人教版初三数学中心对称

合集下载

初三数学全册基本知识点总结

初三数学全册基本知识点总结

初三数学全册基本知识点总结数学是被很多人称之拦路虎的一门科目,同学们在掌握数学知识点方面还很欠缺。

下面是小编为大家整理的关于初三数学基本知识点总结,希望对您有所帮助!初三数学知识总结圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。

弧、弦、弦心距、圆心角之间的关系定理1、圆心角顶点在圆心的角叫做圆心角。

2、弦心距从圆心到弦的.距离叫做弦心距。

3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。

推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

、圆周角定理及其推论1、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。

2、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:dd=r 点P在⊙O上;d>r 点P在⊙O外。

过三点的圆1、过三点的圆不在同一直线上的三个点确定一个圆。

2、三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆。

3、三角形的外心三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。

4、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。

初三数学轴对称知识点归纳1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

暑期备课笔记-初三数学第6讲:图形的旋转和中心对称(教师版)

暑期备课笔记-初三数学第6讲:图形的旋转和中心对称(教师版)

第5讲图形的旋转和中心对称图形的旋转和中心对称1、旋转的定义:在平面内,把一个图形绕着某______沿着某个方向转动______的图形变换叫做旋转.这个点O叫做______,转动的角叫做______.因此,图形的旋转是由______和______决定的.2、中心对称的定义:把一个图形绕着某一个点旋转______,如果它能够与另一个图形______,那么称这两个图形关于这个点对称或中心对称,这个点叫做______,这两个图形中的对应点叫做关于中心的______.3、旋转的特点:旋转的性质是对应点到旋转中心的______相等;对应点与旋转中心所连线段的夹角等于______;旋转前、后的图形之间的关系是______.4、中心对称的特点:(1)关于中心对称的两个图形,对称点所连______都经过______,而且被对称中心所______.(2)关于中心对称的两个图形是______.5、中心对称图形:把一个图形绕着某一个点旋转______,如果旋转后的图形能够与原来的图形______,那么这个图形叫做中心对称图形,这个点就是它的______.1、旋转的定义和性质;2、中心对称的定义和性质;3、会画旋转后的图形和中心对称图形;例1、下图中,不是旋转对称图形的是( ).答案:B解析:根据旋转的定义;例2、有下列四个说法,其中正确说法的个数是( ).①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化A.1个B.2个C.3个D.4个答案:D解析:利用旋转的特征;例3、下列图形中,不是..中心对称图形的是( ).A.圆B.菱形C.矩形D.等边三角形答案:D解析:中心对称的定义;例4、以下四个图形中,既是轴对称图形又是中心对称图形的有( ).A.4个B.3个C.2个D.1个答案:B解析:旋转和中心对称的定义结合。

