线性规划的概念
线性规划知识点
线性规划知识点一、概述线性规划是一种数学优化方法,用于求解线性约束条件下的最优解问题。
它在运筹学、管理科学、经济学等领域有着广泛的应用。
线性规划的目标是通过线性目标函数的最小化或最大化,找到使得一系列线性约束条件得到满足的最优解。
二、基本概念1. 线性规划模型线性规划模型由目标函数和约束条件组成。
目标函数是需要最小化或最大化的线性函数,约束条件是一系列线性不等式或等式。
2. 可行解可行解是满足所有约束条件的解。
在线性规划中,可行解构成了一个可行域,即满足所有约束条件的解的集合。
3. 最优解最优解是使得目标函数取得最小或最大值的可行解。
在线性规划中,最优解可以是有限的,也可以是无穷的。
4. 线性规划的标准形式线性规划的标准形式包括以下特点:- 目标函数为最小化形式;- 所有约束条件为等式形式;- 变量的取值范围为非负数。
1. 图形法图形法是线性规划最直观的解法之一。
它通过绘制变量的可行域图形,找到目标函数的最优解。
2. 单纯形法单纯形法是一种迭代算法,通过不断地移动解的位置来逐步逼近最优解。
它是线性规划中应用最广泛的解法之一。
3. 对偶理论对偶理论是线性规划中的重要概念之一。
它通过将原始问题转化为对偶问题,从而得到原始问题的最优解。
四、线性规划的应用线性规划在实际生活中有着广泛的应用,以下是一些常见的应用领域:1. 生产计划线性规划可以用于确定最佳的生产计划,以最小化生产成本或最大化利润。
2. 运输问题线性规划可以用于解决运输问题,如货物的最佳配送方案、最短路径等。
3. 金融投资线性规划可以用于优化投资组合,以最大化投资收益或最小化风险。
4. 资源分配线性规划可以用于确定最佳的资源分配方案,如人力资源、物资等。
尽管线性规划在许多问题中有着广泛的应用,但它也存在一些局限性:1. 线性假设线性规划的基本假设是目标函数和约束条件都是线性的,这限制了它在处理非线性问题上的应用。
2. 离散性问题线性规划通常适用于连续变量的问题,对于离散变量的问题,它的应用受到限制。
线性规划知识点
线性规划知识点一、引言线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在各个领域都有广泛的应用,如经济学、管理学、工程学等。
本文将详细介绍线性规划的基本概念、模型构建、求解方法以及应用案例。
二、基本概念1. 变量:线性规划中的变量是决策的对象,通常用x1、x2、...、xn表示。
2. 目标函数:线性规划的目标是最大化或最小化一个线性函数,通常表示为Z = c1x1 + c2x2 + ... + cnxn。
3. 约束条件:线性规划的变量需要满足一系列线性约束条件,通常表示为a11x1 + a12x2 + ... + a1nxn ≤ b1,...,am1x1 + am2x2 + ... + amnxn ≤ bm。
4. 非负约束:线性规划中的变量通常需要满足非负约束条件,即xi ≥ 0。
三、模型构建1. 目标函数的确定:根据问题的具体要求,确定最大化或最小化的目标函数。
2. 约束条件的确定:根据问题的限制条件,确定各个变量的线性约束条件。
3. 变量的非负约束:确定各个变量的非负约束条件。
四、求解方法1. 图形法:对于二维线性规划问题,可以使用图形法进行求解。
首先画出目标函数的等高线图和约束条件的线性图形,然后找到使目标函数取得最大(最小)值的交点。
2. 单纯形法:对于多维线性规划问题,可以使用单纯形法进行求解。
该方法通过迭代计算,逐步找到使目标函数取得最大(最小)值的解。
3. 整数规划方法:当变量需要取整数值时,可以使用整数规划方法进行求解。
该方法通过将线性规划问题转化为整数规划问题,并应用相应的算法进行求解。
五、应用案例假设某公司生产两种产品A和B,产品A每单位利润为10元,产品B每单位利润为15元。
公司的生产能力限制为每天生产不超过100个单位的产品A和150个单位的产品B。
另外,公司还有两个约束条件:产品A的生产量不能超过产品B的两倍,产品B的生产量不能超过产品A的三倍。
问如何安排生产计划以最大化利润。
高中线性规划
高中线性规划高中线性规划是高中数学课程中的一个重要内容,它是线性代数的一部份,主要涉及到线性方程组的解法和应用。
线性规划是一种优化问题,通过数学模型和计算方法,寻觅使目标函数达到最大或者最小的变量值。
在实际应用中,线性规划可以用于资源分配、生产计划、投资决策等方面。
一、线性规划的基本概念线性规划的基本概念包括目标函数、约束条件和可行解。
目标函数是需要最大化或者最小化的线性函数,约束条件是限制变量取值范围的线性不等式或者等式,可行解是满足所有约束条件的变量取值组合。
二、线性规划的解法线性规划的解法主要有图形法、单纯形法和对偶理论等。
其中,图形法适合于二维线性规划问题,通过绘制约束条件的直线和目标函数的等值线,找到最优解。
单纯形法是一种迭代计算方法,通过不断调整基变量和非基变量的取值,逐步接近最优解。
对偶理论是线性规划的一个重要理论基础,通过对原始问题和对偶问题的转化和求解,可以得到最优解。
三、线性规划的应用案例1. 资源分配问题:某公司有限定的人力和物力资源,需要合理安排生产计划,以最大化利润。
通过线性规划,可以确定各项生产任务的分配比例,使得总利润最大化。
2. 投资决策问题:某投资者有一定的资金,希翼通过投资股票和债券来获取最大的回报。
通过线性规划,可以确定投资比例,使得预期收益最大化。
3. 运输问题:某物流公司需要将货物从多个仓库运送到多个客户处,希翼通过合理的运输方案,使得运输成本最小。
通过线性规划,可以确定货物的运输路径和运输量,使得总运输成本最小化。
四、线性规划的局限性线性规划在实际应用中存在一定的局限性。
首先,线性规划的模型假设目标函数和约束条件均为线性关系,但实际问题中往往存在非线性关系。
其次,线性规划的解法可能存在多个最优解或者无解的情况,需要结合实际情况进行判断。
此外,线性规划对数据的准确性要求较高,对于不确定性较大的问题,可能需要引入其他方法进行处理。
总结:高中线性规划是数学课程中的一部份,主要涉及到线性方程组的解法和应用。
线性规划的定义及解题方法
线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。
