二次规划法 两阶段法

合集下载

双层规划

双层规划

双层规划一、双层规划的定义及背景双层规划(Bilevel Programming Problem,简称BLPP)是一种具有二层递阶结构的系统优化问题,上层问题和下层问题都有各自的决策变量、约束条件和目标函数。

双层系统优化研究的是具有两个层次系统的规划与管理问题。

上层决策者只是通过自己的决策去指导下层决策者,并不直接干涉下层的决策;而下层决策者只需要把上层的决策作为参数,他可以在自己的可能范围内自由决策。

这种决策机制使得上层决策者在选择策略以优化自己的目标达成时,必须考虑到下层决策者可能采取的策略对自己的不利影响。

首先提出层次规划模型的是H.VStackelberg,上世纪50年代,为了更好的描述现实中的经济模式,H.V Stackelberg在他的专著中首次提出了层次规划这种概念,虽然多层规划与之有共同点,但各层决策者依次做出决策,并且各自的策略集也不必再是分离的。

20世纪60年代,Dantaig和Wolfe提出了大规模线性规划的分解算法,承认有一个核心决策者,它的目标高于一切,但与多层规划有很大区别,多层规划承认有最高决策者,大不是绝对的,他允许下层决策者有各自不同的利益。

20世纪70年代发展起来的多目标规划通常寻求的是一个决策者的互相矛盾的多个目标额折衷解,而多层规划强调下层决策对上层目标的影响,并且多层规划问题通常不能逐层独立求解。

上世纪70年代以来,在解决实际问题的过程中,人们才逐渐形成多层规划的概念和方法。

多层规划(Multilevel Programming)一词是Candler和Norton在奶制品工业模型和墨西哥农业模型的研究报告中首先提出来的。

上世纪70年代,人们对多目标规划进行了深入的研究,也形成了一些求解多目标规划的有效方法,如分层优化技术,这种技术也可以用来求解层次问题,但这种技术建立在下层的决策不影响上层的目标基础上,而多层规划正是强调下层决策对上层目标的影响。

因此多层规划同城不同于多目标规划。

线性规划-大M法、两阶段法与几种特殊情况

线性规划-大M法、两阶段法与几种特殊情况

进基变量的相持
出基变量的相持
max
z=
4x1
+2x2
-3x3
+5x4
s.t.
2x1
-x2
+ x3
+2x4
≥50
(1)
3x1
-x3
+2x4
80
(2)
x1
+x2
+x4
= 60
(3)
x1,
x2,
x3,
x4
≥ 0
1-4 线性规划- 大M法、两阶段法及几种特殊情况
单击添加副标题
单击此处添加文本具体内容,简明扼要地阐述你的观点
School of Business ECUST
单纯形法
单纯形法的一般思路+例子
单纯形表结构+例子
单纯形法的计算步骤
单纯形法的矩阵描述
大M法
两阶段法
几种特殊情况
无可行解
无界解
多重最优解
1
X3
0
-3 0 2 0 0 -2-M -M
σj
-1 0 1 0 1 -1 0
1
X5
0
0 0 1/2 3/2 0 -1/2-M -3/2-M
2
X5
0
-1 2+2M -M -M 0 0 0
σj
3/1
0 1 0 0 1 0 0
3
X5
0
X1 x2 x3 x4 x5 x6 x7
3/2
X2
2
1/2/1/2
1 0 -1/2 1/2 0 1/2 -1/2
1/2

序列二次规划法

序列二次规划法
I k j 1
n
(1-10)
其中, E 代表等式约束下的集合, I k 代表不等式约束中起作用约束的下标 集合。
此式即式 (1-8) , 可以用同样的方法求解。 在求得式 (1-10) 的解 [ S
k 1
, k 1]T
之后,根据 k-t 条件,若解中对应原等式约束条件的乘子不全为零,对应起作用 约束条件的乘子不小于零,则 S 最优解 S * 。 综上所述,在迭代点 X 上先进行矩阵 H 的变更,在构造和求解相应的二 次规划子问题,并该子问题最优解 S * 作为下一次迭代的搜索方向 S 。然后在 该方向上对原非线性最优化问题目标函数进行约束一维搜索, 得到下一个迭代点
此问题是原约束最优化问题的近似问题,但其解不一定是原问题的可行点。 为此,令
S X Xk
将上述二次规划问题变成关于变量的 S 的问题,即
1 min f ( X ) S T 2 f ( X k ) S f ( X k )T S 2 s. t. gu ( X k )T S gu ( X k ) 0 (u 1,2,..., p) hv ( X k )T S hv ( X k ) 0
T
等于 n m 。由线性代数知,此方程要么无解,要么有惟一解。如果有解,利用 消元变换可以方便的地求出该方程的惟一解, 记作 [ S 若此解中的乘子向量
k 1
k 1
根据 k-t 条件, , k 1]T 。
不全为零, 则S 。
k 1
就是等式约束二次规划问题式 (1-8)
的最优解 S * ,即 S* S
2 序列二次规划的研究
最优化理论及方法是一个具有广泛应用背景的研究领域。 它研究诸如从众多 的方案中选出最优方案等问题,常见的各种模型如线性规划,二次规划,非线性 规划, 多目标规划等。 最优化理论及方法已经在经济计划, 工程设计, 生产管理,

二次规划基本介绍

二次规划基本介绍
(2-5)
BXB CXC b
XB B-1C bB-1
(2) 确定被替换基本变量 x r
bi br 0) min( aik 1i m aik ark
x1 b1 x b r r xm bm
4.3二次规划
Find x min f ( x ) s. t . g ( x ) ≤ 0 ( j 1, 2,, n ) j
非线性约束优化问题
(目标函数—非线性) (约 束—非线性)
非线性优化问题
(目标函数—非线性)
线性约束优化问题
(目标函数—非线性) (约 束—线 性)
有约束优化问题
ai x( k1) bi ai ( x( k ) k d ) bi ai x( k ) bi
ai x ( k 1) bi
二次规划:不等式约束问题的有效集法
二次规划:不等式约束问题的有效集法
二次规划:其它算法简介
这就是K-K-T条件,
P

f (x)

2
x
*
g1 (x)
g1 (x) 0
二次规划
一.二次规划的数学模型 二.二次规划的最优性条件 三.等式约束二次规划的解法 四.不等式约束二次规划的有效集解法 五.其它算法简介
二次规划:最优性条件
二次规划:等式约束问题
二次规划:等式约束问题
二次规划:等式约束问题
单纯形法的小结
(一)线性规划的标准形式: (二)基本概念
m i nz c T x Ax b s.t. x 0 j
T
(1)可行解:满足全部约束条件的决策向量称为可行解。 x ( x1 , x2 ,, xn , ) (2)可行域:全部可行解所构成的空间称为可行域。 (3)最优解:使目标函数达到最小的可行解称为最优解。 (4)无界解:若目标函数无下界称为无界解。

