余热发电系统工艺流程
水泥生产及余热发电工艺流程
水泥生产及余热发电工艺流程1.原料准备:水泥的主要原料包括石灰石、粘土、煤炭和铁矿石等。
这些原料经过粉碎、混合和储存后,形成称为原料料堆的物料贮存库。
2.煤炭烧烤:煤炭是水泥生产过程中的重要燃料,主要用于熟料(可烧成水泥的原料)的回转窑燃烧。
在煤炭烧烤过程中,煤炭经过烘干、烧结和脱硫等处理,形成高温燃烧所需的热能。
3.煤炭燃烧:煤炭在熟料窑中被点燃,在高温下进行燃烧,产生大量的能量。
同时,煤炭的燃烧会产生废气,包括二氧化碳、氮氧化物和硫化物等。
为了减少环境污染,需要对煤炭燃烧过程进行控制和治理。
4.熟料制备:原料料堆中的原料通过称重、配比和研磨等工艺,进入窑炉进行熟化反应。
在窑炉中,原料在高温条件下发生化学反应,最终形成水泥熟料。
5.熟料烧成:熟料在回转窑中经过烘干、预热和煅烧等过程,使其在高温中充分烧结,形成成品水泥熟料。
同时,熟料烧成过程中产生的热能被回收利用,用于生活热水供应和余热发电。
6.煤炬:煤炬是指烧制过程中煤粉和熟料的混合物,其主要作用是提供燃料和热能。
煤炭粉碎后与熟料混合,形成煤炬,通过窑炉进入烧结过程。
7.水泥磨磨煤:熟料烧成后,形成的水泥熟料经过水泥磨磨煤工序,与适量石膏一起磨成水泥粉末。
水泥磨磨煤是水泥生产过程中的最后一道工序,在这个过程中通过添加适量的石膏,调整水泥的硫铝酸盐含量,以控制水泥凝固时间。
8.余热发电:水泥生产过程中熟料窑产生的高温热气和窑外的余热可以通过余热发电系统进行回收利用,产生电能,减少能源浪费。
余热发电系统通常包括余热锅炉、蒸汽发生器和发电机组。
余热锅炉将烟气中的热能转化为蒸汽,然后传递给蒸汽发生器,通过发电机组将蒸汽转化为电能。
以上就是水泥生产及余热发电的工艺流程。
水泥生产产生的废气、废水和尾渣等需要经过处理和利用,以减少对环境的污染。
余热发电系统的引入不仅可以提高能源利用率,还可以降低碳排放和降低生产成本,具有重要的经济和环境效益。
余热锅炉发电的工艺流程
余热锅炉发电的工艺流程主要用于回收工业生产过程中产生的高温废气(如水泥窑、冶金炉、垃圾焚烧炉等排放的烟气)中的余热,将其转化为电能。
以下是一个通用的余热锅炉发电工艺流程概述:1. 烟气进入:- 高温烟气从工业生产设备(例如冶炼炉、煅烧炉或垃圾焚烧炉)的烟气出口引出,经过管道引入余热锅炉。
2. 烟气换热:- 在余热锅炉内部,烟气自上而下或者自下而上流动,依次流经过热器、蒸发器和省煤器等不同受热面。
- 过热器:用于将饱和蒸汽进一步加热成过热蒸汽,提高其做功能力。
- 蒸发器:利用烟气的热量将送入的软化水转化为蒸汽。
- 省煤器:预先加热锅炉给水,减少后续阶段燃料消耗。
3. 水循环系统:- 给水系统:软化后的水首先经过除氧器去除溶解氧,然后由给水泵加压送往省煤器预热。
- 汽水分离与循环:从蒸发器出来的湿蒸汽进入汽水分离器进行汽水分离,分离出的蒸汽送至过热器,而分离出的水则由热水循环泵重新送回蒸发器加热循环使用。
4. 蒸汽动力转换:- 经过过热器加热形成的高温、高压过热蒸汽,送入汽轮机做功,驱动汽轮机转子旋转。
5. 发电环节:- 汽轮机的转动通过联轴器带动发电机的转子转动,从而实现机械能向电能的转化,发出电能并接入电网。
6. 烟气排放:- 烟气在完成热量交换后,温度已经大大降低,通常会经过除尘设备进一步净化后,由引风机引导至烟囱,最终安全排入大气。
7. 辅助系统:- 同时包括冷却水系统、纯水制备系统、锅炉给水处理系统、以及烟气处理系统等,确保整个发电过程的安全稳定运行。
每个具体的余热发电项目可能会根据其来源热源的特性和需求有所不同,但核心原理都是通过热交换来提升能源利用率,实现节能减排和能源再生的目的。
余热发电系统介绍
余热发电系统介绍一、余热发电工艺流程凝汽器热水井内的凝结水经凝结水泵与闪蒸器出水汇合,然后通过锅炉给水泵打入两台AQC锅炉省煤器内进行预热,产生一定压力下的高温水,从省煤器出口分三路分别送到AQC锅炉汽包、PH锅炉汽包和闪蒸器,进入汽包的水在锅炉内循环受热,产生过热蒸汽送入汽轮机做功。
进入闪蒸器内的高温水通过闪蒸产生一定压力的饱和蒸汽送入汽轮机后级做功,做功后的乏汽经过冷凝后重新回到热水井参与循环。
生产过程中消耗掉的水由纯水装置制取出的纯水经补给水泵打入热水井。
二、主机参数介绍1、两台PH锅炉系统均采用川崎BLW型,室外式强制循环锅炉,受热面由两列组成,每列为:四组蒸发器、一组过热器。
锅炉汽包工作压力为0.789MPa,过热蒸汽温度294℃,蒸发量为44.68t/h,锅炉入口风温为306℃,出口风温为193℃,废气流量为590000Nm3/h。