它的实际应用十分广泛,例如管理学、经济学、物流学等领域。
线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。
本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。
一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。
它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。
通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。
在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。
这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。
例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。
这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。
二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。
决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。
2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。
3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。
例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。
4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。
它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。
高中线性规划
高中线性规划线性规划是运筹学中的一种优化方法,用于在给定的约束条件下寻觅一个线性目标函数的最优解。
在高中数学中,线性规划是一个重要的内容,它可以匡助我们解决一些实际问题,例如资源分配、生产计划等。
一、线性规划的基本概念线性规划的基本概念包括目标函数、约束条件和可行解。
目标函数是我们要优化的线性函数,通常表示为最大化或者最小化某个变量。
约束条件是限制目标函数变量的取值范围的条件,可以是等式或者不等式。
可行解是满足所有约束条件的解。
二、线性规划的数学模型线性规划可以通过数学模型来表示。
设有n个决策变量x1, x2, ..., xn,目标函数为f(x1, x2, ..., xn),约束条件为g1(x1, x2, ..., xn)≤b1, g2(x1, x2, ..., xn)≤b2, ...,gm(x1, x2, ..., xn)≤bm。
其中,f(x1, x2, ..., xn)为线性函数,g1(x1, x2, ..., xn)≤b1,g2(x1, x2, ..., xn)≤b2, ..., gm(x1, x2, ..., xn)≤bm为线性不等式。
三、线性规划的求解方法线性规划可以使用图形法、单纯形法等方法进行求解。
其中,图形法适合于二维问题,通过绘制约束条件的直线和目标函数的等高线,找到最优解。
而单纯形法适合于多维问题,通过构造初始单纯形表,不断迭代求解,找到最优解。
四、线性规划的应用举例1.资源分配问题:某工厂生产两种产品A和B,每天可用的资源有限,产品A和B的生产所需资源不同,且每种产品的利润也不同。
如何合理分配资源,使得利润最大化?2.生产计划问题:某工厂需要生产多种产品,每种产品的生产时间、所需资源和利润不同。
如何安排生产计划,使得产量最大化同时资源利用率最高?3.投资组合问题:某投资者有多种投资标的可选,每种标的的收益率、风险和投资额不同。
如何合理选择投资标的,使得收益最大化同时风险最小化?五、线性规划的局限性线性规划方法在解决一些实际问题时可能存在一些局限性。
线性规划知识点
线性规划知识点线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它可以帮助我们在资源有限的情况下,找到最佳的解决方案。
本文将详细介绍线性规划的基本概念、模型构建、求解方法以及应用领域。
一、基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,该函数被称为目标函数。
例如,最大化利润或最小化成本。
2. 约束条件:线性规划问题通常有一系列线性约束条件,用于限制变量的取值范围。
例如,生产数量不能超过资源限制。
3. 变量:线性规划问题中的变量是我们要优化的决策变量。
例如,生产的数量或分配的资源。
4. 非负约束:线性规划的变量通常需要满足非负约束,即变量的取值必须大于等于零。
二、模型构建线性规划问题的模型构建包括确定目标函数、约束条件和变量的定义。
下面以一个简单的生产问题为例进行说明。
假设某工厂生产两种产品A和B,每单位产品A的利润为10元,产品B的利润为15元。
工厂拥有两台机器,每台机器每天的工作时间为8小时。
生产一单位产品A需要2小时,生产一单位产品B需要3小时。
工厂希望确定每种产品的生产数量,以最大化总利润。
目标函数:最大化总利润,即10A + 15B。
约束条件:工作时间约束,即2A + 3B ≤ 16。
非负约束:A ≥ 0,B ≥ 0。
三、求解方法线性规划问题可以使用多种方法求解,其中最常用的方法是单纯形法。
单纯形法通过迭代的方式逐步接近最优解,直到找到最优解为止。
单纯形法的基本步骤如下:1. 将线性规划问题转化为标准形式,即将不等式约束转化为等式约束。
2. 选择一个初始可行解,通常为原点(0,0)。
3. 计算目标函数的值,并确定是否达到最优解。
4. 如果未达到最优解,则选择一个进入变量和一个离开变量,通过调整这两个变量的值来改善目标函数的值。
5. 重复步骤3和步骤4,直到达到最优解。
四、应用领域线性规划在各个领域都有广泛的应用,以下是一些常见的应用领域:1. 生产计划:线性规划可以帮助企业确定最佳的生产计划,以最大化利润或最小化成本。
