平面向量练习题集复习资料
(完整版)平面向量基本概念练习题
(完整版)平面向量基本概念练习题第二章平面向量§2.1 平面向量的实际背景及基本概念班级___________姓名____________学号____________得分____________一、选择题1.下列物理量中,不能称为向量的是()A .质量B .速度C .位移D .力 2.设O 是正方形ABCD 的中心,向量AO OB CO OD u u u r u u u r u u u r u u u r 、、、是()A .平行向量B .有相同终点的向量C .相等向量D .模相等的向量3.下列命题中,正确的是()A .|a | = |b |?a = bB .|a |> |b |?a > bC .a = b ?a 与b 共线D .|a | = 0?a = 04.在下列说法中,正确的是()A .两个有公共起点且共线的向量,其终点必相同;B .模为0的向量与任一非零向量平行;C .向量就是有向线段;D .若|a |=|b |,则a =b5.下列各说法中,其中错误的个数为()(1)向量AB u u u r 的长度与向量BA u u u r 的长度相等;(2)两个非零向量a 与b 平行,则a 与b 的方向相同或相反;(3)两个有公共终点的向量一定是共线向量;(4)共线向量是可以移动到同一条直线上的向量;(5)平行向量就是向量所在直线平行A .2个B .3个C .4个D .5个 *6.△ABC 中,D 、E 、F 分别为BC 、CA 、AB 的中点,在以A 、B 、C 、D 、E 、F 为端点的有向线段所表示的向量中,与EF u u u r 共线的向量有()A .2个B .3个C .6个D .7个二、填空题7.在(1)平行向量一定相等;(2)不相等的向量一定不平行;(3)共线向量一定相等;(4)相等向量一定共线;(5)长度相等的向量是相等向量;(6)平行于同一个向量的两个向量是共线向量中,说法错误的是_______________________.8.如图,O 是正方形ABCD 的对角线的交点,四边形OAED 、OCFB 是正方形,在图中所示的向量中,(1)与AO u u u r 相等的向量有_________________________;(2)与AO u u u r 共线的向量有_________________________;(3)与AO u u u r 模相等的向量有_______________________;(4)向量AO u u u r 与CO u u u r 是否相等?答:_______________.9.O 是正六边形ABCDEF 的中心,且AO =u u u r a ,OB =u u u r b ,AB =u u u r c ,在以A 、B 、C 、D 、E 、F 、O 为端点的向量中:(1)与a 相等的向量有;(2)与b 相等的向量有;(3)与c 相等的向量有.*10.下列说法中正确是_______________(写序号)(1)若a 与b 是平行向量,则a 与b 方向相同或相反;(2)若AB u u u r 与CD u u u r 共线,则点A 、B 、C 、D 共线;(3)四边形ABCD 为平行四边形,则AB u u u r =CD u u u r ;(4)若a = b ,b = c ,则a = c ;(5)四边形ABCD 中,AB DC =u u u r u u u r 且||||AB AD =u u u r u u u r ,则四边形ABCD 为正方形;(6)a 与b 方向相同且|a | = |b |与a = b 是一致的;三、解答题11.如图,以1×3方格纸中两个不同的格点为起点和终点的所有向量中,有多少种大小不同的模?有多少种不同的方向?O A B C D E F12.在如图所示的向量a 、b 、c 、d 、e 中(小正方形边长为1)是否存在共线向量?相等向量?模相等的向量?若存在,请一一举出.13.某人从A 点出发向西走了200m 达到B 点,然后改变方向向西偏北600走了450m 到达C 点,最后又改变方向向东走了200m 到达D 点(1)作出向量AB u u u r 、BC u u u r 、CD u u u r (1cm 表示200m );(2)求DA u u u r 的模.*14.如图,中国象棋的半个棋盘上有一只“马”,开始下棋时它位于A 点,这只“马”第一步有几种可能的走法?试在图中画出来;若它位于图中的P 点,则这只“马”第一步有几种可能的走法?它能否走若干步从A 点走到与它相邻的B 点处?。
平面向量总复习+习题(适合基础差的用)
平面向量小结与复习一、本章知识 1.本章知识网络结构2.本章重点及难点(1) 本章的重点有向量的概念、运算及坐标表示.(2) 本章的难点是向量的概念、运算法则的理解和利用向量解决物理问题和几何问题. (3) 对于本章内容的学习,要注意体会数形结合的数学思想方法的应用3.向量的概念(1)向量的基本要素:大小和方向(2)向量的表示:几何表示法AB ,a ;坐标表示法),(y x yj xi a =+=(3)向量的长度:即向量的大小,记作|a|(4)特殊的向量:零向量a =0 ⇔|a |=0 单位向量0a 为单位向量⇔|0a|=1(5)相等的向量:大小相等,方向相同.⇔=b a),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x .(6)平行向量(共线向量):方向相同或相反的向量,称为平行向量记作a ∥b由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量4.向量的运算:向量的加减法,数与向量的乘积,向量的数量积(内积)及其各运算的坐标表示和性质见下表:向量的数量积实际背景向量 向量及其基本概念 线性运算基本定理坐标表示向量应用向量在物理中的应用向量在几何中的应用向量的加法 实数乘向量向量的减法零向量单位向量相等向量共线向量共线与垂直的坐标表示 加、减、数乘的坐标表示运算类型 几何方法坐标方法 运算性质向量的加法1平行四边形法则(共起点构造平行四边形)2三角(多边)形法则(向量首尾相连)),(2121y y x x b a ++=+a b b a +=+)()(c b a c b a ++=++AC BC AB =+向 量的减 法三角形法则(共起点向被减)),(2121y y x x b a --=-)(b a b a-+=-BA AB -=AB OA OB =-数 乘 向 量1aλ是一个向量,满足:2λ>0时,a λ与a同向;λ<0时, a λ与a异向;λ=0时, aλ =0),(y x a λλλ=a a)()(λμμλ=a a aμλμλ+=+)(b a b aλλλ+=+)( a ∥)0(≠=⇔b b a b λ向 量 的 数量 积b a⋅是一个实数10 =a 或0 =b 或ba ⊥时,b a ⋅=02≠a 且≠b 时,><=⋅b a b a b a ,cos ||||2121y y x x b a +=⋅a b b a ⋅=⋅)()()(b a b a b a⋅=⋅=⋅λλλ c b c a c b a ⋅+⋅=+)( 22||a a =22||y x a +=||||||b a b a ≤⋅5.重要定理、公式:(1)平面向量基本定理 21,e e是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数21,λλ,使2211e e aλλ+=.(2)两个向量平行的充要条件 a ∥b (b ≠0 )⇔存在惟一的实数λ使得a=λb ;(3)两个向量垂直的充要条件 当a ,b ≠0 时,a ⊥b ⇔a ·b=0⇔02121=+y y x x课堂练习1 判断题 (1)AB +BA =O ( ) (2)O AB =O ( ) (3)AB -AC =BC ( )2 选择题 已知a ,b 为两个单位向量,下列四个命题中正确的是( )A .a 与b 相等B .如果a 与b 平行,那么a 与b 相等C a ·b =1D .a 2=b 23.在△ABC 中,AB =c ,AC =b ,若点D 满足BD →=2DC →,则AD →=( )A.23b +13cB.53c -23bC.23b -13cD.13b +23c 4.(2010·广东中山调研)已知a 、b 是两个不共线的向量,AB →=λa +b ,AC →=a +μb (λ,μ∈R),那么A 、B 、C 三点共线的充要条件是( )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=15.(2009·山东)设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则( )A .PA →+PB →=0 B .PC →+PA →=0 C .PB →+PC →=0D .PA →+PB →+PC →=06.已知平面内有一点P 及一个△ABC ,若PA →+PB →+PC →=AB →,则( )A .点P 在△ABC 外部B .点P 在线段AB 上C .点P 在线段BC 上D .点P 在线段AC 上7已知A 、B 、C 是直线l 上的顺次三点,指出向量AB 、AC 、BA 、CB 中,哪些是方向相同的向量8已知AC 为AB 与AD 的和向量,且AC =a ,BD =b ,分别用a 、b 表示AB ,AD9已知ABCDEF 为正六边形,且AB =a ,AE =b ,用a ,b 表示向量DE 、AD 、BC 、EF 、FA 、CD 、AC 、CE10.设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A 、B 、D 三点共线;(2)试确定实数k ,使ka +b 和a +kb 共线.11.(2010·安徽合肥调研)若a ,b 是两个不共线的非零向量,a 与b 起点相同,则当t 为何值时,a ,tb ,13(a +b )三向量的终点在同一条直线上?MOP OB OA ), 1 , 2 ( ), 1 , 5 ( ), 7 ,1 ( = = = 12已知平面向量是直线OP 上的一个动点,求MB MA ⋅的最小值及此时的坐标。
平面向量知识点+例题+练习+答案
五、平面向量1.向量的概念①向量 既有大小又有方向的量。
向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。
向量不能比较大小,但向量的模可以比较大小。
向量表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
向量和数量的区别:向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0))②零向量长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ⇔|a |=0。
由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。
(注意与0的区别)③单位向量 模为1个单位长度的向量,向量0a 为单位向量⇔|0a |=1。
(与AB 共线的单位向量是||AB AB ±);④平行向量(共线向量)方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作a ∥b ,规定零向量和任何向量平行。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线;数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的。
(word完整版)高中数学平面向量专题复习(含例题练习)
平面向量专题复习一.向量有关概念:1. 向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意 不能说向量就是有向线段,为什么?(向量可以平移)。
如:2•零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;uuuS3 .单位向量:长度为一个单位长度的向量叫做单位向量 (与AB 共线的单位向量是AB ); |AB|4 •相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5. 平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作: a // b ,规定零向量和任何向量平行。
提醒:① 相等向量一定是共线向量,但共线向量不一定相等;② 两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线 ,但两条直线平行不包含两条直线重合;③ 平行向量无传递性!(因为有0);uuu uujr④ 三点A B C 共线 AB 、AC 共线;6. 相反向量:长度相等方向相反的向量叫做相反向量。
a 的相反向量是一a 。
女口例1: (1)若a b ,则a b 。
( 2)两个向量相等的充要条件是它们的起点相同,终点相同。
(3)若iuu uuLruuu uuir r r r rAB DC ,则ABCD 是平行四边形。
(4)若ABCD 是平行四边形,则 AB DC 。
( 5)若a b,b c ,则r r r r r r r ra c 。
(6)若a//b,b//c ,贝U a//c 。
其中正确的是 _____________、向量的表示 1 .几何表示法: 用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;2 .付号表示法:用一个小写的英文字母来表示,如 a , b , c 等; 3 .坐标表示法:在平面内建立直角坐标系,以与 - r r r x 轴、y 轴方向相同的两个单位向量 i , j 为基底, —1- —* —F 则平面内的任一向量 a 可表示为a xi y j x,y ,称x,y 为向量a 的坐标,a = x, y 叫做向量a 的坐标表示。
平面向量练习题及答案
平面向量练习题及答案1. 向量初步概念和运算(1) 已知向量a=3i+4j,求向量a的模长。
答案:|a| = √(3^2 + 4^2) = 5(2) 已知向量b=-2i+5j,求向量b的模长。
答案:|b| = √((-2)^2 + 5^2) = √29(3) 已知向量c=2i+3j,求向量c的模长和方向角(与x轴正方向的夹角)。
答案:|c| = √(2^2 + 3^2) = √13方向角θ = arctan(3/2)2. 向量的线性运算(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a+b。
答案:a+b = (3-2)i + (4+5)j = i + 9j(2) 已知向量a=3i+4j,向量b=2i-7j,求向量a-b。
答案:a-b = (3-2)i + (4-(-7))j = i + 11j(3) 已知向量a=3i+4j,求向量-2a的模长。
答案:|-2a| = |-2(3i+4j)| = |-6i-8j| = √((-6)^2 + (-8)^2) = 103. 向量的数量积与投影(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a·b的值。
答案:a·b = (3*-2) + (4*5) = -6 + 20 = 14(2) 已知向量a=3i+4j,向量b=-2i+5j,求向量a在b方向上的投影。
答案:a在b方向上的投影= (a·b)/|b| = 14/√294. 向量的夹角和垂直判定(1) 判断向量a=3i+4j和向量b=-2i+5j是否相互垂直。
答案:两个向量相互垂直的条件是a·b = 0。
计算得到a·b = 14,因此向量a和向量b不相互垂直。
(2) 已知向量a=3i+4j,向量b=-8i+6j,求向量a和向量b的夹角。
答案:向量a和向量b的夹角θ = arccos((a·b)/(∣a∣*∣b∣)) = arccos((-66)/(√25*√100))5. 向量共线和平面向量的应用(1) 已知向量a=3i+4j,向量b=-6i-8j,判断向量a和向量b是否共线。
(完整版)平面向量知识点及练习题有答案,推荐文档
(4)特殊的向量:零向量 a=O |a|=O.单位向量 aO 为单位向量 |aO|=1.