2、两台AQC锅炉系统均采用川崎BLW型室外式自然循环锅炉,受热面为:二组省煤器、六组蒸发器、一组过热器。
锅炉汽包工作压力为0.789MPa,过热蒸汽温度345℃,蒸发量为36.93t/h,锅炉入口风温为360℃,出口风温为92℃,废气流量为412500N m3/h。
3、闪蒸器型式为竖直圆筒型,设计压力为0.294MPa ,器内压力为0.130MPa ,设计温度167℃,器内温度104.8℃,入口流量94.04t/h,闪蒸量为10.1t/h,出口流量为83940kg/h。
4、汽轮机采用南京汽轮机厂NZ30-0.689/0.137型、冲动式、多级混压、凝汽式汽轮机,汽轮机工作参数:蒸汽额定入口压力为0.689MPa,额定流量为163.22t/h,额定输出功率为30000kW,转速为3000r/min,工作级数为10级,排汽压力-95.6kPa。
5、发电机采用型号为QFW-33-2S,形式为横轴全封闭水冷热交换器式三相交流同步发电机,采用同轴交流无刷励磁方式,通过直联式联轴节与汽轮机连接,旋转方向:顺时针方向(从汽轮机向发电机方向看),绝缘种类:定子F级,转子F级,整机按B级考核。
水泥生产及余热发电工艺流程
水泥生产及余热发电工艺流程
1.原料处理:首先需要选用优质的石灰石、粘土、铁矿石等原料。
这
些原料经过破碎、研磨和混合,形成均匀的熟料。
2.熟料烧成:将混合的熟料送入熟料窑进行烧成。
在风暴炉中,熟料
在高温下经历物理化学反应,形成熟料。
燃料的选择通常是煤或天然气。
3.冷却:熟料经过熟料窑的高温烧成后,需要通过冷却过程将其降温
到适宜的温度。
这一过程可以通过气体和水来实现。
4.磨矿:冷却后的熟料进入水泥磨机,添加适量石膏和一些辅助材料,进行细磨。
磨矿过程中,熟料被磨成细度适中的水泥粉末。
5.余热回收:在熟料窑的烧成过程中,燃料燃烧释放的烟气中含有大
量余热。
通过设置余热发电机组,将余热转化为电能。
在余热发电过程中,可以采取多种余热回收技术,如余热锅炉和蒸汽发生器。
6.能源回收:通过余热发电,将产生的电能供应给工厂内部使用,满
足水泥生产过程中的照明、动力等能源需求。
余热发电还可以减少对外购
电的需求,从而降低生产成本。
7.水泥储运:磨矿后的水泥粉末经过气力输送设备或螺旋输送机输送
到储存仓,然后再通过装车设备将水泥装入袋子或散装车辆中,进行运输。
总结来说,水泥生产及余热发电工艺流程主要包括原料处理、熟料烧成、冷却、磨矿、余热回收、能源回收和水泥储运。
通过合理的工艺流程
设计和余热发电设备的运用,可以最大限度地回收利用余热能源,提高能
源利用效率,减少环境污染。
余热发电工艺流程简述及简图
余热发电工艺流程简述
(1)烟气流程
出窑尾一级筒的废气约为330℃经SP炉换热后温度降至210℃左右,经窑尾高温风机送至原料磨烘干原料后,通过除尘器净化达标排放。
去自窑头篦冷机中部的废气约360℃经沉降室沉降将烟气的含尘量由50g/Nm3降至8~10g/Nm3后进入AQC炉,热交换后进入收尘器净化达标后与熟料冷却机尾部的废气会合后由引风机经烟囱排入大气。
(2)水、汽流程
原水经预处理后进入锅炉水处理车间,由反渗透及钠床装置进行处理,达标后的水作为发电系统的补充水补入发电系统的除氧器。
经化学除痒后的软化水由锅炉给水泵送至AQC炉的省煤器段,经过省煤器段加热后的约165℃的热水按一定比例分别进入AQC炉、SP 炉的蒸发段、过热段后,AQC炉产0.789MPa、330℃的过热蒸汽,SP 炉产0.789MPa、330℃的过热蒸汽,混合后进入汽轮机主进汽口,供汽轮机做工发电。
经汽轮机做功后的乏汽进入凝汽器冷凝成凝结水后,由凝结水泵送至化学除氧器除氧,再由锅炉给水泵将除氧后的冷凝水和补充水直接送至AQC炉,完成一个汽水循环。
(3)排灰流程
SP炉的排灰为窑灰,可回到水泥生产工艺流程中,设计时拟与窑尾除尘器收下的粉尘一起回到工艺系统。
工艺流程图:。
余热发电生产工艺
•空冷岛系统:
• 直接空冷系统,又称为空气冷却系统,它是一种以节水为目的火电厂冷却 技术,是一种以空气取代水为冷却介质的冷却方式,是指汽轮机的排汽直接进 入空冷凝汽器用空气来冷凝,空气与蒸汽进行热交换,所需的冷却空气通常由 机械方式供应,其冷凝水由凝结泵排入汽轮机组的回热系统,采用空冷系统的 汽轮发电机组简称空冷机组。
•给水泵的扬程:
• 给水泵的扬程应足够克服汽包压力、开启安全阀的多余 压力、管路阀门和省煤器等的水力阻力以及供水的几何高 度。
(二)汽轮机及附属系统