线性规划讲义
线性规划讲义一、引言线性规划是一种优化问题的数学建模方法,它可以用来解决一类特定的最优化问题。
本讲义将介绍线性规划的基本概念、问题形式化、求解方法以及应用领域。
二、线性规划的基本概念1. 线性规划定义线性规划是一种在给定的约束条件下,求解线性目标函数的最优解的数学问题。
线性规划的目标函数和约束条件都是线性的。
2. 线性规划的数学模型线性规划可以用数学模型来表示,一般形式为:最大化(或最小化)目标函数约束条件:线性规划的目标函数和约束条件可以包含多个变量和多个约束条件。
3. 线性规划的基本假设线性规划的求解过程基于以下假设:- 可行解存在:问题存在满足约束条件的解。
- 目标函数有界:问题存在有限的最优解。
- 线性关系:目标函数和约束条件都是线性的。
三、线性规划的问题形式化1. 目标函数的确定线性规划的目标函数可以是最大化或最小化某个特定的指标,如利润最大化、成本最小化等。
2. 约束条件的确定约束条件是限制问题解的条件,可以包括等式约束和不等式约束。
约束条件可以来自于问题的实际限制,如资源的有限性、技术要求等。
3. 决策变量的确定决策变量是问题中需要决策的变量,它们的取值将影响目标函数的值。
决策变量的选择应该与问题的实际需求相匹配。
四、线性规划的求解方法1. 图解法图解法是线性规划求解的一种直观方法,通过绘制约束条件的图形和目标函数的等高线,找到目标函数取得最大(或最小)值的点。
2. 单纯形法单纯形法是一种常用的线性规划求解算法,它通过迭代计算,逐步接近最优解。
单纯形法的基本思想是通过不断地移动到更优的解,直到找到最优解。
3. 整数规划的分支定界法整数规划是线性规划的一种扩展形式,它要求决策变量的取值为整数。
分支定界法是一种用于求解整数规划的方法,它通过将问题分解为多个子问题,并逐步缩小解空间,最终找到最优解。
五、线性规划的应用领域线性规划在实际问题中有广泛的应用,包括但不限于以下领域:- 生产计划与调度- 运输与物流管理- 金融投资组合优化- 能源调度与优化- 供应链管理等六、总结线性规划是一种重要的数学建模方法,它可以用来解决一类特定的最优化问题。
线性规划知识点
线性规划知识点线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在各个领域中都有广泛的应用,包括经济学、管理学、工程学等。
一、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。
目标函数通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中ci为系数,xi为变量。
2. 约束条件:线性规划的解必须满足一系列线性约束条件。
约束条件通常表示为a1x1 + a2x2 + ... + anx ≤ b,其中ai为系数,b为常数。
3. 变量:线性规划中的变量是需要优化的未知数,通常表示为x1, x2, ..., xn。
4. 可行解:满足所有约束条件的解称为可行解。
5. 最优解:在所有可行解中,使目标函数达到最大或者最小值的解称为最优解。
二、线性规划的求解方法1. 图形法:对于二维线性规划问题,可以使用图形法求解。
首先绘制约束条件的直线,然后确定可行域,最后在可行域中找到使目标函数最大或者最小的解。
2. 单纯形法:对于高维线性规划问题,通常使用单纯形法求解。
单纯形法是一种迭代算法,通过不断挪移到更优的解来寻觅最优解。
3. 整数规划:当变量需要取整数值时,称为整数规划。
整数规划问题通常较难求解,可以使用分支定界法等方法进行求解。
三、线性规划的应用1. 生产计划:线性规划可以用于确定最佳的生产计划,包括生产数量、原材料采购等。
2. 仓储管理:线性规划可以用于优化仓储管理,包括货物的存放位置、调度等。
3. 运输问题:线性规划可以用于解决运输问题,包括货物的调度、最佳路径选择等。
4. 金融投资:线性规划可以用于优化投资组合,确定最佳的资产配置方案。
5. 能源管理:线性规划可以用于能源管理,包括能源生产、分配等。
四、线性规划的局限性1. 线性假设:线性规划假设目标函数和约束条件都是线性的,这在某些实际问题中可能不成立。
2. 单一目标:线性规划只能优化一个目标函数,对于多目标问题需要进行权衡和转化。
线性规划的应用
线性规划的应用一、引言线性规划是一种数学优化方法,广泛应用于生产计划、资源分配、运输问题等领域。
本文将介绍线性规划的基本概念和应用案例,并详细解释如何使用线性规划方法解决实际问题。
二、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,该函数称为目标函数。
例如,最大化利润或最小化成本。
2. 约束条件:线性规划问题必须满足一组线性等式或不等式,称为约束条件。
这些约束条件限制了决策变量的取值范围。
3. 决策变量:线性规划问题中需要做出决策的变量称为决策变量。
例如,生产数量、资源分配等。
4. 可行解:满足所有约束条件的决策变量取值称为可行解。
线性规划问题的解必须是可行解。
三、线性规划的应用案例1. 生产计划问题假设一家公司有两种产品A和B,每种产品的生产需要一定的资源和时间。
公司希望确定每种产品的生产数量,以最大化利润。
通过线性规划,可以建立目标函数和约束条件,求解出最优的生产计划。
2. 资源分配问题一个工厂有多个生产线,每个生产线可以生产不同的产品。
工厂希望确定每个生产线的产量,以最大化总产量。
通过线性规划,可以将总产量视为目标函数,将每个生产线的产量视为决策变量,建立约束条件,求解出最优的资源分配方案。
3. 运输问题一个物流公司需要将货物从多个供应商运送到多个客户,每个供应商和客户之间的运输成本不同。
公司希望确定每个供应商和客户之间的货物运输量,以最小化总运输成本。
通过线性规划,可以建立目标函数和约束条件,求解出最优的运输方案。
四、线性规划的解法1. 图形法:对于二维线性规划问题,可以通过绘制等式或不等式的图形来找到最优解。
最优解通常出现在图形的顶点处。
2. 单纯形法:对于高维线性规划问题,可以使用单纯形法求解。
单纯形法是一种迭代算法,通过不断调整决策变量的取值,逐步接近最优解。
