正比例函数的图像与性质教案
人教版初中数学八年级下册19.2.1《正比例函数的图像和性质》教案
在小组讨论环节,我发现学生们对于正比例函数在实际生活中的应用有着很高的热情,他们能够提出很多有趣的例子。但是,如何将这些例子抽象成数学模型,并运用正比例函数的性质来分析问题,这对他们来说是一个挑战。在这方面,我应该提供更多的引导和示范,让学生学会如何将实际问题转化为数学问题。
-正比例函数性质的掌握:明确当k>0时,函数值随x增大而增大;当k<0时,函数值随x增大而减小。
举例:通过实例说明,如一辆汽车以恒定速度行驶,行驶的距离与时间成正比,这里的比例系数k就是速度。
2.教学难点
-正比例函数图像的绘制:学生需要掌握如何根据函数表达式绘制出准确的图像,特别是对于k值的理解和应用。
人教版初中数学八年级下册19.2.1《正比例函数的图像和性质》教案
一、教学内容
人教版初中数学八年级下册第19章《函数》第二节《正比例函数的图像和性质》。本节课主要内容包括:
1.正比例函数的定义:形如y=kx(k≠0)的函数称为正比例函数。
2.正比例函数的图像:在直角坐标系中,正比例函数的图像是一条通过原点的直线。
五、教学反思
在今天的教学中,我发现学生们对正比例函数的概念和图像性质有了初步的理解,但仍然存在一些难点需要进一步突破。首先,正比例函数的定义对于部分学生来说还不够清晰,他们在理解y=kx(k≠0)这个表达式时显得有些吃力。在讲解过程中,我应该更形象地举例,比如用速度与时间的关系来说明k值的意义,让学生更直观地感受到正比例函数的实际意义。
-正比例函数性质的深入理解:学生可能会对k值的正负与图像斜率的关系感到困惑,需要通过具体实例和图形帮助学生理解。
正比例函数图像及其性质
正比例函数的图像和性质教案一、教学目标1.知识与技能:(1)能画正比例函数的图像,并能根据正比例函数图象的特点快速作图;(2)能够在画图过程中观察并发现正比例函数图像的性质;学会简单描述及应用。
2.过程与方法:(1)初步能够从数学角度去观察事物,思考问题,体验解决问题方法策略的多样性; (2)逐步培养学生的观察能力,概括的能力,通过教师指导发现知识,初步培养学生数形结合的思想以及由特殊到一般的数学思想;(3)能够尝试演绎推理发现规律,体验合作学习的过程。
3.情感态度与价值观:(1)通过小组合做讨论,鼓励学生从多角度思考、探索、交流,激发学生的好奇心和主动学习的欲望;(2)通过本节课的教学希望能激发学生学习数学的兴趣和积极性,逐步培养学生实事求是的科学态度。
二、重点难点教学重点:画正比例函数的图像,并在画图过程中观察并发现函数的性质。
教学难点:在画图过程中观察并发现函数的性质;学会简单描述及应用。
内容。
三、教学过程教学过程是教法和学法的具体实践过程,根据教材的特点和学生实际情况,设计采用“复习旧知—合作探究—归纳总结—强化提高”的模式,安排以下六个环节以完成本节教学:(一)复习引入、温顾知新1.在下列函数中,哪些是正比例函数?并指出正比例系数分别是多少.①y=x, ②y=3x2, ③ y=2x , ④y=2x-4, ⑥y=-x , ⑦y=-2x . 2.正比例函数的定义一般地,形如 y=kx (k 为常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数。
这个过程,由老师提问学生作答,在学生回答不够完善的地方,请其他学生补充,老师紧后给予完善。
3.引入课题:前面我们学习了函数的基本内容以及正比例函数的概念,今天我们一起来探究正比例函数的性质。
首先,你能根据画函数图像的基本步骤画出以下正比例函数的图像吗?4.(二)数形结合、动手画图 例: 画正比例函数 y =3x 的图象 解:1. 列表2. 描点3. 连线4. 贴标签学生对平面坐标系有所了解,但对数形结合的方法还不是很熟练,有必要给学生以示范。
正比例函数的图象和性质教案
学生完成表格
总结:当k>0时,直线y=kx经过第一、三象限, 从左向右上升,即y随X增大而增大;
4、下面请你用两点法画出y=T∕2x函数图像 问题7你能仿照k>0状况总结函数图像性质
吗?
当k<0时,直线y=kx经过第二、四象限,从左 向右下降,即y随X增大而减小
(1)函数取值范围:随意实数
(2)列表中函数值求错
(3)描点位置出错
讲评作业,刚好订正 错误,分析几个易错 点。从而稳固函数图 像做法。
订正作业中正比例 函数图象
J
问题 探究
2、归纳图象性质:
问题1正比例函数图像是什么形态? 答:一条直线
问题2四幅图像中有哪个公共点?
答:原点(0, 0)
总结:正比例函数图象为一条经过原点直线
学问与技能
1、进一步稳固正比例函数概念,会画正比例函数图象,熟识函数图象作图步 骤。
2、能根据正比例函数图象视察、发觉归纳出它性质,并会简洁运用。
过程与方法
1、通过实例函数图象画法学习,发觉并总结正比例函数图象常用画法。
2、通过视察、探究、分析、引导学生发觉正比例函数性质。
3、培育擅长视察问题发觉结论,理解数形结合及由一般到特别数学思想。
问题5它们经过那几个象限?
第三、第一象限
问题6视察左右两边图像有所不同,我们发觉
分类探讨根据是什么?κ>o
问题7图像开展趋势是什么?从左向右上升
大致图像都是上升。
详细来看从左向右X值是在不断如何改变?