第十五章序列二次规划法

第十五章序列二次规划法

第十五章序列二次规划法第十五章序列二次规划法考察一般非线性约束最优化问题m in ( )( ) 0 , { 1 , 2 , , }s . t.( ) 0 , { 1 , 2 , , }i eei efxc x i mc x i m mEI m(15.0.1)其中 )( )), ((i xfc i E Ix ??都二阶连续可微 .序列二次规划法(Sequential Quadratic Programming,简称SQP)的基本思想是在当前迭代点 kx 处,以问题 (15.1.1)的 Lagrange 函数 ( , )Lx? 在 ( ),kkx ? 处关于变量 x 的 Taylor 二阶展开式作为目标函数,以约束条件 ( )( )i x i E Ic ??在 kx 处的 Taylor 一阶展开式作为约束条件,构造一个二次规划子问题来获得搜索方向 kd ,它可以看作是求解无约束优化问题的牛顿法(或拟牛顿法 )在约束情形下的推广 . 由于 2 ( , )kkxxLx?? 的计算量比较大且不一定正定,因此,我们一般采用拟牛顿法思想构造正定矩阵序列{}kB ,并以kB 代替 2 ( , )kkxxLx?? ,即由二次规划子问题m i n ( ) ( ) 0 ,s .t . 12() ((,) )0T k Tkk k Tik k Tiiid B d dc xd Ecxfxc x icx dIi(15.0.2)来确定下降方向 kd .在序列二次规划法中,一般采用某种精确罚函数来作为评价算法产生的迭代点 kx 趋近原问题 (15.1.1)最优解 x 的程度的价值函数 .§15.1 Lagrange-Newton 法本节考察仅有等式约束的情形m i n ( )s .t . ( ) 0 , {1 , 2 , , }i Efxc x i m??? ? (15.1.1)第十五章序列二次规划法272 最优化理论与方法 [乌力吉 ]其中 (( )), )(i xfc ix E? 均二阶连续可微 . 其 Lagrange 函数为1(( ), ) ) (miiif x cLx x????? ?. (15.1.2)由第九章可知,在一定条件下, x 是问题 (15.1.1)的局部解的必要条件是存在 m满足 K-K-T 条件1( , ) ( ) ( ) ,(, ),) ( mx i iiL x f x c cx xxL?(15.1.3)这里 12( ) , ( ) ,( ) ( , ( ) ) Tmxcc xcx xc ? ?.Lagrange-Newton 法的基本思想是利用牛顿法求解非线性方程组 (15.1.3)来得到原问题(15.1.1)的 K-K-T 点及其乘子 .§15.1.1 非线性方程组的阻尼 Newton 法我们先来讨论求解一般非线性方程组()Gx?0 (15.1.4)的 Newton 法,其中 : nnG 连续可微 .在当前迭代点 kx 处,将向量值函数 ()Gx 以其在 kx 处的 T aylor 一阶展开式近似代替,求解线性方程组) ( )( ()k k k TG x dd G x G x? ? ? ? ? 0, (15.1.5)其中 12( ) ( ( ) ( ) ( ) )k k k knG x G x G x G x? ? ? ? ??,这个方程组又称为 Newton 方程,当()Gx 的 Jacobi 矩阵 ()kTGx? 可逆时,可解得 Newton 方向1( ) )( ()k k T kG x G xd ??? ? . (15.1.6)Newton 方向 kd 是价值函数21211|| ( ) |() |22 ()imixGx G x? ?? ??(15.1.7)在点 kx 处的下降方向,这是因为§ 15.1 Lagrange-Newton 法最优化理论与方法 [乌力吉 ] 2731( ) ( ) ( ) ( ) ( )k k kmikkiix x G x G x G xG?, (15.1.8)由此得( ) ) ( ) ) ( )(( ()2k T k k T k T k k T k kx d G x d G xG x G x x??? ? ?? ? ? ?, (15.1.9)因此,当 kx 不是非线性方程组 (15.1.4)的解时,必有 ( ) 0k T kx d.求解非线性方程组的经典 Newton 法迭代格式为1k k kxx d? ??. (15.1.10)设 x 为 ()Gx?0 的解, ( )Gx? 可逆,则由 ()Gx 连续可微可知,当kx 充分靠近 x 时,)( kGx? 也可逆,且由 Von-Neumann 引理知,存在 0M? ,使得1|| ( ) ||kG x M,于是11 | | | | | | | | ( ) ) ( ) | || | (k k k k k T kx x d x x G x xx Gx??? ? ? ? ? ? ??1| | ( ) ) | | ( )( | | (( | |))k T k k T kG x G x G x x x?? ? ? ???| | ( ) | | ( | | | | | ) | | ( | | )|kkM G x o x x o x x? ? ? ??, (15.1.11)这表明非线性方程组的牛顿法具有局部超线性收敛速率,特别地,当 ()Gx? 在点 x 处局部Lipschitz 连续时,由定理 1.2.1,有1 | | | | (| | ( ) ) ( ) ( ) | |k k k T kx G x GxM x G x x x? ? ? ? ? ??2(|| || )kO x x??, (15.1.12)这时,非线性方程组的 Newton 法具有局部二阶收敛速率 .算法 15.1(非线性方程组的阻尼 Newton 法)步 1:给定初始点 0 nx?? ,参数 (0,1)?? 和 (0,1)?? ,容许误差0?? ,置 0k? ;步 2:如果 ()kx ,则算法结束,输出近似解 kx ;步 3:确定牛顿方向,从牛顿方程( ) ( )k k TG x G x d?? ? 0 (15.1.13)解出 kd ,并令 1?? ;步 4:沿 kd 进行简单后退线搜索,如果第十五章序列二次规划法274 最优化理论与方法 [乌力吉 ]( ) (1 ) ( )k k kx d x? ? ? ? ?? ? ?, (15.1.14)则令 ? ??? ,转步 4,否则令 k ;步 5:令 1k k kkx x d?? ?? ,置 1kk??,转步 2.定理 15.1.1 设 : n nG 连续可微,如果 ()kGx? 对每个 k 都可逆,且存在 0M? ,使得 1()|| ||kG x M总成立,则算法 15.1 产生的点列 {}kx 的任何聚点都是 ()Gx?0 的解 .证设x 是点列{}kx 的一个聚点,则存在无穷指标集1 {1,2, }K ? ? ,满足1limkkKk xx??? ?, (15.1.15)由于算法 15.1 是下降算法,故由数列 {( )}kx? 单调减少可知( ) ( )limk kxx???? ? . (15.1.16)由于 1()|| ||kG x M,故对每个 1k K? ,都有1 0| | | | | | | | | | | | | |( ) ) ||( ( )k k kG x G x GdM x?? ?? ?,(15.1.17)即1{}k kKd ?有界,从而存在无穷指标集 21K K? ,使得2limkkKk dd??? ?,且由 ()Gx 连续可微,有2( ) ( ) | || | l i m | | 0( ) ( ) | |T k T k kkKkddG x G x G x G x???? ? ? ???,即( ) ( )T dG x G x? ? ?. (15.1.18)再由算法 15.1 步 4 可知,1 )( ) ( ) (1 ( )k k k kkkdx x x? ? ? ? ? ?? ??? ?, (15.1.19)( ) (1 ( ))k k kkkdxx? ? ? ? ?? ??, (15.1.20)其中 ? /kk? ? ?? .下面用反证法来证明定理的结论成立 . 假设 x 不是 ()Gx?0 的解,这时 ( ) 0x? ? ,由不等式 (15.1.19)和极限 (15.1.16),有 lim 0k k??? ?,因此,§ 15.1 Lagrange-Newton 法最优化理论与方法 [乌力吉 ] 275lim? 0kk ??? ? , (15.1.21)由此得2( ) ( l im 2) ( ) ( ) ( ) ( )? T T Tk kK kkxx x d G x G x xd d? ? ? ???,从而对充分大的 2k K? ,都有3 (1? ?( )2 ) ( )kkdxx? ? ? ???? . (15.1.22) 由于对任意 (0,1)?? ,有22l i m ( ) l i m ? )? (kkkkk K k Kkkx d x x d? ? ? ???? ? ? ?? ? ? ?,故由 ( ) ( ) ( )Tx G x G x?? ? ? 