3. 整数规划:当决策变量需要取整数值时,可以使用整数规划方法求解。
整数规划是线性规划的扩展,适用于需要做出离散决策的问题。
线性规划讲义
线性规划讲义引言概述:线性规划是一种数学优化方法,用于解决在给定约束条件下最大化或最小化线性目标函数的问题。
它在各个领域都有广泛的应用,如生产计划、资源分配、运输问题等。
本文将从五个大点来详细阐述线性规划的相关概念和应用。
正文内容:1. 线性规划的基本概念1.1 线性规划的定义和形式线性规划是一种数学模型,其目标函数和约束条件均为线性函数。
一般形式为:最大化(或最小化)目标函数 Z = c1x1 + c2x2 + ... + cnxn,其中x1, x2, ..., xn为决策变量,c1, c2, ..., cn为常数。
约束条件一般为:a11x1 + a12x2 + ... + a1nxn ≤ b1,a21x1 + a22x2 + ... + a2nxn ≤ b2,...,am1x1 + am2x2 + ... + amnxn ≤ bm,其中a11, a12, ..., amn为系数,b1, b2, ..., bm为常数。
1.2 线性规划的可行解和最优解可行解是指满足所有约束条件的解,而最优解是在所有可行解中使目标函数达到最大(或最小)值的解。
线性规划问题的解空间是一个多面体,最优解通常位于多面体的顶点。
1.3 线性规划的图解法和单纯形法线性规划问题可以通过图解法和单纯形法求解。
图解法适用于二维或三维问题,通过画出目标函数和约束条件的图形,找到最优解所在的区域。
单纯形法适用于高维问题,通过一系列的迭代计算,逐步接近最优解。
2. 线性规划的应用领域2.1 生产计划线性规划可以用于确定最佳的生产计划,以最大化利润或最小化成本。
通过考虑生产能力、资源约束和市场需求等因素,可以确定最优的生产数量和产品组合。
2.2 资源分配线性规划可以用于确定最佳的资源分配方案,以最大化资源利用率或最小化资源浪费。
通过考虑资源供应量、需求量和优先级等因素,可以实现资源的有效调配。
2.3 运输问题线性规划可以用于解决运输问题,如货物的调度和路径规划。
线性规划的定义解析
线性规划的定义解析线性规划是数学和计算机科学领域中的一种优化方法,用于解决线性约束条件下的最大化或最小化问题。
它的应用非常广泛,包括生产计划、物流管理、金融投资、资源分配等多个领域。
本文将对线性规划进行详细解析,介绍其基本概念、数学模型和求解方法。
一、基本概念线性规划是在一定的约束条件下,寻找目标函数的最大值或最小值的过程。
为了方便分析,我们首先引入以下几个基本概念:1.决策变量:线性规划中需要决策的量,通常用$x_1, x_2, ...,x_n$表示,它们代表了问题的不同方面或要求。
2.目标函数:线性规划的目标函数是一个线性表达式,用于衡量问题的目标,可以是最大化或最小化一个指标。
常用的形式为$Z =c_1x_1 + c_2x_2 + ... + c_nx_n$。
3.约束条件:线性规划中的约束条件是一组限制性条件,限制了决策变量的取值范围。
常见的约束条件形式为$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \leq b_1$,$a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \leq b_2$,...,$a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \leq b_m$。
二、数学模型线性规划问题可以通过建立数学模型来描述。
其标准形式可以表示为:最大化:$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$约束条件:$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \leq b_1$$a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \leq b_2$...$a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \leq b_m$$x_1, x_2, ..., x_n \geq 0$其中,$Z$表示目标函数的值,$c_1, c_2, ..., c_n$为目标函数的系数,$a_{ij}$为约束条件的系数,$b_1, b_2, ..., b_m$为约束条件的常数项。
线性规划的应用
线性规划的应用引言:线性规划是一种优化问题的数学建模方法,广泛应用于各个领域,包括经济学、管理学、工程学等。
本文将介绍线性规划的基本概念、模型构建方法以及几个典型的应用案例。
一、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,该函数被称为目标函数。
目标函数通常表示为一个或者多个决策变量的线性组合。
2. 约束条件:线性规划问题还包括一组约束条件,这些条件限制了决策变量的取值范围。
约束条件通常表示为一组线性不等式或者等式。
3. 决策变量:决策变量是问题中需要确定的变量,它们的取值将影响目标函数的值。
决策变量通常表示为一个向量。
二、线性规划模型的构建方法1. 确定决策变量:根据问题的特点,确定需要决策的变量,并给出变量的取值范围。
2. 建立目标函数:根据问题的目标,构建一个线性函数,该函数描述了需要最大化或者最小化的目标。
3. 建立约束条件:根据问题中的限制条件,建立一组线性不等式或者等式,限制决策变量的取值范围。
4. 求解线性规划模型:使用线性规划求解方法,如单纯形法或者内点法,求解得到最优解。
三、线性规划的应用案例1. 生产计划优化:假设一个工厂有多个产品需要生产,每一个产品的生产需要一定的资源和时间。
通过线性规划,可以确定每一个产品的生产数量,以最大化总利润或者最小化总成本。
2. 运输问题:假设有多个供应商和多个需求点,每一个供应商的供应量和每一个需求点的需求量已知。
通过线性规划,可以确定每一个供应商向每一个需求点运输的数量,以最小化总运输成本。
3. 投资组合优化:假设有多个投资标的可供选择,每一个标的的收益率和风险已知。
通过线性规划,可以确定投资组合中每一个标的的投资比例,以最大化预期收益或者最小化预期风险。
