【数学】数学一元二次方程的专项培优练习题(含答案)附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、一元二次方程 真题与模拟题分类汇编(难题易错题)
1.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.
(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;
(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)
【答案】详见解析
【解析】
试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;
(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.
试题解析:(1)设年平均增长率为x ,根据题意得:
10(1+x )2=14.4,
解得x=﹣2.2(不合题意舍去)x=0.2,
答:年平均增长率为20%;
(2)设每年新增汽车数量最多不超过y 万辆,根据题意得:
2009年底汽车数量为14.4×90%+y ,
2010年底汽车数量为(14.4×90%+y )×90%+y ,
∴(14.4×90%+y )×90%+y≤15.464,
∴y≤2.
答:每年新增汽车数量最多不超过2万辆.
考点:一元二次方程—增长率的问题
2.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.
(1)求k 的取值范围;
(2)若x 1+x 2=1﹣x 1x 2,求k 的值.
【答案】(1)12
k ≤
;(2)3k = 【解析】
试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤
12
; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2,
∴k 1=1,k 2=-3.
∵k ≤
12
,∴k =-3.
3.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.
(1)求抛物线的解析式并写出其顶点坐标;
(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上.
①当PA ⊥NA ,且PA=NA 时,求此时点P 的坐标;
②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.
【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P 2﹣1,2);②P (﹣
32
,154) 【解析】
试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;
(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;
②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.
试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0
{3
12a b c c b a ++==-=-,解得:1
{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);
(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得21(舍去)或x=21-,∴点P (21-,2);
②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形 =12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222
x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228
x -++, ∴当x=32-
时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P (32
-,154).
考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.
4.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0.
(1)当a=﹣11时,解这个方程;
(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;
(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值.
【答案】(1)123,4x x =-=(2)54a ≤(3)-4
【解析】
分析:(1)根据一元二次方程的解法即可求出答案;
(2)根据判别式即可求出a 的范围;
(3)根据根与系数的关系即可求出答案.
详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;
(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54
a ≤:; (3)∵12x x ,是方程的两个实数根,
222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.