(5)相等的向量:大小相等,方向相同:(x1,y1)=(x2,y2)
x1
y1
x2 y2
(6) 相反向量:a=-b b=-a a+b=0
(7)平行(共线)向量:方向相同或相反的向量,称为平行向量.记作 a∥b.
∴航向为北偏西 30 . 8.过点 O 作向量 OA 、 OB 、 OC ,使之分别与力 F1 , F2 , F3 相等,由于 F1 , F2 ,
F3 的合力为 0 ,则以 OC 、 OB 为邻边的平行四边形的对角线 OD 与 OA 的长度相等,又
由于力 F1 , F2 , F3 的大小相等,∴ OA OB OC ,则三角形 OCD 和三角形
6
6
(7)北偏西 300
(8) 1200
(9)略
m 6 m 3
(10) n 3
或
n
3 2
略解或提示:
1.由单位向量的定义即得 a b 1 ,故选(D).
2.由于 AC AB AD ,∴ AC AB AD ,即 BC AD ,∴线段 BC 与线段 AD 平行且
相等,∴ ABCD 为平行四边形,选(A).
④S△=1/2sinC·ab=1/2ac·sinB=1/2cb·sinA ⑤S△= PP aP bP c [海伦公式]
⑥S△=1/2(b+c-a)ra[如下图]=1/2(b+a-c)rc=1/2(a+c-b)rb
[注]:到三角形三边的距离相等的点有 4 个,一个是内心,其余 3 个是旁心. 如图:
向量 MN 用 a 、 b 表示为
平面向量专题(优秀经典专题梳理练习及答案详解)
n=-1.
7、设向量 a=(4cos α,sin α),b=(sin β,4cos β),c=(cos β,-4sin β). (1)若 a 与 b-2c 垂直,求 tan(α+β)的值; (2)求|b+c|的最大值; (3)若 tan αtan β=16,求证:a∥b.
7、解析:(1)因为 a 与 b-2c 垂直,所以 a·(b-2c)=0,即 4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β=0,4sin (α+β)-8cos(α+β)=0,
643 2
5、解析:由 a·(b-a)=a·b-|a|2=2=6cos θ-1,
∴cos θ=1, 2
∴θ=π. 答案:C 3
→
→
→
→
→
6、已知 A(-2,4),B(3,-1),C(-3,-4).设AB=a,BC=b,CA=c,且CM=3c,CN
=-2b.
(1)求 3a+b-3c;(2)求满足 a=mb+nc 的实数 m,n;
②若
Ax1
,
y1
,
Bx2
,
y
2
,则
uuur AB
x2
x1,
y2
y1
;
③若 ar =(x,y),则 ar =( x, y);
④若
ar
x1,
y1
,
r b
x2 ,
y2
,则
ar
//
r b
x1 y2
x2
y1
0
。
3、平面向量的相关计算
rr ①向量的模与平方的关系: a a
ar 2
|
ar
|2
。
②乘法公式成立
含解析高中数学《平面向量》专题训练30题(精)
含解析高中数学《平面向量》专题训练30题(精)含解析高中数学《平面向量》专题训练30题(精)1.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.【答案】(1)(2)时,取到最大值3;时,取到最小值.【解析】【分析】(1)根据,利用向量平行的充要条件建立等式,即可求x的值.(2)根据求解求函数y=f(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值.【详解】解:(1)∵向量.由,可得:,即,∵x∈[0,π]∴.(2)由∵x∈[0,π],∴∴当时,即x=0时f(x)max=3;当,即时.【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.2.已知中,点在线段上,且,延长到,使.设.(1)用表示向量;(2)若向量与共线,求的值.【答案】(1),;(2)【解析】【分析】(1)由向量的线性运算,即可得出结果;(2)先由(1)得,再由与共线,设,列出方程组求解即可.【详解】解:(1)为BC的中点,,可得,而(2)由(1)得,与共线,设即,根据平面向量基本定理,得解之得,.【点睛】本题主要考查向量的线性运算,以及平面向量的基本定理,熟记定理即可,属于常考题型.3.(1)已知平面向量、,其中,若,且,求向量的坐标表示;(2)已知平面向量、满足,,与的夹角为,且(+)(),求的值.【答案】(1)或;(2)【解析】【分析】(1)设,根据题意可得出关于实数、的方程组,可求得这两个未知数的值,由此可得出平面向量的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得的值.【详解】(1)设,由,可得,由题意可得,解得或.因此,或;(2),化简得,即,解得4.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】【详解】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴5.已知向量与的夹角,且,.(1)求,;(2)求与的夹角的余弦值.【答案】(1),;(2).【解析】【分析】(1)利用平面向量数量积的定义可计算得出的值,利用平面向量数量积的运算性质计算得出的值;(2)计算出的值,利用平面向量夹角的余弦公式可求得与的夹角的余弦值.【详解】(1)由已知,得,;(2)设与的夹角为,则,因此,与的夹角的余弦值为.6.设向量,,记(1)求函数的单调递减区间;(2)求函数在上的值域.【答案】(1);(2).【解析】【详解】分析:(1)利用向量的数量积的坐标运算式,求得函数解析式,利用整体角的思维求得对应的函数的单调减区间;(2)结合题中所给的自变量的取值范围,求得整体角的取值范围,结合三角函数的性质求得结果.详解:(1)依题意,得.由,解得故函数的单调递减区间是.(2)由(1)知,当时,得,所以,所以,所以在上的值域为.点睛:该题考查的是有关向量的数量积的坐标运算式,三角函数的单调区间,三角函数在给定区间上的值域问题,在解题的过程中一是需要正确使用公式,二是用到整体角思维.7.在中,内角,,的对边分别是,,,已知,点是的中点.(Ⅰ)求的值;(Ⅱ)若,求中线的最大值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)由正弦定理,已知条件等式化边为角,结合两角和的正弦公式,可求解;(2)根据余弦定理求出边的不等量关系,再用余弦定理把用表示,即可求解;或用向量关系把用表示,转化为求的最值.【详解】(Ⅰ)由已知及正弦定理得.又,且,∴,即.(Ⅱ)方法一:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴在和中,由余弦定理得,,①.②由①②,得,当且仅当时,取最大值.方法二:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴,两边平方得,∴,当且仅当时,取最大值.【点睛】本题考查正弦定理、余弦定理在三角形中应用,考查基本不等式和向量的模长公式的灵活运用,是一道综合题.8.已知平面向量,.(1)若,求的值;(2)若,与共线,求实数m的值.【答案】(1);(2)4.【解析】(1)求出,即可由坐标计算出模;(2)求出,再由共线列出式子即可计算.【详解】(1),所以;(2),因为与共线,所以,解得m=4.9.已知向量.(Ⅰ)若,求的值;(Ⅱ)若,求向量与夹角的大小.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求出的坐标,再根据,可得,即可求出,再根据向量模的坐标表示计算可得;(Ⅱ)首先求出的坐标,再根据计算可得;【详解】解:(Ⅰ)因为,所以,由,可得,即,解得,即,所以;(Ⅱ)依题意,可得,即,所以,因为,所以与的夹角大小是.10.如图,在中,,,,,.(1)求的长;(2)求的值.【答案】(1);(2).【解析】(1)将用和表示,利用平面向量数量积的运算律和定义计算出的值,即可得出的长;(2)将利用和表示,然后利用平面向量数量积的运算律和定义计算出的值.【详解】(1),,,,,,.;(2),,,.【点睛】本题考查平面向量模与数量积的计算,解题的关键就是选择合适的基底将题中所涉及的向量表示出来,考查计算能力,属于中等题.11.如图所示,在中,,,,分别为线段,上一点,且,,和相交于点.(1)用向量,表示;(2)假设,用向量,表示并求出的值.【答案】(1);(2),.【解析】【分析】(1)把放在中,利用向量加法的三角形法则即可;(2)把,作为基底,表示出,利用求出.【详解】解:由题意得,,所以,(1)因为,,所以.(2)由(1)知,而而因为与不共线,由平面向量基本定理得解得所以,即为所求.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.12.已知向量与的夹角为,且,.(1)若与共线,求k;(2)求,;(3)求与的夹角的余弦值【答案】(1);(2),;(3).【解析】【分析】(1)利用向量共线定理即可求解.(2)利用向量数量积的定义:可得数量积,再将平方可求模.(3)利用向量数量积即可夹角余弦值.【详解】(1)若与共线,则存在,使得即,又因为向量与不共线,所以,解得,所以.(2),,(3).13.已知.(1)当为何值时,与共线(2)当为何值时,与垂直?(3)当为何值时,与的夹角为锐角?【答案】(1);(2);(3)且.【解析】【分析】(1)利用向量共线的坐标表示:即可求解.(2)利用向量垂直的坐标表示:即可求解.(3)利用向量数量积的坐标表示,只需且不共线即可求解.【详解】解:(1).与平行,,解得.(2)与垂直,,即,(3)由题意可得且不共线,解得且.14.如图,在菱形ABCD中,,.(1)若,求的值;(2)若,,求.(3)若菱形ABCD的边长为6,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由向量线性运算即可求得值;(2)先化,再结合(1)中关系即可求解;(3)由于,,即可得,根据余弦值范围即可求得结果.【详解】解:(1)因为,,所以,所以,,故.(2)∵,∴∵ABCD为菱形∴∴,即.(3)因为,所以∴的取值范围:.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.已知,,与夹角是.(1)求的值及的值;(2)当为何值时,?【答案】(1);(2)【解析】【分析】(1)利用数量积定义及其向量的运算性质,即可求解;(2)由于,可得,利用向量的数量积的运算公式,即可求解.