4. 人力资源分配:假设一个公司有多个项目需要人力资源支持,每一个项目需要的人力资源和每一个人的能力已知。
通过线性规划,可以确定每一个项目分配的人力资源,以最大化项目的总产出或者最小化总成本。
线性规划知识点
线性规划知识点引言概述:线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在工程、经济学、管理学等领域有着广泛的应用。
本文将详细介绍线性规划的相关知识点。
一、线性规划的定义与基本概念1.1 目标函数:线性规划的目标是通过最大化或最小化目标函数来达到最优解。
目标函数是一条线性方程,表示需要优化的目标。
1.2 约束条件:线性规划问题还需要满足一组线性约束条件,这些条件对决策变量的取值范围进行了限制。
1.3 决策变量:决策变量是指在线性规划问题中需要进行决策的变量,其取值将影响目标函数的值。
二、线性规划的基本模型2.1 标准型线性规划:标准型线性规划是指目标函数为最小化问题,约束条件为等式形式的线性规划问题。
2.2 松弛变量与人工变量:为了将约束条件转化为等式形式,我们引入松弛变量和人工变量。
2.3 基变量与非基变量:在标准型线性规划中,基变量和非基变量是用来描述决策变量的状态的。
三、线性规划的解法3.1 单纯形法:单纯形法是一种常用的线性规划解法,通过迭代计算基变量和非基变量的取值,直到找到最优解。
3.2 对偶性理论:线性规划问题与其对偶问题之间存在着对偶关系。
对偶性理论可以帮助我们求解原始问题的最优解。
3.3 整数线性规划:当决策变量需要取整数值时,我们可以使用整数线性规划方法来求解。
整数线性规划问题更加复杂,通常需要使用分支定界等方法求解。
四、线性规划的应用领域4.1 生产计划:线性规划可以用于优化生产计划,通过合理安排生产资源和生产量,实现最大化利润或最小化成本。
4.2 运输问题:线性规划可以用于解决运输问题,通过合理分配运输量和运输路径,实现最优的物流方案。
4.3 资源分配:线性规划可以用于资源分配问题,如人力资源、资金分配等,通过最优化决策,实现资源的合理利用。
五、线性规划的局限性与拓展5.1 非线性规划:线性规划只适用于目标函数和约束条件为线性关系的问题。
对于非线性问题,我们需要使用非线性规划方法进行求解。
线性规划
线性规划在 实际生活中 的应用案例
投资决策
投资目标:最大化收益或最小化风险 投资策略:选择投资项目、分配投资资金、设定投资期限等
投资风险:市场风险、利率风险、汇率风险等 投资评估:使用线性规划模型评估投资方案,比较不同方案的优劣
B
题转化为几何问题,从而找到最
优解。
C
图解法的基本步骤包括:确定可 行域、找出最优解、验证最优解。
图解法适用于求解线性规划问题
D
的特殊情况,如线性规划问题的
约束条件为线性等式或不等式。
单纯形法
基本思想: 通过迭代求 解线性规划 问题的最优
解
步骤:确定初 始基,计算目 标函数值,更 新基,重复以 上步骤直到找
线性规划的优缺点
优点: 缺点:
适用于解决线性 问题
计算速度快,易 于实现
结果精确,易于 解释
只能解决线性问 题,不适用于非
线性问题
计算复杂度高, 对于大规模问题
可能难以求解
结果可能不唯一, 需要进一步分析 才能得到最优解
图解法
A
图解法是一种直观、形象的求解 线性规划问题的方法。
图解法通过画图,将线性规划问
划问题
迭代求解:通过 迭代公式,更新
当前点
重复步骤b-d, 直到找到最优解
生产计划
线性规划在生产计划中 的应用
线性规划可以帮助确定 最优的生产方案
线性规划可以优化生产 成本和生产效率
线性规划可以帮助解决 生产过程中的约束问题
资源分配
线性规划在 资源分配中
的应用
线性规划的 目标函数和
约束条件
线性规划的 求解方法和
线性规划的基本概念与解法
线性规划的基本概念与解法线性规划(Linear Programming,简称LP)是一种运筹学中的数学方法,用于寻找最优解决方案的问题。
它在各个领域中得到广泛应用,包括经济学、管理学、工程学等。
本文将介绍线性规划的基本概念和解法,并探讨其实际应用。
一、基本概念1. 目标函数:线性规划的目标是求解一个线性函数的最大值或最小值。
这个线性函数称为目标函数,通常以z表示。
例如,z=c1x1+c2x2+…+cnxn,其中c1、c2…cn为常数,x1、x2…xn为变量。
2. 约束条件:线性规划的约束条件是一组线性不等式或等式。
通常以Ax≤b或Ax=b的形式表示,其中A为系数矩阵,x为变量向量,b为常数向量。
3. 可行解:满足所有约束条件的解称为可行解。
可行解存在于约束条件所定义的空间中。
4. 最优解:在所有可行解中,目标函数取得最大值或最小值时的解称为最优解。
最优解可以是唯一的,也可以有多个。
二、解法方法1. 图形法:当线性规划问题为二维或三维时,可以利用图形的方法求解。
通过绘制目标函数的等高线或平面与约束条件的交点,找到目标函数的最优解。
2. 单纯形法:单纯形法是一种基于迭代的线性规划求解方法,适用于高维问题。
该方法通过不断改变基变量的取值,寻找使目标函数达到最优值的解。
3. 内点法:内点法是一种与单纯形法相比更为高效的求解线性规划问题的方法。
该方法通过在可行域内部搜索最优解,避免了对可行域的边界进行逐个检验的过程。
三、实际应用线性规划在实际问题中有着广泛的应用。
以下是几个常见的应用领域:1. 生产计划:线性规划可以用于确定生产计划中的最佳生产数量和产品组合,以最大化利润或最小化成本。
2. 资源分配:线性规划可以用于优化资源分配,例如分配有限的人力、物资和资金,以实现最佳利用和效益。
3. 供应链管理:线性规划可以用于优化供应链中的库存管理、运输计划和物流调配,以降低成本并提高响应速度。
4. 金融投资:线性规划可以用于投资组合优化,以确定最佳的资产配置,以及风险控制和收益最大化。
线性规划知识点
线性规划知识点一、概念介绍线性规划(Linear Programming,简称LP)是一种数学优化方法,用于求解一类特殊的优化问题。
它的目标是在给定的线性约束条件下,找到使目标函数达到最大或最小值的变量取值。
