2018届中考数学专题复习五函数试题浙教版

合集下载

2018年全国各地中考数学压轴题汇编:函数(浙江专版)(解析卷)

2018年全国各地中考数学压轴题汇编:函数(浙江专版)(解析卷)

2018年全国各地中考数学压轴题汇编(浙江专版)函数参考答案与试题解析1.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.2.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a ≠0),将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x <8).(2)当y=1.8时,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(3)当x=0时,y=﹣(x﹣3)2+5=.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,∵该函数图象过点(16,0),∴0=﹣×162+16b+,解得:b=3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+3x+=﹣(x﹣)2+.∴扩建改造后喷水池水柱的最大高度为米.3.温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x人生产乙产品.(1)根据信息填表产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲65﹣x2(65﹣x)15乙x x130﹣2x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.解:(1)由已知,每天安排x人生产乙产品时,生产甲产品的有(65﹣x)人,共生产甲产品2(65﹣x)件.在乙每件120元获利的基础上,增加x人,利润减少2x元每件,则乙产品的每件利润为(130﹣2x)元.故答案为:65﹣x;2(65﹣x);130﹣2x(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴x2﹣80x+700=0解得x1=10,x2=70(不合题意,舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200∵2m=65﹣x﹣m∴m=∵x、m都是非负数∴取x=26时,m=13,65﹣x﹣m=26=3198即当x=26时,W最大值答:安排26人生产乙产品时,可获得的最大利润为3198元.4.已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.解:(1)把(1,0),(0,)代入抛物线解析式得:,解得:,则抛物线解析式为y=﹣x2﹣x+;(2)抛物线解析式为y=﹣x2﹣x+=﹣(x+1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=﹣x2.5.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?解:(1)由图象可知,对于每一个摆动时间t,h都有唯一确定的值与其对应,∴变量h是关于t的函数;(2)①由函数图象可知,当t=0.7s时,h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度是0.5m;②由图象可知,秋千摆动第一个来回需2.8s.6.设二次函数y=ax2+bx﹣(a+b)(a,b是常数,a≠0).(1)判断该二次函数图象与x轴的交点的个数,说明理由.(2)若该二次函数图象经过A(﹣1,4),B(0,﹣1),C(1,1)三个点中的其中两个点,求该二次函数的表达式.(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.解:(1)由题意△=b2﹣4•a[﹣(a+b)]=b2+4ab+4a2=(2a+b)2≥0∴二次函数图象与x轴的交点的个数有两个或一个(2)当x=1时,y=a+b﹣(a+b)=0∴抛物线不经过点C把点A(﹣1,4),B(0,﹣1)分别代入得解得∴抛物线解析式为y=3x2﹣2x﹣1(3)当x=2时m=4a+2b﹣(a+b)=3a+b>0①∵a+b<0∴﹣a﹣b>0②①②相加得:2a>0∴a>07.如图,函数y=x的图象与函数y=(x>0)的图象相交于点P(2,m).(1)求m,k的值;(2)直线y=4与函数y=x的图象相交于点A,与函数y=(x>0)的图象相交于点B,求线段AB长.解:(1)∵函数y=x的图象过点P(2,m),∴m=2,∴P(2,2),∵函数y=(x>0)的图象过点P,∴k=2×2=4;(2)将y=4代入y=x,得x=4,∴点A(4,4).将y=4代入y=,得x=1,∴点B(1,4).∴AB=4﹣1=3.8.如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K 的范围.解:(1)将x=2代入y=2x,得:y=4,∴点M(2,4),由题意,得:,∴;(2)如图,过点P作PH⊥x轴于点H,∵点P的横坐标为m,抛物线的解析式为y=﹣x2+4x,∴PH=﹣m2+4m,∵B(2,0),∴OB=2,∴S=OB•PH=×2×(﹣m2+4m)=﹣m2+4m,∴K==﹣m+4,由题意得A(4,0),∵M(2,4),∴2<m<4,∵K随着m的增大而减小,∴0<K<2.9.某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.解:(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入,得:,解得:,∴P=t+2;(2)①当0<t≤8时,w=(2t+8)×=240;当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;当12<t≤24时,w=(﹣t+44)(t+2)=﹣t2+42t+88;②当8<t≤12时,w=2t2+12t+16=2(t+3)2﹣2,∴8<t≤12时,w随t的增大而增大,当2(t+3)2﹣2=336时,解题t=10或t=﹣16(舍),当t=12时,w取得最大值,最大值为448,此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;当12<t≤24时,w=﹣t2+42t+88=﹣(t﹣21)2+529,当t=12时,w取得最小值448,由﹣(t﹣21)2+529=513得t=17或t=25,∴当12<t≤17时,448<w≤513,此时P=t+2的最小值为14,最大值为19;综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.10.学校拓展小组研制了绘图智能机器人(如图1),顺次输入点P1,P2,P3的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)P1(4,0),P2(0,0),P3(6,6);(2)P1(0,0),P2(4,0),P3(6,6).解:(1)∵P1(4,0),P2(0,0),4﹣0=4>0,∴绘制线段P1P2,P1P2=4;(2)∵P1(0,0),0﹣0=0,∴绘制抛物线,设y=ax(x﹣4),把(6,6)代入得:6=12a,解得:a=,∴y=x(x﹣4)=x2﹣2x.11.已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时).(1)求v关于t的函数表达式.(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?解:(1)由题意可得:100=vt,则v=;(2)∵不超过5小时卸完船上的这批货物,∴t≤5,则v ≥=20,答:平均每小时至少要卸货20吨.12.“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A,B两个果园分别需用110吨和70吨有机化肥.两个仓库到A,B两个果园的路程如表所示:路程(千米)甲仓库乙仓库A果园1525B果园2020设甲仓库运往A果园x吨有机化肥,若汽车每吨每千米的运费为2元,(1)根据题意,填写下表.(温馨提示:请填写在答题卷相对应的表格内)运量(吨)运费(元)甲仓库乙仓库甲仓库乙仓库A果园x110﹣x2×15x2×25(110﹣x)B果园80﹣x x﹣102×20×(80﹣x)2×20×(x﹣10)(2)设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?解:(1)填表如下:运量(吨)运费(元)甲仓库乙仓库甲仓库乙仓库A果园x110﹣x2×15x2×25(110﹣x )B 果园80﹣xx ﹣102×20×(80﹣x )2×20×(x ﹣10)故答案为80﹣x ,x ﹣10,2×20×(80﹣x ),2×20×(x ﹣10);(2)y=2×15x +2×25×(110﹣x )+2×20×(80﹣x )+2×20×(x ﹣10), 即y 关于x 的函数表达式为y=﹣20x +8300, ∵﹣20<0,且10≤x ≤80,∴当x=80时,总运费y 最省,此时y 最小=﹣20×80+8300=6700.故当甲仓库运往A 果园80吨有机化肥时,总运费最省,最省的总运费是6700元.13.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.解:(1)由图象可知:汽车行驶400千米,剩余油量30升,∵行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升) ∴加满油时油箱的油量是40+30=70升. (2)设y=kx +b (k ≠0),把(0,70),(400,300)坐标代入可得:k=﹣0.1,b=70 ∴y=﹣0.1x +70, 当y=5 时,x=650即已行驶的路程的为650千米.14.设一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(﹣1,﹣1)两点.(1)求该一次函数的表达式;(2)若点(2a+2,a2)在该一次函数图象上,求a的值.(3)已知点C(x1,y1)和点D(x2,y2)在该一次函数图象上,设m=(x1﹣x2)(y1﹣y2),判断反比例函数y=的图象所在的象限,说明理由.解:(1)∵一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(﹣1,﹣1)两点,∴,得,即该一次函数的表达式是y=2x+1;(2)点(2a+2,a2)在该一次函数y=2x+1的图象上,∴a2=2(2a+2)+1,解得,a=﹣1或a=5,即a的值是﹣1或5;(3)反比例函数y=的图象在第一、三象限,理由:∵点C(x1,y1)和点D(x2,y2)在该一次函数y=2x+1的图象上,m=(x1﹣x2)(y1﹣y2),假设x1<x2,则y1<y1,此时m=(x1﹣x2)(y1﹣y2)>0,假设x1>x2,则y1>y1,此时m=(x1﹣x2)(y1﹣y2)>0,由上可得,m>0,∴m+1>0,∴反比例函数y=的图象在第一、三象限.15.已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小.解:(1)点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,∴M的坐标是(b,4b+1),把x=b代入y=4x+1,得y=4b+1,∴点M在直线y=4x+1上;(2)如图1,直线y=mx+5交y轴于点B,∴B点坐标为(0,5)又B在抛物线上,∴5=﹣(0﹣b)2+4b+1=5,解得b=2,二次函数的解析是为y=﹣(x﹣2)2+9,当y=0时,﹣(x﹣2)2+9=0,解得x1=5,x2=﹣1,∴A(5,0).由图象,得当mx+5>﹣(x﹣b)2+4b+1时,x的取值范围是x<0或x>5;(3)如图2,∵直线y=4x+1与直线AB交于点E,与y轴交于F,A(5,0),B(0,5)得直线AB的解析式为y=﹣x+5,联立EF,AB得方程组,解得,∴点E(,),F(0,1).点M在△AOB内,1<4b+1<∴0<b<.当点C,D关于抛物线的对称轴对称时,b﹣=﹣b,∴b=,且二次函数图象开口向下,顶点M在直线y=4x+1上,综上:①当0<b<时,y1>y2,②当b=时,y1=y2,③当<b<时,y1<y2.16.如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC关于AC所在的直线对称.(1)当OB=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OB的长;(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.解:(1)如图1中,作DE⊥x轴于E.∵∠ABC=90°,∴tan∠ACB==,∴∠ACB=60°,根据对称性可知:DC=BC=2,∠ACD=∠ACB=60°,∴∠DCE=60°,∴∠CDE=90°﹣60°=30°,∴CE=1,DE=,∴OE=OB+BC+CE=5,∴点D坐标为(5,).(2)设OB=a,则点A的坐标(a,2),由题意CE=1.DE=,可得D(3+a,),∵点A、D在同一反比例函数图象上,∴2a=(3+a),∴a=3,∴OB=3.(3)存在.理由如下:①如图2中,当∠PA1D=90°时.∵AD∥PA1,∴∠ADA1=180°﹣∠PA1D=90°,在Rt△ADA1中,∵∠DAA1=30°,AD=2,∴AA1==4,在Rt△APA1中,∵∠APA1=60°,∴PA=,∴PB=,设P(m,),则D1(m+7,),∵P、A1在同一反比例函数图象上,∴m=(m+7),解得m=3,∴P(3,),∴k=10.②如图3中,当∠PDA1=90°时.∵∠PAK=∠KDA1=90°,∠AKP=∠DKA1,∴△AKP∽△DKA1,∴=.∴=,∵∠AKD=∠PKA1,∴△KAD∽△KPA1,∴∠KPA1=∠KAD=30°,∠ADK=∠KA1P=30°,∴∠APD=∠ADP=30°,∴AP=AD=2,AA1=6,设P(m,4),则D1(m+9,),∵P、A1在同一反比例函数图象上,∴4m=(m+9),解得m=3,∴P(3,4),∴k=12.17.如图,公交车行驶在笔直的公路上,这条路上有A,B,C,D四个站点,每相邻两站之间的距离为5千米,从A站开往D站的车称为上行车,从D站开往A站的车称为下行车,第一班上行车、下行车分别从A站、D站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A,D站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B站、第一班下行车到C站分别用时多少?(2)若第一班上行车行驶时间为t小时,第一班上行车与第一班下行车之间的距离为s千米,求s与t的函数关系式;(3)一乘客前往A站办事,他在B,C两站间的P处(不含B,C站),刚好遇到上行车,BP=x千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B站或走到C站乘下行车前往A站.若乘客的步行速度是5千米/小时,求x满足的条件.解:(1)第一班上行车到B站用时=小时,第一班下行车到C站分别用时=小时;(2)当0≤t≤时,s=15﹣60t,当<t≤时,s=60t﹣15;(3)由(2)可知同时出发的一对上、下行车的位置关于BC中点对称,设乘客到达A站总时间为t分钟,①当x=2.5时,往B站用时30分钟,还需要再等下行车5分钟,t=30+5+10=45,不合题意;②当x<2.5时,只能往B站乘下行车,他离B站x千米,则离他右边最近的下行车离C站也是x千米,这辆下行车离B站(5﹣x)千米,如果能乘上右侧的第一辆下行车,则,解得:x≤,∴0<x≤,∵18≤t<20,∴0<x≤符合题意;如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,x>,,解得:x≤,∴,22≤t<28,∴符合题意;如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,x>,,解得:x≤,∴<x≤,35≤t<37,不合题意,∴综上,得0<x≤;③当x>2.5时,乘客需往C站乘坐下行车.离他左边最近的下行车离B站是(5﹣x)千米,离他右边最近的下行车离C站也是(5﹣x)千米.如果乘上右侧第一辆下行车,则≤,解得:x≥5,不合题意.∴x≥5,不合题意.如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,x<5,≤,解得x≥4,∴4≤x<5,30<t≤32,∴4≤x<5符合题意.如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,x<4,≤,解得x≥3,∴3≤x<4,42<t≤44,∴3≤x<4不合题意.综上,得4≤x<5.综上所述,0<x≤或4≤x<5.18.如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.解:(1)①如图1,∵m=4,∴反比例函数为y=,设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y==,∴B(4,),∴A(4﹣t,+t),C(4+t,+t),∴(4﹣t)(+t)=m,∴t=4﹣,∴C(8﹣,4),∴(8﹣)×4=n,∴m+n=32,∵点D的纵坐标为+2t=+2(4﹣)=8﹣,∴D(4,8﹣),∴4(8﹣)=n,∴m+n=32.。

浙江省金华市2018-2019年中考数学试题分类解析【专题06】函数的图像与性质(含答案)

浙江省金华市2018-2019年中考数学试题分类解析【专题06】函数的图像与性质(含答案)

(5)选择题1. (2002年浙江金华、衢州4分)抛物线y =(x -5)2十4的对称轴是【 】(A )直线x=4 (B )直线x=-4 (C )直线x=-5 (D )直线x=52. (2003年浙江金华、衢州4分)如图,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是【 】A .x >3B .x <3C .x >1D .x <13. (2004年浙江金华4分)抛物线()2y x 126=-+的顶点坐标是【 】A 、(-12,6)B 、(12,-6)C 、(12,6)D 、(-12,-6)4. (2005年浙江金华4分)抛物线2y=(x 1)+2-的对称轴是【 】A、直线x=-1 B、直线 x=1 C、直线x=-2 D、直线x=25. (2006年浙江金华4分)二次函数2y ax bx c =++(a 0≠)的图象如图所示,则下列结论:①a >0; ②c >0; ③2b c 4a ->0,其中正确的个数是【 】A. 0个B. 1个C. 2个D. 3个6. (2007年浙江金华4分)下列函数中,图象经过点(11)-,的反比例函数解析式是【 】A .1y x =B .1y x =-C .2y x =D .2y x=-7. (2007年浙江金华4分)一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论①k<0;②a>0;③当x <3时,y 1<y 2中,正确的个数是【 】A .0B .1C .2D .38. (2008年浙江金华3分)三军受命,我解放军各部队奋力抗战地救灾一线。

现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km ,如图是他们行走的路线关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是【 】A 、1B 、2C 、3D 、49. (2009年浙江金华3分)抛物线2y (x 2)3=-+的对称轴是【 】A.直线x= -2 B.直线 x=2 C.直线x= -3 D.直线x=310. (2019年浙江金华3分)已知抛物线2y ax bx c =++的开口向下,顶点坐标为(2,-3),那么该抛物线有【 】A. 最小值 -3B. 最大值-3C. 最小值2D. 最大值211.(2019年浙江金华、丽水3分)若二次函数2y ax =的图象经过点P (-2,4),则该图象必经过点【 】A .(2,4)B .(-2,-4)C .(-4,2)D .(4,-2)二、填空题1. (2002年浙江金华、衢州5分)函数2y ax ax 3x 1=-++的图象与x 轴有且只有一个交点,那么a 的值和交点坐标分别为 ▲ .2. (2005年浙江金华5分)请写出一个图象经过点(1,4)的函数解析式: ▲ .3. (2005年浙江金华5分)在直角坐标系xOy 中,O 是坐标原点,抛物线2y=x x 6--与x 轴交于A,B 两点(点A 在点B 的左侧),与y 轴相交于点C 。

【真题】杭州市2018年中考数学试题有答案(Word版)

【真题】杭州市2018年中考数学试题有答案(Word版)

2018年杭州市中考数学试题一、选择题(本题有10小题,每小题3分,共30分)1. 3-=( )A. 3B. 3-C. 31D. 31- 2.数据1800000用科学计数法表示为( ) A.68.1 B.6108.1⨯ C. 51018⨯ D. 61018⨯3.下列计算正确的是( ) A. 222= B. 222±= C. 242= D. 242±=4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。

计算结果不受影响的是( )A.方差B. 标准差C. 中位数D. 平均数5.若线段 AM ,AN 分别是ABC ∆边上的高线和中线,则( )A.AN AM >B. AN AM ≥C. AN AM <D. AN AM ≤6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。

已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A. 20=-y xB. 20=+y xC. 6025=-y xD. 6025=+y x7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1~6)朝上一面的数字。

