )和 (x , y )两点的直线的方程是)11 22A. yy 1 x x 1 y 2y 1 x 2 x 1 B.yy 1 x x 1 y 2 y 1x 1 x 2C.( y 2 y 1 )( x x 1) (x 2 x 1 )( y y 1) 0D.( x 2x 1)( x x 1) ( y 2 y 1 )( yy 1 ) 06、若图中的直线 L 1 、 L 2、 L 3 的斜率分别为 K 1、K 2、 K 3 则()A 、 K ﹤ K ﹤ KL 3123LB 、 K ﹤ K ﹤ K2 1 3C 、 K 3﹤ K 2﹤ K 1oxD 、 K 1﹤K 3﹤ K 2L 17、直线 2x+3y-5=0 关于直线 y=x 对称的直线方程为( )A 、 3x+2y-5=0B 、 2x-3y-5=0C 、 3x+2y+5=0D 、 3x-2y-5=08、与直线 2x+3y-6=0 关于点 (1,-1)对称的直线是()A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0A.a=2,b=5;B.a=2,b= 5 ;C.a= 2 ,b=5;D.a= 2 ,b= 5 .10、直线 2x-y=7 与直线 3x+2y-7=0 的交点是()A (3,-1)B (-1,3)C (-3,-1)D (3,1)11、过点 P(4,-1)且与直线 3x-4y+6=0垂直的直线方程是()A 4x+3y-13=0B 4x-3y-19=0C 3x-4y-16=0D 3x+4y-8=0二填空题(共20 分,每题 5 分)12.过点(1,2)且在两坐标轴上的截距相等的直线的方程_ __________;13 两直线 2x+3y- k=0 和 x- ky+12=0 的交点在y 轴上,则k 的值是14、两平行直线x 3y 4 0与 2x 6 y 9 0 的距离是。
15 空间两点M1 ( -1,0,3 ) ,M2(0,4,-1) 间的距离是三计算题(共71 分)16、( 15 分)已知三角形ABC 的顶点坐标为 A( -1, 5)、B( -2,-1)、C( 4,3),M 是BC 边上的中点。
( 1)求 AB 边所在的直线方程;( 2)求中线 AM 的长( 3)求 AB 边的高所在直线方程。
17、( 12 分)求与两坐标轴正向围成面积为 2 平方单位的三角形,并且两截距之差为 3 的直线的方程。
18.( 12 分)直线x m2y 6 0与直线( m 2) x 3my 2m 0没有公共点,求实数m的值。
19.( 16 分)求经过两条直线l1 : x y 4 0 和 l 2 : x y 20 的交点,且分别与直线2x y 10 (1)平行,(2)垂直的直线方程。
20、( 16 分)过点(2,3)的直线L被两平行直线L1:2x-5y+9=0与L2:2x-5y-7=0所截线段AB的中点恰在直线x-4y-1=0上,求直线L的方程高中数学必修二第三章直线方程测试题答案1-5BACAC6-10AADBA11A12.y=2x 或 x+y-3=013. ± 614、1015.33 2016、解:( 1)由两点式写方程得y5x1,⋯⋯⋯⋯⋯⋯⋯⋯ 3 分1521即 6x-y+11=0⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分或直 AB 的斜率k1566⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 直 AB 的方2(1)1程y56( x1) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分即 6x-y+11=0⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2) M 的坐(x0, y0),由中点坐公式得x0241, y0131故 M (1, 1)⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分22AM(11) 2(15) 22 5 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分516········( 3 分) AB 的高所在直的斜率(3)因直 AB 的斜率 k AB=23k有 k k AB k( 6)1k 1··········( 6 分)1 ( x 6所以 AB 高所在直方程y34)即x 6 y140 ········(10分)x y 61ab17.解:直方程 1 有意知有3ab 4a b2又有① a b3则有 b1或 b4(舍去)此 a4直线方程为 x+4y-4=0②b a 3则有 b 4或 -1 (舍去)此时 a 1直线方程为 4x y 4 0 18.方法( 1)解:由意知x m2 y 6 0即有( 2m2 -m3 +3m)y=4m-12(m2) x3my 2m0因为两直线没有交点,所以方程没有实根,所以2m2 -m3 +3m= 0 m( 2m-m2 +3)=0m=0或 m=-1或 m=3当 m=3时两直线重合,不合题意,所以m=0或 m=-1方法( 2)由已知,中两直平行,当mm 2 = 3m 2m 由 m 2 = 3m得 m 3或 m 1 0时,1 m2 6 1 m 2由 3m2m得 m3所以 m1m 2 6当 m=0 两直 方程分 x+6=0,-2x=0,即 x=-6,x=0,两直 也没有公共点, 合以上知,当 m=-1 或 m=0 两直 没有公共点。
x y 4 0 x 1 19 解:由y2 0,得; ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..2′x y3∴ l 1 与 l 2 的交点 ( 1, 3)。
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.3′( 1)与直 2xy 1 0 平行的直 2x y c 0 ⋯⋯⋯⋯⋯⋯4′2 3 c 0 ,∴ c = 1。