二、基本要素1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,通常表示为Z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中c₁、c₂、...、cₙ为常数,x₁、x₂、...、xₙ为决策变量。
2. 约束条件:线性规划的决策变量需要满足一系列线性约束条件,通常表示为:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ其中a₁₁、a₁₂、...、aₙₙ为常数,b₁、b₂、...、bₙ为常数,m为约束条件的个数。
3. 非负约束:线性规划的决策变量通常需要满足非负约束条件,即x₁ ≥ 0, x₂≥ 0, ..., xₙ ≥ 0。
三、解决步骤线性规划的求解过程通常包括以下步骤:1. 建立数学模型:根据实际问题,确定目标函数和约束条件。
2. 确定可行解集:通过对约束条件进行求解,确定可行解集,即满足所有约束条件的解集。
3. 确定最优解:根据目标函数的要求,确定最优解,即使目标函数达到最大或最小值的解。
4. 敏感性分析:对模型中的参数进行变动,观察最优解的变化情况,评估模型的稳定性和可行性。
四、应用领域线性规划在实际生活中有广泛的应用,包括但不限于以下领域:1. 生产计划:通过线性规划可以确定最佳的生产计划,使得生产成本最小化或产量最大化。
2. 运输问题:线性规划可以用于解决货物运输问题,确定最佳的运输方案,使得运输成本最小化。
3. 金融投资:线性规划可以用于优化投资组合,确定最佳的资产配置方案,使得收益最大化或风险最小化。
4. 资源分配:线性规划可以用于确定最佳的资源分配方案,如人力资源、物资资源等,使得资源利用效率最高。
线性规划的应用
线性规划的应用一、引言线性规划是一种数学优化方法,广泛应用于工程、经济、管理等领域。
本文将介绍线性规划的基本概念和应用案例,以帮助读者更好地理解和应用线性规划。
二、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,该函数被称为目标函数。
2. 约束条件:线性规划问题通常有一组约束条件,这些约束条件是一组线性不等式或等式。
3. 决策变量:线性规划问题中的决策变量是我们需要确定的未知量,它们的取值将影响目标函数的值。
4. 非负约束:线性规划问题通常要求决策变量大于等于零,即非负约束。
三、线性规划的应用案例1. 生产计划优化假设一家工厂生产A、B两种产品,每天的生产时间为8小时。
产品A每单位需要2小时的生产时间,产品B每单位需要3小时的生产时间。
产品A的利润为100元,产品B的利润为150元。
工厂希望确定每天生产的产品数量,以最大化利润。
我们可以建立以下线性规划模型:目标函数:最大化利润,即100A + 150B约束条件:2A + 3B ≤ 8(生产时间约束)非负约束:A ≥ 0,B ≥ 0通过求解该线性规划模型,可以得到最佳的生产计划,从而最大化利润。
2. 运输问题假设有3个仓库和4个销售点,每个仓库的库存和每个销售点的需求如下表所示:仓库 | 库存--------------1 | 502 | 603 | 40销售点 | 需求--------------A | 30B | 20C | 40D | 50每个仓库到每个销售点的运输成本如下表所示:| A | B | C | D---------------------1 | 10 | 20 | 15 | 252 | 12 | 18 | 20 | 223 | 15 | 25 | 10 | 12我们希望确定每个仓库到每个销售点的运输数量,以满足销售点的需求,并使总运输成本最低。
我们可以建立以下线性规划模型:目标函数:最小化运输成本,即10x11 + 20x12 + ... + 12x34约束条件:x11 + x12 + x13 + x14 ≤ 50(仓库1的库存约束)x21 + x22 + x23 + x24 ≤ 60(仓库2的库存约束)x31 + x32 + x33 + x34 ≤ 40(仓库3的库存约束)x11 + x21 + x31 ≥ 30(销售点A的需求约束)x12 + x22 + x32 ≥ 20(销售点B的需求约束)x13 + x23 + x33 ≥ 40(销售点C的需求约束)x14 + x24 + x34 ≥ 50(销售点D的需求约束)非负约束:xij ≥ 0通过求解该线性规划模型,可以得到最佳的运输方案,从而实现需求的满足并降低总运输成本。
线性规划图解
六、线性规划模型的建立与图 解法求解
1、建模 2、线性规划的求解——图解法
1、建模 [例1]某小流域有耕地20公顷,可采用甲 乙两种种植方式。甲种植方式每公顷需 投资280元,每公顷排放TP6kg/a,可获 收入1000元,乙方式每公顷需投资150 元 , 每 公 顷 排 放 TP15kg/a , 可 获 收 入 1200元,该户共有可用资金4200元、小 流 域 内 的 湖 泊 每 年 可 接 纳 的 TP 为 240kg/a。问如何安排甲乙两种方式的 生产,可使总收入最大? 解:设甲方式种 x1 公顷,乙方式种 x2 公顷, 总收入为Z,则有:
A B x1+x2=10 x1+6x2=15 D 15 x1 3x1+x2=15 可行域
10 5
C
ZA=300 ZB=175 ZC=110 ZD=150
O
5
10
10x1+20x2=0
Z=1000x1+1200x2
2、线性规划的求解——图解法 (六)最小化问题的图解法 例:Min Z=10x1+20x2 s.t. x1+x2≥10 3x1+x2≥15 x1+6x2≥15 x1≥0, x2≥0
A(0,15) B(2.5,7.5) C(9,1)
x2 15
D (15,0)
三、线性规划模型的基本结构
1. 决策变量 —— 未知数。它是通过模型计算来 确定的决策因素。又分为实际变量 —— 求解 的变量和计算变量,计算变量又分松弛变量 (上限)和人工变量(下限)。 2.目标函数——经济目标的数学表达式。目标函 数是求变量的线性函数的极大值和极小值这 样一个极值问题。 3.约束条件——实现经济目标的制约因素。它包 括:生产资源的限制(客观约束条件)、生 产数量、质量要求的限制(主观约束条件)、 特定技术要求和非负限制。
线性规划知识点
线性规划知识点一、概念介绍线性规划是一种常见的数学优化方法,用于解决线性约束条件下的最优化问题。