任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( ) A. 61 B. 31C. 21 D. 32 8.如图,已知点P 矩形ABCD 内一点(不含边界),设1θ=∠PAD ,2θ=∠PBA ,3θ=∠PCB ,4θ=∠PDC ,若︒=∠︒=∠50,80CPD APB ,则( )A.()︒=++30-3241θθθθ)( B. ()︒=++40-3142θθθθ)( C.()︒=++70-4321θθθθ)( D. ()︒=+++1804321θθθθ)( 9.四位同学在研究函数是常数)c b c bx ax y ,(2++=时,甲发现当1=x 时,函数有最小值;乙发现1-是方程02=++c bx ax 的一个根;丙发现函数的最小值为3;丁发现当2=x 时,4=y .已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A. 甲B.乙C. 丙D.丁10.如图,在ABC ∆中,点D 在AB 边上,BC DE //,与边AC 交于点E ,连结BE ,记BCE ADE ∆∆,的面积分别为21,S S ,( )A. 若AB AD >2,则23S S >B. 若AB AD >2,则23S S <C. 若AB AD <2,则2123S S >D. 若AB AD <2,则2123S S <二、填空题(本大题共有6个小题,每小题4分,共24分)11.计算:=-a a 312.如图,直线b a //,直线c 与直线b a ,分别交于A,B ,若︒=∠451,则=∠213.因式分解:()()=---a b b a 214.如图,AB 是⊙的直径,点C 是半径OA 的中点,过点C 作AB DE ⊥,交O 于点D 、E 两点,过点D 作直径DF ,连结AF ,则=∠DFA15.某日上午,甲、乙两车先后从A 地出发沿一条公路匀速前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是16.折叠矩形纸片ABCD 时,发现可以进行如下操作:①把ADE ∆翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把CDG ∆翻折,点C 落在直线AE 上的点H 处,折痕为DG ,点G 在BC 边上,若AB=AD+2,EH=1,则AD=三、简答题(本大题共7个小题,共66分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分6分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v (单位:吨0/小时),卸完这批货物所需的时间为t (单位:小时)。

2018年浙江省中考数学试题及答案6套

2018年浙江省中考数学试题及答案6套

2018年浙江省中考数学试题及答案6套(含宁波市,衢州市,义乌市,台州市,温州市,舟山市中考数学试题)2018年浙江省宁波市中考数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4.00分)(2018•宁波)在﹣3,﹣1,0,1这四个数中,最小的数是()A.﹣3B.﹣1C.0D.12.(4.00分)(2018•宁波)2018中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕.本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为()A.0.55×106B.5.5×105C.5.5×104D.55×1043.(4.00分)(2018•宁波)下列计算正确的是()A.a3+a3=2a3B.a3•a2=a6C.a6÷a2=a3D.(a3)2=a54.(4.00分)(2018•宁波)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.5.(4.00分)(2018•宁波)已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6B.7C.8D.96.(4.00分)(2018•宁波)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图7.(4.00分)(2018•宁波)如图,在▱ABCD中,对角线AC与BD相交于点O,E 是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为()A.50°B.40°C.30°D.20°8.(4.00分)(2018•宁波)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7B.5C.4D.39.(4.00分)(2018•宁波)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为()A.πB.πC.πD.π10.(4.00分)(2018•宁波)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C 为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8B.﹣8C.4D.﹣411.(4.00分)(2018•宁波)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A.B.C.D.12.(4.00分)(2018•宁波)在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣2b二、填空题(每小题4分,共24分)13.(4.00分)(2018•宁波)计算:|﹣2018|=.14.(4.00分)(2018•宁波)要使分式有意义,x的取值应满足.15.(4.00分)(2018•宁波)已知x,y满足方程组,则x2﹣4y2的值为.16.(4.00分)(2018•宁波)如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB 为米(结果保留根号).17.(4.00分)(2018•宁波)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为.18.(4.00分)(2018•宁波)如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cosB的值为.三、解答题(本大题有8小题,共78分)19.(6.00分)(2018•宁波)先化简,再求值:(x﹣1)2+x(3﹣x),其中x=﹣.20.(8.00分)(2018•宁波)在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.21.(8.00分)(2018•宁波)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.22.(10.00分)(2018•宁波)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.23.(10.00分)(2018•宁波)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB 边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.24.(10.00分)(2018•宁波)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?25.(12.00分)(2018•宁波)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC 的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.26.(14.00分)(2018•宁波)如图1,直线l:y=﹣x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<).以点A为圆心,AC 长为半径作⊙A交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE•EF的最大值.2018年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4.00分)(2018•宁波)在﹣3,﹣1,0,1这四个数中,最小的数是()A.﹣3B.﹣1C.0D.1【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣3<﹣1<0<1,最小的数是﹣3,故选:A.【点评】本题考查了有理数比较大小,利用正数大于零,零大于负数是解题关键.2.(4.00分)(2018•宁波)2018中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕.本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为()A.0.55×106B.5.5×105C.5.5×104D.55×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:550000=5.5×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4.00分)(2018•宁波)下列计算正确的是()A.a3+a3=2a3B.a3•a2=a6C.a6÷a2=a3D.(a3)2=a5【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【解答】解:∵a3+a3=2a3,∴选项A符合题意;∵a3•a2=a5,∴选项B不符合题意;∵a6÷a2=a4,∴选项C不符合题意;∵(a3)2=a6,∴选项D不符合题意.故选:A.【点评】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.(4.00分)(2018•宁波)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.【分析】让正面的数字是偶数的情况数除以总情况数5即为所求的概率.【解答】解:∵从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为,故选:C.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.5.(4.00分)(2018•宁波)已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6B.7C.8D.9【分析】根据正多边形的外角和以及一个外角的度数,求得边数.【解答】解:正多边形的一个外角等于40°,且外角和为360°,则这个正多边形的边数是:360°÷40°=9.故选:D.【点评】本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的外角和等于360度.6.(4.00分)(2018•宁波)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.7.(4.00分)(2018•宁波)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为()A.50°B.40°C.30°D.20°【分析】直接利用三角形内角和定理得出∠BCA的度数,再利用三角形中位线定理结合平行线的性质得出答案.【解答】解:∵∠ABC=60°,∠BAC=80°,∴∠BCA=180°﹣60°﹣80°=40°,∵对角线AC与BD相交于点O,E是边CD的中点,∴EO是△DBC的中位线,∴EO∥BC,∴∠1=∠ACB=40°.故选:B.【点评】此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是△DBC的中位线是解题关键.8.(4.00分)(2018•宁波)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7B.5C.4D.3【分析】先根据平均数为4求出x的值,然后根据中位数的概念求解.【解答】解:∵数据4,1,7,x,5的平均数为4,∴=4,解得:x=3,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.(4.00分)(2018•宁波)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为()A.πB.πC.πD.π【分析】先根据ACB=90°,AB=4,∠A=30°,得圆心角和半径的长,再根据弧长公式可得到弧CD的长.【解答】解:∵∠ACB=90°,AB=4,∠A=30°,∴∠B=60°,BC=2∴的长为=,故选:C.【点评】本题主要考查了弧长公式的运用和直角三角形30度角的性质,解题时注意弧长公式为:l=(弧长为l,圆心角度数为n,圆的半径为R).10.(4.00分)(2018•宁波)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C 为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8B.﹣8C.4D.﹣4【分析】设A(a,h),B(b,h),根据反比例函数图象上点的坐标特征得出ah=k1,bh=k2.根据三角形的面积公式得到S△ABC=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,求出k1﹣k2=8.【解答】解:∵AB∥x轴,∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.∵S=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,△ABC∴k1﹣k2=8.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,点在函数的图象上,则点的坐标满足函数的解析式.也考查了三角形的面积.11.(4.00分)(2018•宁波)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A.B.C.D.【分析】根据二次函数的图象可以判断a、b、a﹣b的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.【解答】解:由二次函数的图象可知,a<0,b<0,当x=﹣1时,y=a﹣b<0,∴y=(a﹣b)x+b的图象在第二、三、四象限,故选:D.【点评】本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.12.(4.00分)(2018•宁波)在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣2b【分析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差.【解答】解:S1=(AB﹣a)•a+(CD﹣b)(AD﹣a)=(AB﹣a)•a+(AB﹣b)(AD ﹣a),S2=AB(AD﹣a)+(a﹣b)(AB﹣a),∴S2﹣S1=AB(AD﹣a)+(a﹣b)(AB﹣a)﹣(AB﹣a)•a﹣(AB﹣b)(AD﹣a)=(AD﹣a)(AB﹣AB+b)+(AB﹣a)(a﹣b﹣a)=b•AD﹣ab﹣b•AB+ab=b(AD﹣AB)=2b.故选:B.【点评】本题考查了整式的混合运算:整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.二、填空题(每小题4分,共24分)13.(4.00分)(2018•宁波)计算:|﹣2018|=2018.【分析】直接利用绝对值的性质得出答案.【解答】解:|﹣2018|=2018.故答案为:2018.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.14.(4.00分)(2018•宁波)要使分式有意义,x的取值应满足x≠1.【分析】直接利用分式有意义则分母不能为零,进而得出答案.【解答】解:要使分式有意义,则:x﹣1≠0.解得:x≠1,故x的取值应满足:x≠1.故答案为:x≠1.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.15.(4.00分)(2018•宁波)已知x,y满足方程组,则x2﹣4y2的值为﹣8.【分析】根据平方差公式即可求出答案.【解答】解:原式=(x+2y)(x﹣2y)=﹣3×5=﹣15故答案为:﹣15【点评】本题考查因式分解,解题的关键是熟练运用平方差公式,本题属于基础题型.16.(4.00分)(2018•宁波)如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为1200(﹣1)米(结果保留根号).【分析】在Rt△ACH和Rt△HCB中,利用锐角三角函数,用CH表示出AH、BH 的长,然后计算出AB的长.【解答】解:由于CD∥HB,∴∠CAH=∠ACD=45°,∠B=∠BCD=30°在Rt△ACH中,∵∴∠CAH=45°∴AH=CH=1200米,在Rt△HCB,∵tan∠B=∴HB====1200(米).∴AB=HB﹣HA=1200﹣1200=1200(﹣1)米故答案为:1200(﹣1)【点评】本题考查了锐角三角函数的仰角、俯角问题.题目难度不大,解决本题的关键是用含CH的式子表示出AH和BH.17.(4.00分)(2018•宁波)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为3或4.【分析】分两种情形分别求解:如图1中,当⊙P与直线CD相切时;如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形;【解答】解:如图1中,当⊙P与直线CD相切时,设PC=PM=m.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8﹣x)2,∴x=5,∴PC=5,BP=BC﹣PC=8﹣5=3.如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,PB==4.综上所述,BP的长为3或4.【点评】本题考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.18.(4.00分)(2018•宁波)如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cosB的值为.【分析】延长DM交CB的延长线于点H.首先证明DE=EH,设BE=x,利用勾股定理构建方程求出x即可解决问题.【解答】解:延长DM交CB的延长线于点H.∵四边形ABCD是菱形,∴AB=BC=AD=2,AD∥CH,∴∠ADM=∠H,∵AM=BM,∠AMD=∠HMB,∴△ADM≌△BHM,∴AD=HB=2,∵EM⊥DH,∴EH=ED,设BE=x,∵AE⊥BC,∴AE⊥AD,∴∠AEB=∠EAD=90°∵AE2=AB2﹣BE2=DE2﹣AD2,∴22﹣x2=(2+x)2﹣22,∴x=﹣1或﹣﹣1(舍弃),∴cosB==,故答案为.【点评】本题考查菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.三、解答题(本大题有8小题,共78分)19.(6.00分)(2018•宁波)先化简,再求值:(x﹣1)2+x(3﹣x),其中x=﹣.【分析】首先计算完全平方,再计算单项式乘以多项式,再合并同类项,化简后再把x的值代入即可.【解答】解:原式=x2﹣2x+1+3x﹣x2=x+1,当x=﹣时,原式=﹣+1=.【点评】此题主要考查了整式的混合运算﹣﹣化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.20.(8.00分)(2018•宁波)在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.【分析】(1)将线段AC沿着AB方向平移2个单位,即可得到线段BD;(2)利用2×3的长方形的对角线,即可得到线段BE⊥AC.【解答】解:(1)如图所示,线段BD即为所求;(2)如图所示,线段BE即为所求.【点评】本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.21.(8.00分)(2018•宁波)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.【分析】(1)由条形图、扇形图中给出的级别A的数字,可计算出调查学生人数;(2)先计算出C在扇形图中的百分比,用1﹣[(A+D+C)在扇形图中的百分比]可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角.(3)总人数×课外阅读时间满足3≤t<4的百分比即得所求.【解答】解:(1)由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的10%所以:20÷10%=20×=200(人)即本次调查的学生人数为200人;(2)由条形图知:C级的人数为60人所以C级所占的百分比为:×100%=30%,B级所占的百分比为:1﹣10%﹣30%﹣45%=15%,B级的人数为200×15%=30(人)D级的人数为:200×45%=90(人)B所在扇形的圆心角为:360°×15%=54°.(3)因为C级所占的百分比为30%,所以全校每周课外阅读时间满足3≤t<4的人数为:1200×30%=360(人)答:全校每周课外阅读时间满足3≤t<4的约有360人.【点评】本题考查了扇形图和条形图的相关知识.题目难度不大.扇形图中某项的百分比=×100%,扇形图中某项圆心角的度数=360°×该项在扇形图中的百分比.22.(10.00分)(2018•宁波)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【分析】(1)把已知点的坐标代入抛物线解析式求出b与c的值即可;(2)指出满足题意的平移方法,并写出平移后的解析式即可.【解答】解:(1)把(1,0),(0,)代入抛物线解析式得:,解得:,则抛物线解析式为y=﹣x2﹣x+;(2)抛物线解析式为y=﹣x2﹣x+=﹣(x+1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=﹣x2.【点评】此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.23.(10.00分)(2018•宁波)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB 边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.【分析】(1)由题意可知:CD=CE,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,所以∠ACD=∠BCE,从而可证明△ACD ≌△BCE(SAS)(2)由△ACD≌△BCE(SAS)可知:∠A=∠CBE=45°,BE=BF,从而可求出∠BEF 的度数.【解答】解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,∴△ACD≌△BCE(SAS)(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,∵AD=BF,∴BE=BF,∴∠BEF=67.5°【点评】本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.24.(10.00分)(2018•宁波)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【分析】(1)设甲种商品的每件进价为x元,乙种商品的每件进价为y元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程;(2)设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式.【解答】解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.根据题意,得,=,解得x=40.经检验,x=40是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;(2)甲乙两种商品的销售量为=50.设甲种商品按原销售单价销售a件,则(60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,解得a≥20.答:甲种商品按原销售单价至少销售20件.【点评】本题考查了分式方程的应用,一元一次不等式的应用.本题属于商品销售中的利润问题,对于此类问题,隐含着一个等量关系:利润=售价﹣进价.25.(12.00分)(2018•宁波)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC 的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.【分析】(1)根据比例三角形的定义分AB2=BC•AC、BC2=AB•AC、AC2=AB•BC三种情况分别代入计算可得;(2)先证△ABC∽△DCA得CA2=BC•AD,再由∠ADB=∠CBD=∠ABD知AB=AD即可得;(3)作AH⊥BD,由AB=AD知BH=BD,再证△ABH∽△DBC得AB•BC=BH•DB,即AB•BC=BD2,结合AB•BC=AC2知BD2=AC2,据此可得答案.【解答】解:(1)∵△ABC是比例三角形,且AB=2、AC=3,①当AB2=BC•AC时,得:4=3AC,解得:AC=;②当BC2=AB•AC时,得:9=2AC,解得:AC=;③当AC2=AB•BC时,得:AC=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;(2)∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,∴=,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴=,即AB•BC=BH•DB,∴AB•BC=BD2,又∵AB•BC=AC2,∴BD2=AC2,∴=.【点评】本题主要考查相似三角形的综合问题,解题的关键是理解比例三角形的定义,并熟练掌握相似三角形的判定与性质.26.(14.00分)(2018•宁波)如图1,直线l:y=﹣x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<).以点A为圆心,AC 长为半径作⊙A交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE•EF的最大值.【分析】(1)利用待定系数法求出b即可得出直线l表达式,即可求出OA,OB,即可得出结论;(2)①先判断出∠CDF=2∠CDE,进而得出∠OAE=∠ODF,即可得出结论;②设出EM=3m,AM=4m,进而得出点E坐标,即可得出OE的平方,再根据①的相似得出比例式得出OE的平方,建立方程即可得出结论;(3)利用面积法求出OG,进而得出AG,HE,再构造相似三角形,即可得出结论.【解答】解:∵直线l:y=﹣x+b与x轴交于点A(4,0),∴﹣×4+b=0,∴b=3,∴直线l的函数表达式y=﹣x+3,∴B(0,3),∴OA=4,OB=3,在Rt△AOB中,tan∠BAO==;(2)①如图2,连接DF,∵CE=EF,∴∠CDE=∠FDE,∴∠CDF=2∠CDE,∵∠OAE=2∠CDE,∴∠OAE=∠ODF,∵四边形CEFD是⊙O的圆内接四边形,∴∠OEC=∠ODF,∴∠OEC=∠OAE,∵∠COE=∠EOA,∴△COE∽△EOA,②过点E⊥OA于M,由①知,tan∠OAB=,设EM=3m,则AM=4m,∴OM=4﹣4m,AE=5m,∴E(4﹣4m,3m),AC=5m,∴OC=4﹣5m,由①知,△COE∽△EOA,∴,∴OE2=OA•OC=4(4﹣5m)=16﹣20m,∵E(4﹣4m,3m),∴(4﹣4m)2+9m2=25m2﹣32m+16,∴25m2﹣32m+16=16﹣20m,∴m=0(舍)或m=,∴4﹣4m=,3m=,∴(,),(3)如图,设⊙O的半径为r,过点O作OG⊥AB于G,∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB=5,∴AB×OG=OA×OB,∴OG=,∴AG==×=,∴EG=AG﹣AE=﹣r,连接FH,∵EH是⊙O直径,∴EH=2r,∠EFH=90°=∠EGO,∵∠OEG=∠HEF,∴△OEG∽△HEF,∴,∴OE•EF=HE•EG=2r(﹣r)=﹣2(r﹣)2+,∴r=时,OE•EF最大值为.【点评】此题是圆的综合题,主要考查了待定系数法,相似三角形的判定和性质,锐角三角函数,勾股定理,正确作出辅助线是解本题的关键.2018年浙江省衢州市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3.故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠5【分析】根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可.【解答】解:由同位角的定义可知,∠1的同位角是∠4.故选C.【点评】本题考查了同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解.3.(3分)根据衢州市统计局发布的统计数据显示,衢州市2017年全市生产总值为138000000000元,按可比价格计算,比上年增长7.3%,数据138000000000元用科学记数法表示为()A.1.38×1010元B.1.38×1011元C.1.38×1012元D.0.138×1012元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当。