X不断增大,那么此时y值呢?也在不断增大.我们就称y随X增大而增大。
完成表格
老师引导视察函数图 像共同点,归纳函数 图像形态,从而引导 学生思索如何用简便 方法画出函数图像。
《正比例函数的图象和性质》教案
《正比例函数的图象和性质》教案一、教学目标:1. 知识与技能:学生能够理解正比例函数的定义和图象特点。
学生能够运用正比例函数的性质解决实际问题。
2. 过程与方法:学生通过观察和分析正比例函数的图象,探索其性质。
学生通过合作交流,培养解决问题的能力。
3. 情感态度价值观:学生培养对数学的兴趣和好奇心,体验数学的乐趣。
学生培养团队合作意识,提高自我表达能力。
二、教学重点与难点:重点:正比例函数的定义和图象特点。
正比例函数的性质。
难点:理解和运用正比例函数的性质解决实际问题。
三、教学准备:教学课件或黑板。
正比例函数的图象和性质的相关素材。
练习题和作业。
四、教学过程:1. 导入:引导学生回顾已学过的函数知识,为新课的学习做好铺垫。
通过实际例子引入正比例函数的概念。
2. 探究正比例函数的定义和图象特点:引导学生观察正比例函数的图象,分析其特点。
学生通过合作交流,总结正比例函数的性质。
3. 讲解正比例函数的性质:引导学生理解正比例函数的性质,并能够运用到实际问题中。
通过例题和练习题,巩固学生对正比例函数性质的掌握。
4. 应用与拓展:给学生提供实际问题,让学生运用正比例函数的性质解决。
引导学生思考正比例函数在实际生活中的应用。
五、作业布置:根据课堂练习题和作业,布置相关的习题,巩固学生对正比例函数的图象和性质的理解。
鼓励学生进行思考和探索,培养学生的自学能力。
六、教学评估:1. 课堂提问:在教学过程中,教师应适时提问学生,了解学生对正比例函数图象和性质的理解程度。
通过学生的回答,教师可以及时发现问题,并进行针对性的讲解和辅导。
2. 练习题解答:在课堂练习环节,教师应观察学生的解答过程,了解学生对正比例函数图象和性质的应用能力。
对于学生解答中出现的问题,教师可以进行个别辅导,帮助学生纠正错误,提高解题能力。
3. 作业完成情况:教师应检查学生作业的完成情况,包括答案的正确性和解题过程的完整性。
通过作业反馈,教师可以了解学生对正比例函数图象和性质的掌握情况,为下一步教学提供参考。
正比例函数的图象和性质【公开课教案】
4.3 一次函数的图象第1课时正比例函数的图象和性质一、学生起点分析八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系.二、教学任务分析《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节.本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。
第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识.为此本节课的教学目标是:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象.2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.4.理解一次函数的代数表达式与图象之间的一一对应关系.教学重点是:初步了解作函数图象的一般步骤:列表、描点、连线.教学难点是:理解一次函数的代数表达式与图象之间的一一对应关系.三、教学过程设计本节课设计了七个教学环节:第一环节:创设情境引入课题;第二环节:画一次函数的图象;第三环节:动手操作,深化探索;第四环节:巩固练习,深化理解;第五环节:课时小结;第六环节:拓展探究;第七环节:作业布置.第一环节:创设情境 引入课题内容:一天,小明以80米/分的速度去上学,请问小明离家的距离S (米)与小明出发的时间t (分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗? S=80t (t ≥0)下面的图象能表示上面问题中的S 与t 的关系吗?我们说,上面的图象是函数S=80t (t ≥0)的图象,这 就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。
《正比例函数的图象和性质》教案
《正比例函数的图象和性质》教案第一章:正比例函数的定义1.1 引入正比例函数的概念通过实际例子(如长度和宽度、速度和时间等)引导学生理解正比例关系。
解释正比例函数的定义:形如y = kx (k 是常数)的函数称为正比例函数,其中x 是自变量,y 是因变量。
1.2 解析正比例函数的性质引导学生分析正比例函数的图像特征,如通过观察图像理解正比例函数的单调性、过原点等性质。
引导学生理解正比例函数的斜率k 的意义,如k 的正负决定了函数图象在坐标平面内的位置,k 的绝对值决定了函数图像的倾斜程度。
第二章:正比例函数的图像2.1 绘制正比例函数的图像引导学生通过观察函数式y = kx 理解函数图像的形状,如直线、通过原点等。
利用计算器或绘图软件,让学生实际绘制正比例函数的图像,观察不同k 值对图像的影响。
2.2 分析正比例函数图像的性质引导学生理解正比例函数图像的几个关键点,如原点、正半轴、负半轴等。
第三章:正比例函数的性质3.1 理解正比例函数的斜率解释斜率的概念,即函数图像在任意两点间的斜率等于这两点的纵坐标之差与横坐标之差的比值。
引导学生理解正比例函数的斜率恒为常数k,与x 的取值无关。
3.2 探讨正比例函数的单调性引导学生通过观察图像或分析函数式,理解正比例函数的单调性,即在定义域内,随着x 的增大,y 也随之增大或减小。
第四章:正比例函数的应用4.1 实际问题引入通过实际问题引入正比例函数的应用,如人口增长、商品价格等。
引导学生将实际问题转化为正比例函数问题,即找到自变量和因变量之间的正比例关系。
4.2 解题方法指导引导学生运用正比例函数的性质和解题方法解决实际问题,如通过给定的两个点的坐标求斜率、通过已知斜率求点的坐标等。
第五章:巩固与拓展5.1 练习题提供一些有关正比例函数的练习题,让学生巩固所学知识,如图像绘制、性质分析、实际应用等。
5.2 拓展讨论引导学生思考正比例函数在实际生活中的应用,如如何利用正比例函数模型预测未来的趋势。
人教版八下数学19.2.1 课时2正比例函数的图像和性质教案+学案
