地大《线性代数》在线作业一_答案
(完整word版)线性代数习题集(带答案)
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C ) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B )k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项。
(A) 0 (B )2-n (C ) )!2(-n (D) )!1(-n4.=0001001001001000( )。
(A ) 0 (B)1- (C) 1 (D) 25. =0001100000100100( ).(A) 0 (B)1- (C ) 1 (D) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B )1- (C) 1 (D) 27。
若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A ) 4 (B) 4- (C) 2 (D ) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( )。
(A)ka (B)ka - (C )a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。
(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A )1- (B )2- (C )3- (D )011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( )。
中国地质大学继续教育学院线性代数试题及解答
•单项选择题2.3. 《线性代数》模拟题(开卷)设A为n阶矩阵,且A 2,贝y 2A (C2n C. 2n 1D. 4 n维向量组2,1, 1, 2,2,2,1, 2, , s(3 s n)线性无关的充要条件是s中任意两个向量都线性无关S中存在一个向量不能用其余向量线性表示s中任一个向量都不能用其余向量线性表示s中不含零向量F列命题中正确的是( D )°A .任意n个n 1维向量线性相关n 1个n维向量线性无关4.5.6.C )°B .任意n个n 1维向量线性无关D .任意n 1个n维向量线性相关任意n元非齐次线性方程组AX=B有唯一解的充要条件是r(A)= n B. r(A)=r(A,B)=n矩阵A的特征值为1,2,3,则其行列式B. 18方阵A与B相似,则下列说法错误的是A .方阵A与B有相同的特征向量C .方阵A与B有相同的行列式C. r(A)=r(A,B)<n 州为(AC. 36B .方阵D .方阵7.三元非齐次线性方程组AX=B的解向量D. r(A)=r(A,B)D. 72A与B有相同的特征值A与B有相同的迹3满足1 2 (1,0,1)T , 2 3 (2,4, 2)T,则其导出组AX=0 的一个解为(A . (1,0,1)T B. (1,2, 1)T C. ( 1, 4,3)T D . (3,4, 1)T.填空题12 0 00 3 0 01.112 0 3 213时,向量组 1 (1,2,1),2(2,k,2)线性相关。
所以A 的特征值为1 2, 2 3 3.X 1 X 2 X 3 0X 1X 2X 3 0只有零解,则应满足2或 =1X 1 X 2X 3 02 •若齐次线性方程组183 .当 k= 44. A11,则 A -1 =0 25 .矩阵A 的特征值分别为1, -1,2,则A 2+2I|= 6.写出二次型 f (x 1,x 2,x 3) x ; 4x ; 2x 21 52 43 __ o 232545X J X 2 4x 1x 3 6x 2x 3对应的对称矩阵三.计算题1.问a 取何值时,下列向量组线性无关?a1 2 1 2解:当1 2a1 2(a 1)(a 1)2 0 时,1 21 2a2 0 02.求A0 3 0 的全部特征值和特征向量。
线性代数试题和答案(精选版)
线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵Aの秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误の是()A.η1+η2是Ax=0の一个解B.12η1+12η2是Ax=bの一个解C.η1-η2是Ax=0の一个解D.2η1-η2是Ax=bの一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确の是()A.如存在数λ和向量α使Aα=λα,则α是Aの属于特征值λの特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是Aの特征值C.Aの2个不同の特征值可以有同一个特征向量D.如λ1,λ2,λ3是Aの3个互不相同の特征值,α1,α2,α3依次是Aの属于λ1,λ2,λ3の特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵Aの特征方程の3重根,Aの属于λ0の线性无关の特征向量の个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误の是()A.|A|2必为1B.|A|必为1C.A-1=A TD.Aの行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同の特征值D. A与B合同14.下列矩阵中是正定矩阵の为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确の答案写在每小题の空格内。
(完整)线性代数习题集(带答案)