【详解】(1)由向量的数量积的运算公式,可得,.(2)因为,所以,整理得,解得.即当值时,.【点睛】本题主要考查了数量积定义及其运算性质、向量垂直与数量积的关系,其中解答中熟记向量的数量积的运算公式,以及向量垂直的坐标运算是解答的关键,着重考查了推理能力与计算能力,属于中档题.16.设向量(I)若(II)设函数【答案】(I)(II)【解析】【详解】(1)由=(sinx)2+(sinx)2=4sin2x,=(cosx)2+(sinx)2=1,及,得4sin2x=1.又x∈,从而sinx=,所以x=.(2)sinx·cosx+sin2x=sin2x-cos2x+=sin+,当x∈时,-≤2x-≤π,∴当2x-=时,即x=时,sin取最大值 1.所以f(x)的最大值为.17.化简.(1).(2).【答案】(1);(2).【解析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1);(2).18.已知点,,,是原点.(1)若点三点共线,求与满足的关系式;(2)若的面积等于3,且,求向量.【答案】(1)(2)或【解析】【分析】(1)由题意结合三点共线的充分必要条件确定m,n满足的关系式即可;(2)由题意首先求得n的值,然后求解m的值即可确定向量的坐标.【详解】(1),,由点A,B,C三点共线,知∥,所以,即;(2)由△AOC的面积是3,得,,由,得,所以,即,当时,,?解得或,当时,,方程没有实数根,所以或.【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.如图,在直角梯形中,为上靠近B的三等分点,交于为线段上的一个动点.(1)用和表示;(2)求;(3)设,求的取值范围.【答案】(1);(2)3;(3).【解析】【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,将由这一组基向量的唯一表示出而得解;(3)由动点P设出,结合平面向量基本定理,建立为x的函数求解.【详解】(1)依题意,,,;(2)因交于D,由(1)知,由共起点的三向量终点共线的充要条件知,,则,,;(3)由已知,因P是线段BC上动点,则令,,又不共线,则有,,在上递增,所以,故的取值范围是.【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.20.设向量满足,且.(1)求与的夹角;(2)求的大小.【答案】(1);(2)【解析】【分析】(1)由已知得,展开求得,结合夹角公式即可求解;(2)由化简即可求解.【详解】(1)设与的夹角为θ由已知得,即,因此,得,于是,故θ=,即与的夹角为;(2)由.21.已知,,(t∈R),O是坐标原点.(1)若点A,B,M三点共线,求t的值;(2)当t取何值时,取到最小值?并求出最小值.【答案】(1)t;(2)当t时,?的最小值为.【解析】【分析】(1)求出向量的坐标,由三点共线知与共线,即可求解t的值.(2)运用坐标求数量积,转化为函数求最值.【详解】(1),,∵A,B,M三点共线,∴与共线,即,∴,解得:t.(2),,,∴当t时,?取得最小值.【点睛】关键点点睛:(1)由三点共线,则由它们中任意两点构成的向量都共线,求参数值.(2)利用向量的数量积的坐标公式得到关于参数的函数,即可求最值及对应参数值.22.设向量,,.(1)求;(2)若,,求的值;(3)若,,,求证:A,,三点共线.【答案】(1) 1(2)2(3)证明见解析【解析】【分析】(1)先求,进而求;(2)列出方程组,求出,进而求出;(3)求出,从而得到,得到结果.(1),;(2),所以,解得:,所以;(3)因为,所以,所以A,,三点共线.23.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.24.在中,,,,点,在边上且,.(1)若,求的长;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)先设,,根据题意,求出,,再由向量模的计算公式,即可得出结果;(2)先由题意,得到,,再由向量数量积的运算法则,以及题中条件,得到,即可求出结果.【详解】(1)设,,则,,因此,所以,,(2)因为,所以,同理可得,,所以,∴,即,同除以可得,.【点睛】本题主要考查用向量的方法求线段长,考查由向量数量积求参数,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.25.已知向量,,,且.(1)求,;(2)求与的夹角及与的夹角.【答案】(1),;(2),.【解析】【分析】(1)由、,结合平面向量数量积的运算即可得解;(2)记与的夹角为,与的夹角为,由平面向量数量积的定义可得、,即可得解.【详解】(1)因为向量,,,且,所以,所以,又,所以;(2)记与的夹角为,与的夹角为,则,所以.,所以.【点睛】本题考查了平面向量数量积的运算与应用,考查了运算求解能力,属于基础题.26.平面内给定三个向量,,.(1)求满足的实数,;(2)若,求实数的值.【答案】(1),;(2).【解析】【分析】(1)依题意求出的坐标,再根据向量相等得到方程组,解得即可;(2)首先求出与的坐标,再根据向量共线的坐标表示计算可得;【详解】解:(1)因为,,,且,,,,.,解得,.(2),,,.,,,.,解得.27.如图,已知中,为的中点,,交于点,设,.(1)用分别表示向量,;(2)若,求实数t的值.【答案】(1),;(2).【解析】(1)根据向量线性运算,结合线段关系,即可用分别表示向量,;(2)用分别表示向量,,由平面向量共线基本定理,即可求得t的值.【详解】(1)由题意,为的中点,,可得,,.∵,∴,∴(2)∵,∴∵,,共线,由平面向量共线基本定理可知满足,解得.【点睛】本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.28.已知,向量,.(1)若向量与平行,求k的值;(2)若向量与的夹角为钝角,求k的取值范围【答案】(1)或;(2).【解析】(1)利用向量平行的坐标表示列式计算即得结果;(2)利用,且不共线,列式计算即得结果.【详解】解:(1)依题意,,,又,得,即解得或;(2)与的夹角为钝角,则,即,即,解得或.由(1)知,当时,与平行,舍去,所以.【点睛】思路点睛:两向量夹角为锐角(或钝角)的等价条件:(1)两向量夹角为锐角,等价于,且不共线;(2)两向量夹角为钝角,等价于,且不共线.29.已知.(1)若,求的值;(2)若,求向量在向量方向上的投影.【答案】(1)(2)【解析】【分析】(1)先得到,根据可得,即可求出m;(2)根据求出m=2,再根据求在向量方向上的投影.【详解】;;;;;;;在向量方向上的投影为.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.30.平面内给定三个向量.(1)求;(2)求满足的实数m和n;(3)若,求实数k.【答案】(1)6;(2);(3).【解析】(1)利用向量加法的坐标运算得到,再求模长即可;(2)先写的坐标,再根据使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由,得,;(2),,,,故,解得;(3),,,,,,即,解得.【点睛】结论点睛:若,则等价于;等价于.试卷第1页,共3页试卷第1页,共3页。
平面向量高考一轮总复习完整版(含全部知识点习题)
第一课时 向量的基本概念及基本运算C【知识要点】1.向量的基本概念(1)定义:既有大小又有方向的量叫做向量;向量的大小叫做向量的模 (2)特定大小或关系的向量①零向量:模为0的向量,记作→0,其方向是任意的②单位向量:模为1个单位长度的向量 ③共线向量(平行向量):方向相同或相反的非零向量。
规定:零向量与任何向量共线 ④相等向量:模长相等且方向相同的向量⑤相反向量:模长相等但方向相反的向量。
规定:零向量的相反向量是它本身 2.向量的表示法①字母表示法:如小写字母a , b , c 等,或AB ,CD 等 ②几何表示法:用一条有向线段表示 ③代数表示法:即向量的坐标表示法1.向量的加法、减法(1)法则:平行四边形法则、三角形法则 (2)运算律:交换律、结合律 (3)几何意义:2.向量的数乘(实数与向量的积) (1)定义与法则:(2)运算律:交换律、结合律、分配律 1.共线定理:向量与非零向量共线的充要条件是:有且只有一个实数λ,使得λ=2.平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数221121,,e e a λλλλ+=使3.三点共线定理:平面上三点A 、B 、C 共线的充要条件是:存在实数βα,,使得βα+=,其中1=+βα ,O 为平面上任意一点4.①平面内有任意三点O 、A 、B ,若M 是线段AB 的中点,则()+=21②ABC ∆中,M 为BC 边的中点,G 为重心,则=++,=++ ③向量加法的多边形法则 【自主练习】1. 以下命题中,正确命题的序号是 (1=,则b a = (2)b a b a =则都是单位向量若,, (3)===则若,,(4)==则,//(5)若四边形ABCD 是平行四边形,则==,2.已知直线a y x =+与圆422=+y x 交于AB两点,且-=+。
其中O 为坐标原点,则实数a 的值为3.已知向量,53=-=+=,则= 4.已知()-=+-=+=3,82,5 ,则( ) A. 点A 、B 、D 共线 B. 点A 、B 、C 共线 C. 点B 、C 、D 共线 D. 点A 、C 、D 共线 【典例解析】例1.对于非零向量b a ,,“=+”是“//”的( )A. 充分非必要B. 必要不充分C. 充要条件D.既不充分也不必要知识突破:如图,四边形ABCD ,其中A. 与B. 与C. DB AC 与D. OB DO 与例2.如图所示,D 、E 是△ABC 中AB ,AC 边的中点, M 、N 分别是DE ,BC 的中点。
平面向量复习题及复习资料
A.(4,3) B.(4,-3) C.(3,4) D.(-3,4)
11、点(2,-3)到直线 的距离为( )
12、下列命题中:
① ∥ 存在唯一的实数 ,使得 ;② 为单位向量,且 ∥ ,则 =±| |· ;③ ;④ 与 共线, 与 共线,则 与 共线;⑤若 其中正确命题的序号是()
14. 在 中,O为中线AM上一个动点,若AM=2,则 的最小值是________。
答案 -2
15.已知ΔABC的角A、B、C所对的边分别是a、b、c,设向量 ,
, .
(1)若 // ,求证:ΔABC为等腰三角形;
(2)若 ⊥ ,边长c = 2,角C = ,求ΔABC的面积 .