初三数学上册期末考点练习:中心对称和中心对称图形

初三数学上册期末考点练习:中心对称和中心对称图形

中心对称和中心对称图形知识点一中心对称与中心对称图形中心对称概念:把一个图形绕着某一点旋转180︒,如图它能够与另一个图形重合,那么就说这两个U 形关于这个点对称或中心对称,这个点叫作对称中心(简称中心).这两个图形再旋转后能重合的对应点叫作关于对称中心的对称点.如图,ABO ∆绕着点O 旋转180︒后,与CDO ∆完全重合,则称CDO ∆和ABO ∆关于点O 对称,点C 是点A 关于点O 的对称点.中心对称图形概念:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫作中心对称图形,这个点就是它的对称中心.中心对称与中心对称图形的区别与联系:OD AB C典例1下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B【详解】A. 不是轴对称图形,是中心对称图形,故不符合题意;B. 既是轴对称图形,又是中心对称图形,故符合题意;C. 是轴对称图形,不是中心对称图形,故不符合题意;D. 是轴对称图形,不是中心对称图形,故不符合题意;故选B.典例2下列所给图形中,既是中心对称图形又是轴对称图形的是( ) A. B. C. D.【答案】D【详解】解:A. 是轴对称图形,不是中心对称图形,不符合题意;B. 是轴对称图形,不是中心对称图形,不符合题意;C. 不是轴对称图形,是中心对称图形,不符合题意;D. 既是轴对称图形,又是中心对称图形,符合题意,故选:D.典例3如图案中,既是中心对称图形又是轴对称图形的是()A. B. C. D.【答案】C【详解】A、是中心对称图形,不是轴对称图形,故此选项错误;B、是中心对称图形,不是轴对称图形,故此选项错误;C、是中心对称图形,是轴对称图形,故此选项正确;D、不是中心对称图形,不是轴对称图形,故此选项错误;故选:C.知识点二作中心对称图形的方法中心对称图形的性质:➢中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;➢中心对称的两个图形是全等图形.作中心对称图形的一般步骤(重点):➢作出已知图形各顶点(或决定图形形状的关键点)关于中心的对称点——连接关键点和中心,并延长一倍确定关键的对称点.➢把各对称点按已知图形的连接方式依次连接起来,则所得到的图形就是已知图形关于对称中心对称的图形.找对称中心的方法和步骤:对于中心对称图形和关于某一点对称的两个图形,它们的对称中心非常重要,找不对称中心是解决先关问题的关键.由中心对称的特征可知,对称中心为对应点连线的中点或两组相对应点连线的交点,因此找对称中心的步骤如下:方法1:连接两个对应点,取对应点连线的中点,则中点为对称中心.方法2:连接两个对应点,在连接两个对应点,两组对应点连线的交点为对称中心.典例1如图,在小正方形组成的网格中,每个小正方形的边长均为1个单位(1)画出三角形ABC向右平移4个单位所得的三角形A1B1C1.(2)若连接AA1、CC1,则这两条线段之间的关系是_______.(3)画出三角形ABC绕点O逆时针旋转180°所得的三角形A2B2C2.【答案】(1)见解析;(2)平行且相等;(3)见解析.【详解】(1)见图:(2)平行且相等;(3)见图.典例2如图,在边长为1个单位长度的88 的小正方形网格中.(1)将ABC △先向右平移3个单位长度,再向下平移2个单位长度,作出平移后的A B C ''';(2)请画出A B C '''''△,使A B C '''''△和A B C '''关于点C '成中心对称; (3)直接写出A A B '''''△的面积.【答案】(1)详见解析;(2)详见解析;(3)3.【详解】(1)如图所示:(2)如图所示:(3)13232A AB S '''''=⨯⨯=△. 知识点三关于原点对称的点的坐标规律两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点P’(-x ,-y)典例1在平面直角坐标系中,点A 的坐标为(﹣3,4),那么下列说法正确的是( )A .点A 与点B (﹣3,﹣4)关于y 轴对称B .点A 与点C (3,﹣4)关于x 轴对称C .点A 与点E (﹣3,4)关于第二象限的平分线对称D .点A 与点F (3,﹣4)关于原点对称【答案】D【详解】解:A 、点A 的坐标为(-3,4),∴则点A 与点B (-3,-4)关于x 轴对称,故此选项错误;B 、点A 的坐标为(-3,4),∴点A 与点C (3,-4)关于原点对称,故此选项错误;C 、点A 的坐标为(-3,4),∴点A 与点E (-3,4)重合,故此选项错误;D 、点A 的坐标为(-3,4),∴点A 与点F (3,-4)关于原点对称,故此选项正确;故选:D .典例2若点P (m ,2)与点Q (3,n )关于原点对称,则m ,n 的值分别为( )A .3-,2B .3,2-C .3-,2-D .3,2【答案】C【详解】点P (m ,2)与点Q (3,n )关于原点对称,得m=-3,n=-2,故选:C .典例3若P(x ,3)与点Q(4,y)关于原点对称,则xy 的值是( )A .12B .﹣12C .64D .﹣64 【答案】A【详解】∵()P x,3与点()Q 4,y 关于原点对称,∴x 4=-,y 3=-,∴xy 12=.故选:A .巩固训练一、单选题(共10小题)1.下列图形中,既是中心对称图形,又是轴对称图形的是()A .B .C .D .【答案】C【详解】A 、不是轴对称图形,是中心对称图形,故本选项错误;B 、不是中心对称图形,是轴对称图形,故本选项错误;C 、既是中心对称图形,又是轴对称图形,故本选项正确;D 、是轴对称图形,不是中心对称图形,故本选项错误.故选:C .【名师点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.如图,在平面直角坐标系中,ABC ∆的顶点A 在第一象限,点B 、C 的坐标分别为(2,1)、()6,1,90BAC ∠=︒,AB AC =,直线AB 交y 轴于点P ,若ABC ∆与A B C '''∆关于点P 成中心对称,则点A '的坐标为()A .(4,5)--B .(5,4)--C .(3,4)--D .(4,3)--【答案】A 【解析】详解:∵点B ,C 的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC , ∴△ABC 是等腰直角三角形,∴A (4,3),设直线AB 解析式为y=kx+b ,则4321k b k b +=⎧⎨+=⎩,解得11k b =⎧⎨=-⎩, ∴直线AB 解析式为y=x ﹣1,令x=0,则y=﹣1,∴P (0,﹣1),又∵点A 与点A'关于点P 成中心对称,∴点P 为AA'的中点,设A'(m ,n ),则42m +=0,32n +=﹣1, ∴m=﹣4,n=﹣5,∴A'(﹣4,﹣5),故选:A .3.