人教版八年级下册数学第19章一次函数19.2一次函数19.2.1正比例函数课时2正比例函数的图像和性质教案【教学目标】知识与技能目标1.能够画出正比例函数的图象.2.根据正比例函数的解析式y=kx(k是常数,k≠0)和图象探索并理解其性质.3.根据两点确定一条直线,可以利用两点(两点法)画正比例函数的图象.过程与方法目标在用描点法画正比例函数图象过程中发现正比例函数性质.情感、态度与价值观目标学生在探究合作中交流,体验知识的形成过程,感知数形结合思想.【教学重点】正比例函数图象的画法和性质的理解.【教学难点】利用正比例函数图象与性质灵活解题.【教学准备】教师准备教学中出示的例题;学生准备坐标纸、学习用具.【教学过程设计】一、情境导入导入一:当今网络已经越来越普及,可以用电脑上网,手机上网等,我们班级有位同学经常上网,他的打字速度非常快,达到每分钟可以输入两百个汉字,真是高手!如果他输入的汉字个数用y(单位:百个)来表示,那么y与输入时间x(单位:分钟)的函数关系式是什么?这个函数是我们前面学习的正比例函数吗?用描点法,你能画出这个函数的图象吗?[设计意图]以学生身边感兴趣的问题导入新课,能更好地激发学生学习的积极性.导入二:1.在下列函数中,哪些是正比例函数?并指出正比例系数分别是多少?①y=x,②y=3x2,③y=2x,④y=2x-4,⑤y=,⑥y=-x ,⑦y=-2x.2.画函数图象需要经历哪些步骤?3.你能依据这些步骤画出以上正比例函数的图象吗?[设计意图]通过设计一组正比例函数,引导学生利用上一节知识,即函数的图象的画法来画正比例函数的图象,体会数形结合思想的应用.二、新知构建1.画正比例函数的图象[过渡语]你能用描点法画正比例函数的图象吗?思路一画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律.(1)y=2x;(2)y=-2x.学生通过列表、描点、连线,在坐标纸上画出所给函数的图象.教师根据学生画出的图象进行有针对性的讲解.解:(1)列表:函数y=2x中自变量x可以是任意实数.列表表示几组对应值:x-3 -2 -1 0 1 2 3y-6 -4 -2 0 2 4 6描点,连线,画出图象,如图所示:(2)列表:y=-2x的自变量取值范围可以是全体实数,列表表示几组对应值:x-3 -2 -1 0 1 2 3y 6 4 2 0 -2 -4 -6描点,连线,画出图象,如图所示.练习:在同一坐标系中,画出下列函数的图象,并对它们进行比较.(1)y=x;(2)y=-x.[设计意图]利用描点法正确地画出两个函数图象,让学生体会数形结合思想.思路二1.正比例函数的图象问题画出下列正比例函数的图象:①y=2x;②y=-2x;③y=x;④y=-x.学生通过列表、描点、连线,在坐标纸上画出所给函数的图象,并观察规律.教师引导学生画图,注意函数图象的三个关键步骤:列表、描点、连线,边巡视边指出学生画图中出现的问题,最后展示正确图象(如图所示),让学生进行对比修改.[设计意图]通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历发现规律的整个过程,从而提高各方面能力及学习兴趣.2.正比例函数的性质思路一提问:观察上面的图象,发现函数图象有什么特点?师生共同归纳函数y=2x和y=-2x的图象特点.两个函数图象的共同点:都是经过原点的直线.不同点:函数y=2x的图象从左向右呈上升状态,经过第一、三象限,即随着x的增大y也增大.函数y=-2x的图象从左向右呈下降状态,经过第二、四象限,即随x 增大y反而减小.学生根据自己所画的图象,以小组形式类似地归纳y=x和y=-x的图象特点:比较两个函数图象可以看出:两个函数图象都是经过原点的直线.函数y=x的图象从左向右上升,经过第一、三象限,即随x的增大y也增大;函数y=-x的图象从左向右下降,经过第二、四象限,即随x的增大y反而减小.总结归纳正比例函数解析式与图象特征之间的规律:正比例函数y=kx.(1)图象:正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线.(2)性质:当k>0时,图象经过第一、三象限,y随x的增大而增大;当k<0时,图象经过第二、四象限,y随x的增大而减小.提问:画正比例函数的图象时,怎样画最简单?为什么?正比例函数y=kx(k是常数,k≠0)的图象是经过原点的一条直线,由于两点确定一条直线,因此画正比例函数图象时我们只需描点(0,0),点(1,k),两点连线即可.说明:正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.[设计意图]利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识.思路二问题:观察所画的四个函数图象,填写你发现的规律:①四个函数图象都是经过的直线.②函数y= 2x的图象经过第象限,从左向右(呈什么趋势),即y 随x的增大而;③函数y=-2x的图象经过第象限,从左向右,即y随x的增大而;④函数y=x的图象经过第象限,从左向右,即y随x的增大而;⑤函数y=-x的图象经过第象限,从左向右,即y随x的增大而.学生观察图象并回答,教师纠正学生回答中不正确的地方,并适当点拨讲解:①原点;②一、三;上升;增大;③二、四;下降;减小;④一、三;上升;增大;⑤二、四;下降;减小.师生共同归纳总结:正比例函数y=kx(k≠0)的性质:(1)图象是经过原点的一条直线.(2)当k>0时,图象经过第一、三象限,从左向右上升,y随x的增大而增大(递增).(3)当k<0时,图象经过第二、四象限,从左向右下降,y随x的增大而减小(递减).思考:画正比例函数的图象时,怎样画最简单?为什么?正比例函数y=kx(k是常数,k≠0)的图象是经过原点的一条直线,由于两点确定一条直线,因此画正比例函数图象时我们只需描点(0,0),点(1,k),两点连线即可.说明:正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.[设计意图]引导学生正确画图、积极探索、总结规律、准确表述.[知识拓展](1)正比例函数y=kx可以说成y与x成正比例,要求函数关系式,只需通过x,y的一组对应值求出k,从而确定关系式.(2)正比例函数的图象是过原点的直线,当k>0时,直线从左到右呈上升趋势,经过第一、三象限;当k<0时,直线从左到右呈下降趋势,经过第二、四象限.画正比例函数的图象时,只需要选取除原点外的一点,再过原点和选取点画直线即可,选取的点一般为点(1,k).(3)正比例函数的性质可以逆用.如当正比例函数y=kx(k≠0)中y随x的增大而增大时,k>0,反之,k<0;若正比例函数的图象过第一、三象限,则k>0等.3.例题讲解例1(补充)(1)已知一个正比例函数的图象经过点(-1,3),则这个正比例函数的表达式是.(2)函数y=5x-b2+9的图象经过原点,则b=.