证明:(1)
即 ,其中R是三角形ABC外接圆半径, 为等腰三角形
解(2)由题意可知
由余弦定理可知,
课后练习
1、已知ABCD为矩形,E是DC的中点,且 = , = ,则 =()
(A) + (B) - (C) + (D) -
2、设非零向量a与b的方向相反,那么下面给出的命题中,正确的个数是()
(1)a+b=0 (2)a-b的方向与a的方向一致(3)a+b的方向与a的方向一致(4)若a+b的方向与b一致,则|a|<|b|
A.1个B.2个C.3个D.4个
3、已知a=(1,-2),b=(1,x),若a⊥b,则x等于()
A. B. C. 2 D.-2
4、下列各组向量中,可以作为基底的是()
A. B.
C. D.
5、已知向量a,b的夹角为 ,且|a|=2,|b|=5,则(2a-b)·a=()
A.3 B. 9 C . 12 D. 13
6、已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|=()
(完整版)平面向量专项训练(含答案)
平面向量专题训练知识点回顾1.向量的三种线性运算及运算的三种形式。
向量的加减法,实数与向量的乘积,两个向量的数量积都称为向量的线性运算,前两者的结果是向量,两个向量数量积的结果是数量。
每一种运算都可以有三种表现形式:图形、符号、坐标语言。
主要内容列表如下:运 算图形语言符号语言坐标语言加法与减法→--OA +→--OB =→--OC→--OB -→--OA =→--AB记→--OA =(x 1,y 1),→--OB =(x 1,y 2) 则→--OA +→--OB =(x 1+x 2,y 1+y 2)AB OB --→=u u u r -→--OA =(x 2-x 1,y 2-y 1)→--OA +→--AB =→--OB实数与向量 的乘积→--AB =λ→aλ∈R记→a =(x,y) 则λ→a =(λx,λy)两个向量 的数量积→a ·→b =|→a ||→b | cos<→a ,→b >记→a =(x 1,y 1), →b =(x 2,y 2) 则→a ·→b =x 1x 2+y 1y 2(3)两个向量平行 :设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔a b λ=r r⇔x 1y 2-x 2y 1=0(4)两个向量垂直:设→a =(x 1,y 1), →b =(x 2,y 2),则→a ⊥→b⇔a 0b •=r r ⇔x 1x 2+y 1y 2=0 课堂精练一、选择题1. 已知平面向量a =,1x () ,b =2,x x (-), 则向量+a b ( )A 平行于x 轴 B.平行于第一、三象限的角平分线C.平行于y 轴D.平行于第二、四象限的角平分线2. 已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c =( ) A .77(,)93 B .77(,)39-- C .77(,)39 D .77(,)93--ECBA 3.已知向量(1,0),(0,1),(),a b c ka b k R d a b ===+∈=-,如果//c d 那么 ( ) A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向 4已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( ) A.(21)--, B.(21)-,C.(10)-,D.(12),5.设P 是△ABC 所在平面内的一点,2BC BA BP +=u u u r u u u r u u u r,则( )A.0PA PB +=u u u r u u u r rB.0PC PA +=u u u r u u u r rC.0PB PC +=u u u r u u u r rD.0PA PB PC ++=u u u r u u u r u u u r r6.已知向量a = (2,1),a ·b = 10,︱a + b ︱=b ︱=( ) 7.设a 、b 、c 是单位向量,且a ·b =0,则()()a c bc -•-的最小值为( )A.2-2C.1-D.18已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a( )A .1BC .2D .49平面向量a 与b 的夹角为060,(2,0)a =,1b= 则2ab +=( )B.10.若向量a=(1,1),b=(-1,1),c=(4,2),则c=( )A.3a+bB. 3a-bC.-a+3bD. a+3b11.如图1, D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则 ( )A .0AD BE CF ++=u u u r u u u r u u u r rB .0BD CF DF -+=u u u r u u u r u u u r rC .0AD CE CF +-=u u u r u u u r u u u r rD .0BD BE FC --=u u u r u u u r u u u r r12.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0u u u r u u u r u u u r,那么( )A.AO OD =u u u r u u u rB.2AO OD =u u u r u u u rC.3AO OD =u u u r u u u rD.2AO OD =u u u r u u u r13.设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a ,( )A .150° B.120° C.60° D.30°14.已知()()3,2,1,0a b =-=-,向量a b λ+与2a b -垂直,则实数λ的值为( )A.17-B.17C.16-D.1615.已知1,6,()2==-=g a b a b a ,则向量a 与向量b 的夹角是( )A .6πB .4π C .3π D .2π16.已知向量(1,1),(2,),x ==a b 若a +b 与-4b 2a 平行,则实数x 的值是 ( ) A .-2B .0C .1D .217.在ABC △中,AB =u u u r c ,AC =u u u r b .若点D 满足2BD DC =u u u r u u u r ,则AD =u u u r ( )A .2133+b cB .5233-c bC .2133-b c D .1233+b c 18.在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =u u u r ,(1,3)AC =u u u r ,则BD =u u u r ( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)19.设)2,1(-=,)4,3(-=,)2,3(=则=⋅+)2( ( )A.(15,12)-B.0C.3-D.11- 二、填空题1.若向量a r ,b r 满足12a b ==r r ,且a r 与b r 的夹角为3π,则a b +=r r .2.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ3.已知向量a 与b 的夹角为120o,且4==a b ,那么(2)+gb a b 的值为4.已知平面向量(2,4)a =r ,(1,2)b =-r .若()c a a b b =-⋅r r r r r ,则||c =r____________.5.a r ,b r 的夹角为120︒,1a =r,3b =r 则5a b -=r r .6.已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是7.若向量a 、b 满足b a b a 与,1==的夹角为120°,则b a b a ··+=8.已知向量(3,1)a =r ,(1,3)b =r , (,2)c k =r ,若()a c b -⊥r r r则k = .9.已知向量(3,1)a =r ,(1,3)b =r ,(,7)c k =r ,若()a c -r r∥b r ,则k = .10.在平面直角坐标系xoy 中,四边形ABCD 的边AB ∥DC,AD ∥BC,已知点A(-2,0),B (6,8),C(8,6),则D 点的坐标为__________.平面向量专题训练答案:一选择题1 C2 D3 D 4D 5 B 6 C 7 D 8 C 9 B 10 B11 A 12 A 13 B 14 A 15 C 16 D 17 A 18 B 19 C 二 填空题2 23 0 _4 285 76 -37 -18 09 5 10_(0,-2)。
平面向量知识点总结及部分训练题
平面向量知识点总结及部分训练题一、平面向量的基本概念1. 向量的定义既有大小又有方向的量叫做向量。
例如,力、位移等都是向量。
向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
向量的大小叫做向量的模,记作a。
模为0的向量叫做零向量,记作0,零向量的方向是任意的。
模为1的向量叫做单位向量。
2. 向量的表示方法几何表示:用有向线段表示向量,如AB,其中A为起点,B为终点。
字母表示:用小写字母a,b,c表示向量。
3. 相等向量与平行向量相等向量:长度相等且方向相同的向量叫做相等向量。
若a=b,则a=b且a与b的方向相同。
平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,规定零向量与任意向量平行。
若ab,则a与b方向相同或相反。
二、平面向量的线性运算1. 向量加法定义:求两个向量和的运算叫做向量的加法。
三角形法则:已知非零向量a,b,在平面内任取一点A,作AB=a,BC=b,则AC=a+b。
平行四边形法则:已知两个不共线向量a,b,作AB=a,AD=b,以AB,AD为邻边作平行四边形ABCD,则AC=a+b。
向量加法的运算律:交换律:a+b=b+a。
结合律:(a+b)+c=a+(b+c)。
2. 向量减法定义:已知向量a与b,求这两个向量差的运算叫做向量的减法。
ab=a+(b),其中b是b的相反向量,b=b,方向与b相反。
三角形法则:已知a,b,在平面内任取一点O,作OA=a,OB=b,则BA=ab。
3. 向量数乘定义:实数与向量a的积是一个向量,记作a,它的长度a=a,当> 0时,a与a方向相同;当 <0时,a与a方向相反;当 = 0时,a=0。
运算律:结合律:(mua)=(mu)a。
分配律:(+mu)a=a+mua,(a+b)=a+b。
三、平面向量的基本定理及坐标表示1. 平面向量基本定理如果e_1,e_2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数_1,_2,使a=_1e_1+_2e_2。
平面向量复习(含练习+答案)
向量知识清单一、向量的有关概念1.向量:既有大小又有方向的量叫做向量.向量的大小叫向量的模(也就是用来表示向量的有向线段的长度).2.向量的表示方法:⑴字母表示法:如,,,a b c r r rL 等.⑵几何表示法:用一条有向线段表示向量.如AB uuu r ,CD uuu r等.⑶坐标表示法:在平面直角坐标系中,设向量OA u u u r的起点O 为在坐标原点,终点A 坐标为(),x y ,则(),x y 称为OA u u u r 的坐标,记为OA u u u r=(),x y .注:向量既有代数特征,又有几何特征,它是数形兼备的好工具.3.相等向量:长度相等且方向相同的向量.向量可以自由平移,平移前后的向量相等.两向量ar与b r相等,记为a b =r r .注:向量不能比较大小,因为方向没有大小.4.零向量:长度为零的向量叫零向量.零向量只有一个,其方向是任意的.5.单位向量:长度等于1个单位的向量.单位向量有无数个,每一个方向都有一个单位向量.6.共线向量:方向相同或相反的非零向量,叫共线向量.任一组共线向量都可以移到同一直线上.规定:0r与任一向量共线.注:共线向量又称为平行向量.7.相反向量: 长度相等且方向相反的向量. 二、向量的运算 (一)运算定义①向量的加减法,②实数与向量的乘积,③两个向量的数量积,这些运算的定义都是 “自然的”,它们都有明显的物理学的意义及几何意义.其中向量的加减法运算结果仍是向量,两个向量数量积运算结果是数量。
研究这些运算,发现它们有很好地运算性质,这些运算性质为我们用向量研究问题奠定了基础,向量确实是一个好工具.特别是向量可以用坐标表示,且可以用坐标来运算,向量运算问题可以完全坐标化.运 算 图形语言 符号语言 坐标语言加法与减法 OA --→+OB --→=OC --→ OB --→OA --→-=AB --→记OA --→=(x 1,y 1),OB --→=(x 1,y 2) 则OA OB +uu u r uuu r =(x 1+x 2,y 1+y 2)OB OA -uuu r uu u r=(x 2-x 1,y 2-y 1)OA --→+AB --→=OB --→实数与向量的乘积 AB --→=λa → λ∈R 记a →=(x ,y ) 则λa →=(λx ,λy )两个向量的数量积 cos ,a b a b a b ⋅=⋅r r r r r r记1122(,),(,)a x y b x y ==r r 则a →·b →=x 1x 2+y 1y 2 加法:①a b b a +=+r r r r (交换律); ②()()a b c a b c ++=++r r r r r r(结合律)实数与向量的乘积:①()a b a b λλλ+=+r r r r ; ②()a a a λμλμ+=+r r r;③()()a a λμλμ=r r两个向量的数量积: ①a →·b →=b →·a →; ②(λa →)·b →=a →·(λb →)=λ(a →·b →);③(a →+b →)·c →=a →·c →+b →·c →注:根据向量运算律可知,两个向量之间的线性运算满足实数多项式乘积的运算法则,正确迁移实数的运算性质可以简化向量的运算, 例如(a →±b →)2=222a a b b →→→→±⋅+ (三)运算性质及重要结论⑴平面向量基本定理:如果12,e e u r u u r是同一平面内两个不共线的向量,那么对于这个平面内任一向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r ,称1122e e λλ+u r u u r 为12,e e u r u u r的线性组合。
平面向量专题(优秀经典专题梳理练习及答案详解).