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .4.正方形ABCD 在直角坐标系中的位置如图所示,将正方形ABCD 绕点A 按顺时针方向旋转180°后,C 点的坐标是( )A.(2,0) B.(3,0) C.(2,-1) D.(2,1)【答案】B【解析】试题解析:AC=2,则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,则OC′=3,故C′的坐标是(3,0).故选B.5.国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形( )A.B B.J C.4 D.0【答案】D【解析】选项A是轴对称图形,不是中心对称图形,故此选项错误;选项B不是轴对称图形,不是中心对称图形,故此选项错误;选项C不是轴对称图形,不是中心对称图形,故此选项错误;选项D是轴对称图形,又是中心对称图形,故此选项正确,故选D.6.已知点A(a+b,4)与点B(-2,a-b)关于原点对称,则a2-b2等于( ) A.8 B.-8 C.5 D.-5【答案】B【详解】∵点A(a+b,4)与点B(-2,a-b)关于原点对称,24a b a b +⎧⎨--⎩==, ∴a 2-b 2=(a+b )(a-b )=2×(-4)=-8.故选:B .【名师点睛】考查了关于原点对称点的性质,正确应用平方差公式是解题关键.7.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠,且组成的图形既是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有 ( )A .2种B .3种C .4种D .5种【答案】C 【解析】解:如图所示:组成的图形是轴对称图形,又是中心对称图形, 则这个格点正方形的作法共有4种.故选:C .8.已知点()11,1p a -和()22,1p b -关于原点对称,则()2008a b +的值为() A .1 B .0 C .-1 D .()20053-【答案】A【解析】试题解析:根据题意得:a-1=-2,b-1=-1,解得:a=-1 b=0.则(a+b)2008=1.故选A.9.如图,已知长方形的长为10cm,宽为4cm,则图中阴影部分的面积为()A.20cm2 B.15cm2 C.10cm2 D.25cm2【答案】A【解析】由图形可知,长方形的面积=10×4=40cm2,再根据中心对称的性质得,图中阴影部分的面积即是长方形面积的一半,则图中阴影部分的面积×40=20cm2,故选A.=1210.将点P(-2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是()A.(-5,-3) B.(1,-3) C.(-1,-3) D.(5,-3)【答案】C【解析】点P(-2,3)向右平移3个单位得到点P1,则P1(1,3),点P2与点P1关于原点对称,则P2(−1,−3).故选C.二、填空题(共5小题)11.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=_____.【答案】12【详解】∵点A 的坐标为(a ,3),点B 的坐标是(4,b ),点A 与点B 关于原点O 对称,∴a=﹣4,b=﹣3,则ab=12,故答案为:12.【名师点睛】本题考查了关于原点对称的点的坐标,熟知关于原点对称的两点的横、纵坐标互为相反数是解题的关键.12.若点(a ,1)与(﹣2,b )关于原点对称,则a b =_______.【答案】12. 【解析】试题分析:∵点(a ,1)与(﹣2,b )关于原点对称,∴b=﹣1,a=2,∴a b =2−1=12.故答案为:12. 13.已知M (a ,﹣3)和N (4,b )关于原点对称,则(a+b )2002=_____.【答案】1【解析】∵M (a ,﹣3)和N (4,b )关于原点对称,∴a=-4,b=3,∴200220022002()(43)(1)1a b +=-+=-=. 14.点()2,3M -关于x 轴对称的点A 的坐标是________,点M 关于y 轴对称的C 的坐标是________,点M 关于原点对称的点B 的坐标是________.【答案】(-2,-3), (2,3), (2,-3)【详解】点A (-2,3)关于x 轴对称的点的坐标是(-2,-3),关于y 轴对称的点的坐标是(2,3),关于原点对称的点是(2,-3).故答案为(-2,-3),(2,3),(2,-3).【名师点睛】本题考查了关于坐标轴对称的点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标和纵坐标都为互为相反数.15.抛物线y =2x 2-4x +5绕它的坐标原点O 旋转180°后的二次函数表达式为________.【答案】y =-2(x +1)2-3【解析】详解:y =2x 2-4x +5=2(x -1)2+3,顶点坐标是(1,3),二次项系数是2,绕原点旋转180°后的二次函数的顶点是(-1,-3),二次项系数是-2,所以表示式为y =-2(x +1)2-3.故答案为y =-2(x +1)2-3.三、解答题(共2小题)16.如图,在平面直角坐标系中,Rt ABC ∆的三个顶点分别是(4,2)A -、(0,4)B 、(0,2)C .(1)画出ABC ∆关于点C 成中心对称的△11A B C ;平移ABC ∆,若点A 的对应点2A 的坐标为(0,4)-,画出平移后对应的△222A B C ;(2)△11A B C 和△222A B C 关于某一点成中心对称,则对称中心的坐标为 .【答案】(1)画图见解析;(2)(2,-1).【解析】试题解析:(1)、△A 1B 1C 如图所示,△A 2B 2C 2如图所示; (2)、如图,对称中心为(2,﹣1).17.在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC是格点三角形(顶点在网格线的交点上)(1)先作△ABC关于原点O成中心对称的△A1B1C1,再把△A1B1C1向上平移4个单位长度得到△A2B2C2;(2)△A2B2C2与△ABC是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.【答案】(1)画图见解析;(2)(0,2).【解析】详解:(1)如图所示,△A1B1C1和△A2B2C2即为所求;(2)由图可知,△A2B2C2与△ABC关于点(0,2)成中心对称.。