•定义: • 汽轮机是将蒸汽的热力势能转换成机械能,借以拖动其他机械转动的原动 机。 •汽轮机及辅助装置: • 为保证汽轮机安全经济的进行能量转换,除汽轮机本体外,还需配置若干 附属设备,汽轮机及其附属设备通过管道、阀门等附件连成辅助系统,再由各 种功能的系统组成一个整体,称为汽轮机及辅助装置。 •汽轮机规范: •型号:C12-3.43\0.8型 •型式:中温中压、单缸、冲动、空冷抽汽凝汽式 •额定功率:12MW •额定转速:3000r/min •主汽温度:435℃ •主汽压力:3.43MPA •工业抽汽压力:0.8MPA
•发电机启动前检查完毕后做以下试验:
• 发电机出口断路器与灭磁开关分合闸试验; • 发电机出口断路器与灭磁开关联动试验; • 汽机主汽门与与发电机出口开关的联跳试验; • 机电联系信号试验。
•发电机并网条件:
• 发电机频率与系统频率相同; • 发电机电压与系统电压相等; • 发电机电压相位与系统电压相位相同。
•技术参数:
• 吸收塔进口烟气量:100000 Nm 3\h • 吸收塔直径:4000m m • 塔顶烟囱直径:2000m m • 吸收塔总高度:40m • 喷淋层数量: 3层
水泥余热发电工艺流程
水泥余热发电工艺流程水泥生产过程中会产生大量的余热,如果能够利用这些余热进行发电,将会大大节约能源资源。
现在就让我们来了解一下水泥余热发电的工艺流程。
首先,水泥生产过程中,将干燥、煅烧后的水泥窑炉烟气中的高温余热通过预热器进行余热回收。
预热器是一个重要的设备,其内部布置了一系列的热交换器,通过引导煤气流经这些热交换器,将烟气中的高温余热传递给工艺过程中需要的干燥燃料和新鲜空气。
其次,经过预热器回收的余热进入鼓风机。
鼓风机是将烟气送到煤气取样系统或者废气处理系统的关键设备。
余热通过鼓风机输送,可以将水泥窑炉中的脱硫剂与废气进行充分的混合和干燥,以达到更好的脱硫效果。
同时,鼓风机还能够将煤气压力加大,以满足后续工艺过程中的需求。
然后,余热进一步通过废气处理系统进行处理。
废气处理系统主要包括脱硫、脱硝和除尘等环保工艺。
利用余热进行废气处理,能够将煤气中的污染物降低到合理的限值范围内,保证水泥生产过程中的环境质量。
最后,经过废气处理后的余热进入蒸汽发生器。
蒸汽发生器是利用余热进行蒸汽发电的核心设备。
在蒸汽发生器中,余热通过热交换作用将水加热,使水变成蒸汽。
蒸汽再通过蒸汽轮机驱动发电机进行发电,将余热转化为电能。
整个水泥余热发电工艺流程包括余热回收、鼓风机输送、废气处理和蒸汽发电四个关键环节。
这些环节相互配合,使得水泥生产过程中的余热能够得到充分利用,大大提高了水泥生产过程的能源利用效率。
通过余热发电,不仅可以减少对传统能源的依赖,还能够减少温室气体排放,达到节能减排的目的。
综上所述,水泥余热发电工艺流程可以将水泥生产过程中产生的余热充分利用,实现能源的节约和环境的净化,具有很高的经济和环保价值。
希望在未来的发展中,水泥行业能够进一步优化和发展余热发电技术,为我国的可持续发展做出更大的贡献。
水泥余热发电工艺流程
水泥余热发电工艺流程水泥生产过程中产生的余热一直是一个被人们关注的问题。
利用水泥生产过程中的余热进行发电已经成为一种常见的做法。
这种方法不仅可以有效地利用余热资源,还可以减少对环境的影响,提高水泥生产的能源利用率。
本文将详细介绍水泥余热发电的工艺流程。
1. 余热回收系统。
在水泥生产过程中,熟料冷却机、窑头和窑尾等部位都会产生大量的余热。
为了有效地利用这些余热,需要安装余热回收系统。
余热回收系统通常包括余热锅炉、余热管道和余热发电设备。
余热锅炉用来将余热转化为蒸汽,然后通过余热管道输送到发电设备中进行发电。
2. 蒸汽发电系统。
余热蒸汽通过管道输送到蒸汽发电设备中,蒸汽发电设备通常采用蒸汽轮机发电。
蒸汽进入蒸汽轮机后,推动轮机转动,从而带动发电机发电。
通过这种方式,余热可以被充分利用,同时也可以产生电能。
3. 发电系统。
发电系统是整个水泥余热发电工艺中最核心的部分。
发电系统包括蒸汽轮机、发电机、控制系统等部分。
蒸汽轮机是将余热蒸汽转化为机械能的设备,而发电机则是将机械能转化为电能的设备。
控制系统则用来监控和调节发电系统的运行状态,保证系统的安全稳定运行。
4. 排放系统。
在发电过程中会产生废气,为了保护环境,需要安装排放系统对废气进行处理。
排放系统通常包括除尘器、脱硫设备、脱硝设备等部分。
这些设备可以有效地去除废气中的颗粒物和有害气体,保护周围的环境。
5. 辅助系统。
水泥余热发电工艺中还需要一些辅助系统来保证整个工艺的正常运行。
比如冷却系统用来冷却发电设备,水处理系统用来处理冷却水和锅炉给水等。
这些辅助系统在整个工艺中起着至关重要的作用。
通过以上的工艺流程,水泥余热可以被有效地利用,转化为电能,从而提高水泥生产的能源利用率,减少对环境的影响。