(3)直线y=(2k-3)x经过第二、四象限,则k的取值范围是.〔解析〕(1)设正比例函数的解析式为y=kx,把点(-1,3)代入解析式求出k的值即可;(2)把原点坐标(0,0)代入函数解析式列方程进行求解;(3)根据正比例函数性质列不等式进行求解.解:(1)设正比例函数的解析式为y=kx,∵正比例函数的图象经过点(-1,3),∴-k=3,∴k=-3,∴这个正比例函数的表达式是y=-3x.(2)∵函数y=5x-b2+9的图象经过原点(0,0),∴-b2+9=0,∴b2=9,∴b=±3.(3)∵直线y=(2k-3)x经过第二、四象限,∴2k-3<0,∴k<.故k的取值范围是k<.[设计意图]通过设计一组填空题,让学生根据正比例函数的解析式和性质列方程或不等式求字母的取值或取值范围.例2(补充)已知点(2,-4)在正比例函数y=kx的图象上.(1)求k的值;(2)若点(-1,m)在函数y=kx的图象上,试求出m的值;(3)若A,y1,B(-2,y2),C(1,y3)都在此函数图象上,试比较y1,y2,y3的大小关系.〔解析〕(1) 把点(2,-4)代入y=kx中列方程进行求解;(2)把点(-1,m)代入(1)中函数解析式列方程进行求解;(3)根据正比例函数性质进行求解.解:(1)∵点(2,-4)在正比例函数y=kx的图象上,∴2k=-4, ∴k=-2.(2)由k=-2可得y=-2x,∵点(-1,m)在函数y=-2x的图象上,∴m=-2×(-1)=2.(3)y=-2x,∵k=-2<0,∴y随x的增大而减小,∵A,y1,B(-2,y2),C(1,y3)都在函数y=-2x的图象上,-2<<1,∴y3<y1<y2.[设计意图]通过设计正比例函数的简单应用,让学生根据正比例函数的解析式和性质进行求解,及时复习正比例函数的性质.例3(教材例1)画出下列正比例函数的图象:(1)y=2x, y=x;(2)y=-1.5x, y=-4x.〔解析〕根据正比例函数的图象是一条直线,两点确定一条直线来作图.解:(1)列表,得:x0 1y=2x0 2y=x0描点,连线,即为函数y=2x, y=x的图象(如下图).(2)列表,得:x0 1y=-1.5x0 -1.5y=-4x0 -4描点,连线,即为函数y=-1.5x, y=-4x的图象(如下图).[设计意图]通过设计正比例函数图象的简单画图,让学生知道利用两点确定一条直线来作图,体验数形结合思想的应用.三、教学小结师生一起总结正比例函数的图象和性质:(1)正比例函数的图象是经过坐标原点的一条直线.(2)作y=kx的图象时,应先选取两点,通常选点(0,0)与点(1,k);然后在坐标平面内描点(0,0)与点(1,k);最后过点(0,0)与点(1,k)画一条直线.(3)当k>0时,直线y=kx经过第一、三象限,从左向右上升,即:随着x的增大y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即:随着x的增大y反而减小..【板书设计】19.2一次函数19.2.1正比例函数课时2正比例函数的图像和性质1.画正比例函数的图象2.正比例函数的性质3.例题讲解例1 例2 例3【课堂检测】1.下列函数解析式中,不是正比例函数的是()A.xy=-2B.y+8x=0C.3x=4yD.y=-x解析:根据正比例函数的定义:一般地,两个变量x,y之间的解析式可以表示成形如y=kx(k为常数,且k≠0)的形式,那么y就叫做x的正比例函数.不是正比例函数的是A.故选A.2.函数y=(1-k)x中,如果y随着x增大而减小,那么常数k的取值范围是()A.k<1B.k>1C.k≤1D.k≥1解析:∵函数y=(1-k)x中,y随着x的增大而减小,∴1-k<0,解得k>1.故选B.3.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05 mL.小红同学在洗手后,没有把水龙头拧紧,当小红离开x h后水龙头滴了y mL水.则y关于x的函数解析式为.解析:因为水龙头每秒会滴下2滴水,每滴水约0.05 mL,所以当小红离开x h后水龙头的滴水量y=3600×2×0.05x=360x.故填y=360x.4.直线y=x经过(0,),(,2),且过第象限,y随x的增大而.解析:由y=x可知当y=2时,x=3,故直线y=x经过(0,0),(3,2).由k=>0可知直线y=x 过第一、三象限,y随x的增大而增大.答案:03一、三增大5.已知函数y=(k+3)x|k|-4是正比例函数,且y随x的增大而减小,那么k=. 解析:∵函数y=(k+3)x|k|-4是正比例函数,且y随x的增大而减小,∴∴k=-5.故填-5.6.已知某种小汽车的耗油量是每100 km耗油15升.所使用的93汽油今日涨价到5元/升.(1)写出汽车行驶途中所耗油费y(元)与行程x(km)之间的函数关系式;(2)在平面直角坐标系内描出大致的函数图象;(3)计算娄底到长沙220 km所需油费是多少?解:(1)y=5×x=0.75x.(2)列表,得:x0 1y=0.75x0 0.75描点,连线,得到函数y=0.75x的图象(如下图).(3)当x=220时,y=0.75×220=165(元).【教学反思】成功之处:在本节课通过实际问题的引入,激发学生的学习兴趣,再通过设计一组问题,让学生观察、对比、归纳出正比例函数定义,通过例题来巩固新知识,利用一组由浅入深、由易到难的题,逐题递进,落实本节课的教学重点.在教学形式上采用学生口述、互评等多种方法,激发学生思维,营造良好的课堂气氛.不足之处:由于课堂的容量较大,学生思考问题的时间显得相对不足,学困生就显得很吃力.再教设计:教学设计时可以进行分层设计,一组基础题让学困生完成,另一组难的让基础好的学生完成..人教版八年级下册数学第19章平行四边形19.2一次函数19.2.1正比例函数课时2正比例函数的图像和性质学案【学习目标】1.理解正比例函数的图象的特点,会利用两点(法)画正比例函数的图象.2.掌握正比例函数的性质.3.能结合正比例函数的图象和性质解答有关问题.【学习重点】正比例函数的图象和性质.【学习难点】利用正比例函数的图象和性质解答有关问题.【自主学习】一、知识链接1.已知正比例函数y=3x,当x=0时,y= ;当x=1时,y= .2.画函数图象的步骤有:、、.二、新知预习1.画出下列正比例函数的图象:(1)y=2x,13y x=;(2)y=-1.5x,y=-4x.2.函数y=2x,13y x=的图象的共同特点是__________________________;函数y=2x,13y x=的图象的共同特点是____________________________.3.