高分子材料加工原理考试复习重点

合集下载

高分子材料加工工艺学复习要点

高分子材料加工工艺学复习要点

高分子材料加工工艺学复习要点1、高分子材料主要包括纤维、塑料、橡胶、胶黏剂和涂料五大类。

2、纤维按原料来源可分为再生纤维、合成纤维和无机纤维。

3、塑料按受热行为可分为热塑性塑料和热固性塑料。

4、塑料按使用特点可分为通用塑料和工程塑料。

5.特殊编号*普通分支编号=1000,1个特殊=9丹,1个特殊=10分,1g/Dan=0.0882n/tex=0.882cn/dtex=8.82cn/tex。

pet分子有两种空间构象:(略)7、切片干燥的目的是除去水分、提高切片含水的均匀性、提高结晶度及软化点。

8、聚酯切片干燥设备分为间歇式和连续式两类。

9、BM型预结晶干燥装置的干燥机构:右风道为进风道,左风道为出风道,中间有六组风道。

其中1、3、5与右风道相连,称为进气管;2.4、6与左风管相连,称为出风管。

干热风从进风口进入右风管,同时以三种方式进入135风管,从这些风管底部的长条形开口缝溢出,向上翻转,穿透切片层上升,然后从246出风管下方的长条形开口进入,收集在左侧风管中,并进入干燥箱的第二部分。

10、聚酯纤维的熔体纺丝成型可分为切片纺丝和直接纺丝两种。

11.聚酯纤维的纺丝速度一般可分为常规纺丝、中速纺丝、高速纺丝和超高速纺丝。

12.冷却和吹风过程条件主要包括风温、风湿病和风速。

13.TCS生产工艺特点:(略)14、根据不同纺速下纤维的dta谱图,可以得到以下信息:在较低纺丝速度下,卷绕丝在低温侧(130度)附近仍有冷结晶峰出现,在高温侧(250度)附近有结晶熔融吸热峰,只有在卷绕丝进行拉伸热处理后,低温侧的冷结晶峰才消失。

但随着纺丝速度的提高,dta曲线上的冷结晶峰逐渐减少并向低温方向移动,纺速达5000m/min以上时,冷结晶峰消失,而熔融峰随纺速提高逐渐变得尖锐,并略向高温侧移动。

15.在“涤纶长丝拉伸加捻机原理图”中,2:绕丝,6:加热器,12:钢丝圈。

16、聚酯纤维的性质:1)力学性能:强度高、伸长率适中、模量高、回弹性好、耐磨性好。

高分子材料复习重点

高分子材料复习重点

高分子材料复习重点绪论:1、标志性的事件:塑料的(1)19世纪中叶第一种工业化的塑料----赛璐珞”(Celluloid)的塑料(1869)(最早被应用的塑料)(2)雷奥.比克兰德合成酚醛树脂(PF)也是第一个工业化生产的合成树脂(第一种人工合成树脂)(3)1920年,Staudinger首先提出了高分子的概念(4)Zieglar-Natta催化剂合成出了低压高密度聚乙烯(HDPE, 1953~1955)和聚丙烯(PP)(HDPE和PP的合成方法是谁发明的)橡胶的(1)1823年,苏格兰化学家马金托什,像印第安人一样把白色浓稠的橡胶液体涂抹在布上,制成防雨布,并缝制了“马金托什”防水斗蓬,这是世界上最早的雨衣,也是橡胶工业的起点(2)1826年,英国人汉考克发明了双辊开炼机,用此设备可以将各种助剂混入橡胶中,1839年,美国化学家固特异尔偶然中发明了橡胶的硫化,解决了橡胶遇热变软发粘的缺点,制造出了世界第一双橡胶防水鞋,这两项发明使橡胶的应用得到了突破性的进展,奠定了现代橡胶加工业的基础(是什么发现导致了近现代意义橡胶工业的诞生?)橡胶是继石油、铁矿和有色金属之后的第四大战略资源2、概念:通用塑料:产量大、用途广、价格低、性能一般,主要用于非结构材料,如:聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)。

工程塑料:具有较高的力学性能,能够经受较宽的温度变化范围和较苛刻的环境条件,并在此条件下长时间使用,可作为结构材料。

树脂:树脂通常是指受热后有软化或熔融范围,软化时在外力作用下有流动倾向,常温下是固态、半固态,有时也可以是液态的有机聚合物。

广义地讲,可以作为塑料制品加工原料的任何聚合物都称为树脂。

弹性体:弹性体是一种性能独特的人造热可塑性弹性体,具有非常广泛的用途热塑性塑料:受热熔融、可进行各种成型加工,冷却时硬化。

再受热又可熔融、加工。

具有多次重复加工性。

热固性塑料:受热熔化,成型的同时发生固化发应,形成高分子立体网状结构,再受热不熔融,也不在溶剂中溶解。

高分子材料加工原理考试复习重点

高分子材料加工原理考试复习重点

名词解释5道 15分判断10道 10分选择10道 20分问答4道 40分论述题1题 15分第一章绪论通用高分子的主要种类和概念纤维:一种细长形状(长径比>10)、截面积较小(〈0.05mm2)的物体塑料:以合成(或天然)的高分子化合物为基本成份、在加工中通过塑化流动或原位聚合而成型的柔韧性或刚性固体高分子材料橡胶:以合成(或天然)的高分子化合物为基本成份的高弹性的高分子材料涂料:应用于物体表面并能结成坚韧保护膜的物质的总称胶粘剂:能把各种材料粘合在一起的物质材料是用来制造各种产品的物质,是具有满足指定工作条件下使用要求的形态和物理性状的物质.第二章聚合物流体的制备聚合物流体的制备包括熔体的制备和溶液的制备第二节中的1,2,3小节·熔体的话是通过加热,不同加热的方法,加热,熔体转移,熔体移轴,剪切,理解热传导,熔融方法上的要求聚合物的熔融:即完成聚合物由固体转变为熔体的过程。

一。

熔融的方法(了解蓝色字体的方法和区别)1. 无熔体移走的传导熔融2. 有熔体强制移走的传导熔融: 熔融的一部分热量由接触表面的传导提供,一部分热量通过熔膜中的粘性耗散将机械能转变为热能来提供。

·力学耗散:力学的能量损耗,即机械能转化为热能的现象.在外力作用下,大分子链的各运动单元可能沿力的方向做从优取向的运动,就要克服内部摩擦,所以要消耗能量,这些能量转化为热能。

随着螺杆的转动,筒壁上的熔膜被强制刮下来移走,而使熔融层受到剪切作用,使部分机械能转变为热能.哪种热能占主导地位,取决于聚合物本身的物理性质、加工条件和设备的结构参数。

当机筒温度较低、螺杆转数较高时,由剪切产生的剪切热占主要地位.当螺杆转数较低,机筒温度较高时,机筒的传导热占主要地位。

3.压缩熔融: 熔融热量由将机械能转变为热能来提供。

4。

耗散混合熔融: 熔融热量由在整个体积内将机械能转变为热能来提供的. 例:双辊塑炼(开炼)5.利用电、化学或其它能源的耗散熔融方法:熔融的热量通过电、化学或其它能源转变为热能来提供.6.振动诱导挤出熔融: 将振动力场引入聚合物熔融加工的全过程。

高分子材料加工理论总复习提纲

高分子材料加工理论总复习提纲

高分子材料加工理论总复习提纲2014年12月第一章高分子材料基础知识•高分子概念;•无定形聚合物与结晶聚合物的区别;•聚合物的力学三态与分子运动单元之间的关系。

•热物理性质:热容、导热系数、导温系数定义与单位。

第二章流体流动的基本知识•概念:连续介质、动量边界层与沿流动方向上的分区;•随体导数的组成和含义,会求运动参数的随体导数。

•应力张量特点;会根据速度场、速度梯度,求剪切速率张量(重点)、涡旋张量;应力分解的两种方法。

•会张量的代数运算(加、减、乘),求张量的不变量,特别是对称张量的第二不变量。

•聚合物加工中的二类基本流动的应力和应变张量。

第三章流体流动的基本方程•流体流动的三大定律与相应的数学表达式:连续性方程、动量方程、能量方程•动量方程和能量方程中各项的物理含义•会根据速度场、温度场列连续性方程、动量方程、能量方程,列出具体边界的边界条件。