浙江省2018中考数学真题(含答案)(Word精校版)

浙江省2018中考数学真题(含答案)(Word精校版)

2018年杭州市初中毕业升学文化考试数学一、选择题:本大题有10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项最符合题目要求的。

1.=()A. 3B. -3C.D.2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×1063.下列计算正确的是()A. B. C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。

计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。

已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A. B. C. D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。

任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()(第8题)A. B.C. D.9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()(第10题)A. 若,则B. 若,则C. 若,则D. 若,则二、填空题:本大题有6个小题,每小题4分,共24分。

11.计算:a-3a=________。

12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。

浙江2018年中考数学函数应用题图象

浙江2018年中考数学函数应用题图象

第二部分题型研究题型三函数实际应用题类型一图像类针对演练A、B两地相距60 km,甲、乙两人从两地出发相向而行,甲先出发.图1. (2017青岛)llAst(h)的关系.请结合图象解答下列问题:,(km)表示两人离与时间地的距离中21All);甲的速度是乙离或地的距离与时间关系的图象是________(填(1)表示21________km/h;乙的速度是________km/h;(2)甲出发多少小时两人恰好相距5 km?第1题图A、BAB城出发沿这一公路驶向两城间的公路长为2. 450千米,甲、乙两车同时从BAyx(与行驶时间小(千米)城,甲车到达城1小时后沿原路返回.如图是它们离城的路程时)之间的函数图象.yx之间的函数解析式,并写出函数自变量的取值范围;与 (1)求甲车返回过程中(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.第2题图3. (2017宿迁)小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强7:30从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2分钟,校车行驶途中始终保持匀速.当天早上小刚7:39从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早1分钟到学校站点,他们乘坐的车yx(分钟)之间的函数图象如图所示.与行驶时间(千米) 辆从安康小区站出发所行驶路程Am的值;的纵坐标(1)求点(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.第3题图4. (2015丽水)甲、乙两人匀速从同一地点到1500米处的图书馆看书.甲出发5分钟st(分),米)甲行走的时间为,/后,乙以50米分的速度沿同一路线行走.设甲、乙两人相距(st的函数图象的一部分如图所示.关于(1)求甲行走的速度;st的函数图象的其余部分;关于在坐标系中,补画(2)(3)问甲、乙两人何时相距360米?题图4第5. 一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶xyyx之间的函数关系.与(km),图中的折线表示的时间为 (h),两车之间的距离为B的实际意义图千米;中点是的(1)甲、乙两地之间距离为__________________________;BCyxx的取值范围; (2)求线段所表示的之间的函数关系式,并写出自变量与(3)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车晚出发多少小时?yyx之间的函数关系.请在图②中画出快车和慢车距离甲地的路程与行驶时间, (4)BA第5题图考向2 费用问题(绍兴:2017、2013.18)针对演练1. 某市为鼓励市民节约用水,自来水公司按分段收费标准收费,如图反映的是每月水yx(吨)与用水量之间的函数关系.费(元)yx的函数解析式;关于10(1)当用水量超过吨时,求(2)按上述分段收费标准,小聪家三、四月份分别交水费38元和27元,问四月份比三月份节约用水多少吨?1题图第A、B两类图书进月23日的“世界读书日”,计划购进2. 某书店为了迎接2017年4A、BAB本,购进/类图书的单价为16两类图书共1000本,其中购进元行销售,若购进yx(本)之间存在如图所示的函数关系)(元与购买数量.类图书所需费用yx之间的函数关系式;与(1)求AA、B两类图书共需要多少元?类图书400本,则购进若该书店购进(2)第2题图3. 如图是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题:(1)当行驶8千米时,收费应为________元;(2)从图象上你能获得哪些信息(请写出2条);(3)求出收费y(元)与行驶路程x(千米)(x≥3)之间的函数关系式.第3题图某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘)淮安4. (2017.ABCDyx(人))制了如图所示的图象,图中折线与参加旅游的人数表示人均收费之间的(元函数关系.(1)当参加旅游的人数不超过10人时,人均收费为______元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?第4题图5. (2017上海)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.yx(平方米)与绿化面积)是一次函数关系,如图所示.甲公司方案:每月的养护费用 (元乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.yx的函数解析式;求如图所示的与(1)(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.第5题图6. (2017天门)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付yyx之间的函数关系如图所示.)单位:元,款金额(与原价)单位:元(乙甲.yyx的函数关系式;, (1)直接写出关于乙甲(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?第6题图考向3流量问题(绍兴:2016.19)针对演练1. (2017吉林)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水yx(s)与注水时间s时注满水槽.水槽内水面的高度之间的函数图象如(cm)槽中注水,28图②所示.第1题图(1)正方体的棱长为________cm;ABx的取值范围;对应的函数解析式,并写出自变量(2)求线段tt的值.恰好将此水槽注满,直接写出(3)如果将正方体铁块取出,又经过 (s)2. 一个有进水管与出水管的容器,从某时刻开始4 min内只进水不出水,在随后的8y(单位:内既进水又出水,每分钟的进水量和出水量是两个常数.容器内的水量minL)与x之间的关系如图所示.min)单位:(时间.xyx的函数解析式; 4≤关于≤12时,求(1)当(2)直接写出每分钟进水、出水量各多少升.第2题图3. 某游泳池一天要经过“注水-保持-排水”三个过程,如图,图中折线表示的是游3xy(min))与时间之间的关系.泳池在一天某一时间段内池中水量(m xyx与的取值范围;(1)求排水阶段之间的函数关系式,并写出时间一共有多少分钟.(2)求水量不超过最大水量的一半值的第3题图答案针对演练l;30;20 解:(1);1. 2x轴的交点坐标为(0.5,0.5小时后,乙才出发,∴乙图象与示】【解法提∵甲先出发lAt的函数图象;是乙离地距离与时间0),故2甲经过2小时走完全程,则甲的速度为60÷2=30(km/h).从0.5小时开始,经过3.5-0.5=3小时,乙走完全程,∴乙的速度为60÷3=20 (km/h).t小时,两人相距5 km设甲出发后,经过, (2)①当两人相遇前相距5 km时,则:tt,5-60=0.5)-20(+30.t=1.3解得,②当两人相遇后相距5 km时,则:t-0.5)=60++20(5, 30t t=1.5解得,答:甲出发1.3 h,1.5 h时,两人恰好相距5 km.yxykxb,与之间的函数解析式为+2.解:(1)设甲车返回过程中=∵图象过(5,450),(10,0)两点,5k+b=450??∴,?10k+b=0??k=-90??解得,?b=900??yxx≤10);90 ∴+900(5≤=-xy=-90×6+900=360时,=6, (2)当360v==60(千米/小时).乙6答:乙车的行驶速度为60千米/小时.3AHyxb,=解: (1)如解图,由题意可设的表达式为+3.14第3题解图HAH上, 3)(6,由在33bb=-,+×3则有=6,即1124.33AHyx-,的表达式为=∴42AmAH上, ) 由在(8,339mm=,-,即则有=×84229Am的值为;的纵坐标故点23BCyxb,的表达式为+=(2) 如解图,由题意可设249BBC 上,在由 (10, )293bb=-3,,即×则有=10+22243BCyx-3=∴,的表达式为4yxC(16,9),时,=16,即当=9E(15,9),∴F(9,0)∵,327EFyx-,的表达式为=∴223??3x-y=4?,联立方程组 327??y=x-22x=14???,解得15y=??2.1539-=(千米),223答:小刚乘坐出租车出发后经过5分钟追到小强所乘坐的校车,此时他们距学校千米.24. 解:(1)甲行走的速度:150÷5=30(米/分).t=35时,甲行走的路程为:35×30=1050(米),乙行走的路程为:(2)当(35-5)×50=1500(米),t=35时,乙已经到达图书馆,甲距离图书馆的路程还有:1500-1050=∴当450(米),∴甲到达图书馆还需时间:450÷30=15(分),∴35+15=50(分),s=0时,横轴上对应的时间为∴当50.补画的图象如解图所示(横轴上对应时间为50),第4题解图xxx,5030 (3)设乙出发经过=分和甲第一次相遇,根据题意得:150+x=7.5解得,7.5+5=12.5(分),ts=0,即当=12.5时,B的坐标为(12.5,0)∴点,tBC:sktbk≠0),≤35时,设+的解析式为=≤当12.5(12.5k+b=0k=20????CB(12.5,0)代入可得:,解得把450)(35,,,??35k+b=450b=-250????1.st-250,=20 ∴tCDskxbk≠0)的解析式为,=( 35∴当<+≤50时,设11150k+b=0??11DC(35,450)代入得:,把(50,0),?35k+b=450??1k=-30??1解得,?b=1500??1s=-30t+1500∴,s=360,∵甲、乙两人相距360米,即tt=38,=30.5,解得:21答:当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.5. 解:(1)900,4小时两车相遇;(2)慢车速度是:900÷12=75 km/h,两车的速度和:900÷4=225 km/h,快车速度是:225-75=150 km/h;相遇时慢车行驶的路程是:75×4=300 km,两车相遇后快车到达乙地所用的时间:300÷150=2 h,两车相遇后2 h两车行驶的路程:225×2=450 km,BC(6,450),(4,0),所以,4k+b=0k=225????BCykxb, 则+设线段的解析式为,解得=??6k +b=450b=-900.????BCyx之间的函数关系式为:所以线段与所表示的yxx≤6);-900(4≤225=(3)第一列快车与慢车相遇时快车行驶的路程:900-300=600 km, 1第二列快车与慢车相遇时快车行驶的路程:600-75×=562.5 km,2.第二列快车与慢车相遇时快车所用的时间:562.5÷150=3.75 h, 4.5-3.75=0.75 h.答:第二列快车比第一列快车晚出发0.75小时.(4)快车从甲地驶往乙地,故快车的图象从(0,0)开始,速度为150 km/h,路程为900km,故快车的终点坐标为(6,900),画出图象如解图的实线所示;慢车从乙地驶往甲地,故慢车的图象从(0,900)开始,速度为75 km/h,路程为900 km,.,0),画出图象如解图的虚线所示故慢车的终点坐标为(12 题解图第5 费用问题考向2针对演练yxykx+b吨时,设关于=的解析式是,结合图象得:1. 解:(1)当用水量超过1010k +b=30k=4????,解得,??20k+b=70b=-10????yxyx-10;=即当用水量超过10吨时,4关于的函数解析式是yyx-10,=(2)将4=38代入xx=12,解得,,38=4 -10得即三月份用水12吨,四月份用水为:27÷(30÷10)=9(吨),12-9=3(吨),答:四月份比三月份节约用水3吨.xyxykx, 之间的函数关系式是(1)当0≤时,设≤100=与2. 解:kk=18,1800, 由100解得=xyxyx,=即当0≤≤100时,与18之间的函数关系式是xyxyaxb,+=之间的函数关系式是与时,设100>当100a+b=1800a=15????由,解得,??200a+b=3300b=300????xyxyx+300, 之间的函数关系式是>100时,=与即当15yx之间的函数关系式是:∴与18x(0≤x≤100)??y=;?15x+300(x>100)??AB类图书600本,书店购进(2) 类图书400本,则购进A类图书花费:400×16=6400(元),则B类图书花费:15×600+300=9300(元),A、B两类图书共需要:6400+9300=15700( ∴购进元),A、B两类图书共需要答:购进15700元.3. 解:(1)11;(2)①行驶路程小于或等于3千米时,收费是5元;②超过3千米但不超过8千米时,每千米收费1.2元;x≥3时,直线过点(3,5)、(8,11), (3)当yxykxb,与之间的函数关系式为+设=3k+b=5??则,?8k+b=11??k=1.2??解得,?b=1.4??yxxyx+1.4. =1.2∴收费元()与行驶路程(千米)(≥3)之间的函数关系式为4. 解:(1)240.(2)∵3600÷240=15,3600÷150=24,BC段,∴收费标准在.10k+b=240k=-6????BCykxb,则有,解得=,设直线+的解析式为??25k+b=150b=300????y =-6x+300,∴xx=3600,+300)由题意(-6x=20或30(舍)解得.答:参加这次旅行的人数是20人.ykxb,将(0,400),(100,900)分别代入得:5. 解:(1)设=+b=400??,?100k+b=900??k =5??解得,?b=400??yxyx+400;的函数解析式为=∴5与(2)绿化面积是1200平方米时,甲公司的费用为:5×1200+400=6400(元),乙公司的费用为:5500+4×(1200-1000)=6300(元),∵6300<6400,∴选择乙公司的服务,每月的绿化养护费用较少.6. 解:(1)y=0.8x,甲x(0<x<2000)??y=.?乙0.7x+600(x≥2000)??ykx,把(2000,=1600)代入,【解法提示】设甲kk=0.8,解得1600,得2000 =yx;=0.8∴甲xyax,=<2000时,设<当0 乙xk=1,解得2000, 20002000)(2000把,代入,得=yx∴;=乙.xymxn,+=当≥2000时,设乙ymxn中+=,2000),(4000,3400)代入,把(200022000m+n=2000,??得,?4000m+n=3400??m=0.7??解得,?n=600??x(0<x<2000)??y=;∴?乙0.7x+600(x≥2000)??xxx,到甲商店购买更省钱;<<2000时,(2)当0<0.8xxx+600,<0.7当≥2000时,若到甲商店购买更省钱,则0.8x<6000;解得若到乙商店购买更省钱,xxx>6000,解得6000.8;>0.7 +则xxx=6000,解得;=0.7 +600若到甲、乙两商店购买一样省钱,则0.8答:当原价小于6000元时,到甲商店购买更省钱;当原价大于6000元时,到乙商店购买更省钱;当原价等于6000元时,到甲、乙两商店购买花钱一样.考向3 流量问题针对演练1.解:(1)10;【解法提示】由题图可知,12秒时水槽内水面的高度为10 cm,12秒后水槽内水面高度变化趋势改变,故正方体的棱长为10 cm,ABykxb. (2)设线段=对应的函数解析式为+AB(28,20),,∵图象过(12,10)12k+b=10??∴,?28k+b=20??5??=k8?,解得 5??b=255AByxx≤28);(12≤=∴线段对应的函数解析式为+82t=(3)4.【解法提示】∵28-12=165,∴没有正方体时,水面上升10 cm,所用时间为16秒,又∵前12秒由于正方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,又经过了4秒,恰好将水械,槽注满.≤xyxykxbk≠0),的函数关系式为=2. 解:(1)当4(≤12时,设与+5??20b=4k+=k??4?,,∴,解得,函数图象经过点(4,20)、(1230)∵?30=12k+b????15=b5xyx+4≤15≤12时,;=∴当415(2)每分钟进水、出水量各是5L、L.4【解法提示】根据图象,每分钟的进水量为:20÷4=5 L,mm=30-205×8-8,设每分钟出水,则 L15m=,解得415故每分钟进水、出水量各是5 L、L.4yxykxb,与之间的函数关系式是+=(13. 解:)设排水阶段 285k+b=1500k=-100????由,解得,??300k +b=0b=30000????yxyx+30000,=-即排水阶段100与之间的函数关系式是yx=280,30000,得=2000时,2000=-100x 当+yxyxx≤300);100与之间的函数关系式为+30000(280≤=-即排水阶段yxymx,设注水阶段与=的函数关系式为 (2)mm=50,1500=,解得则30yxyx, =的函数关系式为∴注水阶段 50与yxx=20,=时,100050 ,解得当=1000yyxx=290, 1000=代入100=-,解得+30000将∴水量不超过最大水量的一半值的时间一共有:20+(300-290)=30(分钟), 即水量分钟.30不超过最大水量的一半值的时间一共有.。

2018浙江省各市数学中考试卷真题合集+答案解析(共10套)

2018浙江省各市数学中考试卷真题合集+答案解析(共10套)