,
y1
,
Bx2
,
y2
,则
uuur AB
x2
x1,
y2
y1
;
③若 ar =(x,y),则 ar =( x, y);
④若
ar
x1,
y1
r
,b
x2 ,
y2
,则
ar
//
r b
x1 y2
x2
y1
0
。
3、平面向量的相关计算
①向量的模与平方的关系: ar ar ar 2 | ar |2 。
②乘法公式成立
性质。 ⑥平面内两点间的距离公式
设 a (x, y) ,则| a |2 x2 y2 或| a | x2 y 2 。
二、练习:
→→ 1、已知点 A(-1,1)、B(1,2)、C(-2,-1)、D(3,4),则向量AB在CD方向上的投影为( )
A.3 2 2
B.3 15 2
C.-3 2 2
D.-3 15 2
q=(c+a,b),若 p∥q,则角 A 的大小是( )
A.30°
B.45°
C.60°
D.90°
3、解析:∵p∥q,∴b·(b-c)=(a-c)·(a+c),整理得 b2+c2-a2=bc,故 cos A=b2+c2-a2 2bc
=1,故 A=60°. 2
答案:C
4、已知向量 a=(1,2),b=(-2,m),若 a∥b,则|2a+3b|=( )
r
r
rr
已知两个向量 a (x1, y1),b (x2, y2) ,则 a ·b = x1x2 y1 y2 。
rr
rr
rr
⑤垂直:如果 a 与 b 的夹角为 900 则称 a 与 b 垂直,记作 a ⊥b 。
平面向量复习题及答案
平面向量复习题及答案一、选择题1. 向量\( \overrightarrow{AB} \)与向量\( \overrightarrow{CD} \)平行,那么向量\( \overrightarrow{AB} \)与向量\( \overrightarrow{DC} \)的关系是:A. 平行B. 垂直C. 相等D. 反向答案:D2. 已知向量\( \overrightarrow{a} = (3, 4) \),向量\( \overrightarrow{b} = (x, y) \),若两向量共线,则\( x \)和\( y \)的关系是:A. \( x = 4y \)B. \( x = 3y \)C. \( y = 4x \)D. \( y = 3x \)答案:A3. 向量\( \overrightarrow{a} \)和向量\( \overrightarrow{b} \)的模分别为3和4,它们之间的夹角为\( \theta \),那么向量\( \overrightarrow{a} \)和向量\( \overrightarrow{b} \)的点积为:A. 3B. 4C. 12D. 16答案:C二、填空题1. 若向量\( \overrightarrow{a} = (1, 2) \),向量\( \overrightarrow{b} = (-3, 1) \),则向量\( \overrightarrow{a} \)和向量\( \overrightarrow{b} \)的和为\( \overrightarrow{c} = (-2, 3) \),则向量\( \overrightarrow{c} \)的模为________。
答案:\( \sqrt{(-2)^2 + 3^2} = \sqrt{13} \)2. 若向量\( \overrightarrow{a} \)和向量\( \overrightarrow{b} \)的点积为10,且向量\( \overrightarrow{a} \)的模为5,向量\( \overrightarrow{b} \)的模为2,则向量\( \overrightarrow{a} \)和向量\( \overrightarrow{b} \)的夹角\( \theta \)为_______。
平面向量 高三 一轮复习(完整版)
题记:向量由于具有几何形式与代数形式的“双重身份”,使它成为高中数学知识的一个交汇点,成为多项内容的媒介.一、平面向量的概念及其线性运算 【例1】判断下列命题的真假:1、有向线段就是向量,向量就是有向线段;2、非零向量a 与非零向量b 平行,则a 与b 的方向相同或相反;3、向量AB →与向量CD →共线,则A 、B 、C 、D 四点共线; 4、若向量a 与b 同向,且|a |>|b |,则a >b ;5、若向量|a |=|b |,则a 与b 的长度相等且方向相同或相反;6、对于任意向量|a |=|b |,且a 与b 的方向相同,则a =b ;7、由于零向量0方向不确定,故0不能与任意向量平行;8、起点不同,但方向相同且模相等的几个向量是相等向量;9、向量与的长度相等;10、两个相等向量若起点相同,则终点必相同; 11、只有零向量的模等于0; 12、共线的单位向量都相等; 13、向量与是两平行向量;14、与任一向量都平行的向量为向量; 15、若AB =DC ,则A 、B 、C 、D 四点构成平行四边形;16、设O 是正三角形ABC 的中心,则向量AB 的长度是OA 长度的3倍;17、在坐标平面上,以坐标原点O 为起点的单位向量的终点P 的轨迹是单位圆; 18、凡模相等且平行的两向量均相等;19、与共线的等价条件可以是存在一个实数λ,使=λ或=λ;20、设,,是任意的非零平面向量且互不共线,则a b a b +>+21、下列命题中:其中正确的是_____________① →→→→→→→⋅-⋅=-⋅c a b a c b a )(;② →→→→→→⋅⋅=⋅⋅c b a c b a )()(;③ 2()a b →→-2||a →=22||||||a b b →→→-⋅+; ④ 若0=⋅→→b a ,则0=→a 或0=→b ;⑤若,a b c b ⋅=⋅ 则a c =⑥22a a = ;⑦2a b ba a⋅=; ⑧222()a b a b ⋅=⋅ ; ⑨222()2a b a a b b -=-⋅+二、平面向量平行定理(共线定理)(1)若//(0)a b b ≠⇒(2)若a b λ=共线定理作用(1) (2)【例2】设两个非零向量a 与b不共线,(1)若,28,3().AB a b BC a b CD a b =+=+=-求证:A..B.D 三点共线;(2) 试确定实数k,使ka b + 和a kb +共线。
千题百炼- 平面向量综合必刷100题(原卷版)
专题12 平面向量综合必刷100题任务一:善良模式(基础)1-30题一、单选题1.已知0m ≠,向量(,),(2,)a m n b m ==-,若||||a b a b +=-,则实数n =( )A .BC .-2D .22.设ABC 中BC 边上的中线为AD ,点O 满足2AO DO =-,则OC =( )A .1233AB AC -+B .2133AB AC -C .1233AB AC -D .2133AB AC -+3.若平面向量,,a b c 两两的夹角相等,且||||1,||3a b c ===,则||a b c ++=( )A .2B .5C .2或5D4.在菱形ABCD 中,M 、N 分别是BC 、CD 的中点,若2AB =,3DAB π∠=,则DM AN ⋅=( )A .0B .32C .4D .1325.如图,点C 在半径为2的AB 上运动,3AOB π∠=若OC mOA nOB =+,则m n +的最大值为( )A .1BC D6.已知向量,a b 满足||1,||2,1a b a b ==⋅=,则a b -与b 夹角为( ) A .23π B .34π C .2π D .4π7.已知()1,2a =-,()1,3b =,,则2a b -在a b +方向上的投影为( )A .1B .5C D8.在ABC 中,23AB AC ==,,且3AB AC ⋅=,则AC AB R λλ-∈()取最小值时λ的值为( )A .34-B .34C .32D .9.在ABC 中,点D 是线段BC 上靠近点C 的三等分点,点E 在线段AD 上,:3:5AE ED =,则EB EC +=( )A .1324AB AC +B .3142AB AC +C .1243AB AC +D .3342AB AC +10.已知点(2,4)M ,若过点(4,0)N 的直线l 交圆于C :22(6)9x y -+=于A ,B 两点,则||MA MB +的最大值为( )A .12B .C .10D .11.以下四个命题中正确的是( ) A .若1123OP OA OB =-,则P A B ,,三点共线B .若{}a b c ,,为空间的一个基底,则{}a b b c c a +++,,构成空间的另一个基底 C .()a b c a b c ⋅⋅=⋅⋅D .ABC 为直角三角形的充要条件是0AB AC ⋅=12.已知向量a 、b 满足a b b +=,且2a =,则b 在a 方向上的投影是( ) A .2 B .2-C .1D .1-13.在△ABC 中,已知AB =3,AC =5,△ABC 的外接圆圆心为O ,则AO BC ⋅= A .4 B .8C .10D .1614.已知向量a 与向量b 不共线,()1,1b =,对任意t R ∈,恒有2a tb a b -≥-,则( ) A .a b ⊥ B .()2a a b ⊥- C .()2b a b ⊥-D .()()22a b a b +⊥-15.如图所示,矩形ABCD 的对角线相交于点O ,点E 在线段OB 上且13OE OB =,若AE AB AD λμ=+(λ,μ∈R ),则λμ-=( )A .13B .13-C .1D .23二、多选题16.已知平面向量OA 、OB 、OC 为三个单位向量,且0OA OB ⋅=,若OC xOA yOB =+(,x y R ∈),则x y +的取值可能为( )A .B .1C D17.下列说法中错误的是( )A .已知(1,3)a =-,(1,3)b =-,则a 与b 可以作为平面内所有向量的一组基底B .若a 与b 共线,则a 在b 方向上的投影为||aC .若两非零向量a ,b 满足||||a b a b +=-,则a b ⊥D .平面直角坐标系中,(1,1)A ,(4,2)B ,(5,0)C ,则ABC 为锐角三角形18.设a ,b 是两个非零向量,下列四个命题为真命题的是( ) A .若a b a b ==-,则a 和b 的夹角为3π B .若a b a b ==+,则a 和b 的夹角为2π3C .若a b a b +=+,则a 和b 方向相同D .若0a b ⋅<,则a 和b 的夹角为钝角19.在ABC 中,有如下四个命题正确的有( ) A .若0AC AB ⋅>,则ABC 为锐角三角形B .若BA BC AC +=,则ABC 的形状为直角三角形C .ABC 内一点G 满足0GA GB GC ++=,则G 是ABC 的重心D .若PA PB PB PC PC PA ⋅=⋅=⋅,则点P 必为ABC 的外心20.已知向量,a b 是两个非零向量,在下列条件中,一定能使,a b 共线的是( ) A .234a b e -=且22a b e +=-B .存在相异实数,λμ,使0a b λμ-=C .0xa yb +=(其中实数x ,y 满足0x y +=)D .已知梯形ABCD ,其中,AB a CD b ==第II 卷(非选择题)三、填空题21.已知在ABC 中,3,1,,,23AB AC BAC BD DC AE ED π==∠===,则CE BC ⋅=___________.22.在ABC 中,点D 满足34BD BC =,当E 点在线段AD 上移动时,若AE AB AC λμ=+,则()221t λμ=-+的最小值是________.23.在ABC 中,点D 是边BC 的中点,点G 在AD 上,且是ABC 的重心,则用向量AB 、AC 表示BG 为___________.24.已知点G 为△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且AM =x AB ,AN =y AC ,求11x y+的值为________.25.如图,在菱形ABCD 中,2AB =,60BAD ∠=︒.已知13BE BC =,DF FC =,12EG EF =,则AG EF ⋅=______.四、解答题26.已知4a =,3b =,()()23243a b a b -⋅-=. (1)求a 与b 的夹角θ;(2)求a b +;(3)若()()a b a b λ-⊥+,求实数λ的值.27.已知O ,A ,B 是不共线的三点,且(,)OP mOA nOB m n R =+∈ (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1.28.