•熟悉求解流动问题的四步骤。

重点掌握第二、第三步骤。

第四章聚合物流变特性和本构方程内容:聚合物熔体的流变行为粘性弹性粘弹性本构方程流变参数测量一聚合物熔体的流变行为粘性、弹性、粘弹性1 定义、现象与分子解释。

2 粘性流体分类:牛顿流体、假塑性流体、塑性流体、膨胀型流体二本构方程1 粘性流体几个本构方程之间的关系,幂律模型的特点和在聚合物加工中应用最广的原因?2 影响粘度的因素3牛顿流体、幂律流体本构方程。

4 流变方程的选择原则三流变参数测量1 粘度测量原理2 毛细管流变仪、锥板流变仪的特点与范围3 根据流动曲线计算幂律模型中的m,n。

4 流动曲线对聚合物加工有什么意义?5 毛细管流变仪可能的测量误差?如何修正?第五章有界流动•内容一典型流道中的流动二收敛流道中的流动与润滑近似方法三矩形管中的流动•典型流道:平行平板圆管圆环•流动:压力流拖曳流组合流动一典型流道中的流动•典型流道+ 流动动力:牛顿流体,幂律流体平行平板圆管环隙压力流拖曳流轴向周向组合流动轴向周向•分析流动问题四步骤:(一)拟定流场(二)列方程组(三)设法求解(四)结果分析•知道速度场、温度场,会列连续性方程、动量方程、能量方程本构方程;列边界条件。

东华大学《高分子材料加工原理》复习材料

东华大学《高分子材料加工原理》复习材料

高分子材料加工原理复习材料第二章 聚合物流体的制备一、聚合物的熔融方法1、无熔体移走的传导熔融。

熔融全部热量由接触或暴露表面提供,熔融速率仅由传导决定。

如滚塑过程。

2、有强制熔体移走(由拖曳或压力引起)的传导熔融。

熔融的一部分热量由接触表面的传导提供;一部分热量通过熔膜中的黏性耗散将机械能转变为热来提供。

所谓耗散,就是力学的能量损耗,即机械能转化为热能的现象。

在外力作用下,大分子链的各运动单元可能沿力的方向做从优取向的运动,就要克服内部摩擦,所以要消耗能量,这些能量转化为热能。

熔融速率由热传导以及熔体迁移和黏性耗散速率决定。

如螺杆挤压机的熔融挤出过程3、耗散混合熔融。

熔融热量是由在整个体积内将机械能转变为热能来提供的,是机械能转化为热能的现象。

耗散混合熔融速率由整个外壁面上和混合物固体—熔体界面上辅以热传导决定,如双辊开炼。

4、利用电、化学或其他能源的耗散熔融方法。

5、压缩熔融。

6、振动诱导挤出熔融 二、溶剂的选择原则1、聚合物和溶剂的极性相近规律。

极性大的溶质溶于极性大的溶剂;极性小的溶质溶于极性小的溶剂;溶质与溶剂的极性越相近,二者越易互溶。

2、溶度参教理论。

溶度参数理论是一个以热力学为基础的溶剂选择的最常用理论。

⑴未修正的溶度参数理论 适用:非极性混合体系⑵修正的溶剂参数理论(三维溶度参数理论) 适用:①非极性混合体系②极性混合体系③易成氢键体系3、高分子-溶剂相互作用参数(哈金斯参数)χ1: χ1>0.5不良溶剂;χ1<0.5良溶剂 三、聚合物-溶剂体系的相平衡图2-6(a )表示上临界混溶温度在溶剂的凝固点以下,因而在凝固点以上聚合物和溶剂可以很好地混溶。

图2-6(c )的相图则说明在沸点T b 以上才会出现互不相溶的区域,在溶剂沸点以下,可以与聚合物以任何比例互溶。

图2-6(b)的相图表示在溶剂的沸点和凝固点之间存在上临界混溶温度;图2-6(e )表示在溶剂的T b ~T f 温度范围内有下临界混溶温度。

高分子材料成型加工(考试重点及部分习题答案)

高分子材料成型加工(考试重点及部分习题答案)

高分子材料成型加工考试重点内容及部分习题答案第二章高分子材料学1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。

受热不熔融,达到一定温度分解破坏,不能反复加工。

在溶剂中不溶。

化学结构是由线型分子变为体型结构。

举例:PF、UF、MF2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。

再次受热,仍可软化、熔融,反复多次加工。

在溶剂中可溶。

化学结构是线型高分子。

举例:PE聚乙烯,PP聚丙烯,PVC聚氯乙烯。

3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。

4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。

举例:PA聚酰胺类、ABS、PET、PC5、缓冷:Tc=Tmax,结晶度提高,球晶大。

透明度不好,强度较大。

6、骤冷(淬火):Tc<Tg,大分子来不及重排,结晶少,易产生应力。

结晶度小,透明度好,韧性好。

定义:是指熔融状态或半熔融状态的结晶性聚合物,在该温度下保持一段时间后,快速冷却使其来不及结晶,以改善制品的冲击性能。

7、中速冷:Tc>=Tg,有利晶核生成和晶体长大,性能好。

透明度一般,结晶度一般,强度一般。

8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域内,继续结晶并逐步完善的过程。

9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。

第三章添加剂1、添加剂的分类包括工艺性添加剂(如润滑剂)和功能性添加剂(除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂)2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂。

针对热、氧、光三个引起高分子材料老化的主要因素,可将稳定剂分为热稳定剂、抗氧剂(防老剂)、光稳定剂。

热稳定剂是一类能防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂。

高分子材料成型加工原理-期末复习重点(升华提升版).docx

高分子材料成型加工原理-期末复习重点(升华提升版).docx

1聚合物主要有哪几种聚集态形式?玻璃态(结品态)、高弹态和粘流态2线性无定形聚合物当加工温度T处于Tb < T <Tg, Tg<T<Tf, Tf <T <Td时,分别适合进行何种形式的加工?聚合物加工的最低温度?T<Tg玻璃态一一适应机械加工;聚合物使用的最低(卜-限)温度为脆化温度TbTg <T <Tf高弹态,非晶聚合物Tg <T <Tf温度区间,靠近Tf 一侧,粘性大,可进行真空、压力、压延和弯曲成型等;高弹形变有时间依赖性,加工屮有可逆形变, 加工的关键的是将制品温度迅速冷却到匹以下;结晶或部分结晶聚合物在Tg〜Tm,施加外力〉材料的屈服强度,可进行薄膜或纤维拉伸;聚合物加工的最低温度:玻璃化温发TgT > Tf (Tm)粘流态(熔体,液态)比Tf略高的温度,为类橡胶流动行为,可进行压延、挤出和吹塑成型。

可进行熔融纺丝、注射、挤出、吹塑和贴合等加工3熔融指数?说明熔融指数与聚合物粘度、分子量和加工流动性的关系,挤出和注塑成型对材料的熔融指数要求有何不同?熔融指数(Melt Flow Index)一定温度(T>Tf或Tm)和压力(通常为2.160kg )下,10分钟内从出料孑L (0=2.095mm )挤出的聚合物重量(g/ 10 min)。

a评价热塑性聚合物的挤压性;b评价熔体的流动度(流度4)= 间接反映聚合物的分子量大小;c购买原料的重要参数。

分子量高的聚合物,易缠结,分子间作用力大,分子体积大,流动阻力较大,熔体粘度大,流动度小,熔融指数低;加工性能较差。

分子量高的聚合物的力学强度和硬度等较高。

分子量较低的聚合物,流动度小,熔体粘度低,熔融指数大,加工流动性好。

分了量较低的聚合物的力学强度和硬度等较低4解释:应变软化;应力硬化;塑性形变及其实质。

几是塑料使用的下限温度;应变软化:材料在拉伸吋发热,温度升高,以致形变明显加速,并出现形变的细颈现象。

高分子材料成型加工原理考点

高分子材料成型加工原理考点

高分子材料成型加工原理1.层流:是流体的一种流动状态,它作层状的流动。

流体在管内低速流动时呈现为层流,其质点沿着与管轴平行的方向作平滑直线运动。

流体的流速在管中心处最大,其近壁处最小。

管内流体的平均流速与最大流速之比等于0.5。

2.湍流:当流速增加到很大时,流线不再清楚可辨,流场中有许多小漩涡,层流被破坏,相邻流层间不但有滑动,还有混合,形成湍流3.稳态流动:稳态流动是指岩石蠕变中当应力保持不变,而应变速率保持恒定的状态,即岩石变形进入稳态蠕变的状态。