它的目标是找到一个线性模型的最优解,使得目标函数达到最大或者最小值。
二、基本要素1. 目标函数:线性规划的目标是通过最大化或者最小化目标函数来达到最优解。
目标函数是一个线性函数,通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中ci是系数,xi是变量。
2. 约束条件:线性规划问题通常有一组约束条件,限制了变量的取值范围。
约束条件可以表示为一组线性不等式或者等式,例如:a1x1 + a2x2 + ... + anxn ≤ b。
3. 变量:线性规划问题中的变量是需要优化的未知数,可以是实数或者非负数。
变量的取值范围由约束条件确定。
三、解决方法1. 图形法:对于二维线性规划问题,可以使用图形法来找到最优解。
首先绘制约束条件的直线或者曲线,然后找到目标函数在可行域上的最优解点。
2. 单纯形法:单纯形法是一种常用的解决线性规划问题的方法。
它通过不断迭代改进解向量,直到找到最优解。
单纯形法的基本思想是在可行域内挪移到更优的解,直到达到最优解。
3. 整数规划:在某些情况下,变量需要取整数值,而不是实数值。
这种情况下,可以使用整数规划方法来解决问题。
整数规划通常比线性规划更复杂,需要使用特殊的算法来求解。
四、应用领域线性规划在许多领域都有广泛的应用,包括生产计划、资源分配、运输问题、金融投资等。
例如,在生产计划中,线性规划可以匡助确定最佳的生产数量和资源分配,以最大化利润或者最小化成本。
五、案例分析假设一个公司创造两种产品A和B,每一个产品的生产时间和利润如下表所示:产品 | 生产时间(小时) | 利润(万元)A | 2 | 10B | 3 | 12公司每天有8小时的生产时间可用。
假设公司希翼最大化利润,同时满足以下约束条件:- 产品A的生产数量不超过4个- 产品B的生产数量不超过3个我们可以将该问题转化为线性规划问题,目标函数为最大化利润Z = 10A +12B,约束条件为2A + 3B ≤ 8、A ≤ 4、B ≤ 3、A ≥ 0、B ≥ 0。
线性规划概念
(一)线性规划概念:线性规划是一种优化方法,具有以下共同特点,(1)每一个问题都可用一组变量来表示,这组变量的每一组定值就表示一个具体方案,通常要求这些变量是非负的。
(2)存在一定的约束条件,这些约束条件都可用变量的线性等式或不等式来表示。
(3)都有一个目标,这个目标总可以表示为一组变量的线性函数,并按照问题的要求,求其最大值或最小值。
(二)日常应用的线性规划数学模型。
(1)任务安排问题。
例:某工厂用甲乙两种原料生产A,B,C三种产品,已知生产A 种产品需甲种原料3吨,乙种原料1吨,生产一吨B种产品需甲原料1吨,乙原料2吨,生产一吨C种产品需甲原料2吨,A,B,C利润为3000,2000,5000元/吨。
该工分析:(1)变量为生产A:X1吨,B:X2吨,C:X3吨.(2)目标求生产ABC各多少吨利润最大。
Maxs=3000x1+2000x2+5000x3(3)约束条件:所用原料不能超出库存量,变量为非负。
数学模型如下:Maxs=3000x1+2000x2+5000x33X1+X2+2X3<=20X1+2X2<=60X1,2.>=0(2)配料问题。
某铸造厂生产铸件至少需2个单位的铅,2.4个单位铜,3个单位铝,现有四种合金可供选择,他们每个单位成分如下表,问每种合金选用多少才能费用最省。
(1)变量,设选用合金ABCD,各X1.X2,X3,X4(2)目标,求四种合金成本最低的最优数量。
(3)限制条件,达到工艺要求,变量不为负。
(4)模型如下:MINS=10X1+15X2+30X3+25X40.1X1+0.2X2+0.15X3+0.15X4>=20.1X1+0.15X2+0.2X3+0.05X4>=2.40.2X1+0.1X2+0.3X3+0.4X4>=3X1,X2,X3.X4>=0(3)运输问题。
设有两个煤场B1,B2,每月进煤量分别为60吨和100吨,他们负责供应A1,A2,A3三个居民区用煤,这三个居民区每月用煤量分别为45吨,75吨合40吨,煤场BI离这三个居民区分别为10公里5公里和6公里,B2为4公里8公里和12公里。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.6:线性规划
目录:
(1)线性规划的基本概念
(2)线性规划在实际问题中的应用
【知识点1:线性规划的基本概念】
(1)如果对于变量x 、y 的约束条件,都是关于x 、y 的一次不等式,则称这些约束条件为__线性约束条件__(),z f x y =是欲求函数的最大值或最小值所涉及的变量x 、y 的解析式,叫做__目标函数_,当(),f x y 是x 、y 的一次解析式时,(),z f x y =叫做_线性目标函数__. (2)求线性目标函数在线性约束条件下的最大值或最小值问题,称为__线性规划问题__ ;满足线性约束条件的解(),x y 叫做__可行解_;由所有可行解组成的集合叫做__可行域_;使目标函数取得最大值或最小值的可行解叫做_最优解__
例题:若变量x 、y 满足约束条件2
10x y x y +≤⎧⎪
≥⎨⎪≥⎩
,则z x y =+的最大值和最小值分别为
( B )
A. 4和3
B. 4和2
C. 3和2
D. 2和0
分析:本题考查了不等式组表示平面区域,目标函数最值求法.
解:画出可行域如图
作020l x y +=:
所以当直线2z x y =+过()20A ,
时z 最大,过()1,0B 时z 最小max min 4, 2.z z ==
变式1:已知2z x y =+,式子中变量x 、y 满足条件11y x
x y y ≤⎧⎪
+≤⎨⎪≥-⎩
,则z 的最大值是__3___
解:不等式组表示的平面区域如图所示.
作直线0:20l x y +=,平移直线0l ,当直线0l 经过
平面区域的点()21A -,时,z 取最大值2213⨯-=.
变式2:设2z x y =+,式中变量x 、y 满足条件43
35251x y x y x -≤-⎧⎪
+≤⎨⎪≥⎩
,求z 的最大值和最小值
分析:由于所给约束条件及目标函数均为关于x 、y 的一次式,所以此问题是简单线性
规划问题,使用图解法求解
解:作出不等式组表示的平面区域(即可行域),如图所示.