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( )。
(A) 24315 (B ) 14325 (C ) 41523 (D )24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( )。
(A )k (B)k n - (C )k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C ) )!2(-n (D) )!1(-n4.=001001001001000( )。
(A ) 0 (B)1- (C) 1 (D ) 25.=001100000100100( )。
(A) 0 (B )1- (C ) 1 (D) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 27。
若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C) 2 (D) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A )ka (B)ka - (C )a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B )3- (C ) 3 (D ) 210。
若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A )1- (B)2- (C )3- (D )011。
若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B )2- (C)3- (D )012。
一本线性代数练习一参考答案
一本《线性代数》练习一答案(共4页)一、单项选择题(4×5=20分)1. 行列式1026341953-的元素6的代数余子式等于( A )(A) 10 (B) -10 (C) 11 (D) -11 2. 设B A ,是n 阶方阵, 则下列结论正确的是( C )(A) T T T B A AB =)( (B) 222)(A B AB = (C) T T T A B AB =)((D) 111)(---=B A AB3. 设A 为n 阶非奇异矩阵, 则下列说法错误的是( B )(A) 0≠A (B) 0=Ax 有非零解 (C) n A R =)((D) A 的特征值均非零4. A 是n 阶正交矩阵, 则下列结论不正确的是( A )(A) A A =2(B) 1-A 也是正交矩阵(C) 1±=A (D) A 的列向量组是n R 的一个标准正交基 5. 设A 为3×4维矩阵, 且3)(=A R , 则A 的标准形为( B )(A)⎪⎪⎪⎭⎫ ⎝⎛100010001 (B)⎪⎪⎪⎭⎫ ⎝⎛010********* (C)⎪⎪⎪⎭⎫ ⎝⎛030000300003 (D)⎪⎪⎪⎭⎫⎝⎛000000000003二、 填空题(4×5=20分)6. 向量(2,3)-在2R 中的一组基12(1,1),(2,0)αα=-=下的坐标是 3, 1/27. 设321,,λλλ为⎪⎪⎪⎭⎫ ⎝⎛--=640151243A 的全部特征值, 则=++321λλλ 28. 已知A 为3阶方阵, 且2=A , 则23A = 1089. 已知B A ,均为3阶方阵, 且2)(=A R ,B 可逆, 则)(AB R = 210. A 是n m ⨯维矩阵, 且r A R =)(, 则方程组0=Ax 的解空间的维数是r n - 三、 计算题(8×3=24分)11. 求矩阵⎪⎪⎪⎭⎫ ⎝⎛---=121201111A 的逆矩阵. 解:,1-=A (3分) ⎪⎪⎪⎭⎫⎝⎛=-1121232341A (5分)12. 计算行列式4321343223431234的值解:4321343223431234=4321521010620151050---------(3分)521021000)1(521106215105)1(14-----=----------=+(3分)2002100=-=(2分) 13. 求向量组)1,1,1(),2,1,0(,)3,2,1(321===ααα的秩和一个最大无关组.解:⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛==000110101220110101123112101,321),(TT T A ααα(5分),→→=21,,2)(ααA R 或(→→→→3231,;,αααα)是一个最大无关组(3分)。
19春地大《线性代数》在线作业一
19春地大《线性代数》在线作业一(判断题)1:满足A的平方=A的n阶方阵的特征值的和等于1.A:错误B:正确标准解答:(判断题)2:如果一个矩阵的行向量组为正交的单位向量组且为方阵,那么这个矩阵的行列式为1。
A:错误B:正确标准解答:(判断题)3:两个行列式相等的正交矩阵的乘积也是正交矩阵A:错误B:正确标准解答:(判断题)4:满秩方阵的列向量组线性无关。
A:错误B:正确标准解答:(判断题)5:反对称矩阵的主对角线上的元素和为0A:错误B:正确标准解答:(判断题)6:(1,1,0),(1,0,1),(0,1,1)构成为3维向量空间的一个基。
A:错误B:正确标准解答:(判断题)7:对矩阵A,B,r(AB)=r(A)r(B)A:错误B:正确标准解答:(判断题)8:等价的两个线性无关向量组所含有向量的个数一定相等。
A:错误B:正确标准解答:(判断题)9:矩阵的合同关系是等价关系A:错误B:正确标准解答:(判断题)10:若A某=0只有零解,那么A某=b有唯一解。
A:错误B:正确标准解答:(判断题)11:两个矩阵A与B,若AB=0则一定有A=0或者B=0A:错误B:正确标准解答:(判断题)12:n阶方阵可逆的充要条件是它的行列式不等于0.A:错误B:正确标准解答:(判断题)13:A某=b有无穷多解,那么A某=0有非零解。