4.非稳态流动:非稳态流动,是指流体的流动状况随时间的变化而变化的流动。

5.剪切流动:剪切流动是指在剪切力作用下流体的流动,分为稳态剪切流动和非稳态剪切流动。

6.牛顿流体:任一点上的剪应力都同剪切变形速率呈线性函数关系的流体称为牛顿流体。

7.非牛顿流体:非牛顿流体,是指不满足牛顿黏性实验定律的流体,即其剪应力与剪切应变率之间不是线性关系的流体。

8.粘度:粘度是物质的一种物理化学性质,定义为一对平行板,面积为A,相距dr,板间充以某液体;今对上板施加一推力F,使其产生一速度变化度所需的力。

9.表观粘度:表观黏度是一个物理概念,是指在一定速度梯度下,用相应的剪切应力除以剪切速率所得的商,所以表观黏度一般小于真正黏度。

10.宾汉流体:当切应力超过某值才开始发生剪切变形,且切应力随剪切变形速率呈线性变化的液体,又译为宾厄姆流体。

11.入口效应:又称巴勒斯效应,指熔融聚合物通过管道变化的截面发生取向且弹性储能的现象。

12.膨胀性流体:在一定温度下,随剪切速率增大,黏度增加的非牛顿流体,其n>1(切力增稠流体)13.剪切速率:流体的流动速度相对圆流道半径的变化速率14.表观剪切黏度:非牛顿流动中给定剪切速率下剪切应力与剪切速率之比值。

15.端末效应:适当增加长径比聚醋熔体在进入喷丝孔喇叭口时,由于空间变小,熔体流速增大所损失的能量以弹性能贮存于体系之中,这种特征称为“入口效应”也称"端末效应"。

高分子材料加工原理复习资料

高分子材料加工原理复习资料

高分子材料加工原理复习资料1.成型加工过程中物理化学变化结晶:定型,增强,内应力,翘曲取向:增强;各项异性降解:塑化,性能变差交联:硫化,增强性能2.热塑性树脂:热塑性树脂:是具有受热软化、冷却硬化的性能,而且不起化学反应,无论加热和冷却重复进行多少次,均能保持这种性能。

凡具有热塑性树脂其分子结构都属线型。

它包括含全部聚合树脂和部分缩合树脂。

热固性树脂:指在加热、加压下或在固化剂、紫外光作用下,进行化学反应,交联固化成为不溶不熔物质的一大类合成树脂。

异性纤维:经一定几何形状(非圆形)喷丝孔纺制的具有特殊横截面形状的化学纤维。

共混纤维:两种或多种聚合物混合后纺成的纤维。

差别化纤维:不同于常规品种的化学纤维,即经过化学改性,物理变化和特殊工艺而得到的具有某种特性的化学纤维。

特种橡胶: 也称特种合成橡胶。

指具有特殊性能和特殊用途能适应苛刻条件下使用的合成橡胶。

3.溶剂的选择原则a.对于极性聚合物而言,应选择极性相近的原则b.对于非极性聚合物而言应使两者溶度参数接近c.溶剂相互作用参数χ1﹤1/2原则 d.经济,工艺,坏境上的要求。

工业上1沸点不应太低或过高2溶剂需具备足够的热稳定和化学稳定,在回收过程中不易分解3要求溶剂的毒性低,对设备腐蚀性小4.溶解过程中不引起对聚合物的破坏或发生其他化学变化5在适当温度下有较好的溶解能力,并在尽可能高的浓度时仍有尽可能低的黏度. 4.混合的三种基本运动形式?a.分子扩散b. 涡旋扩散c.体积扩散对于聚合物熔融以体积扩散为主,熔体粘度高,熔体与溶液间分子扩散慢很少发生分子扩散和涡旋扩散。

5.爬杆效应:在聚合物溶液或熔体中聚合物沿快速旋转轴慢慢上爬并形成相当厚的包轴层的现象。

挤出胀大:当高聚物熔体从小孔、毛细管或狭缝中挤出时挤出物在挤出模口后膨胀使其横截面大于模口横截面的现象。

无管虹吸:对高分子液体当虹吸管升离液面后,杯中的液体仍能源源不断地从虹吸管流出,这种现象称无管虹吸效应。

高分子材料成型加工原理复习

高分子材料成型加工原理复习
❖什么是可延性?
可延性表示无定型或半结晶聚合物在一个或 两个方向上受到压延或拉伸时变形的能力。 ❖发生地点:压延或拉伸工艺 ❖聚合物力学状态:高弹态或玻璃态 ❖表征方法:拉伸试验
2021/4/4
12
第一节 聚合物材料的加工性质
可延性源于: ①大分子结构
非晶高聚物单个分子空间形态:无规线团; 结晶高聚物:折叠链状; 细而长的长链结构和巨大的长径比;
2021/4/4
10
第一节 聚合物材料的加工性质
1.1.3 聚合物的可纺性
❖什么是可纺性?
可纺性是指聚合物材料通过加工形成连续的 固态纤维的能力。 ❖发生地点:主要有熔融纺丝 ❖聚合物力学状态:粘流态 ❖表征方法:纺丝实验
2021/4/4
11
第一节 聚合物材料的加工性质
1.1.4 聚合物的可延性
2021/4/4
9
第一节 聚合物材料的加工性质
1.1.2 聚合物的可模塑性
1.什么是可模塑性?
可模塑性指材料在温度和压力作用下形变和 在模具中模制成型的能力。(熔体的充模能力)
❖发生地点:主要有挤出机、注塑机、模具中等
❖聚合物力学状态:高弹态、粘流态
❖表征方法:螺旋流动试验
在成型加工过程中,聚合物的可模塑性常用在一定温 度、压力下熔体的流动长度来表示。
2. 比较塑性形变和粘性形变的异同点。 3.什么是聚合物的力学三态,各自的特点是什么?
各适用于什么加工方法?
2021/4/4
18
4.聚合物具有一些特有的加工性质,如有良好的( ), ( ),( )和( )。
5.()是评价聚合物材料的可挤压性 这一加工性质的 一种简单而又实用的方法,而( )是评价聚合物 材料的可模塑性这一加工性质的一种简单而又实 用的方法。

高分子材料制备与加工复习资料

高分子材料制备与加工复习资料

高分子材料制备与加工复习资料第一章高分子材料简介1.1聚合物的基本概念1。

聚合物:也称为聚合物或大分子。

主链是共价键合的,具有高分子量。

它的结构必须由多个重复单元组成,这些重复单元实际上或概念上来自相应的小分子(单体)。

一般来说,大分子是由许多相同的重复单元通过化学键连接而成的大分子。

2.单体:可以聚合并转化为聚合物基本结构单元的小分子。

3.重复单元:聚合物中化学成分相同的最小单元,也称为链。

4.结构单元:基于大分子链中单体结构的原子团5。

聚合度:每个聚合物分子中包含的结构单元的数量。

1.2高分子的命名:习惯命名法+商品名或俗称命名法(课件)1.3高分子分类:按来源可分为天然高分子、半天然高分子和合成高分子按主链分为:碳链高分子、杂链高分子、元素有机高分子、无机高分子根据性能和应用:1)塑料:在常温下具有固定的形状和强度,在高温下具有可塑性的高分子化合物。