新人教版初三数学上册旋转和中心对称单元卷

新人教版初三数学上册旋转和中心对称单元卷

旋转和中心对称单元试题一、 选择题(每小题3分,共30分)1.下面图形中,既是轴对称图形又是中心对称图形的是( )2.下列图形中,是中心对称图形的有( )A .4个B .3个C .2个D .1个 3.在平面直角坐标系中,已知点,若将绕原点逆时针旋转得到,则点在平面直角坐标系中的位置是在( )A.第一象限B.第二象限C.第三象限D.第四象限 4.已知0a <,则点(2,1a a --+)关于原点的对称点 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.已知点、点关于原点对称,则的值为( )A.1B.3C.-1D.-3 6.下列命题中是真命题的是( )A.全等的两个图形是中心对称图形B.关于中心对称的两个图形全等C.中心对称图形都是轴对称图形D.轴对称图形都是中心对称图形 7.四边形ABCD 的对角线相交于O ,且AO BO CO DO ===,则这个四边形( ) A.仅是轴对称图形B.仅是中心对称图形C.既是轴对称图形又是中心对称图形 D.既不是轴对称图形,又不是中心对称图形8. 如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,将△ABC 绕点C 顺时针旋转至△A ′B ′C ,使得点A ′恰好落在AB 上,则旋转角度为( )9.如图所示,在正方形中,,点在上,且,点是上一动点,连接,将线段绕点逆时针旋转90°得到线段.要使点恰好落在 上, 则的长是( )A .1B .2C .3D .410.如图,在正方形网格中,将△绕点旋转后得到△,则下列旋转方式中,符合题意的是( )A.顺时针旋转90°B.逆时针旋转90°C.顺时针旋转45°D.逆时针旋转45° 二、填空题(每小题3分,共24分) 11.如图所示,把一个直角三角尺绕着角的顶点顺时针旋转,使得点落在的延长线上的点处,则∠的度数为_____ .12.正方形是中心对称图形,它绕它的中心旋转一周和原来的图形重合________次.13.如图所示,ABC △与DEF△关于O点成中心对称.则AB _______DE , ∥______,AC =________.14.边长为的正方形绕它的顶点旋转,顶点所经过的路线长为______.15.等边三角形绕着它的三边中线的交点旋转至少______度,能够与本身重合.16. 点(34)P -,关于原点对称的点的坐标为________. 17.已知点与点关于原点对称,则的值是_______.18.直线3y x =+上有一点,则点 关于原点的对称点为________.三、解答题(共46分) 19.如图所示,在△中,90OAB ∠=︒,6OA AB ==,将OAB ∆ 绕点O 沿逆时针方向旋转90︒得到11OA B ∆.(1)线段1OA 的长是 ,1AOB ∠的度数是 ; (2)连接1AA ,求证:四边形11OAA B 是平行四边形.20.找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.21.如图所示,网格中有一个四边形和两个三角形. (1)请你画出三个图形关于点的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请你写出这个整体图形对称轴的条数; 这个整体图形至少旋转多少度与自身重合?22.如图所示,已知是△的中线,画出以点为对称中心,与△•成中心对称的三角形.23. 如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (-3,2),B (0,4),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C 1;平移△ABC 若点A 的对应点A 2的坐标为(0,-4),画出平移后对应的△A 2B 2C 2;(2)若将△A 1B 1C 1绕某一点旋转可以得到△A 2B 2C 2;请直接写出旋转中心的坐标; (3)在x 轴上有一点P ,使得P A+PB 的值最小,请直接写出点P 的坐标.24、在平面直角坐标系中,如图所示,△AOB 是边长为2的等边三角形,将△AOB 绕着点B 按顺时针方向旋转得到△DCB ,使得点D 落在x 轴的正半轴上,连接OC ,AD .(1)求证:OC =AD ;(2)求OC 的长;(3)求过A 、D 两点的直线的解析式.25、如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△GBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.26、数学是丰富多彩的,想学好数学,就要学会探究、思考。

初三数学中心对称图形

初三数学中心对称图形

明理由.
E
D
C
分析:由方法二
XX
要证:∠DEA=∠BFC
O
X
X
A
B
X
F
初三数学名师课程
知识应用
例2.如图.点E,F分别在正方形ABCD的边BC,CD
上,∠EAF=45°,
(1)试判断BE,EF,FD这三条线段之间的数量关
系,并说明理由.
G
A
X
D
思路:延长CD到G,
使得DG=BE,
X
连接AG,可证得△ADG≌△ABE
误的是( c )
A.∠ABD=∠BDC B.∠BAD=∠BCD
C.AC=BD
D.AC、BD互相平分
平行四边形的性质:
A
D
边:对边平行且相等
角:对角相等
对角线:对角线互相平分
B
C
对称性:中心对称图形
初三数学名师课程
知识梳理
4.如图,点E,F分别在□ABCD的边BC,AD上,
AC,EF交于点O,请你添加一个条件(只添一个即可
初三数学名师课程
中心对称图形
初三数学名师课程
知识梳理
1.如图,△COD是由△AOB绕点O按顺时针方向
旋转40°后得到的图形,点C恰好在边AB上.若
∠AOD=100°,则∠D的度数是( B )
A.40° B.50° C.60° D.70°
A
70
C
°
40° 60°
O
旋转的性质: B 1.旋转变化前后,两个图形全等;
x4
4-y
F
4-y+x
y
BX E
4-X C
初三数学名师课程

中考专题复习第30课时 轴对称与中心对称

中考专题复习第30课时   轴对称与中心对称

第七单元┃ 图形与变换 探究4 轴对称与中心对称有关的作图问题
命题角度: 1.画出简单平面图形(点、线段、直线、三角形等)关于给定对称轴(或对称 中心)的对称图形(或中心对称图形); 2.利用轴对称或中心对称的性质设计图案. 例 4 分别按下列要求解答: (1)在图 30-6①中,作出⊙O 关于直线 l 成轴对称的图形;(2)在图 30-6② 中,作出△ABC 关于点 P 成中心对称的图形.
图 30-3
回归教材 考点聚焦 考向探究
第七单元┃ 图形与变换
[解析] 根据 B、 C 两点的坐标及△ABC 的面积求出点 A 的坐 标,画出△ABC,再画出 A、B、C 三点关于 y 轴的对称点,连接 各对应点即可得到符合要求的图形. 解:(1)点 B、C 的坐标分别为 B(1,0),C(5,0),BC=4. 根据题意,可知等腰三角形 ABC 的高为 5,点 A 的横坐标为 3, 纵坐标为 5,即 A(3,5).在第一象限内画出△ABC,如图①.
区别
联系
中心对 (1)成中心对称的两个图形中,对应点的连线 平分 ;(2) 称的性 经过对称中心,且被对称中心________ 全等 质 成中心对称的两个图形________
回归教材
考点聚焦
考向探究
第七单元┃ 图形与变换
考 向 探 究
探究1 轴对称图形与中心对称图形的概念
命题角度: 1.直接判定一个图形是轴对称图形或中心对称图形; 2.画一个图形关于某条直线成轴对称的图形或关于某点成中心 对称的图形; 3.应用轴对称或中心对称的性质求线段长或角度.
图 30-10 (4)圆中的对称(如图 30-10②).
回归教材
考点聚焦
考向探究
第七单元┃ 图形与变换