浙江省舟山市2018年中考数学试题卷Ⅰ(选择题)一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.下列几何体中,俯视图...为三角形的是( )A .B .C .D .2.2018年5月25日,中国探月工程的“鹊桥号”中继星成功运行于地月拉格朗日2L 点,它距离地球约.数1500000用科学记数法表示为( )A .B .C .D . 3.2018年1~4月我国新能源乘用车的月销售情况如图所示,则下列说法错误..的是( )A .1月份销售为2.2万辆B .从2月到3月的月销售增长最快C .4月份销售比3月份增加了1万辆D .1~4月新能源乘用车销售逐月增加4.不等式的解在数轴上表示正确的是( )A .B .C .D .1500000km 51510⨯61.510⨯70.1510⨯51.510⨯12x -≥5.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是( )A .B .C .D .6.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是( ) A .点在圆内 B .点在圆上 C .点在圆心上 D .点在圆上或圆内7.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是( )A .的长B .的长C .的长D .的长 8.用尺规在一个平行四边形内作菱形,下列作法中错误..的是( )22x ax b +=Rt ABC ∆90ACB ∠=2a BC =AC b =AB 2aBD=AC AD BC CDABCDA .B .C .D . 9.如图,点在反比例函数的图象上,过点的直线与轴,轴分别交于点,,且,的面积为1,则的值为( )A .1B .2C .3D .410.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分.某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( ) A .甲 B .甲与丁 C .丙 D .丙与丁卷Ⅱ(非选择题)二、填空题(本题有6小题,每题4分,共24分)11.分解因式: .12.如图,直线,直线交,,于点,,;直线交,,于点,,.已知,则 .13.小明和小红玩抛硬币游戏,连续抛两次.小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是 ,据此判断该游戏 (填“公平”或“不公平”).14.如图,量角器的0度刻度线为,将一矩形直尺与量角器部分重叠,使直尺一边与量C (0)ky x x=>C x y A B AB BC =AOB ∆k 23m m -=123////l l l AC 1l 2l 3l A B C DF 1l 2l 3l D E F 13AB AC =EFDE=AB角器相切于点,直尺另一边交量角器于点,,量得,点在量角器上的读数为,则该直尺的宽度为____________.15.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少,若设甲每小时检测个,则根据题意,可列出方程: . 16.如图,在矩形中,,,点在上,,点在边上一动点,以为斜边作.若点在矩形的边上,且这样的直角三角形恰好有两个,则的值是 .三、解答题(本题有8小题,第17~19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分)17.(1)计算:;(2)化简并求值:,其中,. 18.用消元法解方程组时,两位同学的解法如下:(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”. (2)请选择一种你喜欢的方法,完成解答.C AD 10AD cm =D 60cm 10%x ABCD 4AB =2AD =E CD 1DE =F AB EF Rt EFP ∆P ABCDAF 01)31)+--a b abb a a b ⎛⎫-⋅⎪+⎝⎭1a =2b =35,43 2.x y x y -=⎧⎨-=⎩①②19.如图,等边的顶点,在矩形的边,上,且. 求证:矩形是正方形.20.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为的产品为合格),随机各抽取了20个样品进行检测,过程如下: 收集数据(单位:):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183. 整理数据:甲车间 245621乙车间 122 0分析数据: 车间 平均数 众数 中位数 方差 甲车间 180 185 180 43.1 乙车间18018018022.6AEF ∆E F ABCD BC CD 45CEF ∠=ABCD 176185mm mm mm 165.5170.5170.5175.5175.5180.5180.5185.5185.5190.5190.5195.5a b 组别频 数应用数据:(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个? (3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.21.小红帮弟弟荡秋千(如图1),秋千离地面的高度与摆动时间之间的关系如图2所示.(1)根据函数的定义,请判断变量是否为关于的函数? (2)结合图象回答:①当时,的值是多少?并说明它的实际意义. ②秋千摆动第一个来回需多少时间?22.如图1,滑动调节式遮阳伞的立柱垂直于地面,为立柱上的滑动调节点,伞体的截面示意图为,为中点,,,,.当点位于初始位置时,点与重合(图2).根据生活经验,当太阳光线与垂直时,遮阳效果最佳.(1)上午10:00时,太阳光线与地面的夹角为(图3),为使遮阳效果最佳,点需从()h m ()ts h t 0.7t s =h AC AB P PDE ∆F PD 2.8AC m =2PD m =1CF m =20DPE ∠=P 0P D CPE 65P 0P上调多少距离?(结果精确到)(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点在(1)的基础上还需上调多少距离?(结果精确到)(参考数据:,,) 23.已知,点为二次函数图象的顶点,直线分别交轴正半轴,轴于点,.(1)判断顶点是否在直线上,并说明理由.(2)如图1,若二次函数图象也经过点,,且,根据图象,写出的取值范围.(3)如图2,点坐标为,点在内,若点,都在二次函数图象上,试比较与的大小.24.已知,中,,是边上一点,作,分别交边,于点,.(1)若(如图1),求证:.(2)若,过点作,交(或的延长线)于点.试猜想:线段,和之间的数量关系,并就情形(如图2)说明理由.0.1m P 0.1m sin 700.94≈cos700.34≈tan 70 2.75≈ 1.41≈ 1.73≈M 2()41y x b b =--++5y mx =+x y A B M 41y x =+A B 25()41mx x b b +>--++x A (5,0)M AOB ∆11(,)4C y 23(,)4D y 1y 2y ABC ∆B C ∠=∠P BC CPE BPF ∠=∠AC AB E F CPE C ∠=∠PE PF AB +=CPE C ∠≠∠B CBD CPE ∠=∠CA CA D PE PF BD CPE C ∠>∠(3)若点与重合(如图3),,且. ①求的度数;②设,,,试证明:.数学参考答案一、选择题1-5: CBDAA 6-10: DBCDB二、填空题11. 12. 2 13.;不公平 14.15. 16. 0或或4 三、解答题17.(1)原式(2)原式. 当,时,原式. 18.(1)解法一中的计算有误(标记略). (2)由①-②,得,解得, 把代入①,得,解得,所以原方程组的解是.18.用消元法解方程组时,两位同学的解法如下:19.(方法一)∵四边形是矩形, ∴,F A 27C ∠=PA AE =CPE ∠PB a =PA b =AB c =22a c b c-=(3)m m -14300200(110%)20x x =⨯--1113AF <<231=+-=22a b aba b ab a b-=⋅=-+1a =2b =121=-=-33x -=1x =-1x =-135y --=2y =-12x y =-⎧⎨=-⎩35,43 2.x y x y -=⎧⎨-=⎩①②ABCD 90B D C ∠=∠=∠=∵是等边三角形,∴,, 又,∴,∴, ∴, ∴, ∴矩形是正方形.(方法二)(连结,利用轴对称证明,表述正确也可)20.(1)甲车间样品的合格率为. (2)∵乙车间样品的合格产品数为(个),∴乙车间样品的合格率为. ∴乙车间的合格产品数为(个).(3)①从样品合格率看,乙车间合格率比甲车间高,所以乙车间生产的新产品更好. ②从样品的方差看,甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.21.(1)∵对于每一个摆动时间,都有一个唯一的的值与其对应, ∴变量是关于的函数.(2)①,它的实际意义是秋千摆动时,离地面的高度为. ②.AEF ∆AE AF =60AEF AFE ∠=∠=45CEF ∠=45CFE CEF ∠=∠=180456075AFD AEB ∠=∠=--=()AEB AFD AAS ∆≅∆AB AD =ABCDAC 56100%55%20+⨯=20(122)15-++=15100%75%20⨯=100075%750⨯=t h h t 0.5h m =0.7s 0.5m 2.8s22.(1)如图2,当点位于初始位置时,.如图3,10:00时,太阳光线与地面的夹角为,点上调至处,,,∴, ∴. ∵,∴. ∵,∴, ∴为等腰直角三角形,∴, ∴, 即点需从上调.(2)如图4,中午12:00时,太阳光线与,地面都垂直,点上调至处, ∴.∵,∴. ∵,∴.∵,得为等腰三角形, ∴. 过点作于点,P 0P 02CP m =65P 1P 190∠=90CAB ∠=1115APE ∠=165CPE ∠=120DPE ∠=145CPF ∠=11CF PF m ==145C CPF ∠=∠=1CP F∆1CP=010120.6P P CP CP m =-=≈P 0P 0.6m PE P 2P 2//P E AB 90CAB ∠=290CP E ∠=220DP E ∠=22270CP F CP E DP E ∠=∠-∠=21CF P F m ==2CP F ∆270C CP F ∠=∠=F 2FG CP ⊥G∴,∴,∴,即点在(1)的基础上还需上调.23.(1)∵点坐标是,∴把代入,得,∴点在直线上.(2)如图1,∵直线与轴交于点为,∴点坐标为.又∵在抛物线上,∴,解得,∴二次函数的表达式为,∴当时,得,,∴.观察图象可得,当时, 的取值范围为或.22cos 7010.340.34CP P F m =⋅=⨯=2220.68CP GP m ==12120.680.7PP CP CP m =-≈P 0.7m M (,41)b b +x b =41y x =+41y b =+M 41y x =+5y mx =+y B B (0,5)(0,5)B 25(0)41b b =--++2b =2(2)9y x =--+0y =15x =21x =-(5,0)A 25()41mx x b b +>--++x 0x <5x>(3)如图2,∵直线与直线交于点,与轴交于点,而直线表达式为,解方程组,得.∴点,. ∵点在内,∴. 当点,关于抛物线对称轴(直线)对称时,,∴. 且二次函数图象的开口向下,顶点在直线上,综上:①当时,; ②当时,; ③当时,.24.(1)∵,,,∴,,∴,,,∴.41y x =+AB E y F AB 5y x =-+415y x y x =+⎧⎨=-+⎩45215x y ⎧=⎪⎪⎨⎪=⎪⎩421(,)55E (0,1)F M AOB ∆405b <<C D x b =1344b b -=-12b =M 41y x =+102b <<12y y >12b =12y y =1425b <<12y y<B C ∠=∠CPE BPF ∠=∠CPE C ∠=∠B BPF CPE ∠=∠=∠BPF C ∠=∠PF BF =//PE AF //PF AE PE AF =∴.(2)猜想:,理由如下:过点作的平行线交的延长线于点,则,∵,∴,又,∴,∴.∵,∴,∴四边形是平行四边形,∴.(3)①设,∵,,∴,又,即,∴,即.PE PF AF BF AB +=+=BD PE PF =+B DC EP G ABC C CBG ∠=∠=∠CPE BPF ∠=∠BPF CPE BPG ∠=∠=∠BP BP =()FBP GBP ASA ∆≅∆PF PG =CBD CPE ∠=∠//PE BD BGED BD EG PG PE PE PF ==+=+CPE BPF x ∠=∠=27C ∠=PA AE =27APE PEA C CPE x ∠=∠=∠+∠=+180BPA APE CPE ∠+∠+∠=27180x x x +++=51x =51CPE ∠=②延长至,使,连结,∵,.∴,∵,∴, ∴,而,∴. ∴, ∴.∵,,,∴, ∴.BA M AM AP =MP 27C ∠=51BPA CPE ∠=∠=180BAP B BPA ∠=-∠-∠102M MPA ==∠+∠AM AP =1512M MPA BAP ∠=∠=∠=M BPA ∠=∠B B ∠=∠ABPPBM ∆∆BP BM AB BP=2BP AB BM =⋅PB a =PA AM b ==AB c =2()a c b c =+22a cb c-=2018年绍兴市初中毕业生学业考试数学试题卷卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.如果向东走2m 记为2m +,则向西走3m 可记为( )A .3m +B .2m +C .3m -D .2m -2.绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法可以表示为( )A .91.1610⨯B .81.1610⨯C .71.1610⨯D .90.11610⨯3.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .4.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )A .16B .13C .12D .565.下面是一位同学做的四道题:①222()a b a b +=+.②224(2)4a a -=-.③532a a a ÷=.④3412a a a ⋅=.其中做对的一道题的序号是( )A .①B .②C .③D .④6.如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点(1,2)A -,(1,3)B ,(2,1)C ,(6,5)D ,则此函数( )A .当1x <时,y 随x 的增大而增大B .当1x <时,y 随x 的增大而减小C .当1x >时,y 随x 的增大而增大D .当1x >时,y 随x 的增大而减小7.学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB BD ⊥,CD BD ⊥,垂足分别为B ,D ,4AO m =, 1.6AB m =,1CO m =,则栏杆C 端应下降的垂直距离CD 为( )A .0.2mB .0.3mC .0.4mD .0.5m8.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A .B .C .D .9.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .(3,6)--B .(3,0)-C .(3,5)--D .(3,1)--10.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有34枚图钉可供选用,则最多可以展示绘画作品( )A .16张B .18张C .20张D .21张卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11.因式分解:224x y -= .12.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为 尺,竿子长为 尺.13.如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB ∠=,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了 步(假设1步为0.5米,结果保留整数). 1.732≈,π取3.142)14.等腰三角形ABC 中,顶角A 为40,点P 在以A 为圆心,BC 长为半径的圆上,且BP BA =,则PBC ∠的度数为 .15.过双曲线(0)k y k x=>的动点A 作AB x ⊥轴于点B ,P 是直线AB 上的点,且满足2AP AB =,过点P 作x 轴的平行线交此双曲线于点C .如果APC ∆的面积为8,则k 的值是 .16.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm ,底面的长是30cm ,宽是20cm ,容器内的水深为xcm .现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A 的三条棱的长分别是10cm ,10cm ,(15)ycm y ≤,当铁块的顶部高出水面2cm 时,x ,y 满足的关系式是 .三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答应写出文字说明、证明过程或演算步骤)17.(1)计算:0112tan 60122)()3--+.(2)解方程:2210x x --=.18.为了解某地区机动机拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.19.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量.(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.20.学校拓展小组研制了绘图智能机器人(如图1),顺次输入点1P ,2P ,3P 的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)1(4,0)P ,2(0,0)P ,3(6,6)P. (2)1(0,0)P ,2(4,0)P ,3(6,6)P .21.如图1,窗框和窗扇用“滑块铰链”连接.图3是图2中“滑块铰链”的平面示意图,滑轨MN 安装在窗框上,托悬臂DE 安装在窗扇上,交点A 处装有滑块,滑块可以左右滑动,支点B ,C ,D 始终在一直线上,延长DE 交MN 于点F .已知20AC DE cm ==,10AE CD cm ==,40BD cm =.(1)窗扇完全打开,张角85CAB ∠=,求此时窗扇与窗框的夹角DFB ∠的度数.(2)窗扇部分打开,张角60CAB ∠=,求此时点A ,B 之间的距离(精确到0.1cm ).1.732≈2.449≈)22.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B ∠的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B ∠的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下一题:变式 等腰三角形ABC 中,80A ∠=,求B ∠的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B ∠的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B ∠有三个不同的度数时,请你探索x 的取值范围.23.小敏思考解决如下问题:原题:如图1,点P ,Q 分别在菱形ABCD 的边BC ,CD 上,PAQ B ∠=∠,求证:AP AQ =.(1)小敏进行探索,若将点P ,Q 的位置特殊化:把PAQ ∠绕点A 旋转得到EAF ∠,使AE BC ⊥,点E ,F 分别在边BC ,CD 上,如图2,此时她证明了AE AF =.请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE BC ⊥,AF CD ⊥,垂足分别为E ,F .请你继续完成原题的证明.(3)如果在原题中添加条件:4AB =,60B ∠=,如图1.请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).24.如图,公交车行驶在笔直的公路上,这条路上有A ,B ,C ,D 四个站点,每相邻两站之间的距离为5千米,从A 站开往D 站的车称为上行车,从D 站开往A 站的车称为下行车.第一班上行车、下行车分别从A 站、D 站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A ,D 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B 站、第一班下行车到C 站分别用时多少?(2)若第一班上行车行驶时间为t 小时,第一班上行车与第一班下行车之间的距离为s 千米,求s 与t 的函数关系式.(3)一乘客前往A 站办事,他在B ,C 两站间的P 处(不含B ,C 站),刚好遇到上行车,BP x =千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B 站或走到C 站乘下行车前往A 站.若乘客的步行速度是5千米/小时,求x 满足的条件.浙江省2018年初中毕业生学业考试绍兴市试卷数学参考答案一、选择题1-5: CBDAC 6-10: ACBBD二、填空题11. (2)(2)x y x y +- 12. 20,15 13. 1514. 30或110 15. 12或4 16. 61065(0)56x y x +=<≤或12015(68)2x y x -=≤< 三、解答题17.解:(1)原式132=+=.(2)x =,11x =,21x =.18.解:(1)3.40万辆.人民路路口的堵车次数平均数为120(次).学校门口的堵车次数平均数为100(次).(2)不唯一,如:2010年~2013年,随着机动车拥有量的增加,对道路的影响加大,年堵车次数也增加;尽管2017年机动车拥有量比2016年增加,由于进行了交通综合治理,人民路路口堵车次数反而降低.19.解:(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升.(2)设(0)y kx b k =+≠,把点(0,70),(400,30)坐标分别代入得70b =,0.1k =-, ∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.20.解:(1)∵1(4,0)P ,2(0,0)P ,4040-=>,∴绘制线段12P P ,124PP =.(2)∵1(0,0)P ,2(4,0)P ,3(6,6)P,000-=,∴绘制抛物线,设(4)y ax x =-,把点(6,6)坐标代入得12a =, ∴1(4)2y x x =-,即2122y x x =-. 21.解:(1)∵AC DE =,AE CD =,∴四边形ACDE 是平行四边形,∴//CA DE ,∴85DFB CAB ∠=∠=.(2)如图,过点C 作CG AB ⊥于点G ,∵60CAB ∠=,∴20cos6010AG ==,20sin 6010CG ==∵40BD =,10CD =,∴30BC =,在Rt BCG ∆中,BG =∴1034.5AB AG BG cm =+=+≈.22.解:(1)当A ∠为顶角,则50B ∠=,当A ∠为底角,若B ∠为顶角,则20B ∠=,若B ∠为底角,则80B ∠=, ∴50B ∠=或20或80.(2)分两种情况:①当90180x ≤<时,A ∠只能为顶角,∴B ∠的度数只有一个.②当090x <<时,若A ∠为顶角,则1802x B -⎛⎫∠= ⎪⎝⎭, 若A ∠为底角,则B x ∠=或(1802)B x ∠=-, 当18018022x x -≠-且1802x x -≠且1802x x -≠,即60x ≠时, B ∠有三个不同的度数.综上①②,当090x <<且60x ≠,B ∠有三个不同的度数.23.解:(1)如图1,在菱形ABCD 中,180B C ∠+∠=,B D ∠=∠,AB AD =,∵EAF B ∠=∠,∴180C EAF ∠+∠=,∴180AEC AFC ∠+∠=,∵AE BC ⊥,∴90AEB AEC ∠=∠=,∴90AFC ∠=,90AFD ∠=,∴AEB AFD ∆≅∆,∴AE AF =.(2)如图2,由(1),∵PAQ EAF B ∠=∠=∠,∴EAP EAF PAF ∠=∠-∠PAQ PAF FAQ =∠-∠=∠,∵AE BC ⊥,AF CD ⊥,∴90AEP AFQ ∠=∠=,∵AE AF =,∴AEP AFQ ∆≅∆,∴AP AQ =.(3)不唯一,举例如下:层次1:①求D ∠的度数.答案:60D ∠=.②分别求BAD ∠,BCD ∠的度数.答案:120BAD BCD ∠=∠=.③求菱形ABCD 的周长.答案:16.④分别求BC ,CD ,AD 的长.答案:4,4,4.层次2:①求PC CQ +的值.答案:4.②求BP QD +的值.答案:4.③求APC AQC ∠+∠的值.答案:180.层次3:①求四边形APCQ 的面积.答案:②求ABP ∆与AQD ∆的面积和.答案:③求四边形APCQ 周长的最小值.答案:4+.④求PQ 中点运动的路径长.答案:24.解:(1)第一班上行车到B 站用时51306=小时. 第一班下行车到C 站用时51306=小时.(2)当104t ≤≤时,1560s t =-. 当1142t <≤时,6015s t =-. (3)由(2)知同时出发的一对上、下行车的位置关于BC 中点对称,设乘客到达A 站总时间为t 分钟,当 2.5x =时,往B 站用时30分钟,还需再等下行车5分钟,3051045t =++=,不合题意.当 2.5x <时,只能往B 站坐下行车,他离B 站x 千米,则离他右边最近的下行车离C 站也是x 千米,这辆下行车离B 站(5)x -千米. 如果能乘上右侧第一辆下行车,5530x x -≤,57x ≤,∴507x <≤, 418207t ≤<, ∴507x <≤符合题意. 如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,57x >, 10530x x -≤,107x ≤, ∴51077x <≤,14272877t ≤<, ∴51077x <≤符合题意. 如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,107x >, 15530x x -≤,157x ≤, ∴101577x <≤,51353777t ≤<,不合题意. ∴综上,得1007x <≤. 当 2.5x >时,乘客需往C 站乘坐下行车,离他左边最近的下行车离B 站是(5)x -千米,离他右边最近的下行车离C 站也是(5)x -千米, 如果乘上右侧第一辆下行车,55530x x --≤, ∴5x ≥,不合题意.如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,5x <,510530x x --≤,4x ≥,∴45x ≤<,3032t <≤, ∴45x ≤<符合题意.如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,4x <,515530x x --≤,34x ≤<,4244t <≤, ∴34x ≤<不合题意.∴综上,得45x ≤<. 综上所述,1007x <≤或45x ≤<.2018年浙江省初中毕业生学业考试(嘉兴卷)数学 试题卷考生须知:1.全卷满分120分,考试时间120分钟.试题卷共6页,有三大题,共24小题.2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效.温馨提示:本次考试为开卷考,请仔细审题,答题前仔细阅读答题纸.上的“注意事项”。