A:错误B:正确标准解答:(判断题)14:两个对称矩阵不一定合同。
A:错误B:正确标准解答:(判断题)15:如果行列式值为0则必然有该行列式对应的矩阵是不可逆的。
A:错误B:正确标准解答:(判断题)16:如果线性方程组的系数矩阵满秩则该方程组一定有解且解是唯一的。
A:错误B:正确标准解答:(判断题)17:如果方阵A是不可逆的,则一定有任意一个行向量是其余行向量的线性组合A:错误B:正确标准解答:(判断题)18:齐次线性方程组任意两个解之线性组合仍然是原方程组的解A:错误B:正确标准解答:(判断题)19:相似的两个矩阵的秩一定相等。
《线性代数》第1章习题详解
一、习题1参考答案1. 求下列排列的逆序数,并说明它们的奇偶性.(1)41253; (2)3712456; (3)57681234; (4)796815432 解(1)()4125330014τ=+++= 偶排列(2)()37124562500007τ=+++++= 奇排列(3)()576812344544000017τ=+++++++= 奇排列 (4)()7968154326755032129τ=+++++++= 奇排列 2. 确定i 和j 的值,使得9级排列.(1)1274569i j 成偶排列; (2)3972154i j 成奇排列. 解 (1) 8,3i j == (2) 8,6i j == 3.计算下列行列式.(1) 412-3- (2) 2211a a a a ++-1 (3) cos sin sin cos x xx x -(5)2322a a bab (6) 1log log 3b aab (7) 000xy x z y z--- 解(1)131523125=⨯-⨯=- (2)4(3)2(1)4212=-⨯--⨯=--3- (3)()22322211(1)11a a a a a a a a a a =-++-=--++-1 (4)22cos sin cos sin 1sin cos x x x x x x -=+= (5)233232220a a a b a b bab =-=(6)1log 3log log 2log 3b b aa ab a b=-=(7) 0000000xyxz xyz xyz y z -=+----=--4. 当x 取何值时3140010xx x≠ ? 解 因为314010xx x2242(2)x x x x =-=-所以当0x ≠且2x ≠时,恒有3140010xx x ≠5. 下列各项,哪些是五阶行列式ij a 中的一项;若是,确定该项的符号.1225324154(1);a a a a a 3112435224(2);a a a a a 4221351254(3)a a a a a解 (1)不是 (2)不是 (3)不是6. 已知行列式11121314212223243132333441424344a a a a a a a a a a a a a a a a ,写出同时含21a 和21a 的那些项,并确定它们的正负号.解 12213443a a a a (2143)2τ= 符号为正; 14213243a a a a (2134)1τ= 符号为负. 7. 用行列式定义计算下列行列式.(1) 11121314152122232425313241425152000000a a a a a a a a a a a a a a a a (2)020200002200(3) 01000200001000n n-解 (1)行列式的一般项为12345()1122334455(1)j j j j j j j j j j a a a a a τ-若345,,j j j 中有两个取1,2列,则必有一个取自3,4,5列中之一的零元素,故该行列式的值为零,即原式0=(2)行列式中只有一项(3241)13223441(1)16a a a a τ-=不为零,所以原式16= (3)行列式的展开项中只有(2,3,4)11223341,1(1)(1)!n n n n n a a a a a n τ---=- 一项不为零,所以原式1(1)!n n -=-8. 用行列式性质计算下列行列式.(1) 111314895(2)1234234134124123(3)41241202105200117⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(4)2141312112325062⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦(5)ab ac aebd cd debf cf ef---(6)a b aa a bb a aa b a解 (1) 111314895321331r rr r--111021013--232r r-111005013--23r r↔111013005---5=(2)12342341341241232341c c c c+++10234103411041210123123413411014121123=121314r rr rr r-+-+-+123401131002220111------34222r rr r-+123401131000440004---160=(3)4124120210520011712r r↔12024124105200117-2131410r rr r--120207240152200117-----24r r↔120201170152200724----3242157r rr r++1202011700178500945342r r-12020117001500945=--(4) 2141312112325062-13r r↔1232312121415062--213141325r rr rr r---12320775032301098----------232r