把2z x y =+变形为2y x z =-+,得到斜率为-2,在y 轴上的截距为z ,随z 变化的一族平行直线.
由图可看出,当直线2z x y =+经过可行域上的点A 时,截距z 最大,经过点B 时,截距z 最小.
解方程组430
35250x y x y -+=⎧⎨+-=⎩,得A 点坐标为()5,2,
解方程组1
430x x y =⎧⎨-+=⎩
,得B 点坐标为()1,1
所以max min 25212,211 3.z z =⨯+==⨯+=
变式3:若变量x 、y 满足约束条件6
321x y x y x +≤⎧⎪
-≤-⎨⎪≥⎩
,则23z x y =+的最小值为( C )
A. 17
B. 14
C. 5
D. 3
解:作出可行域(如图阴影部分所示).
作出直线:230l x y +=.
平移直线l 到l ′的位置,使直线l 通过可行域中的A 点(如图) 这时直线在y 轴上的截距最小,z 取得最小值. 解方程组132x x y =⎧⎨-=-⎩,得最优解1
1x y =⎧⎨=⎩,
min 21315z ∴=⨯+⨯=
【知识点2:线性规划在实际问题中的应用】
例题:某工厂生产甲、乙两种产品,其产量分别为45个与55个,所用原料为A 、B 两种规格金属板,每张面积分别为2m2与3m2.用A 种规格金属板可造甲种产品3个,乙种产品5个;用B 种规格金属板可造甲、乙两种产品各6个.问A 、B 两种规格金属板各取多少张,才能完成计划,并使总的用料面积最省?
解:设A 、B 两种金属板分别取x 张、y 张,用料面积为z ,则约束条件为 3645
565500
x y x y x y +≥⎧⎪+≥⎪
⎨
≥⎪⎪≥⎩ 目标函数为23z x y =+.
作出以上不等式组所表示的平面区域(即可行域),如图所示:
23z x y =+变为233z y x =-+,得斜率为23-,在y 轴上截距为3
z
且随z 变化的一组平行
直线.
当直线23z x y =+过可行域上点M 时,截距最小,z 最小. 解方程组 ,得M 点的坐标为(5,5).
此时()
2min 253525z m =⨯+⨯=.
答:当两种金属板各取5张时,用料面积最省.
变式1:4个茶杯和5包茶叶的价格之和小于22元,而6个茶杯与3包茶叶的价格之和大于24元,则2个茶杯和3包茶叶的价格比较( A ) A .2个茶杯贵 B .3包茶叶贵 C .相同 D .无法确定 解:设茶杯每个x 元,茶叶每包y 元,则
45226324,x y x y x y N +<⎧⎪
+>⎨⎪∈⎩
2U x y =-取值的符号判断如下
由2.033U y x U =
-=当时,过点()32A ,
,往下平移.经过可行域内的点03
U
-< ∴0U >,即23x y >.往上平移不经过可行域内的点. ∴选A.
变式2 已知x 、y 满足20
40250x y x y x y -+≥⎧⎪
+-≥⎨⎪--≤⎩
,求:
(1)221025z x y y =+-+的最小值; (2)1
1
y z x +=
+的取值范围. 分析:(1)将z 化为()2
25z x y =+-,问题转化为求可行域中的点与定点的最小距离问题; (2)将式子化为(1)
(1)
y z x --=--或1(1)y z x +=+,问题转化为求可行域中的点与定点的连线的
斜率的最值问题
解:作出可行域如图
并求出点A 、B 的坐标分别为(13)(31),,
(1)()2
25z x y =+-表示可行域内任一点(),x y 到定点()0,5M 的距离的平方,过M 作直线
AC 的垂线MN ,垂足为N ,则:2
2
min
922z MN ⎛⎫=∣∣== ⎪ ⎪⎝⎭
. (2)1(1)
1(1)
y y z x x +--=
=
+--表示可行域内任一点(),x y 与定点()1,1Q --连线的斜率,可知,kAQ 最大,kQB 最小.而31111
2,11312
QA QB k k ++=
===++. ∴z 的取值范围为1,22⎡⎤
⎢⎥⎣⎦
.
点评:求非线性目标函数的最值,要注意分析目标函数所表示的几何意义,通常与截距、斜率、距离等联系,是数列结合的体现.
变式3 在条件02
021
x y x y ≤≤⎧⎪≤≤⎨⎪-≥⎩
下,()()2211z x y =++-的取值范围是___122⎡⎤
⎢⎥⎣⎦,__.
解:由约束条件作出可行域如图
目标函数表示点(x y),与点(11)M ,的距离的平方.由图可知,z 的最小值为点M 与直线1x y -=的距离的平方.即2
min
1
22z ⎛⎫==. z 的最大值为点()11M ,与点(20)B ,的距离的平方: 即()()2
2
max 12102z =-+-=. ∴z 的取值范围为122⎡⎤
⎢⎥⎣⎦
,.
变式4 设变量x 、y 满足条件3210411,0,0
x y x y x Z y Z x y +≤⎧⎪+≤⎪
⎨∈∈⎪⎪>>⎩. 求54S x y =+的最大值.
错解:依约束条件画出可行域如图所示
如先不考虑x 、y 为整数的条件,则当直线54x y S +=过点923,510A ⎛⎫
⎪⎝⎭
时,
54S x y =+max 91
5
S =
取最大值, . 因为x 、y 为整数,而离点A 最近的整点是()1,2C ,这时13S =,所要求的最大值为13. 分析:显然整点(21)B ,满足约束条件,且此时14S =,故上述解法不正确. 对于整点解问题,其最优解不一定是离边界点最近的整点. 而要先对边界点作目标函数t Ax By =+的图像, 则最优解是在可行域内离直线t Ax By =+最近的整点. 正解:依约束条件画出可行域如图示 作直线:540l x y +=
平行移动直线l 经过可行域内的整点(21)B ,时,max 14S =.。