水泥企业可以通过余热发电的方式获得额外的经济收益,同时也可以为环保事业做出贡献。
然而,水泥余热发电工艺也面临一些挑战。
首先是技术方面的挑战,余热发电技术需要高度的自动化和稳定性,需要水泥企业具备一定的技术实力。
余热发电工艺流程、主机设备工作原理简介(简单)
余热发电工艺流程、主机设备工作原理简介余热发电余热发电是一种通过回收生产过程中产生的工业余热,将其转化为电能的环保型能源利用技术。
它能够有效地提高工业生产过程中的能源利用率,减少大量二氧化碳和其他有害气体的排放,对于推动工业节能和环保发展有着重要的作用。
工艺流程余热发电工艺流程主要包括余热回收、余热蒸汽与受热水循环、加热循环、排气、冷凝等环节。
1.余热回收:利用余热回收装置对工业生产过程中的热量进行回收。
通常,余热回收设备采用高效传热器,将低温余热转化为高温余热。
2.余热蒸汽与受热水循环:余热回收后的高温余热通过传热器传导至工作介质,常用的介质为蒸汽和循环水。
3.加热循环:高温介质在加热器中进一步加热,增加介质的温度和压力。
4.排气:未能转化为电能的高温气体排放至大气中。
5.冷凝:过热蒸汽在冷凝器中冷却,将过热蒸汽转化为高压饱和水,该水通过泵在再次流入传热器,开始新一轮回收。
电能输出余热发电产生的电能主要经过调节和控制后输出,可以用于工厂内部用电和向电网输送电力。
主机设备工作原理简介余热发电主机设备包括涡轮发电机、减速器、发电机控制系统等主要设备。
以下是它们的工作原理简介:涡轮发电机涡轮发电机是余热发电设备中的核心设备之一。
它是将高速旋转的轴承通过机械装置转化为电能的装置。
其工作过程如下:1.涡轮叶片接受高压、高速蒸汽的冲击,启动涡轮的旋转。
2.涡轮的旋转通过轴传动减速器。
3.通过减速器就可以将转速降低到发电机的工作转速。
4.通过发电机控制系统控制输出的电压和频率,即可输出电能。
减速器减速器是涡轮发电机降低转速的一个重要设备,其工作原理如下:1.接收涡轮发电机传来的高速轴,降低转速。
2.转速降低之后,将轴的转速与电机控制系统的要求匹配,实现电能高效输出。
发电机控制系统发电机控制系统是整个余热发电设备的监控和控制中心,其工作原理如下:1.接收来自涡轮发电机的反馈信号,对电压和电流进行监控和调节。
2.通过反馈系统调节发电机的输出功率和工作状态。
余热发电系统工艺流程
余热发电系统工艺流程余热发电是利用工业生产过程中产生的废热来发电的一种能源回收利用方式。
下面是一个典型的余热发电系统工艺流程:1.热源收集:在工业生产过程中,产生大量的废热。
热源收集是余热发电系统的第一步,主要是通过管道或其他方式将废热导入余热发电系统。
2.废热回收:在余热发电系统中,废热需要通过换热器进行回收。
换热器是一个设备,用于将废热传递给工作介质,使其温度升高。
3.工作介质循环:在余热发电系统中,工作介质一般是水蒸汽。
废热回收后,工作介质会加热,并转化为高温高压的水蒸汽。
然后,水蒸汽会通过涡轮发电机组,将其热能转化为电能。
4.电能输出:通过涡轮发电机组,机械能被转化为电能。
电能可以直接输出到电网中,为用户提供电力。
5.回水循环:在发电过程中,水蒸汽会凝结成水,然后通过凝汽器冷却,再次回到换热器中,与废热进行换热。
这样就形成了一个循环,有效地利用了废热。
6.废热排放:在余热发电系统中,一些废热无法回收利用,例如烟气中的热量。
这部分废热需要通过废热排放系统排出。
7.控制与监测:余热发电系统需要进行控制和监测,以确保其正常运行。
控制系统可以实现对废热流量、工作介质循环等参数的控制,监测系统可以实时监测系统的运行状态。
8.维护与保养:余热发电系统需要定期进行维护与保养,以确保其长期稳定运行。
维护包括设备的清洁、检修和更换,保养包括设备的润滑和防腐。
以上就是一个典型的余热发电系统的工艺流程。
通过对废热的回收利用,余热发电系统可以有效地降低能源消耗,减少环境污染,实现能源的可持续利用。
余热发电的工艺流程主要设备和工作原理简单介绍
余热发电的工艺流程主要设备和工作原理简单介绍余热发电是利用工业生产过程中产生的废热来发电的一种方式。
这些废热主要来自于燃烧发电机组、高温工业炉窑、冶金、化工、电子等行业。
通过余热发电,可以最大限度地发挥能源的效益,提高能源利用率,减少环境污染。
2.余热转换:回收的废热需要通过热交换器或热回收系统将其转化成可供使用的高温热能或高压蒸汽。
这一步骤主要是将废热转化为对发电机来说更为适用的能源。
3.发电机运行:高温热能或高压蒸汽通过锅炉或涡轮机等设备驱动发电机进行发电。
发电机将转化为机械能的能源转化为电能,并输出为电网所需的电力。
4.余热回收再利用:通过废热回收系统将发电机组产生的余热进行回收。