r -12320131032301098-3242310r r r r --123201310076002118----0=(5) abac ae bdcd de bfcfef---每列都提取公因式bc eadf bc e b c e ---每列都提取公因式111111111adfbce --- 1213r r r r ++11102020abcdef -23r r ↔11120002abcdef --4abcdef = (6)0000a b a a a b b a a a b a 4321r r r r +++2222000a b a b a b a ba a bb a a a b a ++++()11110200aa b a b b a a a ba =+121314ar r br r ar r -+-+-+()1111002000a b aa b a b b a b b a a --+----- 3232r r r r +-()11110020000a b aa b b b b b --+---=()2111100201100101a b a b a b --+--- 3424r r r ar ++()211110002200110101b a b a b -+---24c c ↔()211110101200110002b a b b a-+---()()2422224b a b b a b a b =+-=-9. 证明下列等式.(1) 111222222222111333333333a b c bc a c ab a bc a b c b c a c a b a b c =-+(2)11122122111211121112111221222122212221220000a a a a a a b b c c b b a a b b c c b b = (3) ax byay bzaz bxay bzaz bx ax by az bxax by ay bz +++++++++=33()xy z a b y z x zxy+(4) 222244441111a b c da b c d a b c d ()()()()()a b a c a d b c b d =-----()()c d a b c d ⋅-+++ 证明 (1)左式123123123321213132a b c b c a c a b a b c a b c a b c =++--- 133321233212332()()()a b c b c b a c a c c a b a b =---+-=222222111333333b c a c a b a b c b c a c a b -+=右式(2)1112212211121112212221220000a a a a c c b b c c b b 按第一行展开222111121112121111122221222121220000a a a c b b a c b b c b b c b b - 111211121122122121222122b b b b a a a a b b b b =-1112111221222122a ab b a a b b =(3) ax byay bzaz bxay bzaz bx ax by az bxax by ay bz +++++++++ 按第一列分开x ay bzaz bxa y az bx ax by z ax by ay bz ++++++ y ay bzaz bxb z az bx ax by x ax by ay bz +++++++2(0)xay bz z ay az bx x z ax by y +++++分别再分(0)yz az bxb z x ax by x y ay bz++++33x y z y z x a y z x b z x y zxy x yz +分别再分332(1)x y z x y za yz x b yz x z xy zxy=+-=右边 (4) 222244441111a b c d a b c d a b c d 213141c c c c c c --- 222222244444441000a b a c a d aa b a c a d a a b a c a d a --------- 按第一列展开222222222222222()()()b ac ad ab ac ad a b b a c c a d d a --------- 每列都提取公因式222111()()()()()()b ac ad a b a c a d a b b a c c a d d a ---++++++ 1213c c c c -+-+()()()b ac ad a ---222221()()()()()b ac bd bb b ac c a b b ad d a b b a +--++-++-+ 按第一列展开()()()()()b ac ad a c b d b -----222211()()()()c bc b a c bd bd b a d b ++++++++()()()()()a b a c a d b c b d =-----()()c d a b c d -+++10.设行列式30453221--,求含有元素2的代数余子式的和. 解 含有元素2的代数余子式是12222313A A A A +++()()()()345453343050111121212222--=-+-+-+---11161026=---=- 11. 设行列式3040222207005322=--D ,求第四行各元素余子式之和的值是多少? 解 解法一:第四行各元素余子式之和的值为41424344M M M M +++040340300304222222222222700000070070=+++---780314(7)(1)(2)28=-⨯++⨯+-⨯-⨯-=-解法二:第四行各元素余子式之和的值为4142434441424344M M M M A A A A +++=-+-+3040222207001111=---按第3行展开32340(7)(1)222111+----232r r +340704111--按第2行展开34282811-=---12.已知 1012110311101254-=-D ,试求: (1) 12223242A A A A -+- (2) 41424344A A A A +++ 解 (1)方法一:虽然可以先计算处每个代数余子式,然后再求和,但是这很烦琐.利用引理知道,第一列每个元素乘以第二列的代数余子式的和等于零。