2018年秋浙教版八年级数学上《5.2函数》同步练习含答案 (2)

2018年秋浙教版八年级数学上《5.2函数》同步练习含答案 (2)

5.2 函数(一)A 组1.(1)下列四个选项中,不是y 关于x 的函数的是(A )A. |y |=x -1B. y =2xC. y =2x -7D. y =x 2(2)下列说法中,正确的是(B )A. 若变量x ,y 满足y 2=x ,则y 是x 的函数B. 若变量x ,y 满足x +3y =1,则y 是x 的函数C. 代数式πr 3是它所含字母r 的函数43D. 在V =πr 3中,是常量,r 是自变量,V 是r 的函数43432.下列变量之间的关系不是函数关系的是(B )A .长方形的宽一定,其长与面积B .正方形的周长与面积C .等腰直角三角形的斜边长与面积D .圆的周长与半径3.(1)下列图象中,表示y 是x 的函数的是(D ),A. ) ,B. ),C. ) ,D. )(2)若均匀地向如图①所示的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是(A )(第3题①) (第3题②)(3)如图②所示为一台自动测温记录仪的图象,它反映了某市冬季某天气温T与时间t之间的关系,观察图象得到下列信息,其中错误的是(C)A. 凌晨4时气温最低,为-3 ℃B. 14时气温最高,为8 ℃C. 从0时至14时,气温随时间增加而上升D. 从14时至24时,气温随时间增加而下降(第4题)4.一石激起千层浪,一枚石头投入水中,会在水面上激起一圈圈圆形涟漪,如图所示(这些圆的圆心相同).(1)在这个变化过程中,变量是圆的半径、圆的面积(或周长).(2)如果圆的半径为r,面积为s,那么s与r之间的函数表达式是s=πr2.(3)当圆的半径由1 cm增加到5 cm时,面积增加了24πcm2.5.一个正方形的边长为5 cm,它的边长减少x(cm)后得到的新正方形的周长为y(cm).(1)求y关于x的函数表达式.(2)当x=2时,求y的值,并说明这个函数值的实际意义.【解】 (1)y=20-4x.(2)当x=2时,y=20-4×2=12.其实际意义为当该正方形的边长减少2 cm后得到的新正方形的周长为12 cm.6.在等腰三角形ABC中,AB=AC,△ABC的周长是20,底边BC的长为y,腰长为x.(1)求y关于x的函数表达式.(2)当腰AC=8时,求底边BC的长.(3)当底边长为5时,求腰长.【解】 (1)由题意,得2x+y=20,∴y=-2x+20.(2)AC=8,即x=8.把x=8代入y=-2x+20,得y=-2×8+20=4.∴底边BC的长为4.(3)底边长为5,即y=5.把y=5代入y=-2x+20,得-2x+20=5,解得x=7.5.∴腰长为7.5.B 组7.物体沿一个斜坡下滑,它的速度v(m/s)与其下滑时间t (s)的关系如图所示.(第7题)(1)下滑2 s 时物体的速度为__5__m/s.(2)v (m/s)与t (s)之间的函数表达式为v =t .52(3)下滑3 s 时物体的速度为7.5m/s.【解】 (1)由图可知,当t =2时,v =5,∴下滑2 s 时物体的速度为5 m/s.(2)由题意可知,平均每秒速度增加 m/s ,52∴v =t .52(3)当t =3时,v =×3=7.5(m/s).528.小亮家与姥姥家相距24 km ,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一平面直角坐标系中,小亮和妈妈的行进路程S (km)与时间t (h)的函数图象如图所示.根据图象得到下列结论,其中错误的是(D )A. 小亮骑自行车的平均速度是12 km/hB. 妈妈比小亮提前0.5 h 到达姥姥家C. 妈妈在离家12 km 处追上小亮D. 9:30妈妈追上小亮(第8题)【解】 由图象可知,小亮去姥姥家所用的时间为10-8=2(h),∴小亮骑自行车的平均速度为24÷2=12(km/h),故A 正确.由图象可知,妈妈到姥姥家对应的时间t =9.5,小亮到姥姥家对应的时间t =10,10-9.5=0.5(h),∴妈妈比小亮提前0.5 h 到达姥姥家,故B 正确.由图象可知,当t =9时,妈妈追上小亮,此时小亮离家的时间为9-8=1(h),∴小亮走的路程为1×12=12(km),∴妈妈在离家12 km 处追上小亮,故C 正确.由图象可知,当t =9,即9:00时,妈妈追上小亮,故D 错误.9.在密码学中,直接可以看到的内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a ,b ,c ,…,z(不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x 为奇数时,密码对应的序号y =;当明码对应的序号x 为偶数时,密码对应的序号y =+13.x +12x 2字母,a,b,c,d,e,f,g,h,i,j,k,l,m序号,1,2,3,4,5,6,7,8,9,10,11,12,13字母,n,o,p,q,r,s,t,u,v,w,x,y,z序号,14,15,16,17,18,19,20,21,22,23,24,25,26按上述规定,将明码“love”译成密码是什么?【解】 对照表格可知:love 的第一个字母l 对应的序号是偶数12,代入y =+13=19,序号19对应的字母是s ;第二个字母o 对应的序号是奇数15,代入x 2y ==8,序号8对应的字母是h ;同理可得第三个字母v 对应的密码是x ,第四个x +12字母e 对应的密码是c.故将明码“love”译成密码是shxc.10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(min),所走的路程为s (m),s 与t 之间的函数关系如图所示,请回答下列问题:(第10题)(1)小明中途休息了几分钟?(2)求小明休息前爬山的平均速度.(3)小明在上述过程中所走的路程为多少米?(4)求小明休息后爬山的平均速度.【解】 (1)根据图象可知,在40~60 min ,路程没有发生变化,所以小明中途休息的时间为60-40=20(min).(2)根据图象可知,当t =40 时,s =2800,∴小明休息前爬山的平均速度为2800÷40=70(m/min).(3)根据图象可知,小明在上述过程中所走的路程为3800 m.(4)小明休息后爬山的平均速度为(3800-2800)÷(100-60)=25(m/min).数学乐园11.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500 m ,先到终点的人原地休息.已知甲先出发2 s ,在跑步过程中,甲、乙两人之间的距离y (m)与乙出发的时间t (s)之间的关系如图所示.求a ,b ,c 的值.(第11题)导学号:91354029【解】 当t =0时(即乙出发时),甲、乙相距8 m ,说明甲跑8 m 用了2 s, 则甲的速度为 =4(m/s).82乙跑500 m 用了100 s ,则乙的速度为=5(m/s).500100当t =a (s)时,甲、乙两人的距离为0 m ,说明乙追上了甲,则有(5-4)a =8,解得a =8.当乙出发100 s ,即甲出发(100+2)s 时,甲、乙两人的距离为b (m),∴b =5×100-4×(100+2)=92.当t =c (s)时,甲、乙两人的距离为0 m ,说明甲跑到了终点,∴c =-2=123.5004综上所述,a =8,b =92,c =123.。

2018浙江省各市数学中考试卷真题合集+答案解析(共10套)

2018浙江省各市数学中考试卷真题合集+答案解析(共10套)