自主归纳:(1)函数y=kx (k是常数,k≠0)的图象是一条经过的;(2)k>0时,函数y=kx (k是常数,k≠0)的图象经过第象限;k<0时,函数y=kx (k是常数,k≠0)的图象经过第象限;(3)k>0时,函数值y随自变量x 的增大而;k<0时,函数值y随自变量x 的增大而.三、自学自测1.函数y=-3x的图象是经过点(0,__)和(1,___)的一条______,图象经过第___、____象限,从左到右呈_____趋势,即y随x的增大而______.2.在平面直角坐标系中,正比例函数y =kx(k<0)的图象的大致位置只可能是().四、我在自学过程中产生的疑惑【构建新知】一、新知梳理知识点1:正比例函数的图象问题1:正比例函数的图象什么?画正比例函数的图象只需要确定几个点?【典例探究】例1用你认为最简单的方法画出下列函数的图象:(1)-3y x=;(2)3.2 y x =方法总结:画正比例函数图象时我们只需描点(0,0)和点(1,k),连线即可. 例2已知正比例函数y=(k+1)x.(1)若函数图象经过第一、三象限,则k的取值范围是________. (2)若函数图象经过点(2,4),则k_____.知识点2:正比例函数的性质问题2:在函数y=x,y=3x,12y x=-和-4y x=中,随着x的增大,y的值分别如何变化?要点归纳:在正比例函数y=kx中:当k>0时,y的值随着x值的增大而________;当k<0时,y的值随着x值的增大而________.例3已知正比例函数y=mx的图象经过点(m,4),且y的值随着x值的增大三、归纳总结正比例函数y=kx(k≠0)图象正比例函数的图象是一条过原点的直线.k>0 k<0图象是自左向右上升的,经过第一、三象限图象是自左向右下降的,经过第二、四象限|k|越大,图象越陡(即越靠近y轴)性质y随x的增大而增大y随x的增大而减小【学习检测】1.下列图象哪个可能是函数y=-x的图象()2.正比例函数y=2x的图象所过的象限是()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限A(解析:∵正比例函数y=2x中,k=2>0,∴正比例函数y=2x的图象经过第一、三象限.)3.对于正比例函数y =(k-2)x,当x 增大时,y 随x 的增大而增大,则k的取值范围()A.k<2B.k≤2 C.k>2D.k≥24.已知正比例函数y=(k-1)的图象经过第二、四象限,则k的值是()A.±3B.±2C.2D.-2D(解析:由正比例函数y=(k-1)的图象经过第二、四象限,可得故k=-2.)5.正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A.2B.-2C.4D.-4B(解析:∵正比例函数y =mx 的图象经过点A (m ,4),∴m 2=4,∴m =±2.又∵y 的值随x 值的增大而减小,∴m <0,∴m =-2.故选B .)6.函数y=-7x 的图象经过第_________象限,经过点_______与点_______,y 随x 的增大而_______.7.已知正比例函数y =kx (k ≠0),点(2,-3)在函数图象上,则y 随x 的增大而 .(填增大或减小)减小(解析:∵点(2,-3)在正比例函数y =kx (k ≠0)的图象上,∴2k =-3,解得k =-,∴正比例函数解析式是y =-x ,∵k =-<0,∴y 随x 的增大而减小.)8.点(x 1,y 1)与点(x 2,y 2)是正比例函数y =x 的图象上两点,且x 1<x 2,则y 1 y 2.(填“>”“=”或“<”号)<(解析:由k =>0可知y 随x 的增大而增大,故当x 1<x 2时,y 1<y 2.故填<.) 9.已知正比例函数y=(2m+4)x.(1)当m_______,函数图象经过第一、三象限; (2)当m_______,y 随x 的增大而减小; (3)当m_______,函数图象经过点(2,10).10.如图分别是函数x k y 1=,x k y 2=,x k y 3=,x k y 4=的图象. (1)k 1 k 2,k 3 k 4(填“>”或“<”或“=”); (2)用不等号将k 1, k2, k 3, k 4及0依次连接起来.11.已知函数y =(|a |-3)x 2+2ax +a +3是关于x 的正比例函数,求正比例函数的解析式,并画出函数图象.解:∵函数y =(|a |-3)x 2+2ax +a +3是关于x 的正比例函数,∴|a |-3=0,∴a =±3,当a =3时,y=6x+6(舍);当a=-3时,y=-6x.∴正比例函数的解析式为y=-6x.列表,得:x0 -1y0 6描点,连线即可得到函数y=-6x的图象,如图所示.12.已知y与x成正比例,且当x=-2时y=-4.(1)写出y与x的函数关系式;(2)用两点法画出函数图象;(3)设点(a,-2)在这个函数图象上,求a的值;(4)如果x的取值范围是0≤x≤5,求y的取值范围.解:(1)设y与x的函数关系式为y=kx,∵当x=-2时y=-4,∴-2k=-4,∴k=2,∴y与x的函数关系式为y=2x.(2)列表,得:x0 1y=2x0 2描点,连线得到函数y=2x的图象,如图所示.(3)∵点(a,-2)在这个函数图象上,∴2a=-2,∴a=-1.(4)如果x的取值范围是0≤x≤5,那么y的取值范围为0≤y≤10.13.正比例函数y=2x的图象如图所示,点A的坐标为(2,0),函数y=2x的图象上是否存在一点P,使△OAP的面积为4,如果存在,求出点P的坐标,如果不存在,请说明理由.解:存在.理由如下:因为点A的坐标为(2,0),所以OA=2,设点P的坐标为(n,m),因为△OAP的面积为4,所以×OA×|m|=4,即×2×|m|=4,所以m=±4,当m=4时,把x=n, y=m=4代入y=2x,得4=2n,所以n=2,此时点P的坐标为(2,4),当m=-4时,把x=n, y=m=-4代入y=2x,得-4=2n,所以n=-2,此时点P的坐标为(-2,-4).综上所述,点P的坐标为(2,4)或(-2,-4).。
正比例函数的图象与性质说课稿
正比例函数的图象与性质说课稿
14.2 .1 正比例函数的图象与性质(2) 说课
一、教材分析
1、地位与作用
本节课是在学好了正比例函数解析式后,对函数内容的进一步研究,是在平面内的点与有序数对的对应关系基础上建立起来的,是函数与图象第一次完美结合,它的研究方法具有一般性和代表性,为学习其它函数图象奠定了基础,起着承上启下的重要作用。
2、教学重点:探索并掌握正比例函数图象的性质。
3、教学难点:发现与总结正比例函数图象的性质。
【设计意图】
只有让学生在动手操作观察思考中体会,学生才能真正理解它的本质,将所学知识内化为自己的东西。