线性代数题(有答案)
中国地质大学(武汉)远程与继续教育学院线性代数 课程作业1(共 4 次作业) 学习层次:专升本 涉及章节:第1章 ——第2章1.利用对角线法则计算下列三阶行列式:(1)21141183---;(2)a b cb c a c a b。
2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)4 1 3 2; (2)1 4 6 2 3 5。
3.利用行列式性质计算下列各行列式:(1)4124120210520117;(2)ab ac ae bdcd de bf cfef---。
4.用克莱姆法则解下列方程组:12312312320,21,23;x x x x x x x x x ++=⎧⎪-+=⎨⎪-+=⎩5.设111111111A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 123124051B ⎛⎫⎪=-- ⎪ ⎪⎝⎭,求 32AB A - 及T A B 。
6.计算下列乘积:(1)431712325701⎛⎫⎛⎫ ⎪⎪- ⎪⎪ ⎪⎪⎝⎭⎝⎭; (2)()31,2,321⎛⎫⎪⎪ ⎪⎝⎭;(3)()211,23⎛⎫ ⎪- ⎪ ⎪⎝⎭。
7.设B A ,都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是BA AB =。
8.求下列矩阵的逆矩阵:(1)1225⎛⎫ ⎪⎝⎭;(2)cos sin sin cos θθθθ-⎛⎫⎪⎝⎭。
9.解下列矩阵方程:(1) 25461321X -⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(2) 142031121101X ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭。
参考答案1.利用对角线法则计算下列三阶行列式:(1)201 141 183---;解201141183--=-2(4)30(1)(1)118⨯-⨯+⨯-⨯-+⨯⨯0132(1)81(4)(1)-⨯⨯-⨯-⨯-⨯-⨯-248164=-++-=4-。
(2)a b cb c ac a b。
解a b cb c ac a bacb bac cba bbb aaa ccc=++---3333abc a b c=---。
线性代数第一章习题答案
线性代数第一章习题答案习题1:向量空间的定义向量空间是一个集合V,配合两个运算:向量加法和标量乘法,满足以下公理:1. 向量加法的封闭性:对于任意的u, v ∈ V,有u + v ∈ V。
2. 向量加法的结合律:对于任意的u, v, w ∈ V,有(u + v) + w = u + (v + w)。
3. 向量加法的交换律:对于任意的u, v ∈ V,有u + v = v + u。
4. 存在零向量:存在一个向量0 ∈ V,使得对于任意的v ∈ V,有v + 0 = v。
5. 每个向量都有一个加法逆元:对于任意的v ∈ V,存在一个向量w ∈ V,使得v + w = 0。
6. 标量乘法的封闭性:对于任意的实数k和向量v ∈ V,有k * v∈ V。
7. 标量乘法的结合律:对于任意的实数k, l和向量v ∈ V,有(k * l) * v = k * (l * v)。
8. 标量乘法与向量加法的分配律:对于任意的实数k和向量u, v ∈ V,有k * (u + v) = k * u + k * v。
9. 单位标量乘法:对于任意的向量v ∈ V,有1 * v = v。
习题2:线性组合与线性无关线性组合是指由向量空间中的向量,通过加法和标量乘法组合而成的向量。
如果一组向量\{v_1, v_2, ..., v_n\}的任何非平凡线性组合(即不是所有标量系数都是零的组合)都不能得到零向量,那么这组向量就是线性无关的。
习题3:基与维数基是向量空间中的一组线性无关的向量,任何该空间中的向量都可以唯一地表示为这组向量的线性组合。
向量空间的维数是其基中向量的数量。
习题4:线性映射的定义与性质线性映射是一个函数T: V → W,它将向量空间V中的向量映射到向量空间W中的向量,并且满足以下性质:1. 对于任意的u, v ∈ V,有T(u + v) = T(u) + T(v)。
2. 对于任意的实数k和向量v ∈ V,有T(k * v) = k * T(v)。
20春地大《线性代数》在线作业一_84答案
(判断题)1: 矩阵A的行列式不等于零,那么A的行向量组线性相关。
A: 错误
B: 正确
正确答案: A
(判断题)2: 如果方阵A是不可逆的,则一定有任意一个行向量是其余行向量的线性组合A: 错误
B: 正确
正确答案: A
(判断题)3: 两个对称矩阵不一定合同。
A: 错误
B: 正确
正确答案: B
(判断题)4: 二次型为正定的充要条件是对应的矩阵为正定矩阵
A: 错误
B: 正确
正确答案: B
(判断题)5: 合同的两个矩阵的秩一定相等
A: 错误
B: 正确
正确答案: B
(判断题)6: 满足A的平方=A的n阶方阵的特征值的和等于1.