人教课标版初中数学初三上册第二十三章中心对称

人教课标版初中数学初三上册第二十三章中心对称

人教课标版初中数学初三上册第二十三章23【教材分析】本节课是九年级上册第23章“23.2中心对称”的第三课时,是在学生差不多学习中心对称和中心对称图形的基础,在平面直角坐标系中研究两个点关于原点对称时的坐标关系,并进一步探究运用这种规律作关于原点对称的图形的方法。

【学情分析】学生差不多在第十二章“轴对称”的学习中,积存了一定在坐标系中探究图形变换的学习体会。

能够通过类比学习,具体的例子,让学生经历动手操作,观看猜想,验证归纳,得出两个点关于原点对称时的坐标关系。

在利用坐标作中心对称中强化明白得.【教学目标】明白得P与点P′点关于原点对称时,它们的横纵坐标的关系,把握运用关于原点的对称点的坐标规律作关于原点对称的图形的方法.经历操作——猜想——验证的实践过程,从专门到一样,归纳两个点关于原点对称时的坐标关系。

通过用坐标关系找对称点的方法,探究作关于原点对称的图形的一样步骤。

情感态度与价值观目标:体会数与形之间的联系,培养学生学习善于观看、勤于摸索、大胆猜想、勇于实践、合作交流学习适应.【教学重难点】1.重点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)•关于原点的对称点P′(-x,-y)及其运用.2.难点与关键:运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题.【教学过程】(一)复习引入1 、什么叫中心对称?2、点P(-1,2)关于x轴对称的点的坐标为,点P到x轴的距离为,点P 到y轴的距离为3、 点P (-3,- 4)关于y 轴对称的点的坐标为 ,点P 到x 轴的距离为 ,点P 到y 轴的距离为(二)合作交流、探究规律1、如图,在直角坐标系中,已知A (4,0)、B (0,-3)、C (2,1)、D (-1,2)、E (-3,-4),作出A 、B 、C 、D 、E 点关于原点O 的中心对称点,并写它们的坐标,并回答:这些点与已知点的坐标有什么关系?分组讨论:(每四人一组):讨论的内容:关于原点作中心对称时,•它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?(让每组派代表发表本组的结论,并利用三角形全等证明规律。

初三数学家庭作业 中心对称图形复习(一)

初三数学家庭作业 中心对称图形复习(一)

初三数学家庭作业(005)中心对称图形(二)复习(一)一、知识要点(一)圆的有关性质1、直径所对的圆周角是直角,90°的圆周角所对的弦是直径.2、圆是轴对称图形,其对称轴是任意一条过_______,圆是中心对称图形,对称中心为_____.3、垂直于弦的直径平分_______,并且_______弦所对的弧。

4、在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量________,那么它们所对应的其余各组量分别________.5、在同圆或等圆中,同弧或等弧所对的圆周角______,直径所对的圆周角是_________,90°的圆周角所对的弦是_______.6、不在同一条直线上的________个点确定一个圆.(二)与圆有关的位置关系及切线的性质与判定1、点与圆的位置关系:若圆的为r,点到圆心的距离为d,则(1)点在____⇔d >r;(2)点在圆______⇔d=r;(3)点在圆_____⇔d<r.2、直线与圆的位置关系有:若圆的半径为r,圆心到直线的距离为d,(1)直线与圆_____⇔d>r;(2)直线与圆____⇔d=r;(3)直线与圆_____⇔d<r.3、圆的切线________于过切点的半径.4、经过半径的______,并且______于这条半径的直线是圆的切线.5、圆与圆的位置关系有:若两圆的半径分别为R、r,(d>r),两圆的圆心距为d,则(1)两圆______⇔d>R+r;(2)两圆_____⇔d=R+r;(3)两圆______⇔R-r<d<R+r;(4)两圆______⇔d=R-r;(5)两圆______⇔d <R-r.(三)与圆有关的计算1、圆的周长C=_______;弧长l=_______.2、圆面积S圆=______;扇形面积S扇形=_______=______.3、S圆柱侧=______,圆柱的全面积=2S底+S侧,S圆锥侧=________,圆锥的全面积=S底+S侧.二、基础训练1、圆弧形蔬菜大棚的剖面如图所示,AB=8m,∠OAD=30°,则大棚高度CD约为().A、2.0mB、2.3mC、4.6mD、6.9m2、下列命题中假命题有()①直径是圆的对称轴;②垂直于弦的直线必经过圆心;③平分弦的直径必平分弦所对的两条弧;④相等的圆周角所对的弧相等A、1个B、2个C、3个D、4个3、如图,A、B、C、D四点在⊙O上,若它的一个外角∠DCE=70°,则∠BOD等于()A、35°B、70°C、110°D、140°4、已知平面内两圆的半径分别为4和6,圆心距是2,则这两个圆的位置是()A、内切B、相交C、外切D、外离5、在△ABC中,∠ACB=90°,AC=2cm,BC=4cm,CM是中线,以C为圆心,5cm长为半径画圆,则A、B、M三点在圆外的是____,在圆上的是_______.6、如图,在⊙O中,已知∠ACB=∠CDB=60°,AC=5,则△ABC的周长是_____7、半径分别为1cm和5cm的两圆相交,则圆心距d的取值范围是_____8、如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠BAC=20°,则∠APB=_____9、若一个圆锥的母线长是它的底面半径的4倍,则它的侧面展开图的圆心角是()A、90°B、120°C、135°D、180°10、如图,等腰梯形ABCD的上底BC长为1,、、的半径相等,、所在圆的圆心分别为A、O,则图中阴影部分的面积是()11、如图,已知AB、CD是⊙O的两条直径,AP是⊙O的弦,且AP∥CD,求证:=.12、如图,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD =13,PD =4,求两圆组成的圆环的面积.三、能力提升1、、如图,△ABC 中,AB =AC ,D 是BC 边上的一点,E 是直线AD 和△ABC 外接圆的交点,(1)证明:AB 2=AD ·AE ;(2)当D 为BC 延长线上一点时,(1)的结论成立吗?如果成立,请证明;不成立,请说明理由.2、如图,△ABC 内接于⊙O ,且∠ABC =∠C ,点D 在弧BC 上运动,过点D 作DE ∥BC ,DE 交直线AB 于点E ,连结BD 。