浙江省舟山市2018年中考数学试题卷Ⅰ(选择题)一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.下列几何体中,俯视图...为三角形的是( )A .B .C .D .2.2018年5月25日,中国探月工程的“鹊桥号”中继星成功运行于地月拉格朗日2L 点,它距离地球约.数1500000用科学记数法表示为( )A .B .C .D . 3.2018年1~4月我国新能源乘用车的月销售情况如图所示,则下列说法错误..的是( )A .1月份销售为2.2万辆B .从2月到3月的月销售增长最快C .4月份销售比3月份增加了1万辆D .1~4月新能源乘用车销售逐月增加4.不等式的解在数轴上表示正确的是( )A .B .C .D .1500000km 51510⨯61.510⨯70.1510⨯51.510⨯12x -≥5.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是( )A .B .C .D .6.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是( ) A .点在圆内 B .点在圆上 C .点在圆心上 D .点在圆上或圆内7.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是( )A .的长B .的长C .的长D .的长 8.用尺规在一个平行四边形内作菱形,下列作法中错误..的是( )22x ax b +=Rt ABC ∆90ACB ∠=2a BC =AC b =AB 2aBD=AC AD BC CDABCDA .B .C .D . 9.如图,点在反比例函数的图象上,过点的直线与轴,轴分别交于点,,且,的面积为1,则的值为( )A .1B .2C .3D .410.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分.某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( ) A .甲 B .甲与丁 C .丙 D .丙与丁卷Ⅱ(非选择题)二、填空题(本题有6小题,每题4分,共24分)11.分解因式: .12.如图,直线,直线交,,于点,,;直线交,,于点,,.已知,则 .13.小明和小红玩抛硬币游戏,连续抛两次.小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是 ,据此判断该游戏 (填“公平”或“不公平”).14.如图,量角器的0度刻度线为,将一矩形直尺与量角器部分重叠,使直尺一边与量C (0)ky x x=>C x y A B AB BC =AOB ∆k 23m m -=123////l l l AC 1l 2l 3l A B C DF 1l 2l 3l D E F 13AB AC =EFDE=AB角器相切于点,直尺另一边交量角器于点,,量得,点在量角器上的读数为,则该直尺的宽度为____________.15.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少,若设甲每小时检测个,则根据题意,可列出方程: . 16.如图,在矩形中,,,点在上,,点在边上一动点,以为斜边作.若点在矩形的边上,且这样的直角三角形恰好有两个,则的值是 .三、解答题(本题有8小题,第17~19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分)17.(1)计算:;(2)化简并求值:,其中,. 18.用消元法解方程组时,两位同学的解法如下:(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”. (2)请选择一种你喜欢的方法,完成解答.C AD 10AD cm =D 60cm 10%x ABCD 4AB =2AD =E CD 1DE =F AB EF Rt EFP ∆P ABCDAF 01)31)+--a b abb a a b ⎛⎫-⋅⎪+⎝⎭1a =2b =35,43 2.x y x y -=⎧⎨-=⎩①②19.如图,等边的顶点,在矩形的边,上,且. 求证:矩形是正方形.20.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为的产品为合格),随机各抽取了20个样品进行检测,过程如下: 收集数据(单位:):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183. 整理数据:甲车间 245621乙车间 122 0分析数据: 车间 平均数 众数 中位数 方差 甲车间 180 185 180 43.1 乙车间18018018022.6AEF ∆E F ABCD BC CD 45CEF ∠=ABCD 176185mm mm mm 165.5170.5170.5175.5175.5180.5180.5185.5185.5190.5190.5195.5a b 组别频 数应用数据:(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个? (3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.21.小红帮弟弟荡秋千(如图1),秋千离地面的高度与摆动时间之间的关系如图2所示.(1)根据函数的定义,请判断变量是否为关于的函数? (2)结合图象回答:①当时,的值是多少?并说明它的实际意义. ②秋千摆动第一个来回需多少时间?22.如图1,滑动调节式遮阳伞的立柱垂直于地面,为立柱上的滑动调节点,伞体的截面示意图为,为中点,,,,.当点位于初始位置时,点与重合(图2).根据生活经验,当太阳光线与垂直时,遮阳效果最佳.(1)上午10:00时,太阳光线与地面的夹角为(图3),为使遮阳效果最佳,点需从()h m ()ts h t 0.7t s =h AC AB P PDE ∆F PD 2.8AC m =2PD m =1CF m =20DPE ∠=P 0P D CPE 65P 0P上调多少距离?(结果精确到)(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点在(1)的基础上还需上调多少距离?(结果精确到)(参考数据:,,) 23.已知,点为二次函数图象的顶点,直线分别交轴正半轴,轴于点,.(1)判断顶点是否在直线上,并说明理由.(2)如图1,若二次函数图象也经过点,,且,根据图象,写出的取值范围.(3)如图2,点坐标为,点在内,若点,都在二次函数图象上,试比较与的大小.24.已知,中,,是边上一点,作,分别交边,于点,.(1)若(如图1),求证:.(2)若,过点作,交(或的延长线)于点.试猜想:线段,和之间的数量关系,并就情形(如图2)说明理由.0.1m P 0.1m sin 700.94≈cos700.34≈tan 70 2.75≈ 1.41≈ 1.73≈M 2()41y x b b =--++5y mx =+x y A B M 41y x =+A B 25()41mx x b b +>--++x A (5,0)M AOB ∆11(,)4C y 23(,)4D y 1y 2y ABC ∆B C ∠=∠P BC CPE BPF ∠=∠AC AB E F CPE C ∠=∠PE PF AB +=CPE C ∠≠∠B CBD CPE ∠=∠CA CA D PE PF BD CPE C ∠>∠(3)若点与重合(如图3),,且. ①求的度数;②设,,,试证明:.数学参考答案一、选择题1-5: CBDAA 6-10: DBCDB二、填空题11. 12. 2 13.;不公平 14.15. 16. 0或或4 三、解答题17.(1)原式(2)原式. 当,时,原式. 18.(1)解法一中的计算有误(标记略). (2)由①-②,得,解得, 把代入①,得,解得,所以原方程组的解是.18.用消元法解方程组时,两位同学的解法如下:19.(方法一)∵四边形是矩形, ∴,F A 27C ∠=PA AE =CPE ∠PB a =PA b =AB c =22a c b c-=(3)m m -14300200(110%)20x x =⨯--1113AF <<231=+-=22a b aba b ab a b-=⋅=-+1a =2b =121=-=-33x -=1x =-1x =-135y --=2y =-12x y =-⎧⎨=-⎩35,43 2.x y x y -=⎧⎨-=⎩①②ABCD 90B D C ∠=∠=∠=∵是等边三角形,∴,, 又,∴,∴, ∴, ∴, ∴矩形是正方形.(方法二)(连结,利用轴对称证明,表述正确也可)20.(1)甲车间样品的合格率为. (2)∵乙车间样品的合格产品数为(个),∴乙车间样品的合格率为. ∴乙车间的合格产品数为(个).(3)①从样品合格率看,乙车间合格率比甲车间高,所以乙车间生产的新产品更好. ②从样品的方差看,甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.21.(1)∵对于每一个摆动时间,都有一个唯一的的值与其对应, ∴变量是关于的函数.(2)①,它的实际意义是秋千摆动时,离地面的高度为. ②.AEF ∆AE AF =60AEF AFE ∠=∠=45CEF ∠=45CFE CEF ∠=∠=180456075AFD AEB ∠=∠=--=()AEB AFD AAS ∆≅∆AB AD =ABCDAC 56100%55%20+⨯=20(122)15-++=15100%75%20⨯=100075%750⨯=t h h t 0.5h m =0.7s 0.5m 2.8s22.(1)如图2,当点位于初始位置时,.如图3,10:00时,太阳光线与地面的夹角为,点上调至处,,,∴, ∴. ∵,∴. ∵,∴, ∴为等腰直角三角形,∴, ∴, 即点需从上调.(2)如图4,中午12:00时,太阳光线与,地面都垂直,点上调至处, ∴.∵,∴. ∵,∴.∵,得为等腰三角形, ∴. 过点作于点,P 0P 02CP m =65P 1P 190∠=90CAB ∠=1115APE ∠=165CPE ∠=120DPE ∠=145CPF ∠=11CF PF m ==145C CPF ∠=∠=1CP F∆1CP=010120.6P P CP CP m =-=≈P 0P 0.6m PE P 2P 2//P E AB 90CAB ∠=290CP E ∠=220DP E ∠=22270CP F CP E DP E ∠=∠-∠=21CF P F m ==2CP F ∆270C CP F ∠=∠=F 2FG CP ⊥G∴,∴,∴,即点在(1)的基础上还需上调.23.(1)∵点坐标是,∴把代入,得,∴点在直线上.(2)如图1,∵直线与轴交于点为,∴点坐标为.又∵在抛物线上,∴,解得,∴二次函数的表达式为,∴当时,得,,∴.观察图象可得,当时, 的取值范围为或.22cos 7010.340.34CP P F m =⋅=⨯=2220.68CP GP m ==12120.680.7PP CP CP m =-≈P 0.7m M (,41)b b +x b =41y x =+41y b =+M 41y x =+5y mx =+y B B (0,5)(0,5)B 25(0)41b b =--++2b =2(2)9y x =--+0y =15x =21x =-(5,0)A 25()41mx x b b +>--++x 0x <5x>(3)如图2,∵直线与直线交于点,与轴交于点,而直线表达式为,解方程组,得.∴点,. ∵点在内,∴. 当点,关于抛物线对称轴(直线)对称时,,∴. 且二次函数图象的开口向下,顶点在直线上,综上:①当时,; ②当时,; ③当时,.24.(1)∵,,,∴,,∴,,,∴.41y x =+AB E y F AB 5y x =-+415y x y x =+⎧⎨=-+⎩45215x y ⎧=⎪⎪⎨⎪=⎪⎩421(,)55E (0,1)F M AOB ∆405b <<C D x b =1344b b -=-12b =M 41y x =+102b <<12y y >12b =12y y =1425b <<12y y<B C ∠=∠CPE BPF ∠=∠CPE C ∠=∠B BPF CPE ∠=∠=∠BPF C ∠=∠PF BF =//PE AF //PF AE PE AF =∴.(2)猜想:,理由如下:过点作的平行线交的延长线于点,则,∵,∴,又,∴,∴.∵,∴,∴四边形是平行四边形,∴.(3)①设,∵,,∴,又,即,∴,即.PE PF AF BF AB +=+=BD PE PF =+B DC EP G ABC C CBG ∠=∠=∠CPE BPF ∠=∠BPF CPE BPG ∠=∠=∠BP BP =()FBP GBP ASA ∆≅∆PF PG =CBD CPE ∠=∠//PE BD BGED BD EG PG PE PE PF ==+=+CPE BPF x ∠=∠=27C ∠=PA AE =27APE PEA C CPE x ∠=∠=∠+∠=+180BPA APE CPE ∠+∠+∠=27180x x x +++=51x =51CPE ∠=②延长至,使,连结,∵,.∴,∵,∴, ∴,而,∴. ∴, ∴.∵,,,∴, ∴.BA M AM AP =MP 27C ∠=51BPA CPE ∠=∠=180BAP B BPA ∠=-∠-∠102M MPA ==∠+∠AM AP =1512M MPA BAP ∠=∠=∠=M BPA ∠=∠B B ∠=∠ABPPBM ∆∆BP BM AB BP=2BP AB BM =⋅PB a =PA AM b ==AB c =2()a c b c =+22a cb c-=2018年绍兴市初中毕业生学业考试数学试题卷卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.如果向东走2m 记为2m +,则向西走3m 可记为( )A .3m +B .2m +C .3m -D .2m -2.绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法可以表示为( )A .91.1610⨯B .81.1610⨯C .71.1610⨯D .90.11610⨯3.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .4.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )A .16B .13C .12D .565.下面是一位同学做的四道题:①222()a b a b +=+.②224(2)4a a -=-.③532a a a ÷=.④3412a a a ⋅=.其中做对的一道题的序号是( )A .①B .②C .③D .④6.如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点(1,2)A -,(1,3)B ,(2,1)C ,(6,5)D ,则此函数( )A .当1x <时,y 随x 的增大而增大B .当1x <时,y 随x 的增大而减小C .当1x >时,y 随x 的增大而增大D .当1x >时,y 随x 的增大而减小7.学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB BD ⊥,CD BD ⊥,垂足分别为B ,D ,4AO m =, 1.6AB m =,1CO m =,则栏杆C 端应下降的垂直距离CD 为( )A .0.2mB .0.3mC .0.4mD .0.5m8.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A .B .C .D .9.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .(3,6)--B .(3,0)-C .(3,5)--D .(3,1)--10.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有34枚图钉可供选用,则最多可以展示绘画作品( )A .16张B .18张C .20张D .21张卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11.因式分解:224x y -= .12.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为 尺,竿子长为 尺.13.如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB ∠=,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了 步(假设1步为0.5米,结果保留整数). 1.732≈,π取3.142)14.等腰三角形ABC 中,顶角A 为40,点P 在以A 为圆心,BC 长为半径的圆上,且BP BA =,则PBC ∠的度数为 .15.过双曲线(0)k y k x=>的动点A 作AB x ⊥轴于点B ,P 是直线AB 上的点,且满足2AP AB =,过点P 作x 轴的平行线交此双曲线于点C .如果APC ∆的面积为8,则k 的值是 .16.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm ,底面的长是30cm ,宽是20cm ,容器内的水深为xcm .现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A 的三条棱的长分别是10cm ,10cm ,(15)ycm y ≤,当铁块的顶部高出水面2cm 时,x ,y 满足的关系式是 .三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答应写出文字说明、证明过程或演算步骤)17.(1)计算:0112tan 60122)()3--+.(2)解方程:2210x x --=.18.为了解某地区机动机拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.19.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量.(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.20.学校拓展小组研制了绘图智能机器人(如图1),顺次输入点1P ,2P ,3P 的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)1(4,0)P ,2(0,0)P ,3(6,6)P. (2)1(0,0)P ,2(4,0)P ,3(6,6)P .21.如图1,窗框和窗扇用“滑块铰链”连接.图3是图2中“滑块铰链”的平面示意图,滑轨MN 安装在窗框上,托悬臂DE 安装在窗扇上,交点A 处装有滑块,滑块可以左右滑动,支点B ,C ,D 始终在一直线上,延长DE 交MN 于点F .已知20AC DE cm ==,10AE CD cm ==,40BD cm =.(1)窗扇完全打开,张角85CAB ∠=,求此时窗扇与窗框的夹角DFB ∠的度数.(2)窗扇部分打开,张角60CAB ∠=,求此时点A ,B 之间的距离(精确到0.1cm ).1.732≈2.449≈)22.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B ∠的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B ∠的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下一题:变式 等腰三角形ABC 中,80A ∠=,求B ∠的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B ∠的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B ∠有三个不同的度数时,请你探索x 的取值范围.23.小敏思考解决如下问题:原题:如图1,点P ,Q 分别在菱形ABCD 的边BC ,CD 上,PAQ B ∠=∠,求证:AP AQ =.(1)小敏进行探索,若将点P ,Q 的位置特殊化:把PAQ ∠绕点A 旋转得到EAF ∠,使AE BC ⊥,点E ,F 分别在边BC ,CD 上,如图2,此时她证明了AE AF =.请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE BC ⊥,AF CD ⊥,垂足分别为E ,F .请你继续完成原题的证明.(3)如果在原题中添加条件:4AB =,60B ∠=,如图1.请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).24.如图,公交车行驶在笔直的公路上,这条路上有A ,B ,C ,D 四个站点,每相邻两站之间的距离为5千米,从A 站开往D 站的车称为上行车,从D 站开往A 站的车称为下行车.第一班上行车、下行车分别从A 站、D 站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A ,D 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B 站、第一班下行车到C 站分别用时多少?(2)若第一班上行车行驶时间为t 小时,第一班上行车与第一班下行车之间的距离为s 千米,求s 与t 的函数关系式.(3)一乘客前往A 站办事,他在B ,C 两站间的P 处(不含B ,C 站),刚好遇到上行车,BP x =千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B 站或走到C 站乘下行车前往A 站.若乘客的步行速度是5千米/小时,求x 满足的条件.浙江省2018年初中毕业生学业考试绍兴市试卷数学参考答案一、选择题1-5: CBDAC 6-10: ACBBD二、填空题11. (2)(2)x y x y +- 12. 20,15 13. 1514. 30或110 15. 12或4 16. 61065(0)56x y x +=<≤或12015(68)2x y x -=≤< 三、解答题17.解:(1)原式132=+=.(2)x =,11x =,21x =.18.解:(1)3.40万辆.人民路路口的堵车次数平均数为120(次).学校门口的堵车次数平均数为100(次).(2)不唯一,如:2010年~2013年,随着机动车拥有量的增加,对道路的影响加大,年堵车次数也增加;尽管2017年机动车拥有量比2016年增加,由于进行了交通综合治理,人民路路口堵车次数反而降低.19.解:(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升.(2)设(0)y kx b k =+≠,把点(0,70),(400,30)坐标分别代入得70b =,0.1k =-, ∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.20.解:(1)∵1(4,0)P ,2(0,0)P ,4040-=>,∴绘制线段12P P ,124PP =.(2)∵1(0,0)P ,2(4,0)P ,3(6,6)P,000-=,∴绘制抛物线,设(4)y ax x =-,把点(6,6)坐标代入得12a =, ∴1(4)2y x x =-,即2122y x x =-. 21.解:(1)∵AC DE =,AE CD =,∴四边形ACDE 是平行四边形,∴//CA DE ,∴85DFB CAB ∠=∠=.(2)如图,过点C 作CG AB ⊥于点G ,∵60CAB ∠=,∴20cos6010AG ==,20sin 6010CG ==∵40BD =,10CD =,∴30BC =,在Rt BCG ∆中,BG =∴1034.5AB AG BG cm =+=+≈.22.解:(1)当A ∠为顶角,则50B ∠=,当A ∠为底角,若B ∠为顶角,则20B ∠=,若B ∠为底角,则80B ∠=, ∴50B ∠=或20或80.(2)分两种情况:①当90180x ≤<时,A ∠只能为顶角,∴B ∠的度数只有一个.②当090x <<时,若A ∠为顶角,则1802x B -⎛⎫∠= ⎪⎝⎭, 若A ∠为底角,则B x ∠=或(1802)B x ∠=-, 当18018022x x -≠-且1802x x -≠且1802x x -≠,即60x ≠时, B ∠有三个不同的度数.综上①②,当090x <<且60x ≠,B ∠有三个不同的度数.23.解:(1)如图1,在菱形ABCD 中,180B C ∠+∠=,B D ∠=∠,AB AD =,∵EAF B ∠=∠,∴180C EAF ∠+∠=,∴180AEC AFC ∠+∠=,∵AE BC ⊥,∴90AEB AEC ∠=∠=,∴90AFC ∠=,90AFD ∠=,∴AEB AFD ∆≅∆,∴AE AF =.(2)如图2,由(1),∵PAQ EAF B ∠=∠=∠,∴EAP EAF PAF ∠=∠-∠PAQ PAF FAQ =∠-∠=∠,∵AE BC ⊥,AF CD ⊥,∴90AEP AFQ ∠=∠=,∵AE AF =,∴AEP AFQ ∆≅∆,∴AP AQ =.(3)不唯一,举例如下:层次1:①求D ∠的度数.答案:60D ∠=.②分别求BAD ∠,BCD ∠的度数.答案:120BAD BCD ∠=∠=.③求菱形ABCD 的周长.答案:16.④分别求BC ,CD ,AD 的长.答案:4,4,4.层次2:①求PC CQ +的值.答案:4.②求BP QD +的值.答案:4.③求APC AQC ∠+∠的值.答案:180.层次3:①求四边形APCQ 的面积.答案:②求ABP ∆与AQD ∆的面积和.答案:③求四边形APCQ 周长的最小值.答案:4+.④求PQ 中点运动的路径长.答案:24.解:(1)第一班上行车到B 站用时51306=小时. 第一班下行车到C 站用时51306=小时.(2)当104t ≤≤时,1560s t =-. 当1142t <≤时,6015s t =-. (3)由(2)知同时出发的一对上、下行车的位置关于BC 中点对称,设乘客到达A 站总时间为t 分钟,当 2.5x =时,往B 站用时30分钟,还需再等下行车5分钟,3051045t =++=,不合题意.当 2.5x <时,只能往B 站坐下行车,他离B 站x 千米,则离他右边最近的下行车离C 站也是x 千米,这辆下行车离B 站(5)x -千米. 如果能乘上右侧第一辆下行车,5530x x -≤,57x ≤,∴507x <≤, 418207t ≤<, ∴507x <≤符合题意. 如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,57x >, 10530x x -≤,107x ≤, ∴51077x <≤,14272877t ≤<, ∴51077x <≤符合题意. 如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,107x >, 15530x x -≤,157x ≤, ∴101577x <≤,51353777t ≤<,不合题意. ∴综上,得1007x <≤. 当 2.5x >时,乘客需往C 站乘坐下行车,离他左边最近的下行车离B 站是(5)x -千米,离他右边最近的下行车离C 站也是(5)x -千米, 如果乘上右侧第一辆下行车,55530x x --≤, ∴5x ≥,不合题意.如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,5x <,510530x x --≤,4x ≥,∴45x ≤<,3032t <≤, ∴45x ≤<符合题意.如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,4x <,515530x x --≤,34x ≤<,4244t <≤, ∴34x ≤<不合题意.∴综上,得45x ≤<. 综上所述,1007x <≤或45x ≤<.2018年浙江省初中毕业生学业考试(嘉兴卷)数学 试题卷考生须知:1.全卷满分120分,考试时间120分钟.试题卷共6页,有三大题,共24小题.2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效.温馨提示:本次考试为开卷考,请仔细审题,答题前仔细阅读答题纸.上的“注意事项”。