A: 错误
B: 正确
正确答案: B
(判断题)7: 如果行列式值为0则必然有该行列式对应的矩阵是不可逆的。
A: 错误
B: 正确
正确答案: B
(判断题)8: 既能与上三角矩阵可交换又能与下矩阵交换则这个矩阵一定是对角矩阵
A: 错误
B: 正确
正确答案: B
(判断题)9: 矩阵的合同关系是等价关系
A: 错误
B: 正确
正确答案: B。
(精选)线性代数课后作业及参考答案
(精选)线性代数课后作业及参考答案《线性代数》作业及参考答案一.单项选择题1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003,则A-1等于()A.130012001B.100120013C. 1 3 00 010 00 1 2D. 1 2 00 10013.设矩阵A=312101214---,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解2η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<n< bdsfid="226" p=""></n<>B.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同15.设有矩阵Am×n,Bm×s,Cs×m,则下列运算有意义的是()。
地大《线性代数》在线作业一_答案
免费免费免费免费地大《线性代数》在线作业一1.A. AB. BC. CD. D正确答案:B 满分:4 分得分:42.A. AB. BC. CD. D正确答案:D 满分:4 分得分:43.A. AB. BC. CD. D正确答案:D 满分:4 分得分:44.A. AB. BC. CD. D正确答案:C 满分:4 分得分:45.A. AB. BC. CD. D正确答案:C 满分:4 分得分:46.A. AB. BC. CD. D正确答案:C 满分:4 分得分:47.A. AB. BC. CD. D正确答案:A 满分:4 分得分:48.A. AB. BC. CD. D正确答案:C 满分:4 分得分:49.A. AB. BC. CD. D正确答案:C 满分:4 分得分:410.A. AB. BC. CD. D正确答案:D 满分:4 分得分:411.A. AB. BC. CD. D正确答案:D 满分:4 分得分:412.A. AB. BC. CD. D正确答案:B 满分:4 分得分:413.A. AB. BC. CD. D正确答案:A 满分:4 分得分:414.A. AB. BC. CD. D正确答案:C 满分:4 分得分:4 15.B. BC. CD. D正确答案:A 满分:4 分得分:416.A. AB. BC. CD. D正确答案:A 满分:4 分得分:417.A. AB. BC. CD. D正确答案:D 满分:4 分得分:418.A. AB. BC. CD. D正确答案:B 满分:4 分得分:419.A. AB. BC. CD. D正确答案:C 满分:4 分得分:420.A. AB. BC. CD. D正确答案:B 满分:4 分得分:421.A. AB. BC. CD. D正确答案:C 满分:4 分得分:422.A. AB. BD. D正确答案:D 满分:4 分得分:423.A. AB. BC. CD. D正确答案:A 满分:4 分得分:424.A. AB. BC. CD. D正确答案:A 满分:4 分得分:425.A. AB. BC. CD. D正确答案:C 满分:4 分得分:4。
中国地质大学智慧树知到“计算机科学与技术”《线性代数》网课测试题答案卷2
长风破浪会有时,直挂云帆济沧海。
住在富人区的她 全文为Word 可编辑,若为PDF 皆为盗版,请谨慎购买! 中国地质大学智慧树知到“计算机科学与技术”《线性代
数》网课测试题答案 (图片大小可自由调整) 第1卷
一.综合考核(共10题)
1.如果一个矩阵的行向量组为正交的单位向量组且为方阵,那么这个矩阵的行列式为1。
()
A.错误
B.正确
2.AX=B 有无穷多解,那么Ax=0有非零解。
() A.错误 B.正确
3.n 阶方阵可逆的充要条件是它的行列式不等于0。
() A.错误 B.正确
4.矩阵A 的行列式不等于零,那么A 的行向量组线性相关。
() A.错误 B.正确
5.合同的两个矩阵的秩一定相等。
() A.错误 B.正确
6.相似的两个矩阵的秩一定相等。
() A.错误 B.正确
7.(1,1,0),(1,0,1),(0,1,1)构成为3维向量空间的一个基。
()
A.错误
B.正确
8.满足A 的平方=A 的n 阶方阵的特征值的和等于1。
()
A.错误
B.正确 9.两个对称矩阵不一定合同。
()
A.错误
B.正确
10.方阵A 和A 的转置有相同的特征值。
()
A.错误
B.正确
第1卷参考答案 一.综合考核
1.参考答案:B
2.参考答案:A
3.参考答案:B
4.参考答案:A
5.参考答案:B
6.参考答案:B
7.参考答案:B
8.参考答案:B
9.参考答案:B
10.参考答案:B。
地大期末考试 线性代数答案
线性代数答案一、选择题1、C2、C3、A4、A5、C 二、填空题 1、122、入≠-2且入≠13、k=44、245、⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--23234252251三、计算题1、已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---=300020001,313211212B A ,求1)(-AB 。