连续以及2limkkKk dd??? ?,有)? ?| ( ) ( ( ) ( |)k k kkkdx x x xd? ? ? ? ? ?? ? ???|? ?| ( ) ( )k k k T k k Tk k k kddx dx d? ? ? ? ? ? ? ?? ? ? ???( ) ? ? ?|( ( ) )k k k k T kk k kdxx dd? ? ? ? ? ? ?? ? ?? ? ?) (|( ? )?k T kkk d d dx? ? ? ?????( || ) ( ( ) || || ||k k k k kk k kdx x dd? ? ? ? ? ? ?? ??????|| ( ) || || || )kkk ddx d? ? ?? ? ? ??2? )( )( ,kok K k? ?? ??, (15.1.23)其中 (0 ,1), (0 ,1)kk对任意 2k K? 成立,故对充分大的 2k K? ,由不等式 (15.1.20) ,(15.1.23)和 (15.1.22),有( ) ( ) ( )k k k kkk dx x x? ? ? ? ? ?? ? ??( ) ( ) ( )kkxod x? ? ? ?? ? ??1? ? ? ?( ) ( ) ( ) ( )2k k k kx x o x? ? ? ? ? ? ?? ? ??? ?, (15.1.24)即有 ( ) ( )kxx?? ?? ,对不等式两边取极限,得第十五章序列二次规划法276 最优化理论与方法 [乌力吉 ]1) ( ) 0( x,由于 (0,1)?? ,故 ( ) 0x? ? ,但这与假设矛盾,矛盾表明假设不成立 .§15.1.2 等式约束优化问题的 Lagrange-Newton 法在本节,我们回过头来考察非线性方程组 (15.1.3)1()),(().miiif x c xcx(15.1.25)以 () mnAx 来表示约束函数 ()cx的 Jacobi 矩阵,即12 mA x c x c x c x? ? ? ? ??, (15.1.26)并记1(, ()()( ) ( ) ( , )) m ii xifGxcxcxx c x Lx? ??, (15.1.27)则 (,)Gx? 的 Jacobi 矩阵为2 ( ) ( ))( ,(, )Txx Lx AxxxG A ?? ?????? ?????O . (15.1.28)假设 A (A1) 约束函数 ()cx的 Jacobi 矩阵 ()Ax 是行满秩的;(A2) Lagrange 函数的 Hesse 矩阵 2 ( ),xxLx?? 在切平面 { | }nd Ad? ? 0? 上正定,即有2 ( |, ) 0 },{Tnxx L x dd d dd A?? ? ? ?? ? ?0 0?. (15.1.29)定理 15.1.2 如果问题 (15.1.25)满足假设 A,则 ( , )Gx?? 是可逆矩阵 .证设存在向量 nmd 满足2 ) ( )) (,,()(T xxx dAxddAxLxGx ??? ??? ? ? ? ??? ? ??? ?? ??? ?????? 00O,则由2 (), )( Txx xLx d A x d ??? ? ? 0, (15.1.30)§ 15.1 Lagrange-Newton 法最优化理论与方法 [乌力吉 ] 277()xA x d??0 , (15.1.31)有2 (, ) ( ) ( ) xT T T Tx x x x xd d d A x d ALx xdd??? ??? ? 0,(15.1.32)这样,由等式 (15.1.31)和 (15.1.32)以及假设 (A2)可知 xd?0 ,将其代入方程等式 (15.1.30),得()TA x d? ?0 ,而由假设 (A1)可知 ()TAx 是列满秩的,故 d??0 ,从而 ( , )Gx?? 是可逆矩阵 .记1( , ) ( , ) ( , )2 Tx G x G x? ? ? ?? .等式约束优化问题的Lagrange-Newton 法就是通过算法15.1 来求解非线性方程组(15.1.14)来得到约束问题(15.1.3)的K-K-T 点及其乘子,具体算法如下:算法 15.2(等式约束优化问题的 Lagrange-Newton 法)步 1:给定初始点 00)(, nmx ? ??? ,参数 (0,1)?? 和 (0,1)?? ,容许误差 0?? ,置 0k? ;步2:如果(),kkx? ? ?? ,则算法结束,输出近似K-K-T 点对( ),kkx ? ;步 3:确定牛顿方向,从牛顿方程2 ( , () ( ) ( )( )())k k k T k k T kxxxkkdAfdAL x x x A xx c xO 0(15.1.33)解出 , )( kkxd d? ,并令 1?? ;步 4:沿 , )( kkxd d? 进行简单后退线搜索,如果( ) ( 1 ) (,, )k k k k k kxx d d x?? ? ? ? ? ? ? ?? ? ? ?,则令 ? ??? ,转步 4,否则令 k ;步 5:令 1kkk kxx x d?? ?? , 1kkk kd????? ?? ,置 1kk??,转步 2.这个算法的全局收敛性和局部收敛速率可由§15.1.1 中相应结论得到 .注对于包含不等式约束的优化问题第十五章序列二次规划法278 最优化理论与方法 [乌力吉 ]m in ( )( ) 0 , { 1 , 2 , , }s . t.( ) 0 , { 1 , 2 , , }i eei efxc x i mc x i m mI m我们可以考虑引入松弛变量,使其成为仅具有等式约束的优化问题2m in ( )( ) 0 , { 1 , 2 , , }s. t.( ) 0 , { 1 , 2 , , }eii eiefxc x i mc x y i m m m EI具体讨论读者自己完成 .当我们恒取 1k?? 时,算法 15.2 就变成经典 Newton 法,这时有迭代格式11,.kkkxkx x dd从而,牛顿方程 (15.1.33)可以写成2 ) ( )(,()()()k k k T kxxkkL x x xxc dAA xf? ?? ? ? ?? ? ??? ?? ? ? ???? ??O 0, (15.1.34)由此解出 kkxdd? 和 1 kkkd???? ??.另一方面,我们注意到非线性方程组 (15.1.34) 完全可以看成是二次规划问题21m in ( ) (2s . t., ) ()))( (T k k k Txxkkd f xq d d L x ddx cxA(15.1.35)的一阶必要条件,即为问题 (15.1.20)的 K-K-T 条件 .当假设 A 满足时,非线性方程组 (15.1.34)的唯一解 1)(,kkd ?? 就是凸二次规划问题(15.1.35)的最优解及其乘子 .因此,等式约束优化问题的 Lagrange-Newton 法可以理解为每次求解一个二次规划子问题来得到在当前迭代点 kx 处关于变量 x 的下降方向 kkxdd? 以及1k k kx x d? ??的乘子1k?? .这给了我们一个启示,对于约束优化问题可以通过解一系列这样的二次规划子问题来产生收敛于原问题 K-K-T 点及其 Lagrange 乘子的迭代序列 {}kx 和{}k? ,这就是序列二次规划法的思想来源 .§ 15.2 序列二次规划法最优化理论与方法 [乌力吉 ] 279§15.2 序列二次规划法本节考察一般非线性约束最优化问题m in ( )( ) 0 , { 1 , 2 , , }s . t.( ) 0 , { 1 , 2 , , }i eei ec x i mc x i m mEI m(15.2.1)其中 )( )), ((i xfc i E Ix ??都二阶连续可微 .类似于二次规划子问题(15.1.35),我们构造一般约束问题(15.2.1)的二次规划子问题()) ( )1m in ( 0 , ,) ( ) 0 , ) 2 (s.t . (T k T kk T k iik T k d f x cdq d d Bc x i Ec d c x i Idxx(15.2.2)其中 kB 是 Lagrange 函数的 Hesse 矩阵 2 ,)( kkxxLx?? 的近似 . 二次规划问题 (15.2.2)的 K-K-T 条件为1( ) ( ) ,( ) ( ) 0 , ,( ) ( ) 0 , 0 , ( ) ( ) .( ) 0 , mkkk i iik T kiik T k k T ki i i i i if x c xx x i Ex x x x IBdc d cc d c c d c i 0(15.2.3)定理 15.2.1 如果 kd 是二次规划问题 (15.2.2)的 K-K-T 点, k? 是相应的乘子,则对于 1l?