在外力的作用下,可以产生形变,加工成任何所需的形状。

如pe、pvc、abs、pc、ptfe。

2)橡胶:橡胶是一种有机聚合物弹性化合物。

它在较宽的温度范围(-50~150℃)内具有良好的弹性,因此也被称为高弹性体。

例如NR、Br、SBR、IIR。

3)纤维:纤维是指长度比其直径大很多倍(大于1000/1),并具有一定柔韧性的纤细物质。

如锦纶、腈纶、涤纶、维纶。

4)粘合剂:将各种材料紧密结合在一起的物质。

5)涂料:涂布在物体表面而形成具有保护和装饰作用膜层的材料。

6)功能聚合物:具有特定功能的聚合物化合物,可用作功能材料。

如导电聚合物、液晶、生物可降解聚合物等。

第二章聚合反应和聚合方法2.1聚合反应的分类:按反应过程中是否析出低分子分类:加聚反应和缩聚反应?按聚合反应机理分类:连锁聚合和逐步聚合分别说明自由基聚合反应和缩聚反应的特点。

1)自由基聚合的特点:可明显区分出引发、增长、终止、转移等基元反应。

慢引发、快增长、速终止。

大分子是瞬间形成的,聚合物的聚合度变化不大。

高分子材料成型加工复习要点总结

高分子材料成型加工复习要点总结

高分子化合物:是一种树脂或橡胶和添加剂组成的物质。

高分子材料:是将高分子化合物经过工程技术处理后得到的。

高分子材料再经过成型加工,才能进入使用领域,成为高分子制品或成品。

塑料:是以树脂为主要成分,一般含有添加剂、在加工过程中能流动成型的材料。

密度小、比强度大、耐腐蚀性和绝缘性能。

橡胶:独特的高弹性,优异的疲劳强度,极好的电绝缘姓与耐磨性。

纤维:工业上是指柔韧、纤细的丝状物。

它有相当的长度、强度和弹性。

高分子材料成型加工特性可挤压性是指聚合物通过挤压作用形变时获得形状和保持形状的能力;可模塑性是指材料在温度和压力作用下形变和在模具中模塑成型的能力;可延性表示无定形或半结晶固体塑料在一个或两个方向上受到压延或拉伸应力时变形的能力;可纺性材料通过成型而形成连续固态纤维的能力。

入口压力降产生原因有哪些?①物料进入口模时,熔体在入口处产生收敛引起能量损失。

②入口处熔体产生弹性变形,因弹性能的存储造成能量损失。

③熔体流经入口处时,剪切速率剧增引起速度的激烈变化,为达到稳定流速分布产生了压力降。

聚合物结晶度大,制品的密度就大,制品成型收缩率大,刚度大,大多数力学性能较高,但伸长率和冲击强度下降。

混合通过各组分的物理运动(扩散)完成,基本运动形式:分子扩散,涡流扩散和体积扩散。

分散混合设备主要通过向物料施加剪切力,挤压力而达到分散目的,以物料所受剪切力的大小或剪切变形程度来决定设备混合强度的高低。

热固性模塑料的成型工艺性能(压制成型)流动性,固化速率,成型收缩率(高温模压后,脱模冷却至室温,各项尺寸会发生收缩,压缩率:体积变化大,表观相对密度与制品相对密度的比值,(通常降低压缩率的方法是模压成型前对物料进行预压)压缩成型过程:嵌件,加料嵌模排气固化脱模。

传递模塑形式及设备①罐式传递模塑②柱塞式传递模塑③杆式传递模塑热固性塑料制品收缩的因素:①成型过程中发生了化学交联,密度变大,产生收缩,②由于塑料和金属的热膨胀系数相差很大,故冷却后塑料的收缩比金属模具大得多③制品脱模后由于压力下降有弹性回复和塑性变形产生使制品的体积发生变化挤出成型的原理:使高聚合物的熔体在挤出机的螺杆或柱塞的挤压作用下通过一定形状口模而成为具有恒定截面的连续制品的挤出成型工艺流程①塑化使塑料粒子由粒状转变成粘流态物质(干法塑化)②成型③定型(定径处理冷却处理)聚合物熔体在挤出机均化段的流动形式:正流、逆流、漏流和横流。

高分子材料成型加工原理 期末复习重点

高分子材料成型加工原理 期末复习重点

1聚合物主要有哪几种聚集态形式?玻璃态(结晶态)、高弹态和粘流态2线性无定形聚合物当加工温度T处于Tb < T <Tg,Tg<T<Tf,Tf <T <Td时,分别适合进行何种形式的加工?聚合物加工的最低温度?T<Tg玻璃态——适应机械加工;聚合物使用的最低(下限)温度为脆化温度Tb Tg<T<Tf高弹态,非晶聚合物Tg<T<Tf温度区间,靠近Tf一侧,粘性大,可进行真空、压力、压延和弯曲成型等;高弹形变有时间依赖性,加工中有可逆形变,加工的关键的是将制品温度迅速冷却到Tg以下;结晶或部分结晶聚合物在Tg~Tm,施加外力>材料的屈服强度,可进行薄膜或纤维拉伸;聚合物加工的最低温度:玻璃化温度TgT>Tf(Tm)粘流态(熔体,液态)比Tf略高的温度,为类橡胶流动行为,可进行压延、挤出和吹塑成型。

可进行熔融纺丝、注射、挤出、吹塑和贴合等加工3熔融指数?说明熔融指数与聚合物粘度、分子量和加工流动性的关系, 挤出和注塑成型对材料的熔融指数要求有何不同?熔融指数(Melt Flow Index)一定温度(T >Tf 或 Tm)和压力(通常为2.160kg )下,10分钟内从出料孔 (Ø= 2.095mm ) 挤出的聚合物重量( g∕10 min)。

a评价热塑性聚合物的挤压性;b评价熔体的流动度 (流度φ= 1/η), 间接反映聚合物的分子量大小;c购买原料的重要参数。

分子量高的聚合物,易缠结,分子间作用力大,分子体积大,流动阻力较大,熔体粘度大,流动度小,熔融指数低;加工性能较差。

分子量高的聚合物的力学强度和硬度等较高。

分子量较低的聚合物,流动度小,熔体粘度低,熔融指数大,加工流动性好。

分子量较低的聚合物的力学强度和硬度等较低4成纤聚合物的一般特性,纤维成型过程,纺丝液体的制备,工业生产主要纺丝成形方法。

1)分子量较高,分子间作用力(含强极性基团或氢键)较大;可制成强度好的纤维;2)无较长支链、交联结构和很大的取代基团,为线型结构,结晶性较好,使拉伸取向结晶后,纤维的强度和模量较高。