2018年浙教版九年级数学中考试题

2018年浙教版九年级数学中考试题

2018年九年级数学中考模拟试卷一.选择题(共10小题)1.(2015•宁波)如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()A.B.C.D.2.(2015•宁波)如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A.5cm B.10cm C.20cm D.5πcm 3.(2015•金华)图2是图1中拱形大桥的示意图,桥拱及桥面的交点为O,B,以点O 为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=﹣(x﹣80)2+16,桥拱及桥墩AC的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为()A.16米B.米C.16米D.米4.(2015•宁波)在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数5.(2015•宁波)二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x 轴的下方,在6<x<7这一段位于x轴的上方,则a的值为()A.1B.﹣1C.2D.﹣2 6.(2015•宁波)如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°7.(2015•宁波)如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A2处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC 的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC的距离记为h2015,到BC的距离记为h2015.若h1=1,则h2015的值为()A.B.C.1﹣D.2﹣8.(2015•金华)以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD 9.(2015•宁波)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为()A.①②B.②③C.①③D.①②③10.(2015•金华)如图,正方形ABCD和正△AEF都内接于⊙O,EF及BC、CD分别相交于点G、H,则的值是()A.B.C.D.2二.填空题(共6小题)11.(2015•金华)如图,直线l1、l2、…l6是一组等距的平行线,过直线l1上的点A作两条射线,分别及直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是.12.(2015•宁波)如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB及CD的距离为5,则a﹣b的值是.13.(2015•宁波)如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O及BC边相切于点E,则⊙O的半径为.14.(2015•宁波)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆及教学楼的距离为9m,则旗杆AB的高度是m(结果保留根号)15.(2015•金华)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半轴上,反比例函数y=(x>0)的图象经过该菱形对角线的交点A,且及边BC交于点F.若点D的坐标为(6,8),则点F的坐标是.16.(2015•金华)图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时点A、B、C在同一直线上,且∠ACD=90°,图2是小床支撑脚CD折叠的示意图,在折叠过程中,△ACD变形为四边形ABC′D′,最后折叠形成一条线段BD″.(1)小床这样设计应用的数学原理是.(2)若AB:BC=1:4,则tan∠CAD的值是.三.解答题(共14小题)17.(2015•宁波)解一元一次不等式组,并把解在数轴上表示出来.18.(2015•杭州)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.19.(2015•宁波)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.20.(2015•宁波)某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?21.(2015•杭州)“综合及实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).22.(2015•杭州)设函数y=(x﹣1)[(k﹣1)x+(k﹣3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时的函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到的函数y3的图象,求函数y3的最小值.23.(2015•杭州)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y及t 的函数关系如图1所示.方成思考后发现了如图1的部分正确信息:乙先出发1h;甲出发0.5小时及乙相遇;….请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程S甲,S乙及时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车及乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h及乙相遇,问丙出发后多少时间及甲相遇?24.(2015•宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B 两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?25.(2015•宁波)已知抛物线y=(x﹣m)2﹣(x﹣m),其中m是常数.(1)求证:不论m为何值,该抛物线及x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线及x轴只有一个公共点.26.(2015•台州)如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.27.(2015•台州)如图,在多边形ABCDE中,∠A=∠AED=∠D=90°,AB=5,AE=2,ED=3,过点E作EF∥CB交AB于点F,FB=1,过AE上的点P作PQ∥AB交线段EF于点O,交折线BCD于点Q,设AP=x,PO•OQ=y.(1)①延长BC交ED于点M,则MD= ,DC= ;②求y关于x的函数解析式;(2)当a≤x≤(a>0)时,9a≤y≤6b,求a,b的值;(3)当1≤y≤3时,请直接写出x的取值范围.28.(2015•宁波)在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为S=ma+nb﹣1,其中m,n为常数.(1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;(2)利用(1)中的格点多边形确定m,n的值.29.(2015•台州)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点;(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使点C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画一种情形即可);(4)如图4,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,△AMC,△MND和△NBE 均为等边三角形,AE分别交CM,DM,DN于点F,G,H,若H是DN的中点,试探究S△AMF,S△BEN和S四边形MNHC的数量关系,并说明理由.30.(2015•宁波)如图1,点P为∠MON的平分线上一点,以P为顶点的角的两边分别及射线OM,ON交于A,B两点,如果∠APB绕点P旋转时始终满足OA•OB=OP2,我们就把∠APB叫做∠MON的智慧角.(1)如图2,已知∠MON=90°,点P为∠MO N的平分线上一点,以P为顶点的角的两边分别及射线OM,ON交于A,B两点,且∠APB=135°.求证:∠APB是∠MON的智慧角.(2)如图1,已知∠MON=α(0°<α<90°),OP=2.若∠APB是∠MON的智慧角,连结AB,用含α的式子分别表示∠APB的度数和△AOB的面积.(3)如图3,C是函数y=(x>0)图象上的一个动点,过C的直线CD分别交x轴和y轴于A,B两点,且满足BC=2CA,请求出∠AOB的智慧角∠APB的顶点P的坐标.参考答案及试题解析一.选择题(共10小题)1.(2015•宁波)如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看易得上面一层有3个正方形,下面中间有一个正方形.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.2.(2015•宁波)如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A.5cm B.10cm C.20cm D.5πcm考点:圆锥的计算.分析:由圆锥的几何特征,我们可得用半径为30cm,面积为300πcm2的扇形铁皮制作一个无盖的圆锥形容器,则圆锥的底面周长等于扇形的弧长,据此求得圆锥的底面圆的半径.解答:解:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器底面半径为r,则由题意得R=30,由Rl=300π得l=20π;由2πr=l得r=10cm;故选B.点评:本题考查的知识点是圆锥的体积,其中根据已知制作一个无盖的圆锥形容器的扇形铁皮的相关几何量,计算出圆锥的底面半径和高,是解答本题的关键.3.(2015•金华)图2是图1中拱形大桥的示意图,桥拱及桥面的交点为O,B,以点O 为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=﹣(x﹣80)2+16,桥拱及桥墩AC的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为()A.16米B.米C.16米D.米考点:二次函数的应用.专题:计算题.分析:先确定C点的横坐标,然后根据抛物线上点的坐标特征求出C点的纵坐标,从而可得到AC的长.解答:解:∵AC⊥x轴,OA=10米,∴点C的横坐标为﹣10,当x=﹣10时,y=﹣(x﹣80)2+16=﹣(﹣10﹣80)2+16=﹣,∴C(﹣10,﹣),∴桥面离水面的高度AC为m.故选B.点评:本题考查了二次函数的应用:利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.4.(2015•宁波)在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数考点:统计量的选择.分析:学校食堂最值得关注的应该是哪种粽子爱吃的人数最多,即众数.解答:解:由于众数是数据中出现次数最多的数,故学校食堂最值得关注的应该是统计调查数据的众数.故选D.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.(2015•宁波)二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x 轴的下方,在6<x<7这一段位于x轴的上方,则a的值为()A.1B.﹣1C.2D.﹣2考点:抛物线及x轴的交点.分析:根据抛物线顶点式得到对称轴为直线x=4,利用抛物线对称性得到抛物线在1<x <2这一段位于x轴的上方,而抛物线在2<x<3这一段位于x轴的下方,于是可得抛物线过点(2,0),然后把(2,0)代入y=a(x﹣4)2﹣4(a≠0)可求出a的值.解答:解:∵抛物线y=a(x﹣4)2﹣4(a≠0)的对称轴为直线x=4,而抛物线在6<x<7这一段位于x轴的上方,∴抛物线在1<x<2这一段位于x轴的上方,∵抛物线在2<x<3这一段位于x轴的下方,∴抛物线过点(2,0),把(2,0)代入y=a(x﹣4)2﹣4(a≠0)得4a﹣4=0,解得a=1.故选A.点评:本题考查了抛物线及x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)及x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.△=b2﹣4ac决定抛物线及x轴的交点个数:△=b2﹣4ac>0时,抛物线及x轴有2个交点;△=b2﹣4ac=0时,抛物线及x轴有1个交点;△=b2﹣4ac <0时,抛物线及x轴没有交点.6.(2015•宁波)如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°考点:圆周角定理.专题:计算题.分析:连结OB,如图,先根据圆周角定理得到∠BOC=2∠A=144°,然后根据等腰三角形的性质和三角形内角和定理计算∠BCO的度数.解答:解:连结OB,如图,∠BOC=2∠A=2×72°=144°,∵OB=OC,∴∠CBO=∠BCO,∴∠BCO=(180°﹣∠BOC)=×(180°﹣144°)=18°.故选B.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰三角形的性质.7.(2015•宁波)如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A2处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC的距离记为h2015,到BC的距离记为h2015.若h1=1,则h2015的值为()A.B.C.1﹣D.2﹣考点:相似三角形的判定及性质;三角形中位线定理;翻折变换(折叠问题).专题:规律型.分析:根据中点的性质及折叠的性质可得DA=DA'=DB,从而可得∠ADA'=2∠B,结合折叠的性质,∠ADA'=2∠ADE,可得∠ADE=∠B,继而判断DE∥BC,得出DE是△ABC 的中位线,证得AA1⊥BC,得到AA1=2,求出h1=2﹣1=1,同理h2=2﹣,h3=2﹣=2﹣,于是经过第n次操作后得到的折痕D n﹣1E n﹣1到BC的距离h n=2﹣,求得结果h2015=2﹣.解答:解:连接AA1,由折叠的性质可得:AA1⊥DE,DA=DA1,又∵D是AB中点,∴DA=DB,∴DB=DA1,∴∠BA1D=∠B,∴∠ADA1=2∠B,又∵∠ADA1=2∠ADE,∴∠ADE=∠B,∴DE∥BC,∴AA1⊥BC,∴AA1=2,∴h1=2﹣1=1,同理,h2=2﹣,h3=2﹣=2﹣,…∴经过第n次操作后得到的折痕D n﹣1E n﹣1到BC的距离h n=2﹣,∴h2015=2﹣,故选D.点评:本题考查了相似三角形的判定和性质,三角形中位线的性质,平行线等分线段定理,找出规律是解题的关键.8.(2015•金华)以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD 考点:平行线的判定;翻折变换(折叠问题).分析:根据平行线的判定定理,进行分析,即可解答.解答:解:A、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确;C、测得∠1=∠2,∵∠1及∠2即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;D、在△AOB和△COD中,,∴△AOB≌△COD,∴∠CAO=∠DBO,∴a∥b(内错角相等,两直线平行),故正确.故选:C.点评:本题考查了平行线的判定,解决本题的关键是熟记平行线的判定定理.9.(2015•宁波)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为()A.①②B.②③C.①③D.①②③考点:中心对称.专题:应用题.分析:首先根据长方形被分割成3个正方形和2个长方形后仍是中心对称图形,可得A 的对应点是A′,B的对应点是B′,判断出AB=A′B′;然后根据①的长和②的边长的和等于原长方形的长,①的宽和②的边长的和等于原长方形的宽,可得①②的周长和等于原长方形的周长,据此判断即可.解答:解:如图,,∵长方形被分割成3个正方形和2个长方形后仍是中心对称图形,∴A的对应点是A′,B的对应点是B′,∴AB=A′B′,∵①的长和②的边长的和等于原长方形的长,①的宽和②的边长的和等于原长方形的宽,∴①②的周长和等于原长方形的周长,∴分割后不用测量就能知道周长的图形的标号为①②,其余的图形的周长不用测量无法判断.故选:A.点评:此题主要考查了中心对称的性质和应用,要熟练掌握,解答此题的关键是要明确中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.10.(2015•金华)如图,正方形ABCD和正△AEF都内接于⊙O,EF及BC、CD分别相交于点G、H,则的值是()A.B.C.D.2考点:正多边形和圆.专题:计算题.分析:首先设⊙O的半径是r,则OF=r,根据AO是∠EAF的平分线,求出∠COF=60°,在Rt△OIF中,求出FI的值是多少;然后判断出OI、CI的关系,再根据GH∥B D,求出GH的值是多少,再用EF的值比上GH的值,求出的值是多少即可.解答:解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,∵OA=OF,∴∠OFA=∠OAF=30°,∴COF=30°+30°=60°,∴FI=r•sin60°=,∴EF=,∵AO=2OI,∴OI=,CI=r﹣=,∴,∴,∴=,即则的值是.故选:C.点评:此题主要考查了正多边形及圆的关系,要熟练掌握,解答此题的关键是要明确正多边形的有关概念:①中心:正多边形的外接圆的圆心叫做正多边形的中心.②正多边形的半径:外接圆的半径叫做正多边形的半径.③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.④边心距:中心到正多边形的一边的距离叫做正多边形的边心距.二.填空题(共6小题)11.(2015•金华)如图,直线l1、l2、…l6是一组等距的平行线,过直线l1上的点A作两条射线,分别及直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是 5 .考点:相似三角形的判定及性质.分析:由直线l1、l2、…l6是一组等距的平行线,得到△ABC∽△AEF,推出比例式求得结果.解答:解:∵l3∥l6,∴BC∥EF,∴△ABC∽△AEF,∴=,∵BC=2,∴EF=5.点评:本题考查了相似三角形的判定和性质,平行线等分线段定理,熟记定理是解题的关键.12.(2015•宁波)如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB及CD的距离为5,则a﹣b的值是 6 .考点:反比例函数系数k的几何意义.分析:利用反比例函数k的几何意义,结合相关线段的长度来求a﹣b的值.解答:解:如图,由题意知:a﹣b=2•OE,a﹣b=3•OF,又∵OE+OF=5,∴OE=3,OF=2,∴a﹣b=6.故答案是:6.点评:本题考查了反比例函数图象上点的坐标特征.此题借助于方程组来求得相关系数的.13.(2015•宁波)如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O及BC边相切于点E,则⊙O的半径为 6.25 .考点:切线的性质;勾股定理;矩形的性质;垂径定理.分析:首先连接OE,并反向延长交AD于点F,连接OA,由在矩形ABCD中,过A,D两点的⊙O及BC边相切于点E,易得四边形CDFE是矩形,由垂径定理可求得AF的长,然后设⊙O的半径为x,则OE=EF﹣OE=8﹣x,利用勾股定理即可得:(8﹣x)2+36=x2,继而求得答案.解答:解:连接OE,并反向延长交AD于点F,连接OA,∵BC是切线,∴OE⊥BC,∴∠OEC=90°,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDFE是矩形,∴EF=CD=AB=8,OF⊥AD,∴AF=AD=×12=6,设⊙O的半径为x,则OE=EF﹣OE=8﹣x,在Rt△OAF中,OF2+AF2=OA2,则(8﹣x)2+36=x2,解得:x=6.25,∴⊙O的半径为:6.25.故答案为:6.25.点评:此题考查了切线的性质、垂径定理、矩形的性质以及勾股定理.注意准确作出辅助线是解此题的关键.14.(2015•宁波)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆及教学楼的距离为9m,则旗杆AB的高度是3+9 m(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:根据在Rt△ACD中,tan∠ACD=,求出AD的值,再根据在Rt△BCD中,tan∠BCD=,求出BD的值,最后根据AB=AD+BD,即可求出答案.解答:解:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴=,∴AD=3m,在Rt△BCD中,∵∠BCD=45°,∴BD=CD=9m,∴AB=AD+BD=3+9(m).故答案为:3+9.点评:此题考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.15.(2015•金华)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半轴上,反比例函数y=(x>0)的图象经过该菱形对角线的交点A,且及边BC交于点F.若点D的坐标为(6,8),则点F的坐标是(12,).考点:菱形的性质;反比例函数图象上点的坐标特征.分析:首先过点D作DM⊥x轴于点M,过点F作FE⊥x于点E,由点D的坐标为(6,8),可求得菱形OBCD的边长,又由点A是BD的中点,求得点A的坐标,利用待定系数法即可求得反比例函数y=(x>0)的解析式,然后由tan∠FBE=tan∠DOM===,可设EF=4a,BE=3a,则点F的坐标为:(10+3a,4a),即可得方程4a(10+3a)=32,继而求得a的值,则可求得答案.解答:解:过点D作DM⊥x轴于点M,过点F作FE⊥x于点E,∵点D的坐标为(6,8),∴OD==10,∵四边形OBCD是菱形,∴O B=OD=10,∴点B的坐标为:(10,0),∵AB=AD,即A是BD的中点,∴点A的坐标为:(8,4),∵点A在反比例函数y=上,∴k=xy=8×4=32,∵OD∥BC,∴∠DOM=∠FBE,∴tan∠FBE=tan∠DOM===,设EF=4a,BE=3a,则点F的坐标为:(10+3a,4a),∵点F在反比例函数y=上,∴4a(10+3a)=32,即3a2+10a﹣8=0,解得:a1=,a2=﹣4(舍去),∴点F的坐标为:(12,).故答案为:(12,).点评:此题考查了菱形的性质、反比例函数的性质以及三角函数等知识.注意准确作出辅助线,求得反比例函数的解析式,得到tan∠FBE=tan∠DOM===,从而得到方程4a(10+3a)=32是关键.16.(2015•金华)图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时点A、B、C在同一直线上,且∠ACD=90°,图2是小床支撑脚CD折叠的示意图,在折叠过程中,△ACD变形为四边形ABC′D′,最后折叠形成一条线段BD″.(1)小床这样设计应用的数学原理是三角形具有稳定性.(2)若AB:BC=1:4,则tan∠CAD的值是.考点:翻折变换(折叠问题);解直角三角形的应用.专题:计算题.分析:(1)直接利用三角形的稳定性得出答案;(2)根据题意表示出各线段的长,进而利用勾股定理表示出DC的长,再利用锐角三角函数关系得出答案.解答:解:(1)小床这样设计应用的数学原理是:三角形具有稳定性;故答案为:三角形具有稳定性;(2)∵AB:BC=1:4,∴设AB=x,DC=y,则BC=4x,C″D″=y,由图形可得:BC″=4x,则AC″=3x,AD=AD″=3x+y,故AC2+DC2=AD2,即(5x)2+y2=(3x+y)2,解得:y=x,则tan∠CAD的值是:==.故答案为:.点评:此题主要考查了翻折变换以及解直角三角形的应用,根据题意用同一未知数表示出AC,CD的长是解题关键.三.解答题(共14小题)17.(2015•宁波)解一元一次不等式组,并把解在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:由①得,x>﹣3,由②得,x≤2,故此不等式组的解集为:﹣3<x≤2.在数轴上表示为:点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(2015•杭州)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.考点:全等三角形的判定及性质.专题:证明题.分析:首先根据等腰三角形的性质得到AD是顶角的平分线,再利用全等三角形进行证明即可.解答:证明:∵AM=2MB,AN=2NC,AB=AC,∴AM=AN,∵AB=AC,AD平分∠BAC,∴∠MAD=∠NAD,在△AMD及△AND中,,∴△AMD≌△AND(SAS),∴DM=DN.点评:本题考查了全等三角形的判定和性质,关键是根据等腰三角形的性质进行证明.19.(2015•宁波)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.考点:列表法及树状图法;概率公式.分析:(1)设红球的个数为x,根据白球的概率可得关于x的方程,解方程即可;(2)画出树形图,即可求出两次摸到的球都是白球的概率.解答:解:(1)设红球的个数为x,由题意可得:,解得:x=1,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)==.点评:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数及总情况数之比.20.(2015•宁波)某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用喜欢跳绳的人数除以其所占的百分比即可求得被调查的总人数;(2)用总人数乘以足球所占的百分比即可求得喜欢足球的人数,用总数减去其他各小组的人数即可求得喜欢跑步的人数,从而补全条形统计图;(3)用样本估计总体即可确定最喜爱篮球的人数比最喜爱足球的人数多多少.解答:解:(1)观察条形统计图及扇形统计图知:喜欢跳绳的有10人,占25%,故总人数有10÷25%=40人;。