二、教学目标
1、知识与技能
认识正比例函数图象是一条直线,学会画正比例函数图象,理解性质,培养学生观察、分析、归纳的逻辑思维能力。
2、过程与方法
让学生经历正比例函数图象的性质的过程,提高学生的探究、分析、归纳能力,领悟数形结合的思想。
3、情感态度与价值观
培养学生主动探究的良好学习习惯,发展学生的团结协作意识,体验数学知识来源于生活又服务于生活这一道理,从而提高学生的学习兴趣。
三、教法分析
采用“创设情境——探究归纳——知识应用”的方法及小组合作的方式,给学生提供充分探
究和交流的时间与空间,让学生经历操作、观察、思考、交流、猜想、验证过程获得知识,形成技能。
另外在教学中采用多媒体教学手段,增进教学的直观性,趣味性,提高教学效率。
1。
人教版八年级数学下册19.2.1正比例函数的图像与性质教学设计
(激发学生主动学习的热情,树立自信心,形成积极向上的学习态度。
2.通过小组合作交流,培养学生团结协作、互相帮助的精神,增强团队意识。
3.让学生认识到数学与现实生活的紧密联系,体会数学在生活中的重要性,培养学生的应用意识和实践能力。
-重难点突破设想:通过动态演示或手工绘制正比例函数图像,让学生直观感受图像的形成过程,并结合实际例子,引导学生发现和总结性质。
2.正比例函数在实际问题中的应用是另一个教学难点,学生需要掌握如何将现实问题转化为数学模型,并利用正比例函数的知识解决。
-重难点突破设想:设计多样化的实际问题,如涉及速度、比例尺等,让学生在解决问题的过程中学会建立数学模型,运用正比例函数的知识。
(三)学生小组讨论
1.分组讨论:将学生分成小组,让每个小组讨论以下问题:
a.正比例函数图像的特点;
b.正比例函数在实际生活中的应用;
c.如何根据给定的点或斜率求解正比例函数的表达式。
2.分享交流:各小组派代表分享讨论成果,其他小组进行补充或质疑。通过讨论,让学生深入理解正比例函数的性质和图像特点。
(四)课堂练习
2.情境创设:向学生展示一组生活实例,如一辆汽车以恒定速度行驶,行驶时间和行驶距离的关系。引导学生观察数据,发现行驶距离与时间成正比关系,从而引出正比例函数的概念。
3.提出问题:在复习一次函数的基础上,提问学生:“一次函数y=kx+b中,当b=0时,图像会有什么特点?”通过这个问题,激发学生的好奇心,为新课的学习做好铺垫。
因此,在教学过程中,教师应关注学生的个体差异,因材施教,通过启发式教学、小组合作等方式,引导学生主动探究,提高学生的数学素养和解决问题的能力。同时,注重激发学生的学习兴趣,培养良好的学习习惯,使学生在轻松愉快的氛围中学习正比例函数的知识。
初中数学_正比例函数的图像与性质教学设计学情分析教材分析课后反思
19.2 正比例函数的图像与性质教学设计教学目标:知识技能:会画正比例函数的图像;理解正比例函数的图想和性质。
数学思考:能根据正比例函数图像和解析式y=kx (k ≠0)理解k>0和k<0函数的图象特征及增减性。
问题解决:通过观察图象归纳总结概括出正比例函数性质的活动,发展数学感知、数学表征、数学概括能力。
情感态度:体会数形结合的思想,发展几何直观,体验数学的应用价值。
教学重点:用数形结合的思想方法,通过画图观察,概括正比例函数的图象特征及性质。
教学难点:正比例函数图象特征及性质 授课类型:新授课教具:多媒体:PPT 课件、电子白板 教学活动: 活动1、【知识回顾】1、什么是正比例函数?请你写出两个具体的正比例函数。
2、下列函数是正比例函数的是 (1) (3) 。
(1)y =2x (2)y = x+2 3)3(x y =x y 3)4(=(5)y=x 2+1 121)6(+-=xy 3、描点法画函数图象的步骤是:列表、描点、连线。
活动2、【课堂引入】请用描点法画下列函数的图象、观察图象你能发现什么? ①y=2x ② y=-2x学生分组合作探究老师巡视指导,老师展示学生成果如何画正比例函数的图像?因为正比例函数的图像是一条直线,而两点确定一条直线,画正比例函数的图像时,只需描两个点,然后过这两个点画一条直线 活动3【实践探究交流新知】 用描点法画正比例函数y=3x y=x y=31x 的图象xx 31学生小组讨论总结K >0时正比例函数的性质:当k>0时,它的图像 经过第一、三象限从左向右上升,即随x 的增大y 也增大;用描点法画正比例函数y=-3x y= -x y= -31x 的图象学生小组讨论总结K <0时正比例函数的性质:当k <0时,直线y=kx 经过第二、四象限,从左向右下降,即随着x 的增大y 反而减少。
一般地,正比例函数y=kx (k 是常数,k ≠0)的图象是一条经过原点的直线,我们称它为直线y=kx 。
正比例函数的图像与性质教学设计
正比例函数的图像和性质教学设计一、教学目标1.知识与技能:(1)能画正比例函数的图像,并能根据正比例函数图象的特点快速作图;(2)能够在画图过程中观察并发现正比例函数图像的性质;学会简单描述及应用。
2.过程与方法:(1)初步能够从数学角度去观察事物,思考问题,体验解决问题方法策略的多样性; (2)逐步培养学生的观察能力,概括的能力,通过教师指导发现知识,初步培养学生数形结合的思想以及由特殊到一般的数学思想;(3)能够尝试演绎推理发现规律,体验合作学习的过程。
3.情感态度与价值观:(1)通过小组合做讨论,鼓励学生从多角度思考、探索、交流,激发学生的好奇心和主动学习的欲望;(2)通过本节课的教学希望能激发学生学习数学的兴趣和积极性,逐步培养学生实事求是的科学态度。
二、重点难点教学重点:画正比例函数的图像,并在画图过程中观察并发现函数的性质。
教学难点:在画图过程中观察并发现函数的性质;学会简单描述及应用。
内容。
三、教学过程教学过程是教法和学法的具体实践过程,根据教材的特点和学生实际情况,设计采用“复习旧知—合作探究—归纳总结—强化提高”的模式,安排以下六个环节以完成本节教学:(一)复习引入、温顾知新1.在下列函数中,哪些是正比例函数?并指出正比例系数分别是多少.①y=x, ②y=3x2, ③ y=2x , ④y=2x-4, ⑥y=-x , ⑦y=-2x . 2.正比例函数的定义一般地,形如 y=kx (k 为常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数。
复习引入、温顾知新数形结合、动手画图 分析问题、探究规律 观察异同、归纳总结 分享收获、课堂小结 分层作业、能力升华这个过程,由老师提问学生作答,在学生回答不够完善的地方,请其他学生补充,老师紧后给予完善。
3.引入课题:前面我们学习了函数的基本内容以及正比例函数的概念,今天我们一起来探究正比例函数的性质。