高分子材料成型加工原理复习题及答案

高分子材料成型加工原理复习题及答案

高分子材料加工成型原理考试复习资料考试题型1.填空题2512.选择题1023.名词解释534.解答题565.论述题110可挤压性是指聚合物通过挤压作用是获得形状和保持形状的能力;可挤压性主要取决于熔体的剪切粘度和拉伸粘度;熔融指数是评价热塑性聚合物特别是聚烯烃的挤压性的一种简单而实用的方法,它是在熔融指数仪中测定的;可模塑性是指材料在温度和压力作用下形变和在模具中模制成型的能力;可模塑性主要取决于材料的流变性,热性质和其它物理力学性质;聚合物的可延性取决于材料产生塑性形变的能力和应变硬化能力作用;由于松弛过程的存在,材料的形变必然落后于应力的变化,聚合物对外力响应的这种滞后现象称为滞后效应或弹性滞后;聚合物熔体的流变行为按作用力可分为剪切流动、拉伸流动;均相成核又称散现成核,是纯净的聚合物中由于热起伏而自发的生成晶核的过程,过程中晶核的密度能连续上升;异相成核又称瞬时成核是不纯净的聚合物中某些物质起晶核作用成为结晶中心,引起晶体生长过程,过程中晶核密度不发生变化;在Tg~Tm温度范围内,常对制品进行热处理以加速聚合物的二次结晶或后结晶的过程,热处理为一松弛过程,通过适当的加热能促使分子链段加速重排以提高结晶度和使晶体结构趋于完善;通常热处理的温度控制在聚合物最大结晶速度的温度Tmax;塑料成型加工一般包括原料的配制和准备、成型及制品后加工等几个过程;混合过程一般是靠扩散、对流、剪切三种作用来完成;衡量其混合效果需从物料的分散程度和组成的均匀程度两方面来考虑;最常见的螺杆直径为45~150毫米;长径比L/D一般为18~25;压缩比是螺杆加料段最初一个螺槽容积于均化段最后一个螺槽容积之比,表示塑料通过螺杆全长范围时被压缩的倍数,压缩比愈大塑料受到的挤压作用愈大;根据物料的变化特征可将螺杆分为加料段、压缩段和均化段;锁模机构在启闭模具的各阶段的速度都不一样的,闭合时应先快后慢,开启时则应先慢后快再转慢;利用本身特定形状,使塑料或聚合物成型为具有一定形状和尺寸的制品的工具称模具;浇注系统是指塑料熔体从喷嘴进入型腔前的流道部分,包括主流道、分流道、浇口等;完成一次注射成型所需的时间称注射周期或称总周期;压制成型的加料方法可以分为重量法、容量法、计数法;分离力与辊筒的半径、长度和速度成正比,而和辊间距称反比;通常可将辊筒设计和加工成略带腰鼓型,或调整两辊筒的轴,使其交叉一定角度或加预应力,就能在一定程度上克服或减轻分离力的有害作用,提高压延制品厚度的均匀性;在压延过程中,热塑性塑料由于受到很大的剪切应力的作用,因此大分子会顺着薄膜前进方向发生定向作用,使生成的薄膜在物理机械性能上出现各向异性,这种现像称为压延效应;压延效应的大小,受压延温度、转速、供料厚度和物料性能等的影响,升温或增加压延时间,均可减轻压延效应;压延机的二辊用于橡胶或PVC的塑炼,三辊用于橡胶,四辊塑料;固定倒数第二辊;人造革就是以布或纸为基体,在其上覆以聚氯乙烯糊的一种复合材料;在一定条件下将片、板、棒等塑料型材通过再次加工成型为制品的方法,称为二次成型法;二次成型包括:中空吹塑成型、热成型、取向薄膜的拉伸等;中空吹塑成型是将挤出或注射成型的塑料管坯或型坯趁热于半熔融的类橡胶状时,置于各种形状的模具中,并即时在管坯中通入压缩空气将其吹胀,使其紧贴于模腔壁上成型,经冷却脱模后即得中空制品;拉幅薄膜热定型的目的:1消除内应力2降低收缩率3改善性能;1、简述离模膨胀的含义、原因及主要影响因素;答:定义:被挤出的聚合物熔体断面积远比口模断面积大的现象;离模膨胀比定义为充分松弛的挤出物直径d与口模直径D之比;圆形口模的离模膨胀比为:B = d/D 或B’ = d2/D2=B2原因:a、取向效应b、弹性变形效应c、正应力效应影响因素:1长径比一定,B随剪切速率增加而增大;在熔体破裂临界剪切速率之前有最大值Bmax,而后下降;2低于τc之下,B随τ增加而增大;高于τc时,B值则下降;3在低于临界c的一定的剪切速率下,B随温度升高而降低;4剪切速率恒定,B随长径比L/D的增大而降低;L/D超过某一数值时,B为常数;5离模膨胀比随熔体在口模内停留时间呈指数关系地减少;6离模膨胀比随聚合物的品种和结构不同而异;线性、柔性聚合物位阻低,松弛时间短,B值小;粘度大,分子量高,分布窄,非牛顿性强,松弛缓慢,B值大;2、为什么要对一些成型物料进行干燥预处理举例说明,并列出工艺条件;答:水分以及其它低分子物的存在, 一方面因其在塑料的成型温度下会挥发成气体,从而造成制品表面缺乏光泽和出现气泡与银丝等外观缺陷;另一方面有可能促使聚合物大分子在高温下发生降解或交联反应,其结果不仅会使塑料熔体的粘度改变,给成型工艺控制带来困难,而且对制品的力学性能和电性能等也会产生不利的影响;各种热塑性塑料成型时的允许含水量很不相同;一般来说,成型温度较高而且在高温下较容易发生水解的塑料,其允许含水量就比较低;反之,允许含水量就比较高;例如,PC的成型温度高达300℃,因大分子链中有酯键,高温下的水解稳定性差,粒料的含水量大于%就很难成型,而且随含水量的增加,其制品外观和冲击强度明显下降;而PS由于成型温度不超过200℃,且大分子链中无易水解基团,故在其粒料含水量高达%时仍可顺利成型;PC干燥的工艺条件:循环鼓风干燥,温度110℃,时间:12h,料层厚度25~50mm;3、在生产硬聚氯乙烯管材时,物料经挤出塑化后,由机头挤出后,紧接着进行什么工序,说明此工序的作用,该工序是如何影响管材质量的答:紧接着进行冷却定型工序, 它的作用是将从口模挤出的物料的形状和尺寸进行精整,并将它们固定下来,从而得到具有更为精确的截面形状、表面光亮的制品;影响:定型装置的内表面的粗糙度直接影响管材的外观质量,定型装置内径尺寸决定了管材外径尺寸精度;真空度太小,吸管不紧影响尺寸和表面,真空度太大,牵引困难,不能正常生产;4、为什么说物料的初始温度过高,对加料段的固体输送能力不利答:物料的初始温度过高,易形成架桥,进料不畅,严重时不能进料;另外,高聚物与金属的摩擦因数是温度的函数,过高降低了物料与料筒的摩擦因数,降低了固体输送能力;5、为什么在一种设备上螺杆转速n不能过高并且靠增加转速来提高生产率也是有限度的答:随着转速的增加,物料所受到的剪切作用加大,即剪切速率增大,因为大多数聚合物都是假塑性流体,因此,随γ↑,η↓,则漏流↑,逆流↑,所以,当转速高到一定程度时,漏流和逆流对产量的影响就不能忽略了;在实际生产中,也不能靠提高螺杆的转速无限制的增加生产能力,随n不断提高,剪切速率达到一定范围后,就会出现熔体破裂现象;也就是说,对n的提高,限制性的因素就是是否出现了熔体破裂;经以上讨论,可知,随n的提高,可以提高生产率,但n的提高是有限制的;6、在模压成型过程中,为什么要采取预热操作预热有哪些设备答:模压前对塑料进行加热具有预热和干燥两个作用,前者为了提高料温,后者为了去除水分和其他挥发物;作用:①能加快塑料成型时的固化速度,缩短成型时间;②提高塑料流动性,增进固化的均匀性,提高制品质量,降低废品率;③可降低模压压力,可成型流动性差的塑料或较大的制品;预热:15~20 mpa,未预热:30 ±5 mpa预热设备:①电热板加热;②烘箱加热;③红外线加热;④高频加热等;7、在模压成型过程中,为什么要采取预压操作预压有那些设备预压就是在室温下将松散的粉状或纤维状的热固性模塑料压成重量一定,形状规则的型坯的工序;预压作用:①加料快、准确、无粉尘;②降低压缩率,可减少模具装料室和模具高度;③预压料紧密,空气含量少,传热快,又可提高预热温度,从而缩短了预热和固化的时间,制品也不易出现气泡;④便于成型较大或带有精细嵌件的制品;预压的设备是预压机和压模;8、压延效应产生的原因及减小的方法是什么答:产生的原因:在压延过程中,热塑性塑料由于受到很大的剪切应力和拉伸应力作用,因此高聚物大分子会沿着压延方向作定向排列,以至制品在物理机械性能上出现各向异性,即压延效应;减小的方法:物料温度适当提高,可以提高其塑性,加强大分子的运动,破坏其定向排列,可降低压延效应;降低辊筒转速,则压延时间增加,压延效应降低;辊筒存料量少,压延效应也降低;增加制品的厚度,可减小压延效应;尽量不使用各向异性的配合剂,压延后缓慢冷却,有利于取向分子松弛,也可降低压延效应;9、什么是人造革,简述其用压延法生产的工艺流程,并用示意图表示;答:人造革是以布、纸或玻璃布为基材,在其上覆以粘流态塑料如PVC、PU的一种复合材料;以压延法生产人造革时,基材应先经预热,同时粘流态塑料可先经挤压塑化或辊压塑化再喂于压延机的进料辊上,通过辊筒的挤压和加热作用,使塑料与基材紧密结合,再经压花、冷却、切边和卷取而得制品;下图为四辊压延机生产人造革示意图擦胶法;五、论述题1、论述注射成型的工艺过程;答:按其先后顺序主要包括:1)成型前的准备;①原料性能的了解,主要指热性能、流变性能、压缩率、吸湿性、细度、均匀度等;②原料的预处理,主要指原料的干燥、着色等;③料筒的清洗,在更换原料、调换颜色或发现正在加工中的塑料有一定降解现象出现时,就需要对料筒进行清洗;④嵌件预热;⑤脱模剂的选择,Ⅰ. 硬脂酸锌:不适用于PA;Ⅱ. 白油液体石蜡:对PA效果好,还可防止空隙;Ⅲ. 硅油:虽效果好,但价格高,使用麻烦需配甲苯溶液;2)注射过程;具体过程为:①加料塑化塑料粒子加入到料筒中,通过加热逐渐变成熔体柱塞式,或沿螺杆槽向前移动,通过料筒外的加热及螺杆转动时塑料产生的摩擦热逐渐转变为熔体;②充模注射柱塞或移动螺杆把塑料均匀的熔体推向料筒前端,经过喷嘴及模具浇注系统注入并充满模具的型腔;③保压充满之后,柱塞或移动螺杆仍保持施压状态,使喷嘴的熔体不断充实型腔,以确保不缺料;另可使大分子进一步松弛因有滞后;④凝封在浇注系统里的熔体体积比制品小的多先行冷却硬化,模腔内还未冷却固化的熔体就不会向喷嘴方向倒流,这一现象叫凝封;凝封则保压结束,可退螺杆和注塞;同时下一周期的加料塑化开始;⑤冷却保压结束,同时对模具内制品进行冷却、固化,一般冷却到塑料的玻璃态或结晶态;⑥脱模3)制品的后处理;主要指退火和调湿处理;退火是将制品放在一定温度的加热介质热水、热油等或热空气循环箱中静置一段时间,然后缓慢冷至室温,消除制品在加工过程中产生的复杂内应力;调湿处理是将刚出模的热制品放入热水中放置一段时间;主要是为了避免氧化变色放入热水中,隔绝氧;加快得到吸湿平衡,稳定制品尺寸;适量水分对PA等有增塑作用;可以改善柔性、韧性、拉伸强度等性能;2、论述塑料的一次成型和二次成型的联系和区别,并举例说明;答:一次成型是通过加热使塑料处于粘流态的条件下,经过流动、成型和冷却硬化或交联固化,而将塑料制成各种形状的产品的方法;一次成型包括挤出成型、注射成型、模压成型、压延成型等,成型制品从简单到极复杂形状和尺寸精密的制品,应用广泛,绝大多数塑料制品是从通过一次成型法制得的;二次成型是将一次成型所得的片、管、板等塑料型材,加热使其处于类橡胶状态,通过外力作用使其形变而成型为各种简单形状,再经冷却定型而得制品;二次成型包括中空吹塑成型、热成型、拉幅薄膜的成型等方法,仅适用于热塑性塑料的成型;二次成型是在一次成型的基础上进行成型的一种方法;区别:如PVC挤出吹塑成型过程:挤出管坯→合模→送入压缩空气,吹胀型坯→保压、冷却定型后脱模挤出管坯应属于一次成型,后面的成型过程属于二次成型,具体从成型对象、成型温度、形变来具体说明二者联系和区别;。