罚函数() 1|( ) ( ) | ( ) ||kcxP x f x? ? ??? , (15.2.4)有() 110) | | ( ) | | (( () )kk mk T k k k kk i iid cxd P x d B d xd c?, (15.2.5)其中() 1| | ( ) | | | ( ) | | m i n{ 0 , ( ) } |k iii E i Ic x c x c x| ( ) | m a x{ 0 , ( ) }iii E i Ic x c x????? ?? . (15.2.6) 证对任意 , nyz?? , [0,1]?? ,有第十五章序列二次规划法280 最优化理论与方法 [乌力吉 ]() 11| | [ ( 1 | m i n{ 0 , ( 1 } |) ] | | )nii iy z y z? ? ? ??? ? ???? ?1 )m a x{ 0 , (1 }ini iyz??? ?? ? ??1 [ ( 1 m a x{ 0 , } m a x{ 0 ,) }]niii yz???? ? ? ? ??11) m i n{ 0 , m i n{ 0}} ,(1nniiiiyz??????? ??( ) ( )11) | || ||(| ||1 yz.因此,由函数 ()1| || |y? 的凸性和 K-K-T 条件知, ()Px? 在 kx 处沿方向 kd 的方向导数( ) ( )1100) ( ) | | ( ) | |()( | | | |l i mkk k k kk T kd P x cd x d xfx cd d?( ) ( )11((|| [ ) ) ] || ( ) |) || |l im() k k T k kk T k c x A x d xf x d c( ) ( )11( ) ( | ( ( ) ) ] || ( ) ||| ) || )[k T k k k T k kf x d x Accx d x? ???????11 ()( ) ( ) | |||miTk k k k kk i iBd c x xcd?? ????? ? ? ???????() 11|() | ( ) | | ( )mk T k k k kk i iicxd B d cx??? ?? ? ? ? ?,其中矩阵 1 2) ( ( ) ( ) ( ) )( kk mkkc x c x xx cA ? ? ? ??,从而定理得证 .定理 15.2.2 如果 kd 是二次规划问题 (15.2.2)的 K-K-T 点, k? 是相应的乘子,则当( ) 0k T kkd B d ? 且 || ||k 时, kd 是 1l? 罚函数 (15.2.4)在kx 处的下降方向 .证由于1 ( ) ( ) ) ( ))( (m k k k k k ki i i i i ii E Iiic x c x c x? ? ?? ? ??? ? ? ??? ?() 1| ( ) || | | | | | |m a x{ 0 , ( ) } ( ) | ||k k k k k ki i i ii EI ic x c x c x? ? ?,故当 ( ) 0k T kkd B d ? 且 || ||k 时,由 (15.2.5)知 ()Px? 在 kx处沿方向 kd 的方向导数§ 15.2 序列二次规划法最优化理论与方法 [乌力吉 ] 281)( 0kkP d ddx?,这表明 kd 是 1l? 罚函数 (15.2.4)在 kx 处的下降方向 .下面给出序列二次规划法的具体算法,这个算法是韩世平于 1976 年提出来的, Powell在 1977 年给出修改方案 . 由于 Wilson 早在 1963 年就讨论过Lagrange-Newton 法,因此,下面的算法也称作 Wilson-Han-Powell 算法 .算法 15.3(序列二次规划法)步 1:给定初始点 0 nx?? ,罚因子 0?? ,步长上限 0?? ,初始矩阵 0 nnB ,初始参数 0 0?? ,容许误差 0?? ,置 0k? ;步 2:求解二次规划子问题 (15.2.2)得到下降方向 kd ,如果|| ||kd ?? ,则算法结束,输出近似 K-K-T 点 kx ;步 3:求出步长 [0, ]k ,使得0) m i(( n)k k k kkkP d P x dx?? ??? ? ???? ? ? ?; (15.2.7)步 4:令 1kk kkx x d?? ?? ;步 5:产生矩阵 1kB? 和参数 1 0k?? ? ;步 6:置 1kk??,转步 2.注( 1)在算法 15.3 中,价值函数 ()Px? 是 1l? 罚函数 (15.2.4),正数列 {}k? 满足0k k??. (15.2.8)(2)矩阵1kB? 的计算一般是用拟牛顿迭代公式产生,我们希望它是 2 1 1( , )kkxxLx 的近似,因此可取1 1 11( ) ( ) ( ), )( ()mk k k k k k k k ki i iix x f x f x cs xy cx?? ? ??? ? ? ? ? ? ? ? ? ??, (15.2.9)然后利用拟牛顿公式计算1kB? . 由于上述线搜索过程不能保证( )0k T kys ? ,从而不能直接利用 BFGS 方法 . Powell 在 1978 年给出了一种修正策略,即取) 0 . 2 ( )( 1 ), ( ,, ) 0 . 2(,()k k T k k T kk kk k k T k k T kk k k ky s B sBysy y s y s B ss?? ????? ? ?第十五章序列二次规划法282 最优化理论与方法 [乌力吉 ]其中(0 .8 ()( ) )k T kkk k T k k T kks B ssysBs? ? ?,经过这样的修正,我们就可以用 BFGS 方法 .还有一种修正策略是以1 ( ) ( )? 2mk k k kiii c x c xyy ? ?? ?? ?来取代 ky . 这种做法一般能保证 ?( )0k T ks y ? ,如果 ?( )0k T ks y ? ,则可以通过增大 ? 来实现其反号 .定理 15.2.3 设 ()fx和 ( )( )i x i E Ic ??都连续可微,且存在两个常数 0 mM?? ,使得不等式22|| |||| || T km d Bd M dd?? (15.2.10)对一切 k 和 nd?? 都成立 . 如果不等式 || ||k 对一切 k 都成立,则由算法 15.3 产生的点列 {}kx 的任何聚点都是约束优化问题 (15.2.1)的 K-K-T 点 .证设x 是点列{}kx 的任意一个聚点,且存在无穷指标集0 {1, }2,K ? ? ,使得0limkkkK x x?.由定理的条件可知, {}k? 和 {}kB 都有界从而0{}k kK? ?和0{}k k KB ?都有收敛子列,不妨就设00,lim limkkk kKKBB? ???.由于 kd 是二次规划子问题 (15.2.2)的最优解,从而 kd 满足 K-K-T 条件 (15.2.3). 注意到()fx和 ( )( )i x i E Ic ??都连续可微, kB 满足不等式 (15.2.10),由线性方程组的扰动理论,我们在 (15.2.3)式中令 k?? ,不难得出lim kkKk dd??? ? , (15.2.11)且 d 满足 K-K-T 条件§ 15.2 序列二次规划法最优化理论与方法 [乌力吉 ] 2831( ) ( ) ,( ) ( ) 0 , , ( ) ( ) 0 , 0 , ( ) ( ) .( ) 0 , miiiTiiTi i iTi i if x c xx x i ExxBdc d cc d c cdx x Ici(15.2.12)如果 d?0 ,则由 K-K-T 条件 (15.2.12)易见,这时 x 是约束优化问题 (15.2.1)的 K-K-T点,定理得证 .下面讨论 d?0 的情形,这时取 [0, ]? ?? ,满足0) m i((n)P x P xdd????????? ? ?.由于 d 满足 K-K-T 条件 (15.2.12),其中 ? 是 x 的乘子, 0Td Bd? ,|| ||? ??? ,由定理 15.2.2 可知, d 是目标函数 ()Px? 在 x 处的下降方向,从而有)(()P x P xd.记 ) )0((P x P x d??? ??? ?? ,由于kkd x dx ??? ? ? 0,)( kKk ?? ? ,故对充分大的 0k K? ,有() 2 ()kkPPx d x??? ??? ?. (15.2.13)另一方面,由于1 0) m in(( )( )k k k kkkxxP P d P x? ? ??? ? ? ?? ??? ? ? ? ? 对每个 k 成立,故对任意自然数 k 和 m , 1mk??,有111( ) )(mmkiikPxxP?? ?. (15.2.14)再注意到不等式 (15.2.8)蕴含对充分大的 k 有2iki ???? ??,因此,对充分大的 k ,我们在不等式 (15.2.14)中令 m?? ,得第十五章序列二次规划法284 最优化理论与方法 [乌力吉 ]11( ) )(k iikP xP x?? ?0 (m i n )kk iikPdx??? ??。