中考真题:浙江省杭州市2018年中考数学试卷(word解析版)

中考真题:浙江省杭州市2018年中考数学试卷(word解析版)

浙江省杭州市2018年中考数学试题(解析版)一、选择题1.=()A. 3B. -3C.D.【答案】A【考点】绝对值及有理数的绝对值【解析】【解答】解:|-3|=3【分析】根据负数的绝对值等于它的相反数,即可求解。

2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×106【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:1800000=1.8×106【分析】根据科学计数法的表示形式为:a×10n。

其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。

3.下列计算正确的是()A. B. C. D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB、∵,因此A符合题意;B不符合题意;CD、∵,因此C、D不符合题意;故答案为:A【分析】根据二次根式的性质,对各选项逐一判断即可。

4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。

计算结果不受影响的是()A. 方差B. 标准差 C 中位数 D. 平均数【答案】C【考点】中位数【解析】【解答】解:∵五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了∴中位数不会受影响故答案为:C【分析】抓住题中关键的已知条件:五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了,可知最高成绩提高,中位数不会变化。

5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.【答案】D【考点】垂线段最短【解析】【解答】解:∵线段AM,AN分别是△ABC边上的高线和中线,当BC边上的中线和高重合时,则AM=AN当BC边上的中线和高不重合时,则AM<AN∴AM≤AN故答案为:D【分析】根据垂线段最短,可得出答案。

6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。

2018-2019学年最新浙教版八年级数学上册《第5章一次函数》单元测试题有答案-精编试题

2018-2019学年最新浙教版八年级数学上册《第5章一次函数》单元测试题有答案-精编试题

浙教版八年级数学上册第5章一次函数单元测试题第Ⅰ卷 (选择题 共30分)一、选择题(本题共10小题,每小题3分,共30分) 1.函数y =x -1的图象经过( ) A .第一、二、三象限B .第一、二、四象限 C .第二、三、四象限D .第一、三、四象限2.函数y =x -1x -3中,自变量x 的取值范围是( ) A .x ≥1且x ≠3 B .x ≥1 C .x ≠3 D .x>1且x ≠33.已知函数y =(1-2k)x 是正比例函数,且y 随x 的增大而减小,那么k 的取值范围是( ) A .k <12B .k >12C .k >0D .k <14.已知点(-1,y 1),(4,y 2)在一次函数y =3x -2的图象上,则y 1,y 2,0的大小关系是( ) A .0<y 1<y 2 B .y 1<0<y 2C .y 1<y 2<0 D .y 2<0<y 15.一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩余的水量Q(m 3)与放水时间t(时)的函数关系用图象表示为( )6.如图所示,若一次函数y =k 1x +b 1的图象l 1与y =k 2x +b 2的图象l 2相交于点P ,则方程组⎩⎪⎨⎪⎧y =k 1x +b 1,y =k 2x +b 2的解是( )A.⎩⎪⎨⎪⎧x =-2,y =3B.⎩⎪⎨⎪⎧x =3,y =-2C.⎩⎪⎨⎪⎧x =2,y =3D.⎩⎪⎨⎪⎧x =-2,y =-37.若kb >0,则函数y =kx +b 的图象可能是( )8.小李与小陆从A 地出发,骑自行车沿同一条路行驶到B 地,他们离出发地的距离s(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:①他们都行驶了20 km ; ②小陆全程共用了1.5 h ;③小李与小陆相遇后,小李的速度小于小陆的速度; ④小李在途中停留了0.5 h. 其中正确的有( )A .4个B .3个C .2个D .1个9.在同一平面直角坐标系中,对于函数:①y =-x -1;②y =x +1;③y =-x +1;④y =-2(x +2)的图象,下列说法正确的是( )A .经过点(-1,0)的是①③B .交点在y 轴上的是②④C .相互平行的是①③D .交点在x 轴上的是②④10.如图所示,点A ,B ,C 在一次函数y =-2x +m 的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .3(m -1) B.32(m -2) C .1 D .3第Ⅱ卷 (非选择题 共90分)二、填空题(本题共6小题,每小题4分,共24分)11.已知正比例函数y =kx 的图象经过点A(-1,2),则正比例函数的表达式为________. 12.一次函数y =kx +b(k <0)的图象如图所示,当y>0时,x 的取值范围是________.13.已知函数y =3x 的图象经过点A(-1,y 1),B(-2,y 2),则y 1________y 2(填“>”“<”或“=”). 14.腰长为x ,底边长为y 的等腰三角形的周长为12,则y 与x 的函数表达式为____________,自变量x 的取值范围为____________.15.一次函数y =kx +b(k ,b 都是常数,且k ≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx +b =4的解为________.16.如图所示,射线OA ,BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s ,t 分别表示行驶路程和时间,则这两人骑自行车的速度相差________km/h.三、解答题(本题共8小题,共66分)17.(6分)已知一次函数y=kx+2,当x=-1时,y=1,求此函数的表达式,并在平面直角坐标系中画出此函数的图象.18.(6分)已知一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k,b的值;(2)若一次函数的图象与x轴的交点为A(a,0),求a的值.19.(6分)已知一次函数y=kx+b的图象与x轴交于点A(-2,0),与y轴交于点B.若△AOB的面积为8,求一次函数的表达式.20.(8分)已知一次函数y1=2x-3,y2=-x+6在同一直角坐标系中的图象如图所示,它们的交点坐标为C(3,3).(1)根据图象指出x为何值时,y1>y2;x为何值时,y1<y2.(2)求这两条直线与x轴所围成的△ABC的面积.21.(8分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费;每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过部分按每吨2.8元收费.设某户每月用水量为x吨,应收水费为y元.(1)分别写出每月用水量未超过20吨和超过20吨时,y与x之间的函数表达式;(2)若该城市某户5月份水费平均每吨2.2元,求该户5月份用水多少吨.22.(10分)在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做和谐点.例如,下图中过点P分别作x轴、y轴的垂线PA,PB,与坐标轴围成的长方形OAPB的周长与面积的数值相等,则P是和谐点.(1)判断M(1,2),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a,3)在直线y=-x+b(b为常数)上,求a,b的值.23.(10分)今年4月初,某地连续降雨导致该地某水库水位持续上涨,下表是该水库4月1日~4月4日的水位变化情况:(1)(2)请用求出的函数表达式预测该水库今年4月6日的水位;(3)你能用求出的函数表达式预测该水库今年12月1日的水位吗?请简要说明.24.(12分)小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?参考答案1. D2. A3. B4. B5. D6. A7. A.8. A9. C10.D11.y=-2x 12.x<213.>14.y =-2x +12 3<x <6 15.x =3 16. 417.解:将x =-1,y =1代入一次函数表达式y =kx +2, 得1=-k +2,解得k =1, ∴一次函数的表达式为y =x +2. 当x =0时,y =2;当y =0时,x =-2. ∴函数图象经过点(0,2),(-2,0). 此函数图象如图所示.18.解:(1)由题意,得⎩⎪⎨⎪⎧b =2,k +b =3,解得⎩⎪⎨⎪⎧k =1,b =2,∴k ,b 的值分别是1和2.(2)由(1)得y =x +2,∴当y =0时,x =-2,即a =-2. 19.解:∵一次函数y =kx +b 的图象经过点A(-2,0), ∴0=-2k +b ,∴b =2k.①∵一次函数y =kx +b 的图象与y 轴的交点是B(0,b),∴S △AOB =12OA ·OB =8,即12×2×|b|=8, ∴|b|=8,∴b 1=8,b 2=-8.将b 1=8,b 2=-8分别代入①式,得k 1=4,k 2=-4, ∴一次函数的表达式是y =4x +8或y =-4x -8. 20.解:(1)当x >3时,y 1>y 2;当x <3时,y 1<y 2. (2)把y =0代入y =2x -3,得2x -3=0, 解得x =32,则点A 坐标为⎝ ⎛⎭⎪⎫32,0. 把y =0代入y =-x +6,得-x +6=0, 解得x =6,则点B 坐标为(6,0),所以这两条直线与x 轴所围成的△ABC 的面积为12×3×⎝ ⎛⎭⎪⎫6-32=274.21.解:(1)当0≤x ≤20时,y =1.9x ;当x >20时,y =1.9×20+(x -20)×2.8=2.8x -18.(2)因为2.2>1.9,所以可以确定该户5月份用水量超过20吨. 设该户5月份用水a 吨.由题意,得2.8a -18=2.2a ,解得a =30. 答:该户5月份用水30吨.22.解:(1)M 不是和谐点,N 是和谐点. 理由:∵1×2≠2×(1+2),4×4=2×(4+4), ∴M 不是和谐点,N 是和谐点. (2)当a>0时,(a +3)×2=3a ,∴a =6.∵点P(6,3)在直线y =-x +b 上,∴代入得b =9;当a<0时,(-a +3)×2=-3a ,∴a =-6.∵点P(-6,3)在直线y =-x +b 上,∴代入得b =-3.∴a =6,b =9或a =-6,b =-3.23.解:(1)水库的水位y 随日期x 的变化是均匀的,∴y 与日期x 之间的函数为一次函数,设y =kx +b ,把(1,20)和(2,20.5)代入,得⎩⎪⎨⎪⎧k +b =20,2k +b =20.5, 解得⎩⎪⎨⎪⎧k =0.5,b =19.5, ∴函数表达式为y =0.5x +19.5.(2)当x =6时,y =3+19.5=22.5.故今年4月6日的水位为22.5米.(3)不能,理由如下:∵12月离4月时间比较长,∴用所建立的函数模型预测水位是不可靠的.24.解:(1)小聪骑车从飞瀑出发到宾馆所用时间为50÷20=2.5(h),∵上午10:00小聪到达宾馆,∴小聪上午7:30从飞瀑出发.(2)3-2.5=0.5,∴点G 的坐标为(0.5,50).设GH 对应的函数表达式为s =kt +b ,把G(0.5,50),H(3,0)代入s =kt +b ,得⎩⎪⎨⎪⎧0.5k +b =50,3k +b =0, 解得⎩⎪⎨⎪⎧k =-20,b =60, ∴s =-20t +60.当s =30时,t =1.5,∴点B 的坐标为(1.5,30).点B 的实际意义是当小慧出发1.5 h 时,小慧与小聪相遇,且离宾馆的路程为30 km.(3)50÷30=53(h),12-53=1013, ∴当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00.设小聪返回x h 后两人相遇,根据题意,得30x +30(x -错误!)=50,解得x =1,10+1=11, ∴小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他11:00遇见小慧.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点 11、反比例函数的图像和性质
反比例函数的图像是双曲线, 它是以原点为对称中心的称轴的轴对称图形, 当 k> 0 时,图像的两个分支分别在一、 三象限,
在每个象限内 y 随 x 的增大而减小,当 k<0 时,图象的两个分支分别在二、四象限,在
2a
4a
知识点 15、二次函次图象的平移 二次函数图象的平移只要移动顶点坐标即可。 知识点 16、二次函数 y= ax2+ bx+c 的图象与坐标轴的交点。 (1)与 y 轴永远有交点( 0,c) (2)在 b2-4ac> 0 时,抛物线与 x 轴有两个交点, A(x1,0)、B( x2,0)这两点距 离为 AB=|x 1-x2| ,(x1、x2是 ax2+bx+ c= 0 的两个根)。 在 b2-4ac=0 时,抛物线与 x 轴只有一个交点。 在 b2-4ac<0 时,则抛物线与 x 轴没有交点。
每个象限内, y 随 x 的增大而增大。
知识点 12、反比例函数中比例系数 k 的几何意义。 过双曲线上任意一点 P 作 x 轴、 y 轴的垂线 PA、 PB所得矩形的 PAOB的面积为 |k| 。 知识点 13、二次函数的定义 形如: y=ax2+bx+ c( a、 b、 c 是常数, a≠ 0)那么 y 叫做 x 的二次函数,它常用 的三种基本形式。 一般式: y=ax2+bx+c(a≠0) 顶点式: y=a(x-h)2+k(a≠0) 交点式: y=a(x-x1)(x-x2)( a ≠ 0, x1、x2 是图象与 x 轴交点的横坐标) 知识点 14、二次函数的图象与性质
在 a<0 时,抛物线开口向下,在对称轴的左侧,即 x< b 时, y 随着 x 的增大而 2a
增大。在对称轴的右侧,即当 x> b 时, y 随着 x 的增大而减小。 2a
当 a>0,在 x= b 时, y 有最小值, y = 最小值 4ac b2 ,
2a
4a
当 a<0,在 x= b 时, y 有最大值, y = 最大值 4ac b2 。

k1≠ k2
1 与 2相交, k1=k2,b1≠ b2
1 与 2平行, k1=k2,
b1= b2
1 与 2重合。
知识点 10、反比例函数的定义 形如: y= k 或 y=kx-1( k 是常数且 k≠0)叫做反比例函数,也可以写成 xy =k(k
x ≠0)形式,它表明在反比例函数中自变量 x 与其对应的函数值 y 之积等于已知常数 k,
理解其性质。 5. 能用适当的函数表示法刻画某些实际问题中变量之间的关系并用函数解决简单的
实际问题。 二. 教学重点、难点:
重点:一次函数,反比例函数,二次函数的图像与性质及应用 难点:函数的实际应用题是中考的重点又是难点。 三. 知识要点: 知识点 1、平面直角坐标系与点的坐标 一个平面被平面直角坐标分成四个象限, 平面内的点可以用一对有序实数来表示平面 内的点与有序实数对是一一对应关系,各象限内点都有自己的特征,特别要注意坐标轴 上的点的特征。点 P( x、 y)在 x 轴上 y= 0, x 为任意实数, 点 P(x、 y)在 y 轴上, x=0,y 为任意实数,点 P(x、y)在坐标原点 x= 0, y=0。 知识点 2、对称点的坐标的特征 点 P(x、 y)关于 x 轴的对称点 P1 的坐标为( x,- y);关于 y 轴的对称轴点 P2的坐 标为(- x,y);关于原点的对称点 P3 为(- x,- y) 知识点 3、距离与点的坐标的关系 点 P(a, b)到 x 轴的距离等于点 P 的纵坐标的绝对值,即| b| 点 P(a, b)到 y 轴的距离等于点 P 的横坐标的绝对值,即| a| 点 P(a, b)到原点的距离等于: a2 b 2 知识点 4、与函数有关的概念
二次函数 y= ax2+ bx+c(a≠0)的图象是以(
b 4ac b2
,
)为顶点,以直线 y=
2a 4a
b 为对称轴的抛物线。 2a
在 a>0 时,抛物线开口向上,在对称轴的左侧,即 x< b 时, y 随 x 的增大而减 2a
小;在对称轴的右侧,即当 x> b 时, y 随着 x 的增大而增大。 2a
知识点 5、已知函数解析式,判断点 P( x,y)是否在函数图像上的方法,若点 P( x,
y)的坐标适合函数解析式,则点 P 在其图象上;若点 P 在图象上,则 P(x,y)的坐标
适合函数解析式.
知识点 6、列函数解析式解决实际问题
设 x 为自变量, y 为 x 的函数,先列出关于 x ,y 的二元方程, 再用 x 的代数式表示 y,
函数
教学准备
一. 教学目标: 1. 会根据点的坐标描出点的位置,由点的位置写出它的坐标 2. 会确定点关于 x 轴, y 轴及原点的对称点的坐标 3. 能确定简单的整式,分式和实际问题中的函数自变量的取值范围,并会求函数值。 4. 能准确地画出一次函数,反比例函数,二次函数的图像并根据图像和解析式探索并
函数的定义, 函数自变量及函数值; 函数自变量的取值必须使解析式有意义当解析式
是整式时,自变量取一切实数,当解析式是分式时,要使分母不为零,当解析式是根式
时,自变量的取值要使被开方数为非负数,特别地,在一个函数关系中,同时有几种代
数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分。
最后写出自变量的取值范围,要注意使自变量在实际问题中有意义。
知识点 7、一次函数与正比例函数的定义:
例如: y=kx +b(k,b 是常数, k≠0)那么 y 叫做 x 的一次函数,特 别地当 b= 0
时,一次函数 y=kx+ b 就成为 y=kx(k 是常数, k≠ 0)这时, y 叫做 x 的正比例函数。
知识点 8、一次函数的图象和性质 一次函数 y= kx+b 的图象是经过点(0, b)和点(- b ,0)的一条直线, k 值决
k 定直线自左向右是上升还是下降, b 值决定直线交于 y 轴的正半轴还是负半轴或过原点。
知识点 9、两条直线的位置关系
设直线 1 和 2的解析式为 y= k1x+ b1 和 y2= k2x+ b2 则它们的位置关系由系数关系确
相关文档
最新文档