高分子材料成型加工复习(整理)

高分子材料成型加工复习(整理)

1.高分子材料中加入添加剂的目的是什么?添加剂可分为哪些主要类型目的:满足成型加工上的要求满足制品性能上的要求满足制品功能上的要求满足制品经济上的要求主要类型:工艺性添加剂功能性添加剂2.哪些热稳定剂可用于食品和医药包装材料有机锡类稳定剂有机锑类稳定剂复合稳定剂稀土类稳定剂3.哪一类热塑性聚合物在成型加工中需使用热稳定剂?为什么?热稳定性差的热塑性聚合物。

加入热稳定剂才能实现在高温下加工成型,制得性能优良的制品。

4.增塑剂的作用机理添加到高分子材料中,使体系的可塑性增加,改进柔软性、延伸性和加工性。

降低玻璃化温度Tg第四章1.在高分子材料制品设计中,成型加工方法选择的依据是什么①制品形状②产品尺寸③材料特征④公差精度⑤加工成本第五章1.聚合物熔体在成型加工中有哪些流动类型①层流和湍流②稳定流动与不稳定流动③等温流动和非等温流动④拉伸流动和剪切流动2.聚合物流体有哪些奇异流变现象,简述产生的原因①高粘度与剪切变稀行为②Weissenberg效应③Barus效应④不稳定流动与熔体破裂⑤无管虹吸与无管侧吸⑥次级流动⑦触变性和震凝性⑧湍流减阻与渗流增阻3.聚合物熔体剪切黏度的影响因素①剪切速率②温度③压力④分子结构⑤添加剂第六章1.物料的混合有哪三种基本运动形式?聚合物成型时熔融物料的混合以哪一种运动形式为主?运动方式:①分子扩散②涡旋扩散③体积扩散体积扩散2.温度对生胶塑炼油何影响?为什么天然橡胶在110℃时塑炼效果最差?温度对橡胶的塑炼效果有很大影响,而且在不同温度范围内的影响也不同。

塑炼温度低:①物料粘度高,剪切作用大,机械作用效果大②氧化反应速度低,化学作用效果小塑炼温度高:①物料粘度低,剪切作用小,机械作用效果小②氧化反应速度高,化学作用效果大3.什么叫塑料的混合和塑化,其主要区别在哪里塑料的混合:物料的初混合,在低于流动温度和较为缓和的剪切速率下进行,混合后,物料各组分的物理性质和化学性质无变化,只增加各组分颗粒的无规则排列程度,不改变颗粒大小塑料的塑化:再混合,在高于流动温度和较强烈的剪切速率下进行,混合后,物料各组分物化性质有所改变4.塑料的塑化与橡胶的塑炼二者的目的和原理有何异同塑化:目的是使物料在一定温度和剪切力下熔融,驱出其中的水分和挥发物,使各组分更趋均匀,得到具有一定可塑性的均匀物料橡胶的塑炼:目的是使生胶由强韧的弹性转变为柔软的便于加工的塑性状态的过程,使之适合于混炼,压延,压出,成型工艺操作,增加可塑性以便得到质量均匀的胶料。

高分子材料成型加工复习要点(1)

高分子材料成型加工复习要点(1)

1高分子材料成型加工的定义和实质高分子材料成型加工是将聚合物(有时还加入各种添加剂、助剂或改性材料等)转变成实用材料或制品的一种工程技术。

大多数情况下,聚合物加工通常包括两个过程:首先使原材料产生变形或流动,并取得所需要的形状,然后设法保持取得的形状(即硬化),流动-硬化是聚合物加工过程的基本程序。

高分子材料加工的本质就是一个定构的过程,也就是使聚合物结构确定,并获得一定性能的过程。

2影响高分子材料性能的化学因素构成的元素种类及其连接方式;立体规整性;共聚物组成;交联;端基;结构缺陷;支链3影响高分子材料性能的物理因素相对分子质量及其分布;结晶性;粒径与粒度分布;成型过程中的取向;熔体黏度与成型性4假塑性流体是非牛顿流体的一种,无屈服应力,具有粘度随剪切速率增加而减小的流动特性的流体。

5离模膨胀聚合物熔体挤出后截面积比口模截面积大。

此种现象称之为巴拉斯效应,也成为离模膨胀效应。

6开炼机混炼工艺过程阶段开炼机混炼经历包辊、吃粉、翻捣三个阶段7密炼机混炼工艺过程阶段混炼过程主要分为湿润、分散、捏炼三个过程8混合设备的分类根据操作模式分类:间歇式和连续式根据混合过程特征:分布式和分散式根据混合物强度大小:高强度、中强度、低强度混合设备9塑炼的分类及常见设备机械塑炼(常见设备有开炼机、密炼机、螺杆塑炼机)、化学塑炼、物理塑炼。