九年级上册数学ppt课件

九年级上册数学ppt课件
一、教材分析
(一)教材所处的地位及作用。 本节课是九年级上册(人教版)
第二十三章第二节 中心对称的第一课 时。它是初中数学的一项重要内容。 它与轴对称、轴对称图形、旋转有着 密不可分的联系,实际生活中也随处可 见中心对称的应用。
(二)教学目标
1 、知识目标:
(1)理解并掌握中心对称的概念和性质。
2.动手操作
学生在教师的引导下动手操作, 旋转三角板,画出关于点O对称的 两个三角形,在学生画出两个中心 对称的三角形后,及时展开中心对 称性质的研究。
设计意图
通过学生动手操作、合作交流, 来获取知识,这样设计有利于突破 难点,也让学生体会到观察、猜想、 归纳的数学思想及学习过程,提高 学生分析问题和解决问题的能力。
(2)线段AC,BD相交于点O,OA=OC,OB=OD.把 △OCD绕点O旋转180°,你又有什么发现?
O
重合
B
(2) C
重合
设计意图
鼓励学生通过观察、思考 和讨论,用自己的语言来描述 这些图案的共同特征,初步感 受中心对称的概念。这种以实 际问题为切入点导入新课,不 仅自然,而且也反映了数学来 源于生活,学习数学是为了服 务于生活。
3、归纳验证
归纳:通过动手操作、合作交流,探索 中心对称的性质,让学生在整个学习过 程中感受学习数学的乐趣,使学生学会 “文字语言”与“数学语言”这两种表 达方式。
验证:学生在探究过程中进行了画图、 旋转还有证明等活动,引导学生从中体 会到数形结合和从特殊到一般的数学思 想,而且这一过程也有利于培养学生严 谨、科学的学习态度。
教法
数学是一门培养人的思维,发展 人的思维的重要学科,因此在教学中, 不仅要使学生“知其然”,而且还要 使学生“知其所以然”。针对初三年 级学生的认知结构和心理特征,本节 课可选择“引导探索法”,引导学生 自主探索,合作交流,这种教学理念 紧随新课改理念,也反映了时代精神。

人教版初三数学:中心对称与中心对称图形--知识讲解

人教版初三数学:中心对称与中心对称图形--知识讲解

中心对称与中心对称图形--知识讲解【学习目标】1、理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;2、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;3、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【要点梳理】要点一、中心对称和中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.3.中心对称与中心对称图形的区别与联系:中心对称中心对称图形区别①指两个全等图形之间的相互位置关系.②对称中心不定.①指一个图形本身成中心对称.②对称中心是图形自身或内部的点.联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称.要点二、关于原点对称的点的坐标特征关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.要点三、中心对称、轴对称、旋转对称【高清课堂:高清ID号:388635关联的位置名称(播放点名称):中心对称与中心对称图形的区别与联系】1.中心对称图形与旋转对称图形的比较:2.中心对称图形与轴对称图形比较:要点诠释:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.【典型例题】类型一、中心对称和中心对称图形【高清课堂:高清ID号:388635关联的位置名称(播放点名称):例3及练习】1.(2015春•鄄城县期末)如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等,其中正确的有()A.1个B.2个C.3个D.4个【答案】D【解析】中心对称的两个图形全等,则①②④正确;对称点到对称中心的距离相等,故③正确;故①②③④都正确.故选D.【总结升华】中心对称的关键是:旋转180°之后可以与原来的图形重合.举一反三【变式】如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A.M或O或N B.E或O或C C.E或O或N D.M或O或C【答案】A【高清课堂:高清ID号:388635关联的位置名称(播放点名称):经典例题2】2. 我们平时见过的几何图形,如:线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形中,有哪些是中心对称图形?哪些是轴对称图形?中心对称图形指出对称中心,轴对称图形指出对称轴.【答案与解析】【总结升华】线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形是重要的几种对称几何图形,要了解其性质特点更要熟记.类型二、作图3. 已知:如图甲,试用一条直线把图形分成面积相等的两部分(至少三种方法).【答案与解析】【总结升华】解决这类问题时,关键是将图形转化成两个中心对称图形(如果原图形本身就是中心对称图形,则直接过对称中心作直线即可),再由两点确定一条直线,过两个对称中心画直线即满足条件. 举一反三【高清课堂:高清ID 号: 388635 关联的位置名称(播放点名称):例5及练习】【变式】如图①, 1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .【答案】图①:13O O 或24O O 或AC 或BD;图②:5O M 或4O A类型三、利用图形变换的性质进行计算或证明1o 2o3o 4oCB D A 图① 图② 1o 2o 3o 4o 5o A BC E D4.(2014春•青神县校级月考)已知:如图,三角形ABM与三角形ACM关于直线AF成轴对称,三角形ABE与三角形DCE关于点E成中心对称,点E、D、M都在线段AF上,BM的延长线交CF于点P.(1)求证:AC=CD;(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.【解题思路】(1)利用中心对称图形的性质以及轴对称图形的性质得出全等三角形进而得出对应线段相等;(2)利用(1)中所求,进而得出对应角相等,进而得出答案.【答案与解析】(1)证明:∵△ABM与△ACM关于直线AF成轴对称,∴△ABM≌△ACM,∴AB=AC,又∵△ABE与△DCE关于点E成中心对称,∴△ABE≌△DCE,∴AB=CD,∴AC=CD;(2)解:∠F=∠MCD.理由:由(1)可得∠BAE=∠CAE=∠CDE,∠CMA=∠BMA,∵∠BAC=2∠MPC,∠BMA=∠PMF,∴设∠MPC=α,则∠BAE=∠CAE=∠CDE=α,设∠BMA=β,则∠PMF=∠CMA=β,∴∠F=∠CPM﹣∠PMF=α﹣β,∠MCD=∠CDE﹣∠DMC=α﹣β,∴∠F=∠MCD.【总结升华】此题主要考查了中心对称图形的性质以及全等三角形的性质等知识,根据题意得出对应角相等进而得出是解题关键.举一反三【高清课堂:高清ID号:388635关联的位置名称(播放点名称):例4及练习】【变式】如图,三个圆是同心圆,则图中阴影部分的面积为.【答案】4.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式 半径为R 的圆中360°的圆心角所对的弧长(圆的周长)公式: n °的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R 为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式 1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形. 2.扇形面积公式 半径为R 的圆中360°的圆心角所对的扇形面积(圆面积)公式: n °的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r ,侧面展开图中的扇形圆心角为n °,则圆锥的侧面积2360l S rl ππ=扇n =, 圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB 切⊙O 于点B ,OA=23,AB=3,弦BC∥OA,则劣弧BC 的弧长为( ). A .33π B .32πC .πD .32π图(1) 【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6. 则劣弧BC 的弧长为6033=1803ππ,故选A. 图(2) 【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)CBAO【答案】R=40mm ,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm .【高清ID 号:359387 高清课程名称: 弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)【答案与解析】∵弦AB 和半径OC 互相平分,∴OC ⊥AB ,OM=MC=OC=OA .∴∠B=∠A=30°,∴∠AOB=120° ∴S 扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID 号:359387 高清课程名称:弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】 【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是( ).A .449-π B .849-πC .489-πD .889-π图(1)A EB C F P【答案】连结AD,则AD⊥BC,△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=80°.则扇形EAF的面积是:28028=.3609ππ⨯故阴影部分的面积=△ABC的面积-扇形EAF的面积=84-9π.图(2)故选B.类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm,侧面展开图是半圆,求:(1)圆锥的底面半径r与母线R之比;(2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。