两阶段法(线性规划)

两阶段法(线性规划)

两阶段法孙敏 枣庄学院考虑线性规划问题0 s.t.min ≥==x bAx cx Z(1)符号说明与教材一致,唯一的不同之处是不要求假设矩阵A 是行满秩的。

在初始基本可行解未知的情况下,可以采用两阶段法。

这种方法的基本思想是:第一阶段在约束中增加人工变量a x ,修改目标函数为极小化人工变量的和,即下面的问题(2),然后用普通单纯形法消去人工变量(如果可能的话),即把人工变量都变换成非基变量,求出问题(1)的一个基本可行解。

第二阶段就从得到的基本可行解出发,用普通单纯法求解问题(1)。

0,0s.t.min ≥≥=+=a a a T x x bx Ax x e W (2)这样,在极小化目标函数的过程中,由于大M 的存在,将迫使人工变量离基。

由于b x x a ==,0是线性规划(2)一个基本可行解,目标函数在可行域上有下界0,因此问题(2)一定存在最优基本可行解。

用单纯形法求解线性规划(2),设得到的最优基本可行解是⎥⎦⎤⎢⎣⎡**a x x ,此时必有下列三种情形之一。

(a )0*≠a x 。

这时问题(1)无可行解。

因为如果问题(1)有可行解xˆ,则 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡0ˆxx x a是线性规划(2)的可行解。

在此点处,问题(2)的目标函数值⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡=<==⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡***000ˆa a T T x x W x e e x W这与⎥⎦⎤⎢⎣⎡**a x x 是问题(2)的最优解矛盾。

(b )0*=a x 且*a x 的分量都是非基变量。

这时,m 个基变量都是问题(1)的变量,又知⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡0***x x x a 是问题(2)的基本可行解,因此*x 是问题(1)的一个基本可行解。