10热固性塑料的成型收缩率热固性塑料在高温下模压成型后脱模冷却至室温,其各向尺寸将会发生收缩,此成型收缩率S L定义为:在常温常压下,模具型腔的单向尺寸L0和制品相应的单向尺寸L之差与模具型腔的单向尺寸L0之比为:SL=(L0-L)/L0*100%11正硫化正硫化:橡胶的交联反应达到一定的程度,此时的各向物理机械性能均达到或接近最佳值,其综合性能最佳。

此时交联键发生重排、裂解等反应,同时存在的交联、裂解反应达到了平衡,因此胶料的物理机械性能在一个阶段基本上保持恒定或变化很少。

12SMC、BMC、GMTBMC:块模状塑料,是用预混法制成的聚酯树脂模塑料,模塑料成块团状,故也称料团。

高分子材料加工原理重点

高分子材料加工原理重点

嘉兴学院高分子系吴伯程整理第四章聚合物流体的流变性研究应力作用下,聚合物产生弹性、塑性、黏性形变的行为及这些行为与各因素之间的关系。

第一节聚合物流体的非牛顿剪切黏性非牛顿流体,是指不满足牛顿黏性实验定律的流体,即其剪应力与剪切应变率之间不是线性关系的流体。

一、聚合物流体的流动类型1.层流、湍流2.稳定流动、不稳定流动一切影响流体流动的因素都不随时间而改变的流动称为稳定流动;影响流动的各种因素都随时间而变动的流动称为不稳定流动。

3.等温流动、非等温流动4.一维流动、二维流动、三维流动5.拉伸流动、剪切流动二、非牛顿流体的表征1.聚合物流体的流动行为对于非牛顿流体,流体剪切应力σ12与剪切速率γ以及表观黏度ηa之间的关系:σ12=ηa*γ n=dlnσ12/dlnγ当n<1时,ηa随γ增大而减小,这种流体称为假塑性流体或切力变稀流体,大部分聚合物熔体或其浓溶液属于这种流体;当n>1时,表观黏度ηa随γ的增大而增大,这种流体称为胀流性流体或切力增稠流体,少数聚合物溶液、一些固体含量高的聚合物分散体系和碳酸钙填充的聚合物熔体属于这种流体。

另外,宾汉流体:必须克服某一临界剪切应力σy才能使其产生牛顿流动,流动产生之后,剪切应力随剪切速率线形增加,其流动方程为:σ=σy+ηpγσ12>σy式中,ηp为宾汉黏度,其临界应力值σy称为屈服应力,在屈服应力以下流体不流动。

此流体为宾汉(Bingham)流体,牙膏、油漆是典型的宾汉流体。

2.非牛顿流体的流动曲线当剪切速率γ趋紧于0时,流体流动性质与牛顿型流体相仿,黏度趋于常数,称为零切黏度η0.这一区域为线性流动区,称第一牛顿区。

零切黏度η0是一个重要材料常数,与材料的平均分子量、黏流活化能相关,是材料最大松弛时间的反映。

3.切力变稀的原因切力变稀的原因在于①大分子链间发生的缠结。

当线形大分子的相对分子质量超过某一临界值Mc时,大分子链间形成了缠结点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名词解释5道 15分判断10道 10分选择10道 20分问答4道 40分论述题1题 15分第一章绪论通用高分子的主要种类和概念纤维:一种细长形状(长径比>10)、截面积较小(<0.05mm2)的物体塑料:以合成(或天然)的高分子化合物为基本成份、在加工中通过塑化流动或原位聚合而成型的柔韧性或刚性固体高分子材料橡胶:以合成(或天然)的高分子化合物为基本成份的高弹性的高分子材料涂料:应用于物体表面并能结成坚韧保护膜的物质的总称胶粘剂:能把各种材料粘合在一起的物质材料是用来制造各种产品的物质,是具有满足指定工作条件下使用要求的形态和物理性状的物质。

第二章聚合物流体的制备聚合物流体的制备包括熔体的制备和溶液的制备第二节中的1,2,3小节·熔体的话是通过加热,不同加热的方法,加热,熔体转移,熔体移轴,剪切,理解热传导,熔融方法上的要求聚合物的熔融:即完成聚合物由固体转变为熔体的过程。

一.熔融的方法(了解蓝色字体的方法和区别)1. 无熔体移走的传导熔融2. 有熔体强制移走的传导熔融: 熔融的一部分热量由接触表面的传导提供,一部分热量通过熔膜中的粘性耗散将机械能转变为热能来提供。

·力学耗散:力学的能量损耗,即机械能转化为热能的现象.在外力作用下,大分子链的各运动单元可能沿力的方向做从优取向的运动,就要克服内部摩擦,所以要消耗能量,这些能量转化为热能.随着螺杆的转动,筒壁上的熔膜被强制刮下来移走,而使熔融层受到剪切作用,使部分机械能转变为热能.哪种热能占主导地位,取决于聚合物本身的物理性质、加工条件和设备的结构参数。

当机筒温度较低、螺杆转数较高时,由剪切产生的剪切热占主要地位。

当螺杆转数较低,机筒温度较高时,机筒的传导热占主要地位。

3.压缩熔融: 熔融热量由将机械能转变为热能来提供。

4.耗散混合熔融: 熔融热量由在整个体积内将机械能转变为热能来提供的。

例:双辊塑炼(开炼)5.利用电、化学或其它能源的耗散熔融方法:熔融的热量通过电、化学或其它能源转变为热能来提供。

6.振动诱导挤出熔融: 将振动力场引入聚合物熔融加工的全过程。

实际上物料是在一个封闭的压力容器中受到一个复杂的往复剪切力作用。

分子链会在两个作用力的方向进行排列,形成网格化结构。

二,聚合物的溶解特点:1.缓慢聚合物有2种运动单元,大分子尺寸比溶剂大得多聚合物的溶解过程分成两个阶段:(1)溶胀溶剂分子向聚合物扩散→大分子体积膨胀(晶态结构被破坏)(2)溶解在溶剂分子的作用下,使大分子之间的作用力不断减弱,进而分散到溶剂中,与溶剂分子相互混合直至成为分子分散的均相体系。

2. 复杂溶解度和溶解速度与多种因素有关:(1)分子量加及其分布高分子量聚合物溶解困难(例:UHWM-PAN)(2)交联度具有交联结构的聚合物,只有溶胀(3)结晶状态非极性晶态聚合物室温下难溶解(例:HDPE)(4)极性晶态聚合物在极性溶剂中相对较易溶解(例:PVA)聚合物的溶解类型:(1)由热焓变化决定的溶解过程聚合物溶解的条件:∆Hm <0极性聚合物(特别是刚性链的聚合物)在极性溶剂中所发生的溶解过程.(2)由熵变决定的溶解过程特征:∆Sm > > 0,∆Hm ≥0非极性聚合物在非极性溶剂的溶解过程.三.影响溶解度的结构因素1.大分子链结构的影响大分子链的化学结构使分子间作用力↑溶解度↓(例:PAN均聚物和共聚物溶解的差别)链结构的不规整性↑溶解度↑(例:含残余醋酸基PVA)大分子链的刚性↑溶解度↓(例:纤维素、PVA)分子量M ↑溶解度↓(例:BC)2.聚合物超分子结构的影响结晶度↑溶解度↓(例:PTFE)但极性的结晶聚合物也可以在常温下溶解.无定形部分与溶剂的相互作用会释放出大量热,致使结晶部分熔融.3.溶剂结构的影响(1)溶剂的化学结构、缔合程度(2)溶剂的极性溶剂的极性越接近聚合物的极性,溶解度↑(3)极性溶剂的基团性能溶剂的极性基团与聚合物极性基团相互吸引产生溶剂化作用,溶解度↑例:聚氯乙烯(亲电)要选择环己酮等溶剂(带亲核基团)。

(4)溶剂极性基团旁的原子团原子团↑极性聚合物的溶解度↓(5)混合溶剂溶解性↑四溶剂的选择原则1.聚合物和溶剂的极性相近规律相似相溶:聚合物和溶剂的极性越接近,越容易互溶.例外:刚性较大的极性聚合物大分子间的作用力较强,其溶解性能较差。