如图,已知D ,E ,F 分别为ABC 的三边BC ,AC ,AB 的中点,求证:0AD BE CF ++=.29.已知向量()3,4OA =-,()6,3OB =-,()5,3OC m m =---. (1)若点A ,B ,C 能够成三角形,求实数m 应满足的条件; (2)若ABC 为直角三角形,且A ∠为直角,求实数m 的值.30.设ABC 的内角A ,B ,C 的对边长a ,b ,c 成等比数列,()2cos 2sin 12A C B π⎛⎫--+= ⎪⎝⎭,延长BC 至D使3BD =.(1)求B 的大小; (2)求AC CD ⋅的取值范围.任务二:中立模式(中档)1-40题一、单选题1.设a 、b 、c 为非零不共线向量,若()()1a tc t b a c t R -+-≥-∈,则( ) A .()()a b a c +⊥- B .()()a b b c +⊥+ C .()()a b a c -⊥- D .()()a cbc -⊥+2.在平面直角坐标系xOy 中,已知点()()0211A N -,,,.若动点M 满足MA MO=,则OM ON ⋅的取值范围是( )A .[]22-,B .[]44-,C .[]46,-D .[]26-,3.已知ABCD 是边长为2的正方形,P 为平面ABCD 内一点,则()PA PB PC +⋅的最小值是( ) A .2- B .52-C .3-D .4-4.已知点O 为正ABC 所在平面上一点,且满足(1)0OA OB OC λλ+++=,若OAC 的面积与OAB 的面积比值为1:4,则λ的值为( ) A .12 B .13C .2D .35.已知直线l :()20ax y a R -+=∈与圆M :22430x y y +-+=的交点为A ,B ,点C 是圆M 上一动点,设点()0,1P -,则PA PB PC ++的最大值为( ) A .9 B .10C .11D .126.已知平面向量,,a b c 满足24b a a b ==⋅=,()()3c a c b -⋅+=-,则c a -的最小值为( )A1 B 1 C2 D 27.已知向量a ,b ,c 为平面向量,21a b a b ==⋅=,且c 使得2c a -与-c b 所成夹角为60,则c 的最大值为( )A1 B C .1 D 18.非零向量AB ,AC 满足0||||AB AC BC AB AC ⎛⎫+⋅= ⎪⎝⎭,且12AB AC AB AC ⋅=,则ABC 为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形9.在ABC 中,BC CA CA AB ⋅=⋅,||2BA BC +=,且32B ππ≤≤,则BA BC ⋅的取值范围是( )A .(1]-∞,B .[01],C .203⎡⎤⎢⎥⎣⎦,D .223⎡⎤-⎢⎥⎣⎦,10.已知ABC 的三个内角分别为A ,B ,C ,动点P 满足sin sin AB AC OP OA AB B AC C λ⎛⎫⎪=++ ⎪⎝⎭,(0,)λ∈+∞,则动点P 的轨迹一定经过ABC 的( ) A .重心 B .垂心 C .内心 D .外心11.已知平面向量,a b 满足||1a =,||2b =,||7a b -=,若对于任意实数k ,不等式||1ka tb +>恒成立,则实数t 的取值范围是( )A .(,)-∞⋃+∞B .3(,(,)3-∞+∞C .)+∞D .)+∞12.已知A 、B 、C 是平面上不共线的三点,O 为△ABC 的外心,动点P 满足(1)(1)(12)()3OA OB OCOP λλλλ-+-++=∈R ,则点P 的轨迹一定过△ABC 的( )A .内心B .垂心C .重心D .AC 边的中点13.平面内ABC 及一点O 满足 ,AO AB AO AC CO CA CO CBABAC CA CB⋅⋅⋅⋅==,则点O 是ABC 的( ) A .重心 B .内心 C .外心 D .垂心14.设点G 是ABC ∆的重心,且满足2sin 3sin 2sin 0B AB A GA C GC ⋅+⋅+⋅=,则cos C ( ) A .34B .23C .13D .91615.若直线MN 过△ABC 的重心G ,且AM mAB =,AN nAC =,其中0m >,0n >,则2m n +的最小值是(). A 1B 1+C .2D .16.在ABC 中,CB a =,CA b =,且sin sin a b OP OC m a B b A ⎛⎫ ⎪+ ⎪⎝⎭=+,m R ∈,则点P 的轨迹一定通过ABC 的( ) A .重心 B .内心 C .外心 D .垂心17.在ABC ∆中,角A 、B 、C的对边分别为a 、b 、c ,若2b =,(()cos 24sin 1A B C ++=,点P 是ABC ∆的重心,且APa =( )A .B .C .D .18.在ABC 中,D 是BC 的中点,H 是AD 的中点,过点H 作一直线MN 分别与边AB ,AC 交于M ,N ,若,AM xAB AN y AC ==,则4x y +的最小值是( )A .52B .73C .94D .1419.已知圆O 的半径为2,A 为圆内一点,12OA =,B ,C 为圆O 上任意两点,则AC BC ⋅的取值范围是( ) A .1,68⎡⎤-⎢⎥⎣⎦B .[1,6]-C .1,108⎡⎤-⎢⎥⎣⎦D .[]1,1020.已知2=a ,3b =,4a b -=,若对任意实数t ,21ka tb +>(0k >)恒成立,则k 的取值范围是( )A .⎫+∞⎪⎭B .⎛⎝C .)+∞D .(二、多选题21.数学家欧拉于1765年在其著作《三角形中的几何学》首次指出:ABC 的外心O ,重心G ,垂心H ,依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,该直线被称为欧拉线. 若4AB =,2AC =,则下列各式正确的是( )A .20GO GH +=B .4AG BC ⋅= C .6AO BC ⋅=-D .OH OA OB OC =++22.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理被称为欧拉线定理.已知△ABC 的外心为O ,重心为G ,垂心为H ,M 为BC 中点,且AB =4,AC =2,则下列各式正确的有( ) A .4AG BC ⋅= B .6AO BC ⋅=-C .OH OA OB OC =++D .42AB AC OM HM +=+23.在ABC 中,2A π=,2AB AC ==,下述四个结论中正确的是( )A .若G 为ABC 的重心,则1331AG AB AC =+ B .若P 为BC 边上的一个动点,则()AP AB AC ⋅+为定值2C .若M ,N 为BC 边上的两个动点,且MN =AM AN ⋅的最小值为32D .已知P 为ABC 内一点,若1BP =,且AP AB AC λμ=+,则λ的最大值为224.已知P 为ABC 所在平面内一点,且4AB BC ==,60ABC ∠=︒,D 是边AC 的三等分点靠近点C ,AE EB =,BD 与CE 交于点O ,则( )A .2132DE AC AB =-+B .BOCSC .32OA OB OC ++=D .()PA PB PC +⋅的最小值为-625.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,点P 是其所在平面内一点,( ) A .若202020210PA PB PC ++=,则点P 在ABC 的中位线上 B .若3AP AB AC =+,则P 为ABC 的重心 C .若222a b c +>,则ABC 为锐角三角形 D .若cos cos c B b C =,则ABC 是等腰三角形26.下列说法中错误的为( )A .已知()1,2a →=,()1,1b →=且a →与a b λ→→+夹角为锐角,则5,3λ⎛⎫∈-+∞ ⎪⎝⎭B .点O 为ABC 的内心,且20OC OC OA OB OB →→→→→⎛⎫⎛⎫-⋅+-= ⎪ ⎪⎝⎭⎝⎭,则ABC 为等腰三角形;C .若a →与b →平行,a →在b →方向上的投影为a →D .若非零a →,b →满足a b a b →→→→==-则a →与a b →→+的夹角是60︒27.如图,ABCD 中,AB =1,AD =2,∠BAD =3π,E 为CD 的中点,AE 与DB 交于F ,则下列叙述中,一定正确的是( )A .BF 在AB 上的投影向量为(0,0) B .1233AF AB AD =+C .1AF AB ⋅=D .若12FAB α=∠,则tan α=28.已知O 是△ABC 所在平面内一点,则下列说法正确的是( ) A .若OA OB OB OC OC OA ⋅=⋅=⋅,则O 是△ABC 的重心B .若向量0OA OB OC ++=,且OA OB OC ==,则△ABC 是正三角形 C .若O 是△ABC 的外心,3AB =,5AC =,则OA BC ⋅的值为-8D .若240OA OB OC ++=,则::4:1:2OAB OBC OAC S S S =△△△第II 卷(非选择题)三、填空题29.如图,∠ABC 中,8AB =,7AC =,5BC =,G 为∠ABC 重心,P 为线段BG 上一点,则PA PC ⋅的最大值为___________.30.在ABC 中,下列命题中正确的有:___________ ∠AB AC BC -=;∠若0AC AB ⋅>,则ABC 为锐角三角形;∠O 是ABC 所在平面内一定点,动点P 满足()OP OA AB AC λ=++,[)0,λ∈+∞,则动点P 一定过ABC 的重心;∠O 是ABC 内一定点,且20OA OC OB ++=,则13AOCABCS S=△△; ∠若0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭,且12AB AC AB AC ⋅=⋅,则ABC 为等边三角形.31.已知向量a ,b 是平面内的两个非零向量,则当a b a b ++-取最大值时,a 与b 夹角为________.32.点D 为ABC 所在平面内一点,1233AD AB AC =+,AC AB AB AC AD AC AB+=+,若ABC 的面积为1,则BC 的最小值是________.33.∠若()3,4OA =-,()6,3OB =-,()5,3OC m m =--,ABC ∠为锐角,则实数m 的取值范围是34m >-∠点O 在ABC 所在的平面内,若OA OB OB OC OA OC ⋅=⋅=⋅,则点O 为ABC 的垂心 ∠点O 在ABC 所在的平面内,若230OA OB OC ++=,ADC S △,ABCS 分别表示AOC △,ABC 的面积,则:1:6AOC ABC S S =△△∠点O 在ABC 所在的平面内,满足AO AB AO AC ABAC⋅⋅=且CO CA CO CB CACB⋅⋅=,则点O 是ABC 的外心.以上命题为假命题的序号是___________.34.如图,两块斜边长相等的直角三角板拼在一起,若||1AC =,则AD AE ⋅=________.35.已知向量a ,b 满足2a b -=,12ab +=,则a b b ++的最大值是________.36.已知平面向量a ,b 的夹角为45°,1a =且()2c a b R λλ=-+∈,则c c a +-的最小值是___________.四、解答题37.平面直角坐标系xOy 中,已知向量()61AB =,∠()BC x y =,∠()23CD =--,,且AD BC ∠ (1)若已知M (1,1),N (y +1∠2∠∠y∠[0∠2],则求出MN BC ⋅的范围; (2)若AC BD ⊥,求四边形ABCD 的面积.38.在ABC 中,角,,A B C 所对边分别为,,a b c ,3b =,6c =,sin2sin C B =,且AD 为BC 边上的中线,E 点在BC 上,满足//()AB AC AE ABAC+.(1)求cos C 及线段BC 的长; (2)求ADE 的面积.39.已知向量a 与b 的夹角为π6,且3a =,2b =.(1)若向量a b +与a b λ+共线,求实数λ的值;(2)若向量a b +与a b λ+的夹角为锐角,求实数λ的取值范围.40.在等边ABC中,2=,点Q为AC的中点,BQ交AM于点N.CM MB(1)证明:点N为BQ的中点;(2)若6⋅=-,求ABC的面积.NA NM任务三:邪恶模式(困难)1-30题一、单选题1.