转第二阶段。

(c )0*=a x 且*a x 的某些分量是基变量。

这时,可用主元素消去法,把原来变量中的某些非基变量引进基,替换基变量中的人工变量,再开始第二阶段。

序列二次规划法

序列二次规划法
将式(1-4)变成二次规划问题的一般形式,即 (1-4)
min
1 T S HS C T S 2 s. t. AS B Aeq S Beq
(1-5)
求解此二次规划问题,将其最优解 S * 作为原问题的下一个搜索方向 S , 并在该方向上进行原约束问题目标函数的约束一维搜索, 就可以得到原约束问题 的一个近似解 X
此问题是原约束最优化问题的近似问题,但其解不一定是原问题的可行点。 为此,令
S X Xk
将上述二次规划问题变成关于变量的 S 的问题,即
1 min f ( X ) S T 2 f ( X k ) S f ( X k )T S 2 s. t. gu ( X k )T S gu ( X k ) 0 (u 1,2,..., p) hv ( X k )T S hv ( X k ) 0
k
3 序列二次规划算法推导过程
序列二次规划(SQP)算法是将复杂的非线性约束最优化问题转化为比较 简单的二次规划(QP)问题求解的算法。所谓二次规划问题就是目标函数为二 次函数, 约束函数为线性函数的最优化问题。二次规划问题是最简单的非线性约 束最优化问题。
3.1 序列二次规划算法思想
非线性约束最优化问题:

(1-3)
(v 1,2,..., m)
H 2 f ( X k ) C f ( X k ) Aeq [h1 ( X k ), h2 ( X k ),..., hm ( X k )]T A [g1 ( X k ), g 2 ( X k ),..., g p ( X k )]T Beq [h1 ( X k ), h2 ( X k ),..., hm ( X k )]T B [ g1 ( X k ), g 2 ( X k ),..., g p ( X k )]T

第16讲 二次规划

第16讲 二次规划
xB x = , xN
其中 xB ∈ R m , xN ∈ R n−m .
AB 可逆, 对应 A 的分解为 A = 使得 AB 可逆,则等式约束可写 AN
成:
T T AB xB + AN xN = b ,
(3)
− 的存在, 由于 AB1的存在,故知 − T xB = AB 1 (b − AN xN ) .
模型的建立
设投资的期限是一年,可供选择的金融资产数为 。设此n中 设投资的期限是一年,可供选择的金融资产数为n。设此 中 金融资产的年收益为随机变量ξ = (ξ1 , ξ 2 ,⋯ , ξ n ) ' 。由于我们 金融资产的年收益为随机变量 主要关心投资的分配比例,不妨设投资总数为1个单位,用 个单位, 主要关心投资的分配比例,不妨设投资总数为 个单位 于第j中投资的资金比例为 于第 中投资的资金比例为 w j ( j = 1, 2, ⋯ , n ) , 令
w= (w , w2,⋯, wn)' 1
称为投资组合向量,显然应有: 称为投资组合向量,显然应有:
n

w
j = 1
j
= 1
也是一个随机变量, 投资一年的收益 w ' ξ 也是一个随机变量,期望收益为
E(w'ξ ) = E(ξ1)w1 + E(ξ2 )w2 +,⋯, +E(ξn )wn
马库维茨建议用随机变量 风险的度量, 风险的度量,即
ˆ ˆ ˆ 正定,则由(5) (5)式 可得唯一解: ∗ 如果 G 正定,则由(5)式,可得唯一解: xN = −G −1 g N .
代入(4)式可得对应的 ∗ 代入(4)式可得对应的 xB . (4)
从而问题的最有解: 从而问题的最有解:

二次规划的算法研究

二次规划的算法研究
Karmarkar的著名算法…L一梯度投影算法发表以来,其理论上的多项式收敛性及
实际计算的有效性,使得内点算法成为近十多年来优化界研究的热点。受 Karmarkar算法的影响,二次规划的内点算法紧接着也被提了出来。内点算法的基 本思想就是在可行域的内部产生一个点列,使得这个点列收敛到原问题的最优解。
关键词:二次规划Lagrange对偶严格可行内点算法不可行内点算法 中心路径算法线性互补
Abstract
Quadratic programming is an important branch in mathematical programming,
which has wide applications in many fields such as operation research,economical
Linear complementarity
创新性声明
本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究 成果。尽我所知,除了文中特别加以标注和致谢中所罗列的内容以外,论文中不 包含其他人已经发表或撰写过的研究成果:也不包含为获得西安电子科技大学或 其它教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做 的任何贡献均己在论文中做了明确的说明并表示了谢意。
studying situation Of quadratic programming ale bdefiy introduced in chapter one.In
order to obtain interior point algorithms for convex quadratic progranuning,basic
且/(xt),f(x:),…的极限存在时,有,(Ds垫f(xt);

二次规划法+两阶段法

二次规划法+两阶段法

x5 0 0 1 0 0
x6 1 10 11 − 10 1 − 10 1 5 1 − 20
RHS 34 5 41 5 41 5 18 5 8 5
精品课程《运筹学》
8 18 41 T x = ( 0 , , ,0, ,0 ) 5 5 5
41 g= >0 5
无可行解 在没有明显初始解时, 为找第一个基本可行解 在没有明显初始解时, 也可采用大 M 法.大 M 法的缺点时:不容易确 大 法的缺点时: 的取值, 过大容易引起计算误差. 定 M 的取值,且 M 过大容易引起计算误差
第四节 解线性规划问题的 进一步讨论
§4.1 两阶段法及关于单纯形方法的几点说明 §4.2 线性规划问题的对偶及对偶单纯形法 §4.3 线性规划问题的灵敏度分析
精品课程《运筹学》
两阶段法及关于单纯形方法的几点说明 §4.1 两阶段法及关于单纯形方法的几点说明
(1) 两阶段法
第一个阶段是判断线性规划是否有可行解, 第一个阶段是判断线性规划是否有可行解,如果 没有可行解,当然就没有基本可行解,计算停止; 没有可行解,当然就没有基本可行解,计算停止; 如果有可行解, 如果有可行解,按第一阶段的方法可以求得一个 初始的基本可行解,使运算进入第二阶段 初始的基本可行解,使运算进入第二阶段. 第二阶段是从这个初始的基本可行解开始, 第二阶段是从这个初始的基本可行解开始,使用 单纯形方法或者判定线性规划问题无界, 单纯形方法或者判定线性规划问题无界,或者求 得一个最优解. 得一个最优解
x5 0 0 1 0 0
x6 0 0 0 1 0
RHS 0 33 15 18 10
− 3 − 2 −1 3 1 2 2 2 2 0 4 6 1 5* 1
精品课程《运筹学》