例子:天然橡胶(非极性)—汽油、苯、己烷和石油醚(非极性)PS聚苯乙烯(弱极性)—甲苯、氯仿、苯胺(弱极性)和苯(非极性)PMMA聚甲基丙烯酸甲酯(极性)-丙酮(极性)PVA聚乙烯醇(极性)—水、乙醇(极性)PAN过氧乙酰硝酸酯(强极性)—二甲基甲酰胺(DMF)(强极性)2. 溶剂化原则——若溶质与溶剂分子之间可以形成相互作用力,而且这种作用力大于溶质分子间的作用力,就会导致溶质分子彼此分离,形成溶解。

广义酸——电子接受体,主要包括一些亲电试剂:-SO2OH > -COOH > -C6H4OH > -CHCN > -CHNO2 > -CHCl2广义碱——电子给予体,主要包括一些亲核试剂:-CH2NH2 > -C6H4NH2 > -CON(CH3)2 > -CONH-> CH2COCH2-当高分子含有亲电基团,而溶剂分子含有亲核基团;或者高分子中含有亲核基团而溶剂分子含有亲电基团时,溶质和溶剂之间就可以产生强烈的溶剂化作用,导致聚合物发生溶解第三章混合(对写过的论文要有印象)混合涉及到配方体系;论文:描述一种助剂的种类,原理混合的机理和发生的过程(第一节和第四节的内容)·涉及到两个概念:分散和混合的区别,又分为非分散混合和分散混合(判断方法:有没有尺寸变小的阶段)第一节里面混合的机理,涡流扩散(湍流)(涉及到流动形态包括层流和湍流),分子扩散,体积扩散·随堂测试:聚合物的扩散是属于哪种机理(属于那种扩散),它有什么特点?·混合过程主要作用那些名词是什么意思?按物料状态不同,混合可分为液-液、固-固和液-固混合。

在聚合物加工中,液-液混合、液-固混合是最主要的混合形式.例:聚合物共混添加改性按混合的形式,可将混合分为非分散混合(nondispersive mixing)和分散混合(dispersive mixing)非分散混合:分散粒子通过位置的变化增加在混合物中空间分布的均匀性但不减小粒子尺寸.分散混合:粒子既有粒度的变化又有位置的变化.分子扩散(小分子加入到大分子里面):是由浓度梯度驱使的自发发生的一种过程各组分的微粒子由浓度较大的区域迁移到浓度较小的区域,从而达到各组分的均化。

分子扩散在气体和低粘度液体中占支配地位。

涡流扩散:也称为紊流扩散,在化工中流体的混合一般是靠系统内产生紊流来实现的在聚合物加工中,由于物料的运动速度达不到紊流。

原因:要实现紊流,熔体的速度很高,势必会对聚合物施加很高的剪切速率,使熔体发生破裂,也会造成聚合物的降解,实际上是不允许的,而且聚合物粘度高,因此很少发生涡旋扩散体积扩散(对流混合):指流体质点、液滴或固体粒子由系统的一个空间位置向另一空间位置的运动;或指两种或多种组分在相互占有的空间内发生运动,以期达到各组分的均匀分布。

在聚合物加工中,体积扩散占支配地位.其中包括层流对流混合(物料要受到剪切、伸长(拉伸)或挤压(捏合).)和体积对流混合聚合物加工中的混合与一般的混合不同:由于聚合物熔体的黏度高(﹥102Pa·s),因此混合只能产生层流对流混合,缺少提高混合速率的涡旋扩散和分子扩散→不利于混合,并降低混合均匀程度·关于混合过程发生的主要作用的概念(一)剪切作用:是把高黏度分散相粒子或凝聚体分散于分散介质中。

在剪切作用下,少组分立方体粒子将被拉长、变形,最后形成条纹状.粒子体积没有变化,只是截面变细,向倾斜方向伸长表面积增大分布区域扩大,渗进别的物料中的可能性增加混合均匀剪切时,剪切力越大和作用力的距离越小越好(角度小)(二)分流、合并和置换利用加工设备改变流体流道中的几何空间,迫使物料在流道中不断改变方向和流量,即在流体的流道中设置突起状或隔板状的剪切片来完成进行分流时,如果分流用剪切片数为1,则分流数为2,剪切片数为n,分流数n+1。

如果用于分流的剪切片设置成串联形式,串联阶数m,则分流数N为:N=(n+1)m分流后:分流束在流动下游再合并为原状态;在各分流束内引起循环流动后再合并;在各分流束进行相对位置交换(置换)后再合并;以上几种过程一起作用的情况。

(三)挤压作用:物料在承受剪切前先经受压缩,使物料的密度提高,这样剪切时可提高剪切效率.同时当物料被压缩时,物料内部会发生流动,产生由于压缩引起的流动剪切.图挤压(压缩)使物料产生变形,减小料层厚度,增加界面,有利于混合.(五)聚集在混合过程中,已破碎的分散相在热运动和微粒间相互吸引力的作用下,重新聚集在一起:混合的逆过程.在混合过程中应尽量减少聚集的发生.混合过程第四节高分子材料混合加工的基本过程一、非分散混合(非分散混合分为分布性混合和层流混合)定义:通过重复地排列少组分增加其在混合物中空间分布的均匀性而不减小粒子初始尺寸的过程。

运动基本形式:对流。

包括塞流和不需要物料连续变形的简单体积排列和置换。

特点:各粒子只有相互位置的变化,而无粒度的变化。

二、分散混合当添加剂以颗粒聚集体存在时,那么混合过程要确保聚集体被分割成独立的颗粒被分散开来。

定义:在混合过程中发生粒子尺寸减小到极限值,同时增加相界面和提高组分均匀性的混合过程。

粒子既有位置的变化又有粒度的变化。

→第四章聚合物流体的流变性(重要)聚合物流变学是整个加工的基础一个是剪切流变一个是拉伸流变·知道聚合物流体的流动类型(牛顿,宾汉)·流动后粘度下降的过程(理解)·了解聚合物流体剪切黏性的一些因素,那些因素会影响流体粘度的变化?(主要)·各种流体类型的特点(牛顿,宾汉……理解)·拉伸流动的变化,曲线,单轴拉伸和双轴拉伸,和剪切有关,3,6倍。

理解就好流体弹性,除了流动属于黏性变化,聚合物是一个粘弹性的材料,除了表现为黏性,流动,还有弹性效应·弹性行为的表现,现象和表现,有几个典型的要理解,比如爬攀,挤出胀大(Barus效应)不稳定流动(熔体破裂),无管虹吸。

(理解)·影响弹性的影响因素,温度,后面加热的内容,减少挤出口胀大效应,通过一个温度的改变(比如橡胶入口,增加及提升喷嘴温度来降低弹性的效应)·塑形,剪切流动类型和影响因素·弹性,表现和影响因素·剪切流动:流体受到剪切应力作用产生的流动,挤出机、注射机和口模等的流动拉伸流动:纺丝细流离开喷丝孔处时受拉伸和流体在截面积变化流道中的流动等·流体流动的类型屈服应力的变化·聚合物流体切力变稀的原因: 1.大分子链间缠结点的解除2.大分子链段取向效应3.大分子链的脱溶剂化(浓溶液情况)·解聚合物流体剪切黏性的一些因素,那些因素会影响流体粘度的变化?(主要)(需拓展44-60)1. 分子结构(平均分子量、分子量分布、长链支化度等)2. 实验条件(生产工艺条件): 温度、压力、剪切速度或剪切应力3. 物料结构及成分(配方成分,如添料、软化剂等)·各种流体类型的特点(牛顿,宾汉……理解)牛顿流体:牛顿流体的粘度仅与流体分子的结构和温度有关,与切应力和切变速率无关τ涨塑性流体:黏度随剪切速率或剪应力增大而升高,因此常称为剪切增稠流体·拉伸流动的变化,曲线,单轴拉伸和双轴拉伸,和剪切有关,3,6倍。

相关文档
最新文档