人教版初三数学上册23.2.3 关于原点对称的点的坐标教案.2《中心对称》(第3课时)教案

人教版初三数学上册23.2.3   关于原点对称的点的坐标教案.2《中心对称》(第3课时)教案

23.2.3 关于原点对称的点的坐标官道口中学常自留[复习引入]1、把一个图形绕着某一个点旋转180°,如果它能够和另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点就叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.2、中心对称的性质(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平分.(2)关于中心对称的两个图形是全等形;3、两个点关于x轴对称时,点P(X,Y)的对称点为P′(_____,_____).4、两个点关于y轴对称时,点P(X,Y)的对称点为P′(_____,_____).5、(1)点P(-1,2)关于x 轴对称点的坐标为,点P 到x 轴的距离为,点P 到y 轴的距离为;(2)点P(-3,-4)关于y 轴对称的点的坐标为,点P 到x 轴的距离为,点P 到y 轴的距离为.[学习目标]1.理解点 P 与点 P′关于原点对称时,它们的横纵坐标的关系;2.会用关于原点对称的点的坐标的关系解决有关问题.学习重点:点 P(x,y)关于原点的对称点 P (-x,-y)及其应用.[探究新知]问题:在直角坐标系中,作出下列已知点关于原点O 的对称点,并写出它们的坐标.这些坐标与已知点的坐标有什么关系?A(4,0),B(0,-3),C(2,1),D(-1,2),E(-3,-4)y)关于原点O 的对称点为P′(-x,-y).[巩固练习]1、填空:(1)点A(3,4)关于原点的对称点的坐标为;(2)点A(a,2)与点B(8,b)关于原点对称,a = ,b = ;(3)点(2,1)与点(2,-1)关于对称;点(2,1)与点(-2,-1)关于对称;点(2,1)与点(-2,1)关于对称.2、下列各点中哪两个点关于原点O对称?A(-5,0),B(0,2),C(2,-1),D (2,0),E (0,5),F(-2,1),G(-2,-1).解:关于原点O对称的点有点C和点F3、利用关于原点对称的点的坐标的关系,作出与△ABC关于原点对称的图形.解: ∵P (x,y)关于原点的对称点为P'(__,__)∴△ABC的三个顶点关于原点的对称点为:A(-4,1)关于原点的对称点A'(___,___),B(-1,-1)关于原点的对称点为B'(___,___),C(-3,2)关于原点的对称点为C'(___,___).依次连接就可得到与△ABC关于原点对称的△A'B'C'.(请在下图作出△A'B'C')A'(4,-1),B'(1,1),C'(3,-2)[归纳小结]1、两个点关于原点对称时,它们的坐标间有什么关系,即点P(x,y)关于原点O 的对称点P′的坐标是什么?P′(-x,-y)2、在平面直角坐标系下,作一个图形的中心对称图形的步骤是什么?(1)图形的对称转化为点的对称.标出点的中心对称点.(2)连接线段.[达标检测]1.若设点M(a,b),M点关于X轴的对称点M1()M点关于Y轴的对称点M2(),M点关于原点O的对称点M3()2.点A(-1,-3)关于x轴对称点的坐标是____________.关于原点对称的点坐标是____________.3.若点A(m,-2),B(1,n)关于原点对称,则m=_____,n=_____ .4、写出下列各点关于原点的对称点A',B',C',D'的坐标:A(3,1),B(-2,3),C(-1,-2),D(2,-3).解:A'(-3,-1),B'(2,-3),C'(1,2),D'(-2,3),5、若点P(a,1)与点Q(5, b)关于原点对称,则a+b=_______.6、点M(5,6)和点N是关于原点对称的两点,则点N在第________象限.7、在如图所示编号为①、②、③、④的四个三角形中,关于y轴对称的两个三角形的编号为;关于坐标原点O对称的两个三角形的编号为;8、(2008河南中招题)如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O 成中心对称的图形.若点A的坐标是(1,3),则点M 和点N 的坐标分别是:; 。