二次城市规划

二次城市规划

二次城市规划摘要:随着城市社会经济的快速发展以及外部市场环境日新月异,引起城市用地性质的持续调整。

灰色用地的概念引入对城市用地开发、用地潜力的挖掘具有积极的作用。

针对灰色用地提出的二次城市规划作为一种动态的城市规划方法,不仅提高了规划的弹性,而且灰色用地的开发和利用也满足了城市发展的需求。

关键词:灰色用地、工业用地改造、可持续发展用地、二次城市规划1、概述1.1灰色用地概念及意义某些地区由于外部环境不够成熟、未来发展的不确定性等因素,使其具备灰色的特性,不能按照正常的总体规划将土地利用规划一步落实到位,可以先赋予其将来易置换的用地功能,待时机成熟,再将其转换成其它用地性质,此类地块统称为“灰色用地”。

灰色用地不是不去确定地块的性质,而是让它在市场经济的调控下来转变自身的用地性质,使其更好地适应市场经济,使土地在各个阶段都能发挥最大的经济效益。

灰色用地是社会发展与经济增长导致的必然产物,是适应市场经济条件下理性规划的产出,它的出现适应了土地可持续发展的要求,在考虑当地人文和市场的条件下,以较短的时间(10-20年)作为灰色用地的限期,以适应当地当时的规划背景,保持土地价值的最优。

1.2灰色用地与二次城市规划灰色用地的出现推进了城市规划创新,要求城市规划必须适应市场经济发展,要求城市用地在不同发展阶段效益最大化且功能多样化,以动态的思想来规划,适应城市社会经济可持续发展的要求。

二次规划是为了保持土地的使用价值与社会经济水平相平衡,在一次规划时超前考虑与二次规划的衔接,避免重复开发的浪费,同时盘活土地存量,以此适应市场经济条件下的城市规划。

用二次规划的方法来实践灰色用地的理论,以此达到土地利益最大化和经济的可持续发展的目标。

图1灰色用地与二次规划关系图1.3灰色用地开发案例分析1.3.1案例一:南京1912特色街区&上海新天地----被动性灰色用地规划南京1912特色街区是由民国总统府遗址建筑群转换为目前南京的集餐饮、娱乐、休闲、观光、聚会为一体,文化、品位于一身的时尚休闲商业区及知名品牌的展示地。

二次规划求解方法探讨

二次规划求解方法探讨

二次规划求解方法探讨李骥昭1 刘义山2(1.平顶山工业职业技术学院文化教育部1 河南 平顶山 467001; 2.平顶山工业职业技术学院文化教育部2 河南 平顶山 467001)摘要:文章推广与应用了二次非线性规划模型的基础理论及算法。

在线性规划模型中,活动对目标函数的贡献与活动水平成比例关系,因而目标函数是决策变量的线性函数,而在实际问题中,往往遇到活动对目标函数的贡献与活动水平不成比例关系的情形,即目标函数不是决策变量的线性函数,而是二次非线性函数,我们可以利用K-T 条件并转化为等价求解相应的线性规划问题。

经过分析可以得到结论,目标函数变成了线性函数,但约束函数中有一个非线性函数,这时问题仍然是非线性的。

应用Excel 规划求解工具解这个模型后我们知道如果投资者愿意承担多一点的风险,就可以获得更大的收益。

关键词:非线性规划,线性规划,目标函数,决策变量,模型 中图分类:O226 文献标识:A 0 引言非线性规划是运筹学的一个重要分支,它在管理科学、系统控制等诸多领域有广泛应用。

非线性规划的任一算法都不能仅仅考察可行域极点的目标函数值来寻优。

非线性规划的最优点可能在其可行域的任一点达到,即最优解可能在极点,或边介点或内点达到。

在非线性规划问题中,其变量取值受到多个约束条件的限制,对其求解,一方面要使目标函数每次选代要逐次下降,且还要保持解的可行性。

这就给寻找最优解带来更大的困难。

为使求解能较顺利进行,一般采用将约束条件转化为无约束条件,化为较简单问题来处理[1]。

1 预备知识1.1 相关概念,相关定理 若0x 使得()00>xg j 则称此约束条件是0x的不起作用约束;起作用约束:若0x 使得()00=xg j ,则称此约束条件是0x 的起作用约束[2]。

可行方向:若(){}0,,,,2,10|00>∈∃=≥=∈λnj E P L j x g x R x 的实数,使得[]0,0λλ∈,均有R P x ∈+λ0,则称方向P 是0x 的一个可行方向;当()P J j P xg Tj ,00∈>∇必为0x 的一个可行方向;下降方向:若0,00>∈∃∈λn E P R x 使得[]0,0λλ∈均有()()00x f P x f <+λ,则称P 为0x 的一个下降方向。

二次规划与非线性规划

二次规划与非线性规划

Ceq(X)=0 VLB X VUB
其中X为n维变元向量,G(X)与Ceq(X)均为非线性函数组成 的向量。
14
MATLAB求解上述问题,基本步骤分三步 1. 首先建立M文件fun.m,用来定义目标函数F(X): function f=fun(X); f=F(X);
2. 若 约 束 条 件 中 有 非 线 性 约 束 :G(X) 0 或 Ceq(X)=0, 则 建 立 M 文 件 nonlcon.m 定 义 函 数 G(X)与q(X): function [G,Ceq]=nonlcon(X) G=… Ceq=…
8
定义 把满足问题(1)中条件的解 X ( Rn ) 称为可行解(或可行 点),所有可行点的集合称为可行集(或可行域).记为D.即 D X | g i X 0, h j X 0, X Rn 问题(1)可简记为 min f X .


X D
9
五、非线性规划的基本解法
MATLAB(youh2)
18

2 f ( x) ex1 (4x12 2x2 4x1x2 2x2 1)
s.t.
x1+x2 0 1.5+x1x2 - x1 - x2 0 -x1x2 –10 0
1.先建立M文件fun4.m定义目标函数:
function f=fun4(x); f=exp(x(1)) *(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
3
二、Matlab中求解二次规划
类 型
一元函数极小 无约束极小 线性规划
模 型 min F(x)s.t. x1<x<x2 min F(X) min c X s.t. AX≤b T T min 1 x Hx+g x