首先,你能根据画函数图像的基本步骤画出以下正比例函数的图像吗?4.(二)数形结合、动手画图 例: 画正比例函数 y =3x 的图象 解:1. 列表2. 描点3. 连线4. 贴标签学生对平面坐标系有所了解,但对数形结合的方法还不是很熟练,有必要给学生以示范。
正比例函数的图象和性质教学设计
正比例函数的图象和性质一、教学目标:(一)知识与能力1、进一步巩固正比例函数的概念,会画正比例函数的图象,进一步熟悉函数图象作图步骤。
2、能根据正比例函数图象观察、发现归纳出它的性质,并会简单运用。
(二)过程与方法1、通过实例函数图象画法的学习,发现并总结正比例函数图象的画法2、通过观察、探究、分析、引导学生发现正比例函数的性质。
3、培养学生善于观察问题发现结论,了解数形结合及由一般到特殊的数学思想。
(三)情感态度及价值观1、培养学生积极参与数学活动,勇于探究,发现数学的现象和规律2、培养学生的数学交流能力和团队协作精神。
二、教学重、难点:正比例函数图象的画法及性质的探索;发现、归纳正比例函数的性质。
三、教法与学法教法:本节课选用引导学生观察,发现法和探索实践归纳法。
本节课的难点是发现正比例函数性质,因此我通过教师引导,启发调动学生的积极性,让学生在课堂上多活动(画、图、交流、展示)、多观察(图象),主动参与到整个教学活动中来,最后发现其性质。
学法指导:教师引导学生观察、发现、归纳的学习方法。
四、教学过程。
教学过程:(一)温故知新,引入课题1、函数的概念、函数的表示方法2、画函数图象的一般步骤(1)列表(2)描点(3)连线(二)探究正比例函数的图象和性质1、一次函数、正比例函数的概念2、正比例函数的图像及性质画出下列正比例函数的图象。
(1)y=2x (y=x y=½x)(2)y=-3x (y=-2x y=-x)提出问题师:1、观察上面的函数图象,它们的形状相同吗?是什么?图象的位置与k值有何联系? 2、正比例函数中y如何随x的变化而变化?通过研讨,观察、讨论、发现结论:k>0时,y=kx 图象经过一、三象限,图像从左到右是上升的趋势,y随x的增大而增大;k<0时,图象经过二、四象限,图像从左到右是下降的趋势,y随x的增大而减小。
K的绝对值越大直线就越陡峭(靠近y轴)(三)巩固练习1、正比例函数y=(m-1)x的图象经过第一、三象限,则m的取值范围是()A.m=1B.m>1C.m<1D.m≥12、若y=5x3m-2 是正比例函数,则m= __________ .3、.函数y=-7x的图象在第_________象限内,经过点_______与点____________ ,y随x的增大而__________.4、正比例函数y=(k+1)x的图象中y随x的增大而增大,则k的取值范围是____________.5.、已知某种小汽车的耗油量是每100km耗油15 L.所使用的汽油为5元/ L .(1)写出汽车行驶途中所耗油费y(元)与行程x(km)之间的函数关系式;(2)在平面直角坐标系内描出大致的函数图象;(3)计算该汽车行驶220 km所需油费是多少?(四)课堂小结:谈一谈,本节课你有什么收获?正比例函数的图象和性质:一般地,形如y=kx+b(k、b为常数,且k≠0)的函数叫做一次函数.形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.k叫做正比例系数.它是一次函数的特殊形式.图象:经过原点的直线.性质:当k>0时,y的值随着x值的增大而增大; 当k<0时,y的值随着x值的增大而减小. (五)布置作业:课本p36练习:1、2.。
正比例函数的图象与性质说课
设计意图:学生独立画出函数图象,观察当 > , < 时函数
的特点及函数与自变量之间的变化关系,然后小组合作交流归纳函
数图象的特点和函数的性质。教师可用几何画板演示,增强几何直
观。
12
3 教学过程
环节3 数形结合,应用函数图象性质
1、函数y=-7x的图象经过第_________象限,经过点_______点
(1)复习正比例函数的概念,能在用描点法画正比例函
数图象过程中发现正比例函数图象性质。
(2)能够利用正比例函数解决简单的数学问题,体会数
形结合的思想。
(3)通过动手操作画图象观察概括出正比例函数图象的
性质的过程,掌握研究函数的方法。学生在探究合作中交流,
体验知识的形成过程,发展抽象能力和几何直观的核心素养。
一般研究正比例函数的图象与性质铺垫。
10
3 教学过程
环节2 画图观察,归纳函数图象性质
活动1、请作出正比例函数 = 的图象(列表,描点,连线)
活动2、学生独立画出 = −的图象,并以小组为单位,讨论下列问题:
问题1 在所作图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满
足关系 = −.
一次接触的函数,描点画图得到其图象的方法为后面学习一次函数,
以及学习反比例函数的图象和二次函数打下良好基础。并且通过观察
图象的变化得到其性质也是学习函数性质的通用方法。因此,本节课
具有承上启下的重要作用。在本节教学中,还应让学生学会观察、归
纳的数学方法,体会数形结合的思想。
3
教育理论中的“要把学生学习知识当作认识
事物的过程来进行教学”的观点,也符合教学
论中自觉性和积极性、教师的主导作用与学生
初中数学《正比例函数的图象与性质》教案基于学科核心素养的教学设计及教学反思
3.画函数图象的步骤:(1)_______(2)_______(3)_______
二、探究
(一)自主探究
1.画正比例函数y=2x的图象
(1)列表
x
…
-2
-1
0
1
2
.
y
…
…
/
(2)描点
(3)画图
/
2.画出正比例函数y=-2x的图象
教学过程设计
教师活动
预设学生活动
设计意图
1.提问:我们已经学习了正比例函数的概念,什么是正比例函数?你能举出两个具体的正比例函数吗?
2.提问:我们知道函数三种表示方法,为了更直观地研究函数的性质,我们可以画出函数的图象,怎么画出函数图象?
问1你能例举出满足正比例函数/这个解析式的自变量与函数的对应数值吗?(通过举例的方法,将抽象的解析式具化,提供观察的载体.)
追问3请与小组的其他同伴合作进行讨论,想一想你所发现的规律是否适用于同伴所画的函数图象?是否适用于黑板上的所有函数解析式?如果不适用,如何调整会更好?
追问4小组统一认识,说一说你们小组所发现的正比例函数图象的规律,并全班展示.
问题7你能归纳正比例函数/(/)性质吗?
追问1你能尝试用自己的语言表述刚才所发现正比例函数图象的一般规律(即正比例函数的性质)吗?
(1).列表
x
…
-2
-1
0
1
2
…
y
…
…
(2).描点
(3).画图
3.独立思考:以上两个正比例函数的图象有什么相同点和不同点?