这样可以提高能源利用效率,减少能源的浪费,并降低环境污染。
主要设备及其工作原理简介如下:1.烟气余热回收系统:烟气余热回收系统主要由烟囱、换热器和蓄热器等组成。
其工作原理是通过烟气与热介质之间的热量交换,将烟气中的废热转化为热能,再将热能通过热能回收装置转化为电能。
2.蒸汽涡轮发电机组:蒸汽涡轮发电机组是一种常见的余热发电设备。
其工作原理是通过高温高压的蒸汽驱动涡轮机旋转,涡轮机的转动分别驱动发电机和压缩机工作,将热能转化为电能。
3.蓄热器:蓄热器是余热发电中的重要设备之一、其工作原理是通过保存和释放热能的方式,使废热能够更好地用于发电系统。
蓄热器可以将低温的废热转化为高温的热能,提高发电过程中的能源利用效率。
4.综合利用系统:综合利用系统通过多种工艺,将余热转化为电能的同时,还可以利用余热供暖、蒸馏水等。
这样可以最大限度地提高能源利用效率,实现能源的再生利用。
综上所述,余热发电是一种有效的能源利用方式,通过回收废热,将其转化为高温热能或高压蒸汽,再通过发电机组将其转化为电能。
这种方式可以提高能源的利用效率,减少环境污染,是可持续发展的重要手段之一、不同行业的余热发电流程和设备可能略有差异,但总体原理是相似的。
余热发电的工艺流程、主要设备和工作原理简单介绍
直接利用水泥窑窑头窑尾排放的中低温废气进行余热回收发电,无需消耗燃料,发电过程不产生任何污染,是一种经济效益可观、清洁环保、符合国家清洁节能产业政策的绿色发电技术,具有十分广阔的发展空间与前景。
工艺流程: 凝汽器热水井内的凝结水经凝结水泵泵入 No.2 闪蒸器出水集箱,与出水汇集 ,然后通过锅炉给水泵升压泵入AQC 锅炉省煤器进行加热 ,经省煤器加热后的水(223℃)分三路分别送到 AQC 炉汽包,PH 炉汽包和 No.1 闪蒸器内。
进入两炉汽包内的水在锅炉内循环受热 ,最终产生一定压力下的过热蒸汽作为主蒸汽送入汽轮机做功 .进入 No.1 闪蒸器内的高温水通过闪蒸技术产生一定压力下的饱和蒸汽送入汽轮机第三级后做功,而№.1 闪蒸器的出水作为№ .2 闪蒸器闪蒸饱和蒸汽的热源,№.2 闪蒸器闪蒸出的饱和蒸汽送入汽轮机第五级后做功,做过功后的乏汽经过凝汽器冷凝后形成凝结水重新参预热力循环。
生产过程中消耗掉的水由纯水装置制取出的纯水经补给水泵打入热水井。
AQC 锅炉的设计特点如下: 锅炉型式为立式,锅炉由省煤器、蒸发器、过热器、汽包及热力管道等构成。
锅炉前设置一预除尘器(沉降室),降低入炉粉尘。
废气流动方向为自上而下,换热管采用螺旋翅片管 ,以增大换热面积、减少粉尘磨损的作用。
锅炉内不易积灰,由烟气带走,故未设置除灰装置,工质循环方式为自然循环方式。
过热器作用:将饱和蒸汽变成过热蒸汽的加热设备,通过对蒸汽的再加热,提高其过热度(温度之差) ,提高其单位工质的做功能力。
蒸发器作用:通过与烟气的热交换,产生饱和蒸汽。
省煤器作用:设置这样一组受热面,对锅炉给水进行预热,提高给水温度,避免给水进入汽包,冷热温差过大,产生过大热应力对汽包安全形成威胁,同时也避免汽包水位波动过大,造成自动控制艰难。
一方面最大限度地利用余热,降低排烟温度,另一方面,给水预热后形成高温高压水,作为闪蒸器产生饱和蒸汽的热源。
沉降室作用:利用重力除尘的原理将烟气中的大颗粒熟料粉尘采集,避免粉尘对锅炉受热面的冲刷、磨损。
余热发电工艺流程
余热发电工艺流程
余热发电是指将工业生产过程中产生的热能通过发电装置转化为电能利用的一种方法。
它能够有效地利用工业过程中产生的废热,实现资源的再利用,提高能源利用效率,减少能源浪费。
下面是一种典型的余热发电工艺流程。
首先,在工业生产过程中产生的废热通过烟囱、排气口等通道收集起来,然后通过热交换器将废热传导给工作介质,提高工作介质的温度。
然后,高温的工作介质通过管道输送到热能转化装置,该装置可以是蒸汽轮机、燃气轮机等。
在这个装置中,工作介质的热能被转化为机械能。
接下来,转化为机械能的工作介质驱动涡轮旋转,进而将旋转的动能传给发电机。
发电机通过利用磁场感应的原理,将机械能转化为电能。
然后,发电机产生的交流电通过变压器进行变压、变流处理后输送到电网中,供给社会各个领域使用。
最后,经过发电机的电能供应到电网后,余热发电装置的工作介质已经失去了大部分的热能,温度降低后通过冷却装置进行冷却,然后重新进入热能转化装置。
整个余热发电工艺流程中,废热被充分利用,使得能源资源得到了充分利用,节省了能源开支。
同时,也减少了温室气体的
排放,对保护环境起到了积极的作用。
总的来说,余热发电工艺流程是通过收集工业生产过程中产生的废热,将废热转化为工作介质的热能,然后通过热能转化装置将热能转化为机械能,最终通过发电机将机械能转化为电能,进而供给社会使用。