二次实施方案

二次实施方案

二次实施方案一、背景分析。

随着市场竞争的日益激烈,企业在发展过程中需要不断进行改进和优化,以保持竞争力。

而在实施一次方案后,往往需要进行二次实施,以进一步完善和提升方案的效果。

因此,本文将提出二次实施方案,以期达到更好的效果。

二、问题分析。

在实施一次方案后,可能会出现一些问题,如效果不理想、资源浪费、流程不畅等。

这些问题需要通过二次实施来加以解决,以确保方案的顺利实施和效果的最大化。

三、二次实施方案。

1. 深入调研,在二次实施前,需要对一次方案的实施情况进行深入调研和分析,找出存在的问题和不足之处。

只有充分了解问题的本质,才能有针对性地提出解决方案。

2. 制定详细计划,在深入调研的基础上,制定详细的二次实施计划,包括时间节点、责任人、资源投入等。

确保每一个环节都有明确的安排和规划,避免出现混乱和失误。

3. 优化流程,针对一次实施中出现的流程不畅等问题,进行流程优化。

重新设计流程,简化步骤,提高效率,确保每一个环节都能顺利进行,从而提升整体效果。

4. 资源整合,对一次实施中可能存在的资源浪费问题进行整合和优化。

合理分配资源,避免重复投入,确保资源的最大化利用,提高方案的经济效益。

5. 强化监控,在二次实施过程中,加强对各个环节的监控和评估。

及时发现问题,及时调整,确保方案的顺利实施和效果的最大化。

6. 做好沟通,在二次实施过程中,做好各方之间的沟通和协调工作。

确保信息畅通,减少误解和偏差,提高方案实施的效率和效果。

四、总结。

二次实施方案的制定和实施,对于提升一次方案的效果和保障企业的发展具有重要意义。

只有不断进行改进和优化,才能适应市场的变化和满足客户的需求,保持竞争力。

因此,企业在实施一次方案后,应及时进行二次实施,以确保方案的顺利实施和效果的最大化。

二次规划

二次规划
(2-5)
BXB CXC b
XB B -1C bB -1
(2) 确定被替换基本变量 x r
bi br min ( aik 0) ark 1i m aik
x1 b1 x b r r xm bm
Ax b BxB Nx N b (5)基本矩阵:若 A mn 的秩R(A) m , 则非奇异矩阵 B mm 称为线性规划的
基本矩阵。 (6)非基本矩阵: N m( nm ) 称为线性规划的非基本矩阵。 (7)基本变量: x B 称为线性规划的基本变量。 (8)非基本变量: x N 称为线性规划的非基本变量。 (9)基本解:x (x B ,0) 称为线性规划的基本解。
0性质2性质4松弛变量不等式等式基本可行解最优解可行域0?rbax?bax??rbnxbxnb??bax?bbxb?可行域边界bxx??顶点000m??21bxxxx????????????????b????????????????????????x???x????????????????????a?????????????????????a??????a???a?????????????mnmmmnmmmmnmmnmmmmmmmmbbxxaaaaaaaaaaaaaa2111211211112111212222111211b?cbxcxkkkxzcff0???in?mikkkzc?1?min????1确定替换基本变量的非基本变量21mrppppb???????????????m???b?2?1????????????????????????0???x?????????????mn????m????m???a??????a??????a?2????2????2?1????1????1????????????????x??????????????????1??????0???0?????????kkmnkmnkmmbbaaaaaaxx1112100010001b?cx?bxcbbb?cb?x11b252确定被替换基本变量rx01?1?1??????????????mk?rk??????????????m???b?r????????????????xkkmrxaaabbxx?0min1?i??ik?ik?i??rk?r?maabab21mrxxxx???bx21mkxxxx???bx21mrppppb???21mkppppb???4

线性规划与二次规划

线性规划与二次规划

z [A eq , beq ] 0 t A eq , beq z 0 T z d , t 1 T [d , ] 1 t t0
5.2 线性规划的标准形式
有数据点的最大偏差是最小的。
问题描述 设多项式函数为
y Pm ( x) ai xi [1, x,
i 0 m
, x m ]a
a [a0 , a1 ,
, am ]T
m 1
在每个数据点的偏差
k Pm ( xk ) yk [1, xk , , xkm ]a yk
5.3 线性规划的性质
T max c x n x
A b s.t., Aeq x beq Aeq beq
● ● ●
满足所有约束条件的向量构成的集合 是线性规划的可行域,最优解是否存 在取决于可行域的性质 线性规划的可行域是凸集; 线性规划可能有解、无解或无界; 线性规划的最优解在凸多面体的顶点上;
决策变量:设需要一级和二级检验员的人数分别为x1,x2人 工资花费: 8 4 x1 8 3 x2 32 x1 24 x2 错检损失: 8 25 (1 0.98) x1 8 15 (1 0.95) x2 2 8x1 12 x2
求最大值的线性规划
max c x c1 x1 c2 x2 n
T x
cn xn
T max c x n x
s.t., Ax b A eq x b eq
求最小值的线性规划
T
A b s.t., Aeq x beq Aeq beq

经济与管理Chp7.3序列二次规划法

经济与管理Chp7.3序列二次规划法

第7章约束问题的优化方法第三节二次规划第四节序列二次规划第三节二次规划一、二次规划的基本概念二次规划(Quadratic Programming, QP)是一种特殊的非线性规划问题,目标函数是二次函数,约束是线性函数,如果只含等式约束,则形如(1)为阶对称矩阵,为矩阵,秩为。

如果半正定/正定,则其KKT点就是全局最优。

许多现实问题本身可建模为二次规划,而一些一般规划问题也能近似归结为求解二次规划问题,因此二次规划具有重要的地位。

求解二次规划(QP)问题的算法较多,如:(1)Lagrange方法(2)起作用集方法(3)Lemke方法(4)路径跟踪法二、求解等式约束QP问题的Lagrange方法考虑QP问题(1),其Lagrange函数为KKT条件:将此方程组写成(2)系数矩阵称为Lagrange矩阵。

设Lagrange矩阵可逆,其逆矩阵可表示为由式,得假设逆矩阵存在,由上述关系可解得:(3)(4)(5)于是Lagrange矩阵的逆可知。

(2)式两端乘以Lagrange矩阵的逆,就得到KKT点(6)(7)的迭代形式:设是问题(1)的任一可行解,即满足,在此点,目标函数的梯度利用和,可将(6)、(7)式改写为(8)(9)如果目标函数凸,则上述点就是一个全局极小。

例1,用Lagrange方法求解可计算出。

由(3)、(4)、(5)式得到再根据(6)式,计算问题的最优解(KKT点)为:三、起作用集方法(具有不等式约束的QP问题)考虑具有不等式约束的QP问题(10)为阶对称正定矩阵,为矩阵,秩为。

因为不是等式约束,因此该问题不能直接用Lagrange方法求解*,求解的策略之一,是用起作用集方法将它转化为求解等式约束问题。

*使用剩余变量也能化为等式约束:;但这种方法是不可取的,因为又增加了不等式约束:,结果问题还是没有完全转化为等式约束。

(一)起作用集方法的基本思路在每次迭代中,以已知的可行点为起点,把在该点的起作用约束作为等式约束,在此约束下极小化目标函数,而其余的约束暂且不管,求得新的比较好的可行点后,再重复以上做法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档