相同点:两图像都是经过的一条
《正比例函数的图象和性质》教案
《正比例函数的图象和性质》教案第一章:正比例函数的定义与表达式1.1 引入正比例函数的概念通过实际例子,让学生理解正比例函数的定义,即两个变量之间的比例保持不变。
解释正比例函数的表达式为y = kx (k 为常数)。
1.2 学习正比例函数的参数k解释参数k 的含义,即比例常数。
引导学生理解k 的正负对函数图象的影响。
第二章:正比例函数的图象特点2.1 绘制正比例函数的图象利用数轴和坐标系,引导学生绘制正比例函数的图象。
强调图象是一条通过原点的直线,且斜率为k。
2.2 分析正比例函数图象的性质解释正比例函数图象的斜率表示y 随x 变化的速率。
引导学生观察图象的截距为0,即函数在y 轴上的截距为0。
第三章:正比例函数的性质3.1 单调性解释正比例函数的单调性,即函数图象是一条单调增加或单调减少的直线。
引导学生通过观察图象和分析表达式来判断函数的单调性。
3.2 过原点强调正比例函数图象一定经过原点(0,0)。
引导学生通过实际例子来验证这一性质。
第四章:正比例函数的图象与坐标轴的交点4.1 横轴交点解释正比例函数与x 轴的交点为(0,0)。
引导学生通过表达式和图象来确定横轴交点。
4.2 纵轴交点解释正比例函数与y 轴的交点为(0,k)。
引导学生通过表达式和图象来确定纵轴交点。
第五章:正比例函数的应用5.1 实际问题引入通过实际问题引入正比例函数的应用,例如速度与时间的关系。
引导学生理解速度随时间的变化是成正比例的。
5.2 解题方法解释如何利用正比例函数解决实际问题。
引导学生通过建立方程和绘制图象来解决实际问题。
第六章:正比例函数的图象变换6.1 横向变换讲解正比例函数图象在x 轴方向上的变换,如平移、翻折等。
引导学生通过图象来理解和掌握变换规律。
6.2 纵向变换讲解正比例函数图象在y 轴方向上的变换,如平移、翻折等。
引导学生通过图象来理解和掌握变换规律。
第七章:正比例函数与坐标系的交点7.1 函数图象与坐标系的交点讲解正比例函数图象与坐标系的交点,包括原点、横轴交点和纵轴交点。
正比例函数图像和性质 教案
《正比例函数图像和性质》说课一、背景分析1、教材分析为了体现“以学生发展为本”的教学理念,我对教材4.1~4.2节的内容进行了重组,本节课以探究正比例函数图像特征、画法、性质为主,第二课时再进行应用练习,这样设计的目的是给学生提供充足的时间与空间,来体验“知识的形成”过程。
所以本节课的核心内容是正比例函数图像的特征、画法、及性质。
这些内容还体现了丰富的函数思想和数形结合思想。
地位与作用本节课是在学好了《正比例函数解析式》后,对函数内容的进一步研究,是在平面内的点与有序实数对的对应关系基础上建立起来的,是函数与图像第一次完美结合,它的研究方法具有一般性和代表性。
为学习其它函数图像奠定了基础,起着承上启下的重要作用。
2、学生分析所授课的八年级学生已经具有一定的分析能力,学生的思维正从形象思维向抽象思维过渡,已经掌握平面内的点与有序实数对的对应关系,所授课班级,在课外初步了解了几何画板的基本功能,多次进行过小组合作学习。
教学目标设计2、经历从正比例函数解析式与平面内点的轨迹建立联系的过程,探究得出正比例函数图像是一条直线,感受从“一般”到“特殊”得思维过程,体验数形结合的思想。
3、在画具体函数图像的过程中,归纳出画正比例函数图像的一般方法,会利用计算机的几何画板功能在直角坐标平面内,用描点法画函数图像,感受数学的图形美、简洁美。
4、通过一些具体函数图像的分析归纳出正比例函数图像性质,经历“试验——猜想——证实”的数学发现过程,培养团队合作能力,探索能力。
5、经历从现实中来,又回到现实中去的过程,体会数学在认识世界、改造世界中的作用,激发学生学习数学的兴趣。
新课程标准指出教师应“充分关注学生的学习过程,引导学生探索求知”,从这一理念出发我设计了目标1和3。
根据以往的教学经验,学生借助“纸笔”画图来研究图象的特征,往往会占用大量的课堂教学时间,不利于学生接下来探究活动。
所以我设计了目标2。
根据“应重视数学与现实的联系”的课程理念我设计了目标4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.2.1正比例函数图像与性质导学案
1、知识与技能:
知识性目标:理解正比例函数图像特征.
技能性目标:能画出正比例函数图像
2、数学思考:
数学思想:体会与发展建立数学模型和数形结合的思想.
数学研究方法:从特殊到一般,从数到形研究正比例函数图像特征及性质.
3、解决问题:
利用正比例函数图像特征及性质知识解决有关实际问题.
4、情感与态度:
结合描点作图,培养学生认真、细心、严谨的学习态度和学习习惯.
教学重点:正比例函数图像特征和性质.
教学难点:正比例函数图像特征和性质的综合运用.
一情境导入:
3月31日清晨,强飓风尼可拉斯以每小时192km的速度从北部登陆德国,造成重大损伤,飓风在德国横扫的路程随时间变化而变化吗?
问题1.从上表中,你能得出时间和路程之间的函数关系式吗?
问题2.上述解析式是正比例函数吗?
那么它们的图像有什么性质呢?
二自主探究
在同一直角坐标系中画出下列函数图像.
(1)y=2x (2) 解:列表得:
根据你所画的图像回答:
1.上述图像的形状是_____________.
2.对函数y=kx, ,当x=0时,y=_,函数过点__________.
当x=1时,y=_,函数过点__________.
函数y=kx 是一条经过点________和点________的__________.
3.当k>0时,直线y=kx 经过第____________象限. 当k<0时,直线y=kx 经过第____________象限.
4.在函数y=2x 上,当x=-1时,y=____. 当x=0时,y=_____. 当x=1时,y=_____.
当x 增大时,y____________.图像从左到右呈________趋势.
在函数y=-2x 上,当x=-1时,y=____. 当x=0时,y=_____. 当x=1时,y=_____.
当x 增大时,y______________.图像从左到右呈________趋势.
归纳:正比例函数的性质:
x … -3 -2 -1 0 1 2 3 … y=2x
… … …
…
x … -3 -2 -1 0 1 2 3 …
y=-2x …
… y=-x
…
…
x y 21=x y 2-=x
y -=x
y 2
1
=
y (k≠0)是一条经过 .
正比例函数kx
当k > 0时,直线经过象限,从左到右呈趋势,即y随x的增大而
当k<0时,直线经过象限,从左到右呈趋势,即y随x的增大而
三反馈巩固
1.正比例函数y=4x 的图像点(0,__)与(1,__)的____________.
2. 正比例函数y=(m-1)x的图象经过一、三象限,则m的取值范围是( )
A.m=1
B.m>1
C.m<1
D.m≥1
3.下列图象哪个可能是函数y=-8x的图象()
A B
C D
4.下列函数(1)y=5x,(2)y=-3x,(3)y=x,(4)y=-6x中,y随x的增大而减小的是_______.
5.已知(x 1,y 1)和(x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1与y 2•的大小关系是( )
A .y 1>y 2
B .y 1<y 2
C .y 1=y 2
D .以上都有可能
6.由正比例函数解析式(根据k 的正、负),来判断其函数图像分布在哪些象限,并说出函数值的变化情况.
7.已知 , 则函数的图像经过哪些象限?当x 增大时,y 如何变化?
x y 3
2)1(=x y 2)2(=x y 3
2)3(-=0ab <x a b
y =。