解:因为111)(---=A B AB ,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-230002100011B , ()⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎭⎫⎝⎛------→⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎭⎫⎝⎛---=------51515252512595151520111000100010210111002100011120210115002101130021010920210211100001010313212211100010001313211212I A⎪⎪⎪⎭⎫ ⎝⎛=-----51515252512591011A ,所以 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----==---103103535156109011)(111A B AB2.求向量组),0,2,1,1(),6,1,7,1(),2,1,2,1(321-=-==ααα)6,5,2,4(4=α的极大无关组,并用极大无关组表示其余向量。
解: ⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫⎝⎛-----→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=00007100301060010000710041104111 00011204110411122401120635041116062521121724111A ,因此,极大无关组为321,,ααα 且 3214736αααα++-=。
3、方程组4、已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=211121112A ,求正交矩阵T 使得AT T 1-为对角矩阵。
解:1) 首先求其特征值:0)1)(4(211121112||2=--=---------=-λλλλλλA I ,其特征根为:.4,1321===λλλ2) 求各特征值的特征向量,当121==λλ时求得特征向量为TT)1,0,1(,)0,1,1(--,将其正交化得TT)1,21,21(,)0,1,1(---, 再将其单位化得 TT )22,61,61(,)0,21,21(---当43=λ时特征向量为T)1,1,1(,将其单位化得T)31,31,31(.3)所得正交矩阵⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=31620316121316121T , ⎪⎪⎪⎭⎫ ⎝⎛=-4111AT T 为对角矩阵.5、解原式=0321402143014321------ = 4000830086204321 =1ⅹ2ⅹ3ⅹ4=24 所以原式D=24四、证明题设n 阶方阵A 满足032=--I A A ,求证A-2I 和A +I 都可逆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
免费免费免费免费
地大《线性代数》在线作业一
1.
A. A
B. B
C. C
D. D
正确答案:B 满分:4 分得分:4
2.
A. A
B. B
C. C
D. D
正确答案:D 满分:4 分得分:4
3.
A. A
B. B
C. C
D. D
正确答案:D 满分:4 分得分:4
4.
A. A
B. B
C. C
D. D
正确答案:C 满分:4 分得分:4
5.
A. A
B. B
C. C
D. D
正确答案:C 满分:4 分得分:4
6.
A. A
B. B
C. C
D. D
正确答案:C 满分:4 分得分:4
7.
A. A
B. B
C. C
D. D
正确答案:A 满分:4 分得分:4
8.
A. A
B. B
C. C
D. D
正确答案:C 满分:4 分得分:4
9.
A. A
B. B
C. C
D. D
正确答案:C 满分:4 分得分:4
10.
A. A
B. B
C. C
D. D
正确答案:D 满分:4 分得分:4
11.
A. A
B. B
C. C
D. D
正确答案:D 满分:4 分得分:4
12.
A. A
B. B
C. C
D. D
正确答案:B 满分:4 分得分:4
13.
A. A
B. B
C. C
D. D
正确答案:A 满分:4 分得分:4
14.
A. A
B. B
C. C
D. D
正确答案:C 满分:4 分得分:4 15.
B. B
C. C
D. D
正确答案:A 满分:4 分得分:4
16.
A. A
B. B
C. C
D. D
正确答案:A 满分:4 分得分:4
17.
A. A
B. B
C. C
D. D
正确答案:D 满分:4 分得分:4
18.
A. A
B. B
C. C
D. D
正确答案:B 满分:4 分得分:4
19.
A. A
B. B
C. C
D. D
正确答案:C 满分:4 分得分:4
20.
A. A
B. B
C. C
D. D
正确答案:B 满分:4 分得分:4
21.
A. A
B. B
C. C
D. D
正确答案:C 满分:4 分得分:4
22.
A. A
B. B
D. D
正确答案:D 满分:4 分得分:4
23.
A. A
B. B
C. C
D. D
正确答案:A 满分:4 分得分:4
24.
A. A
B. B
C. C
D. D
正确答案:A 满分:4 分得分:4
25.
A. A
B. B
C. C
D. D
正确答案:C 满分:4 分得分:4。