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..6′ ∴所求直 方程 2x y 1 0。
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7′方法 2:∵所求直 的斜率 k 2 ,且 点( 1, 3), ⋯⋯⋯⋯⋯⋯⋯..5′∴求直 的方程y 32(x 1) , ⋯⋯⋯⋯⋯⋯⋯⋯⋯..⋯⋯⋯..⋯6′即 2 x y 1 0 。
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯...⋯⋯⋯⋯7′( 2)与直 2xy 1 0 垂直的直 x 2y c 0 ⋯⋯⋯⋯⋯⋯8′1 2 3 c0 ,∴ c =- 7。
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.9′∴所求直 方程x 2 y 70 。
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..10′方法 2:∵所求直 的斜率k 1,且 点( 1, 3), ⋯⋯⋯⋯⋯⋯..8′2∴求直 的方程y 31( x 1) , ⋯⋯⋯⋯⋯⋯⋯⋯⋯..⋯⋯⋯9.′2即 x 2 y 70 。
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯...⋯⋯.10′20 、 解 :段 A B 的 中 点 P 的 坐 ( a , b ), 由 P 到 L 1 、 2, L的 距离 相 等 , 得2a 5b92a 5b 7225222 52整理得, 2a 5b 1 0 ,又点 P 在直 x-4y-1=0上,所以a 4b 1 0解方程2a 5b1 0a 3 a4b 1 0得b即点 P 的坐 ( -3,-1),又直 L 点(2,3)1所以直 L的方程y ( 1) x (3),即 4x 5 y 7 03( 1)2( 3)一、选择题1.圆 ( x2) 2y2 5 关于原点 P(0,0)对称的圆的方程为()A.( x 2)2y25B.x2( y 2)25C.(x 2) 2( y 2) 25D.x2( y 2) 252.若 P(2,1)为圆( x1) 2y225的弦 AB 的中点,则直线AB 的方程是()A.x y30B.2x y30C.x y10D.2x y503.圆 x2y 22x2y10上的点到直线x y2的距离最大值是()12A.2B. 12 C.2 D.1224.将直线2xy,沿x轴向左平移 1个单位,所得直线与圆x2y22x 4 y 0相切,则实数的值为()A.3或7 B.2或 8 C.0或10 D. 1或115.在坐标平面内,与点A(1,2) 距离为1,且与点 B(3,1)距离为 2 的直线共有()A.1条B. 2 条C. 3 条D. 4 条6.圆 x 2y 24x0 在点 P(1,3)处的切线方程为()A.x3y20B.x3y40C.x 3 y40D.x3y20二、填空题1.若经过点P(1,0) 的直线与圆x2y 24x 2 y 3相切,则此直线在y轴上的截距是. .2.由动点 P 向圆x2y 21引两条切线PA, PB,切点分别为A, B,APB 600,则动点P 的轨迹方为.3.圆心在直线2 xy7上的圆C与y轴交于两点A(0, 4), B (0,2),则圆C的方程为.4.已知圆 x 3 2y 24和过原点的直线y kx 的交点为P, Q则OP OQ的值为________________.5.已知 P 是直线3x4 y8 0 上的动点, PA, PB 是圆 x 2y 22x 2 y 1 0 的切线,A, B是切点, C 是圆心,那么四边形PACB 面积的最小值是________________.三、解答题1.点P a,b在直线 x y1 0上,求a2b22a 2b2的最小值 .2. 求以A( 1,2), B(5,6)为直径两端点的圆的方程.3.求过点A 1,2和B 1,10且与直线 x 2 y 10 相切的圆的方程.4.已知圆C和y轴相切,圆心在直线x 3 y0上,且被直线y x截得的弦长为2 7,求圆C的方程 .高中数学必修二圆与方程练习题答案一、选择题1.A( x, y) 关于原点 P(0,0) 得 ( x, y) ,则得 ( x2) 2( y)252.A设圆心为C (1,0),则AB CP ,k CP1,k AB1, y 1x 23.B圆心为 C(1,1),r1, d max214.A直线2xy沿x轴向左平移1个单位得2x y2 0C(25,3, 或7圆 x2y21,2), r5, d2x 4 y的圆心为55. B 两圆相交,外公切线有两条D( x 224 的在点 P(1,3)处的切线方程为(12)( x2) 3 y 46.2)y二、填空题1.1点 P(1,0)在圆 x 2y 24x 2 y 3 0上,即切线为xy 102.x2y24OP23.( x2) 2( y3)25圆心既在线段 AB 的垂直平分线即y 3,又在2 x y 7 0上,即圆心为(2,3) , r5设切线为 OT ,则OP OQ24.5OT55.22当CP垂直于已知直线时,四边形PACB的面积最小三、解答题1.解:(a1)2(b1)2的最小值为点(1,1)到直线xy1 0的距离d 332( a2b22a2b 2) min32 2 2 ,而 2 .2.解: (x 1)(x5)( y2)( y6)0得 x2y24x 4 y 17 03.解:圆心显然在线段AB 的垂直平分线y6 上,设圆心为 (a,6),半径为 r ,则a13( x a)2( y6) 2r 2,得(1a)2(10 6) 2r 2r5,而(a216(a13)2,a 3, r25,1)5(x3)2( y6) 220 .3t t2t (3t ,t ), 半径为r3t ,令d4. 解:设圆心为2而 ( 7) 2r 2 d 2 ,9 t 22t 27, t1(x 3)2( y 1)29 ,或 ( x 3)2( y 1)29。