这种工艺流程可以有效地提高能源利用效率,减少能源浪费,同时也对环境保护起到了一定的作用。
余热发电系统介绍
余热发电系统介绍一、余热发电工艺流程凝汽器热水井内的凝结水经凝结水泵与闪蒸器出水汇合,然后通过锅炉给水泵打入两台AQC锅炉省煤器内进行预热,产生一定压力下的高温水,从省煤器出口分三路分别送到AQC锅炉汽包、PH锅炉汽包和闪蒸器,进入汽包的水在锅炉内循环受热,产生过热蒸汽送入汽轮机做功。
进入闪蒸器内的高温水通过闪蒸产生一定压力的饱和蒸汽送入汽轮机后级做功,做功后的乏汽经过冷凝后重新回到热水井参与循环。
生产过程中消耗掉的水由纯水装置制取出的纯水经补给水泵打入热水井。
二、主机参数介绍1、两台PH锅炉系统均采用川崎BLW型,室外式强制循环锅炉,受热面由两列组成,每列为:四组蒸发器、一组过热器。
锅炉汽包工作压力为0.789MPa,过热蒸汽温度294℃,蒸发量为44.68t/h,锅炉入口风温为306℃,出口风温为193℃,废气流量为590000Nm3/h。
2、两台AQC锅炉系统均采用川崎BLW型室外式自然循环锅炉,受热面为:二组省煤器、六组蒸发器、一组过热器。
锅炉汽包工作压力为0.789MPa,过热蒸汽温度345℃,蒸发量为36.93t/h,锅炉入口风温为360℃,出口风温为92℃,废气流量为412500N m3/h。
3、闪蒸器型式为竖直圆筒型,设计压力为0.294MPa ,器内压力为0.130MPa ,设计温度167℃,器内温度104.8℃,入口流量94.04t/h,闪蒸量为10.1t/h,出口流量为83940kg/h。
4、汽轮机采用南京汽轮机厂NZ30-0.689/0.137型、冲动式、多级混压、凝汽式汽轮机,汽轮机工作参数:蒸汽额定入口压力为0.689MPa,额定流量为163.22t/h,额定输出功率为30000kW,转速为3000r/min,工作级数为10级,排汽压力-95.6kPa。
5、发电机采用型号为QFW-33-2S,形式为横轴全封闭水冷热交换器式三相交流同步发电机,采用同轴交流无刷励磁方式,通过直联式联轴节与汽轮机连接,旋转方向:顺时针方向(从汽轮机向发电机方向看),绝缘种类:定子F级,转子F级,整机按B级考核。
(完整版)干熄焦余热发电系统工艺
4.2 二次除尘器(简称2DC)
2DC是细长型的旋风分离器,入 口流速一般控制在15-25米/秒范围 之内,当流速<10米/秒时。则由于 离心力太小,不能足以分离细焦粉, 速度太大则阻力及磨损亦大使除尘的 电耗增大,当气体流速在5-25米/秒 时,50微米以上的焦粉能离析出, 实际上焦粉粒度一般在0.25mm以 上,设置2DC的目的是为了保护循环 风机的叶片、壳体不被焦粉摩损。进 2DC的焦粉含量一般在6g/Nm3左 右,出为1g/Nm3,外壳采用钢板 制成的圆锥体,主要除去3mm以下 的焦粉。
熄
干 0.3 10.4 0.4 0.52 77.1 7.6 8.5 34.9 44.8 熄
9.5 2.3 52.8 21.6
干熄焦的优点
3、改善了环境,减少污染 在湿熄焦中,熄焦用的水主要来
自于化工车间的冷却水,其中含有 大量的酚,氰等有害物质。湿法熄 焦产生的蒸汽及残留在焦内的酚, 氰,硫化物等腐蚀性介质,侵蚀周 围建筑物,并能扩散到几公里外的 范围,有害物质超过环境标准的好 几倍造成大面积的空气污染。
A (%)
V (% )
S (%)
M4 0 (% )
M1 0
(%)
粒 级 分 布, %
> 80~ 60~ 40~ < MS 80 60 40 25 25 M m mm mm mm m m
CR I (%
m
m
)
湿 3.2 10.5 0.9 0.53 71.0 8.2 11.8 36.0
41.1
8.7 2.4 53.4 31.0
一、干熄焦工艺流程介绍
干法熄焦是目前国外较广泛应用的一项 节能技术,其英文名称为Coke Dry Quenching, 简称CDQ。
余热发电工艺流程
余热发电工艺流程余热发电是一种利用工业生产过程中产生的余热来发电的环保节能技术。
通过将工业生产中产生的高温余热转化为电能,不仅可以提高能源利用率,还可以减少对环境的影响。
下面将介绍余热发电的工艺流程。
1. 余热收集余热发电的第一步是收集工业生产过程中产生的余热。
通常情况下,工业生产过程中会产生大量的高温余热,比如炉窑、锅炉、热风炉等设备产生的余热。
这些余热需要通过余热回收设备进行收集和集中处理。
2. 余热预处理收集到的余热需要经过预处理才能用于发电。
预处理的主要目的是降低余热的温度和压力,以便后续的发电设备能够正常运行。
通常情况下,余热预处理包括余热冷却、除尘、除硫等工序。