如图,在等腰△ABC 中,已知o1,120,,AB AC A E F ==∠=分别是边,AB AC 的点,且,AE AB AF AC ==λμ,其中(),0,1λμ∈且21λμ+=,若线段,EF BC 的中点分别为,M N ,则MN 的最小值是( )A BC D2.在ABC 中,()sin sin sin A B B C -+=,点D 在边BC 上,且2CD BD =,设sin sin ABDk BAD∠=∠,则当k 取最大值时,sin ACD ∠=( )A .14BC D .(363.已知12,e e 为单位向量,且1222e e +≤,若非零向量a 满足12a e a e ⋅≤⋅,则()122a e e a⋅+的最大值是( )A B C D4.如图,在平面四边形ABCD 中,AB BC ⊥,60BCD ∠=,150ADC ∠=,3BE EC =,CD BE 若点F 为边AD 上的动点,则EF BF ⋅的最小值为( )A .1B .1516C .3132D .25.在ABC 中,已知9AB AC ⋅=,cos b c A =⋅,ABC 的面积为6,若P 为线段AB 上的点(点P 不与点A ,点B 重合),且CA CBCP x y CACB=⋅+⋅,则1132x y ++的最小值为( ).A .9B .34C .914D .126.在ABC ∆中,已知9AB AC ⋅=,sin cos sin B A C =⋅,6ABC S ∆=,P 为线段AB 上的一点,且CA CBCP x y CACB=⋅+⋅,则11x y +的最小值为( )A B C D7.已知O 是ABC ∆所在平面上的一点,若aPA bPB cPCPO a b c++=++(其中P 是ABC ∆所在平面内任意一点),则O 点是ABC ∆的( ) A .外心 B .内心C .重心D .垂心8.已知向量a ,b ,c 满足4a =,a 在b 方向上的投影为2,()3c c a ⋅-=-,则||b c -的最小值为( )A 1B 1C .2D .29.已知ABC 的内角分别为,,A B C ,2cos 12A A =,且ABC 的内切圆面积为π,则AB AC ⋅的最小值为( ) A .6B .8C .10D .1210.如图,在等腰梯形ABCD 中,2AB =,4CD =,BC =E ,F 分别为AD ,BC 的中点.如果对于常数λ,在等腰梯形ABCD 的四条边上,有且只有8个不同的点P 使得PE PF λ⋅=成立,那么λ的取值范围是( )A .59,420⎛⎫-- ⎪⎝⎭B .911,204⎛⎫- ⎪⎝⎭C .91,204⎛⎫-- ⎪⎝⎭D .511,44⎛⎫- ⎪⎝⎭11.已知平面向量a ,b ,c (a 与b 不共线),满足2a b c -==,1c a c b -=-=,设(),c a b λμλμ=+∈R ,则λμ+的取值范围为( ) A .[)2,2,3⎛⎤-∞+∞ ⎥⎝⎦B .2,23⎡⎤⎢⎥⎣⎦C .[)2,+∞D .(],2-∞12.已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为1F ,2F ,过点1F 且斜率为247-的直线与双曲线在第二象限的交点为A ,若1212()0F F F A F A +⋅=,则双曲线C 的渐近线方程是( )A .43y x =±B .34yx C .y = D .y x =13.半径为2的圆O 上有三点A 、B 、C 满足0OA AB AC ++=,点P 是圆内一点,则PA PO PB PC ⋅+⋅的取值范围为( )A .[414)-,B .[0)4,C .[414],D .[416],14.已如平面向量a 、b 、c ,满足33a =,2b =,2c =,2b c ⋅=,则()()()()222a b a c a b a c ⎡⎤-⋅---⋅-⎣⎦的最大值为( )A .B .192C .48D .15.平面上的两个向量OA 和OB ,||cos OA α=,||sin OB α=,0,2απ⎡∈⎤⎢⎥⎣⎦,0OA OB ⋅=若向量OC OA OBλμ=+(,)R λμ∈,且22221(21)cos (21)sin 4λαμα-+-=,则||OC 的最大值为( ) A .32B .34C .35D .37二、多选题16.对于给定的ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论正确的是( ) A .212AO AB AB ⋅=B .OA OB OA OC OB OC ⋅=⋅=⋅C .过点G 的直线l 交AB AC 、于E F 、,若AE AB λ=,AF AC μ=,则113λμ+=D .AH 与cos cos AB AC AB BAC C+共线17.如图,直角ABC 的斜边BC 长为2,30C ∠=︒,且点B ,C 分别在x 轴正半轴和y 轴正半轴上滑动,点A 在线段BC 的右上方则( )A .||OA OC +有最大值也有最小值B .OA OC ⋅有最大值无最小值 C .||OA BC +有最小值无最大值D .OA BC ⋅无最大值也无最小值18.在OAB 中,4O OC A =,2O OD B =,AD 、BC 的交点为M ,过M 作动直线l 分别交线段AC 、BD 于E 、F 两点,若OE OA λ=,(),0OB OF μλμ=>,则λμ+的不可能取到的值为( )A B C D 19.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedesbenz )的logo 很相似,故形象地称其为“奔驰定理”.奔驰定理:已知O 是ABC 内的一点,BOC 、AOC △、AOB 的面积分别为A S 、B S 、C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.若O 是锐角ABC 内的一点,BAC ∠、ABC ∠、ACB ∠是ABC 的三个内角,且点O 满足OA OB OB OC OC OA ⋅=⋅=⋅,则( )A .O 为ABC 的垂心B .AOB ACB π∠=-∠C .sin :sin :sin ::OA OB OC BAC ABC ACB ∠∠∠=D .tan tan tan 0BAC OA ABC OB ACB OC ∠⋅+∠⋅+∠⋅=20.对于△ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论正确的是( ) A .OA OB OA OC OB OC ⋅=⋅=⋅B .212AO AB AB ⋅=C .向量AH 与cos cos ABACAB B AC C +共线D .过点G 的直线l 分别与AB 、AC 交于E 、F 两点,若AE AB λ=,AF AC μ=,则113λμ+=21.已知平面向量,,a b c →→→满足2a →=,1b →=,0a b →→⋅=,对任意的实数t ,均有c t b →→-的最小值为a c →→-,则下列说法正确的是( )A .b a →→+与b a →→-夹角的余弦值为35 B .c →的最小值为2C .a b c c a →→→→→+-+-的最小值为2D .若2c a -=时,这样的c →有3个第II 卷(非选择题)三、填空题22.已知平面向量,,a b c 满足:12,0,12a b a b c a ==⋅=+=,当-a c 与b c -所成角θ最大时,则sin θ=______23.已知ABC 中,1AB =,t R ∈,且()1AC t AC AB t +-的最小值为,则3BA BC ⋅=__________.24.在平面内,若有||1,2a a b b =⋅==,()(2)0c a c a b -⋅--=,则c b ⋅的最大值为________.25.已知OA ,OB 是非零不共线的向量,设111r OC OA OB r r =+++,定义点集||||KA KC KB KC M K KA KB ⎧⎫⋅⋅⎪⎪==⎨⎬⎪⎪⎩⎭,当1K ,2K M ∈时,若对于任意的2r ≥,不等式12||K K c AB ≤恒成立,则实数c 的最小值为______.26.如图,在∠ABC 中,BD DE EC →→→==,2AF FB →→=,2AM MD →→=,直线FM 交AE 于点G ,直线MC 交AE 于点N ,若∠MNG 是边长为1的等边三角形,则MA MC →→⋅=___________.27.如图,在△ABC 中,2C π=,AC =1BC =.若O 为△ABC 内部的点且满足0OAOB OC OA OB OC ++=,则::OA OB OC =________.28.在三角形ABC 中,ABC 的三个内角,,A B C 的对边分别是,,a b c ,则下列给出的五个命题:①若(,2)a λ=,(3,1)b =-,且a 与b 夹角为锐角,则2,3λ⎛⎫∈-∞ ⎪⎝⎭; ②若cos cos a A b B =,则ABC 为等腰三角形;③点O 是三角形ABC 所在平面内一点,且满足OA OB OB OC OC OA ⋅=⋅=⋅,则点O 是三角形ABC 的重心; ④()tan tan ,tan a A B C =+,()1,1b =,若0a b ⋅>,则ABC 为锐角三角形; ⑤若O 为ABC 的外心,()2212AO BC b c ⋅=-. 其中正确的命题是:_______________________.(填写正确结论的编号)四、解答题29.已知O 为ABC 的外心,求证.sin sin sin 0OA BOC OB AOC OC AOB ∠+∠+∠=.30.在△ABC 中,重心为G ,垂心为H ,外心为I .(1)若△ABC 三个顶点的坐标为(),0A a ,()0,B b ,()0,0C ,证明:G ,H ,I 三点共线; (2)对于任斜三角形ABC ,G ,H ,I 三点是否都共线,并说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量练习题集答案典例精析题型一向量的有关概念【例1】下列命题:①向量AB的长度与BA的长度相等;②向量a与向量b平行,则a与b的方向相同或相反;③两个有共同起点的单位向量,其终点必相同;④向量AB与向量CD是共线向量,则A、B、C、D必在同一直线上.其中真命题的序号是.【解析】①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;AB与CD 是共线向量,则A、B、C、D可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①.【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可.【变式训练1】下列各式:a•;①|a|=a②(a•b) •c=a•(b•c);③OA-OB=BA;④在任意四边形ABCD中,M为AD的中点,N为BC的中点,则AB+DC=2MN;⑤a=(cos α,sin α),b=(cos β,sin β),且a与b不共线,则(a+b)⊥(a-b).其中正确的个数为()A.1B.2C.3D.4a•正确;(a•b) •c≠a•(b•c);OA-OB=BA正确;如下图所示,【解析】选D.| a|=aMN=MD+DC+CN且MN=MA+AB+BN,两式相加可得2MN=AB+DC,即命题④正确;因为a,b不共线,且|a|=|b|=1,所以a+b,a-b为菱形的两条对角线,即得(a+b)⊥(a-b).所以命题①③④⑤正确.题型二 与向量线性运算有关的问题【例2】如图,ABCD 是平行四边形,AC 、BD 交于点O ,点M 在线段DO 上,且DM =DO 31,点N 在线段OC 上,且ON =OC 31,设AB =a , AD =b ,试用a 、b 表示AM ,AN ,MN .【解析】在▱ABCD 中,AC ,BD 交于点O , 所以DO =12DB =12(AB -AD )=12(a -b ),AO =OC =12AC =12(AB +AD )=12(a +b ).又DM =13DO , ON =13OC ,所以AM =AD +DM =b +13DO=b +13×12(a -b )=16a +56b ,AN =AO +ON =OC +13OC=43OC =43×12(a +b )=23(a +b ). 所以MN =AN -AM =23(a +b )-(16a +56b )=12a -16b . 【点拨】向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形.【变式训练2】O 是平面α上一点,A 、B 、C 是平面α上不共线的三点,平面α内的动点P 满足OP =OA +λ(AB +AC ),若λ=12时,则PA •(PB +PC )的值为 .【解析】由已知得OP -OA =λ(AB +AC ),即AP =λ(AB +AC ),当λ=12时,得AP =12(AB +AC ),所以2AP =AB +AC ,即AP -AB =AC -AP , 所以BP =PC ,所以PB +PC =PB +BP =0,所以PA • (PB +PC )=PA •0=0,故填0. 题型三 向量共线问题【例3】 设两个非零向量a 与b 不共线.(1)若AB =a +b , BC =2a +8b , CD =3(a -b ), 求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线.【解析】(1)证明:因为AB =a +b , BC =2a +8b , CD =3(a -b ), 所以BD =BC +CD =2a +8b +3(a -b )=5(a +b )=5AB , 所以AB , BD 共线.又因为它们有公共点B , 所以A ,B ,D 三点共线. (2)因为k a +b 和a +k b 共线, 所以存在实数λ,使k a +b =λ(a +k b ), 所以(k -λ)a =(λk -1)b .因为a 与b 是不共线的两个非零向量,所以k -λ=λk -1=0,所以k 2-1=0,所以k =±1.【点拨】(1)向量共线的充要条件中,要注意当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法的运用和方程思想.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.【变式训练3】已知O 是正三角形BAC 内部一点,OA +2OB +3OC =0,则△OAC 的面积与△OAB 的面积之比是() A.32 B.23C.2D.13【解析】如图,在三角形ABC 中, OA +2OB +3OC =0,整理可得OA +OC +2(OB +OC )=0.令三角形ABC 中AC 边的中点为E ,BC 边的中点为F ,则点O 在点F 与点E 连线的13处,即OE =2OF .设三角形ABC 中AB 边上的高为h ,则S △OAC =S △OAE +S △OEC =12•OE • (h 2+h 2)=12OE ·h ,S △OAB =12AB •12h =14AB ·h ,由于AB =2EF ,OE =23EF ,所以AB =3OE ,所以S △OACS △OAB =hh AB OE ••4121=23.故选B.总结提高1.向量共线也称向量平行,它与直线平行有区别,直线平行不包括共线(即重合)的情形,而向量平行则包括共线(即重合)的情形.2.判断两非零向量是否平行,实际上就是找出一个实数,使这个实数能够和其中一个向量把另外一个向量表示出来.3.当向量a 与b 共线同向时,|a +b |=|a |+|b |; 当向量a 与b 共线反向时,|a +b |=||a |-|b ||; 当向量a 与b 不共线时,|a +b |<|a|+|b |.典例精析题型一 平面向量基本定理的应用【例1】如图▱ABCD 中,M ,N 分别是DC ,BC 中点.已知AM =a ,AN =b ,试用a ,b 表示AB ,AD 与AC 【解析】易知AM =AD +DM =AD +12AB ,AN =AB +BN =AB +12AD ,即⎪⎪⎩⎪⎪⎨⎧=+=+.21,21b a AD AB AB AD 所以AB =23(2b -a ), AD =23(2a -b ).所以AC =AB +AD =23(a +b ).【点拨】运用平面向量基本定理及线性运算,平面内任何向量都可以用基底来表示.此处方程思想的运用值得仔细领悟.【变式训练1】已知D 为△ABC 的边BC 上的中点,△ABC 所在平面内有一点P ,满足PA +BP +CP =0,则||||AD PD 等于( )A.13B.12C.1D.2【解析】由于D 为BC 边上的中点,因此由向量加法的平行四边形法则,易知PB +PC =2PD ,因此结合PA +BP +CP =0即得PA =2PD ,因此易得P ,A ,D 三点共线且D 是P A 的中点,所以||AD PD =1,即选C.题型二 向量的坐标运算【例2】 已知a =(1,1),b =(x ,1),u =a +2b ,v =2a -b . (1)若u =3v ,求x ;(2)若u ∥v ,求x . 【解析】因为a =(1,1),b =(x ,1),所以u =(1,1)+2(x ,1)=(1,1)+(2x ,2)=(2x +1,3), v =2(1,1)-(x ,1)=(2-x ,1). (1)u =3v ⇔(2x +1,3)=3(2-x ,1) ⇔(2x +1,3)=(6-3x ,3), 所以2x +1=6-3x ,解得x =1. (2)u ∥v ⇔(2x +1,3)=λ(2-x ,1)⇔⎩⎨⎧=-=+λλ3),2(12x x⇔(2x +1)-3(2-x )=0⇔x =1.【点拨】对用坐标表示的向量来说,向量相等即坐标相等,这一点在解题中很重要,应引起重视. 【变式训练2】已知向量a n =(cos n π7,sin n π7)(n ∈N *),|b|=1.则函数y =|a 1+b|2+|a 2+b|2+|a 3+b|2+…+|a 141+b|2的最大值为 .【解析】设b =(cos θ,sin θ),所以y =|a 1+b|2+|a 2+b|2+|a 3+b|2+…+|a 141+b|2=(a 1)2+b 2+2(cos π7,sin π7)(cos θ,sin θ)+…+(a 141)2+b 2+2(cos 141π7,sin 141π7)(cos θ,sin θ)=282+2cos(π7-θ),所以y 的最大值为284.题型三 平行(共线)向量的坐标运算【例3】已知△ABC 的角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.【解析】(1)证明:因为m ∥n ,所以a sin A =b sin B . 由正弦定理,得a 2=b 2,即a =b .所以△ABC 为等腰三角形. (2)因为m ⊥p ,所以m ·p =0,即 a (b -2)+b (a -2)=0,所以a +b =ab .由余弦定理,得4=a 2+b 2-ab =(a +b )2-3ab , 所以(ab )2-3ab -4=0. 所以ab =4或ab =-1(舍去). 所以S △ABC =12ab sin C =12×4×32= 3.【点拨】设m =(x 1,y 1),n =(x 2,y 2),则 ①m ∥n ⇔x 1y 2=x 2y 1;②m ⊥n ⇔x 1x 2+y 1y 2=0.【变式训练3】已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,向量m =(2cos C -1,-2),n =(cos C ,cos C +1).若m ⊥n ,且a +b =10,则△ABC 周长的最小值为( )A.10-5 3B.10+5 3C.10-2 3D.10+2 3【解析】由m ⊥n 得2cos 2C -3cos C -2=0,解得cos C =-12或cos C =2(舍去),所以c 2=a 2+b 2-2ab cosC =a 2+b 2+ab =(a +b )2-ab =100-ab ,由10=a +b ≥2ab ⇒ab ≤25,所以c 2≥75,即c ≥53,所以a +b +c ≥10+53,当且仅当a =b =5时,等号成立.故选B.典例精析题型一 利用平面向量数量积解决模、夹角问题 【例1】 已知a ,b 夹角为120°,且|a |=4,|b |=2,求: (1)|a +b |;(2)(a +2b ) ·(a +b ); (3)a 与(a +b )的夹角θ.【解析】(1)(a +b )2=a 2+b 2+2a ·b =16+4-2×4×2×12=12,所以|a +b |=2 3.(2)(a +2b ) ·(a +b )=a 2+3a ·b +2b 2 =16-3×4×2×12+2×4=12.(3)a ·(a +b )=a 2+a ·b =16-4×2×12=12.所以cos θ=||||)(b a a b a a ++•=124×23=32,所以θ=π6.【点拨】利用向量数量积的定义、性质、运算律可以解决向量的模、夹角等问题.【变式训练1】已知向量a ,b ,c 满足:|a|=1,|b|=2,c =a +b ,且c ⊥a ,则a 与b 的夹角大小是 . 【解析】由c ⊥a ⇒c ·a =0⇒a 2+a ·b =0, 所以cos θ=-12,所以θ=120°.题型二 利用数量积来解决垂直与平行的问题【例2】 在△ABC 中,AB =(2,3), AC =(1,k ),且△ABC 的一个内角为直角,求k 的值. 【解析】①当∠A =90°时,有·=0, 所以2×1+3·k =0,所以k =-23;②当∠B =90°时,有AB ·BC =0,又BC =AC -AB =(1-2,k -3)=(-1,k -3), 所以2×(-1)+3×(k -3)=0⇒k =113;③当∠C =90°时,有AC ·BC =0, 所以-1+k ·(k -3)=0, 所以k 2-3k -1=0⇒k =3±132.所以k 的取值为-23,113或3±132.【点拨】因为哪个角是直角尚未确定,故必须分类讨论.在三角形中计算两向量的数量积,应注意方向及两向量的夹角.【变式训练2】△ABC 中,AB =4,BC =5,AC =6, 求·+·+·.【解析】因为2·BC +2BC ·CA +2CA ·=(AB ·BC +CA ·AB )+(CA ·AB +BC ·CA )+(BC ·CA +BC ·AB ) =AB ·(BC +CA )+CA ·(AB +BC )+BC ·(CA +AB ) =AB ·BA +CA ·AC +BC ·CB =-42-62-52=-77.所以AB ·BC +BC ·CA +CA ·AB =-772.题型三 平面向量的数量积的综合问题【例3】数轴Ox ,Oy 交于点O ,且∠xOy =π3,构成一个平面斜坐标系,e 1,e 2分别是与Ox ,Oy 同向的单位向量,设P 为坐标平面内一点,且OP =x e 1+y e 2,则点P 的坐标为(x ,y ),已知Q (-1,2).(1)求|OQ |的值及OQ 与Ox 的夹角;(2)过点Q 的直线l ⊥OQ ,求l 的直线方程(在斜坐标系中). 【解析】(1)依题意知,e 1·e 2=12,且OQ =-e 1+2e 2,所以OQ 2=(-e 1+2e 2)2=1+4-4e 1·e 2=3. 所以|OQ |= 3.又OQ ·e 1=(-e 1+2e 2) ·e 1=-e 21+2e 1•e 2=0.所以OQ ⊥e 1,即OQ 与Ox 成90°角. (2)设l 上动点P (x ,y ),即OP =x e 1+y e 2, 又OQ ⊥l ,故OQ ⊥QP ,即[(x +1)e 1+(y -2)e 2] ·(-e 1+2e 2)=0.所以-(x +1)+(x +1)-(y -2) ·12+2(y -2)=0,所以y =2,即为所求直线l 的方程.【点拨】综合利用向量线性运算与数量积的运算,并且与不等式、函数、方程、三角函数、数列、解析几何等相交汇,体现以能力立意的命题原则是近年来高考的命题趋势.【变式训练3】在平面直角坐标系xOy 中,点A (5,0).对于某个正实数k ,存在函数f (x )=ax 2(a >0),使得OP =λ• (||OA OA +||OQ OQ)(λ为常数),其中点P ,Q 的坐标分别为(1,f (1)),(k ,f (k )),则k 的取值范围为( )A.(2,+∞)B.(3,+∞)C.(4,+∞)D.(8,+∞)【解析】||OA OA OM ||OQ =ON ,OM +ON =OG ,则OP =λOG .因为P (1,a ),Q (k ,ak 2),OM =(1,0),ON =(k k 2+a 2k 4,ak 2k 2+a 2k 4),OG =(k k 2+a 2k 4+1,ak 2k 2+a 2k 4),则直线OG 的方程为y =ak 2k +k 2+a 2k 4x ,又OP =λOG ,所以P (1,a )在直线OG 上,所以a =ak 2k +k 2+a 2k 4,所以a 2=1-2k.因为|OP |=1+a 2>1,所以1-2k>0,所以k >2. 故选A.。