3. 蒸汽发电经过预处理的余热通常会被用来产生蒸汽,然后通过蒸汽发电机组将蒸汽能量转化为电能。
蒸汽发电是余热发电的核心环节,也是最常用的发电方式。
在蒸汽发电过程中,余热会被用来加热水,产生高温高压的蒸汽,然后蒸汽会驱动发电机组转动,产生电能。
4. 热水发电除了蒸汽发电外,余热还可以用来产生热水,然后通过热水发电机组将热水能量转化为电能。
热水发电通常适用于一些温度较低的余热,比如废水余热、空调余热等。
5. 发电系统无论是蒸汽发电还是热水发电,都需要配备相应的发电系统,包括发电机组、发电控制系统、变压器等设备。
这些设备需要根据余热发电的特点进行设计和选型,以确保发电系统能够稳定、高效地运行。
6. 排放处理余热发电过程中会产生一些废气和废水,这些废气和废水需要经过处理后才能排放。
通常情况下,余热发电厂会配备废气处理设备和废水处理设备,以确保排放达标。
7. 余热利用除了用于发电外,余热还可以用于供暖、生活热水等方面。
余热发电工艺流程中需要考虑如何充分利用余热,提高能源利用效率。
综上所述,余热发电工艺流程包括余热收集、余热预处理、蒸汽发电或热水发电、发电系统、排放处理和余热利用等环节。
通过合理设计和运行,余热发电可以成为工业生产过程中的一种清洁能源,为可持续发展做出贡献。
余热发电系统工艺流程
余热发电系统工艺流程1.废热收集:首先需要收集工业企业产生的废热。
这些废热可以来自于锅炉、燃气轮机、烟气等。
一般采用余热锅炉来接收这些废热,并将其转化为高压蒸汽。
2.蒸汽输送:接收到的废热通过余热锅炉中的换热器转化为高压蒸汽。
这些蒸汽可以直接用于工业企业的生产过程中,也可以用于发电。
3.蒸汽扩能:如果蒸汽用于发电,那么需要将蒸汽的压力进一步扩大,以满足发电机组的要求。
这一过程可以通过采用蒸汽透平机组实现,将蒸汽的压力和温度提高,从而提高蒸汽的能量。
4.发电:经过蒸汽扩能后,蒸汽将进入发电机组。
发电机组通过内部的转子和定子之间的磁场相互作用,将蒸汽能量转化为电能。
发电机组一般采用涡轮发电机组或蒸汽轮发电机组,能够高效转化蒸汽能量。
5.废气处理:在蒸汽通过发电机组后,会产生废气。
这些废气可能含有对环境有害的物质,比如二氧化硫、氮氧化物等。
因此需要对废气进行处理,将其中的有害物质进行去除,以减少对环境的污染。
6.发电集成:余热发电系统还可以与其他能源发电系统进行集成。
比如可以将余热发电系统与太阳能光伏发电系统相结合,将太阳能电池板产生的电能与余热发电系统产生的电能进行组合,提高系统的发电效率。
7.电能利用:发电后产生的电能可以用于工业企业自身的消耗,也可以通过电网进行输送和销售。
如果工业企业自身消耗的电能小于发电量,那么可以将多余的电能卖给电网,实现电能的回收和利用。
总而言之,余热发电系统工艺流程包括收集废热、蒸汽输送、蒸汽扩能、发电、废气处理、发电集成和电能利用等环节。
通过充分利用工业企业产生的废热,可以实现能源的高效利用和环境的减排,具有很高的经济和环境效益。
余热发电工艺流程图
余热发电工艺流程图
余热发电是一种将工业生产过程中产生的余热转化为电能的技术。
下面是一个典型的余热发电工艺流程图:
1. 余热收集:首先,工业生产过程中产生的烟气、废水或高温废气中的余热被收集起来。
这些余热通常是通过烟气管道或烟囱来收集的。
在收集过程中,还需要对烟气进行净化处理,以去除其中的颗粒物和污染物。
2. 余热回收:收集到的余热被送入余热回收系统中,通过换热器将烟气、废水或高温废气中的余热传递给工作流体。
工作流体可以是水、有机液体或其他合适的介质。
在换热器中,烟气、废水或高温废气中的余热被传递给工作流体,使其升温。
3. 蒸汽发生:升温后的工作流体进入蒸汽发生器,通过与发生器中的低温工质接触,将部分工作流体中的热量转化为蒸汽。
蒸汽是余热发电中常用的工作介质,可以用于驱动汽轮机或蒸汽发动机产生动力。
4. 发电:蒸汽进入汽轮机或蒸汽发动机,通过旋转涡轮,将热能转化为机械能。
旋转涡轮的运动被连接到发电机,通过转子产生电能。
这样,余热被转化为电能,供给工厂自用或送入电网供应外部用户。
5. 热能回收:在发电过程中,余热还可以被回收利用。
通过余热回收装置,将发电过程中产生的废热用于加热工序中的水或蒸汽,提高整个工业生产过程的能效。
6. 废气排放:余热发电过程中的废气经过净化处理后,被排放到大气中。
净化处理有助于减少废气中的污染物含量,避免对环境造成污染。
以上就是一个典型的余热发电工艺流程图。
通过将工业生产过程中产生的余热有效转化为电能,可以提高能源利用效率,减少能源消耗和环境污染。
这种技术对于可持续发展和节能减排具有重要意义。
硅铁厂余热发电工艺流程讲解
硅铁厂余热发电工艺流程讲解国内无论哪个行业、哪家技术提供商的余热发电技术,其基本概念和方向是一致的,均是通过余热锅炉(热交换器)回收热空气/烟气等介质中的热量,并进行能量转移,加热给水产生过热/饱和蒸汽,冲动汽轮发电机组做功发电。
其关键设备和核心问题之一是余热锅炉,如何将富含能量的热介质回收汇集以及引出进而通过余热锅炉进行能量转换是一个技术难点,这在各种余热发电技术上均略有差别。
此外,余热锅炉本身的设计也一定程度上决定了余热回收利用的比例和彻底性。
其二,余热发电的另一个问题是解决低压蒸汽和饱和蒸汽汽轮机设备的问题,众所周知,发电用蒸汽通常为过热蒸汽,且过热度越高越好。
但由于余热回收利用发电的性质,其产生的蒸汽多为低压蒸汽和湿蒸汽,相对于过热蒸汽,其在发电效率以及设备安全上均存在一定问题,随着青岛捷能、杭州汽轮机厂等生产单位中低温发电用汽轮机研制成功,这一问题已经被克服。
国外余热发电项目基本技术原理和技术方案同国内相仿,但能源利用效率要略高于国内水平。
另据资料显示,由于余热发电均为中低温参数,因此国外有考虑利用低沸点的烷类有机物取代水产生蒸汽,推动气轮机运转发电。
相对于以水及水蒸汽为循环工质,烷类有机物具有如下优点:(1)有机工质沸点低,易产生蒸汽,因此可以回收低温余热。
(2)冷凝压力接近或稍大于大气压,工质泄漏小。
(3)有机工质耐低温,不受冰冻的影响。
(4)转速低,因此噪声小。
(5)系统的工作压力低,约1.5MPa。
(6)无湿蒸汽产生,始终保持干燥,不受腐蚀,透平寿命长。
国际水泥工业余热发电技术最先进的德国和日本,近十几年来国内建筑业持续萎缩,水泥需求逐年下滑,德日两国1996年的本国水泥消费量分别由3550万吨和8400万吨,锐减为2006年的2600万吨和6000万吨,分别下降了27%和29%。
导致有些水泥厂纷纷关闭,技术人员大批流失。
水泥工业处于一片不景气之中,大大地阻碍了余热发电技术的发展进程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生产工艺流程:
(19)余热发电系统
本方案拟采用单压纯低温余热发电技术,与双压系统和闪蒸系统相比,单压系统流程相对较简单,当设计选择的锅炉能完全吸收烟气放出的热量时,采用单压设计更为合理,系统内不同参数的工质较少,控制操作都更简单,窑头锅炉和汽轮机设备造价降低,系统管路减少,投资相对更省。
结合本工程的生产规模及投资环境,拟采用单压纯低温余热发电技术。
该技术不使用燃料来补燃,因此不对环境产生附加污染,是典型的资源综合利用工程。
主蒸汽的压力和温度较低,运行的可靠性和安全性高,运行成本低,日常管理简单。
综合考虑本工程2500t/d熟料新型干法水泥生产线窑头、窑尾的余热资源分布情况和水泥窑的运行状况,确定热力系统及装机方案如下:系统主机包括一台PH余热锅炉、一台AQC余热锅炉和一套凝汽式汽轮发电机组。
据2500t/d水泥熟料生产线窑头冷却机废气排放温度的分布,在满足熟料冷却及工艺用热的前提下,采驭中部取气,从而提高进入窑头余热锅炉-AQC炉的废气温度,减少废气流量,在缩小 AQC炉体积的同时增大了换热量。
并且提高了整个系统的循环热效率。
在窑头冷却机中部废气出口设置窑头余热锅炉 AQC炉,该锅炉分 2段设置,其中I段为蒸汽段,II段为热水段。
AQC炉 II段生产的 150° C 热水提供给AQC炉 I段及PH锅炉°AQC炉I段生产的 1.6MPa- 3 2 0。
C 的过热蒸汽作为主蒸汽与窑尾余热锅炉 P H炉生产的同参数过热蒸汽合并后,一并进入汽轮机作功。
汽轮机的凝结水进入余热锅炉AQC炉I工段,加热后分别作为锅炉给水进入余热锅炉 SP炉、余热锅炉A QC炉的I
段。
②PH余热锅炉:在窑尾预热器的废气出口管道上设置PH余热锅炉,该锅炉包括过热器和蒸发器,生产 1.6MPa-32 0C的过热蒸汽,进入蒸汽母管后通入汽轮发电机组,出 P H余热锅炉废气温度降到18 0 —200C,供生料粉磨烘干使用。
P H锅炉热效率可达35%以上。
③汽轮发电机组:上述二台余热锅炉生产的蒸汽共可发电 4100kW 因此配置4500kW凝汽式汽轮机组一套。
整个工艺流程是:40 C左右的给水经过除氧,由锅炉给水泵加压进入 AQC 锅炉省煤器后加热成135 C左右的热水,热水分成两部分,一部分送往AQC锅炉,另一部分送往SP锅炉;然后依次经过各自锅炉的蒸发器、过热器产生1.6MPa-320C和1.6MPa-320C的过热蒸汽,在蒸汽母管汇合后进入汽轮发电机组做功,做功后的乏汽进入凝汽器成为冷凝水,冷凝水和补充纯水经除氧器除氧再进行下一个热力循环。
PH锅炉出口废气温度180-200 C左右,用于烘干生料。
表2-6主要余热发电设备一览表。