九年级数学知识点总结人教版

九年级数学知识点总结人教版

九年级数学知识点总结人教版学习从来无捷径,循序渐进登高峰。

如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。

学习需要勤奋,做任何事情都需要勤奋。

下面是小编给大家整理的一些九年级数学的知识点,希望对大家有所帮助。

1、概念:把一个图形绕着某一点 O 转动一个角度的图形变换叫做旋转,点 O 叫做旋转中心,转动的角叫做旋转角.旋转三要素:旋转中心、旋转方面、旋转角2、旋转的性质:(1)旋转前后的两个图形是全等形;(2)两个对应点到旋转中心的距离相等(3)两个对应点与旋转中心的连线段的夹角等于旋转角3、中心对称:把一个图形绕着某一个点旋转180° ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.4、中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.5、中心对称图形:把一个图形绕着某一个点旋转180° ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.6、坐标系中的中心对称两个点关于原点对称时,它们的坐标符号相反,即点 P(x,y)关于原点 O 的对称点P′(-x,-y).(一)平行四边形的定义、性质及判定.1.两组对边平行的四边形是平行四边形.2.性质:(1)平行四边形的对边相等且平行;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分.3.判定:(1)两组对边分别平行的四边形是平行四边形:(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形:(5)对角线互相平分的四边形是平行四边形.4 ·对称性:平行四边形是中心对称图形.(二)矩形的定义、性质及判定.1-定义:有一个角是直角的平行四边形叫做矩形.2 ·性质:矩形的四个角都是直角,矩形的对角线相等3.判定:(1)有一个角是直角的平行四边形叫做矩形;(2)有三个角是直角的四边形是矩形:(3)两条对角线相等的平行四边形是矩形.4 ·对称性:矩形是轴对称图形也是中心对称图形.(三)菱形的定义、性质及判定.1 ·定义:有一组邻边相等的平行四边形叫做菱形.(1)菱形的四条边都相等;。

《中心对称与中心对称图形》评课

《中心对称与中心对称图形》评课

《中心对称和中心对称图形》评课增城市荔城街第一中学数学科组徐耀洪2010年9月15日,在增城市第二中学进行了初三年级的第一次“一课两讲”的教学教研活动,分别由增城市第二中学的欧阳顺银老师和香江中学的封明强老师授课,两位老师的讲课各有侧重、各有特色,都很成功,给我们做了很好的示范作用。

但给我们更多的是思考——思考如何能把学习的主动性交回给学生,如何上一节高效的数学课。

以下是我对这两节课的一些粗浅的认识,不当之处请见谅。

首先,从教材来看,《中心对称与中心对称图形》是在学习旋转的基础上引申出的一个全新概念,因此本节的课程应该是建立在充分理解旋转概念的基础上的。

教学中重点在于中心对称的定义和性质以及作法。

难点就在于性质的理解。

其次《中心对称与中心对称图形》是继《轴对称》之后图形的又一变换。

在中考中二者常常结合在一起考查,因此在教学中既要突出中心对称的定义与作法外还应结合轴对称让学生理解二者的区别与联系。

在教学过程中,两位老师都突出了重难点,抓住了课程的根本,又有着不同的侧重点。

增城市第二中学的欧阳顺银老师:欧阳顺银老师给我的总体感觉是:教师吃透了教材,用活了教材;学生探究了方法,掌握了知识,受到了美的熏陶,尝试了美的创造。

1、引入自然,能结合学生已经掌握的《轴对称》的知识和生活的实际引入《中心对称》;(1)采取从学生最熟悉的实际问题情境入手的方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。

(2)所有新知识的学习都以对相关具体问题情境的探索作为开始,它们是学生了解与学习这些新知识的有效方法,同时也活跃了课堂气氛,激发学生的学习兴趣。

2、活用教材是本课的一个突出特点《中心对称图形》是继图形的平移、轴对称和旋转变换后,对旋转变换的特例──中心对称所做的进一步探究。

它是综合运用各种图形变换进行图案设计的重要基础,与现实生活有着直接的,紧密的联系。

人教版 九年级数学讲义 图形的旋转与中心对称(含解析)

人教版 九年级数学讲义 图形的旋转与中心对称(含解析)

第8讲图形的旋转与中心对称知识定位讲解用时:3分钟A、适用范围:人教版初三,基础一般B、知识点概述:本讲义主要用于人教版初三新课,本节课我们首先学习旋转变换,重点掌握旋转三要素以及旋转的性质,能够结合图形的性质处理简单几何问题,其次学习中心对称以及中心对称图形,掌握中心对称的性质,了解坐标关于原点对称的特征。

本节课的难点在于旋转与三角形以及四边形等知识点的结合考查,具有一定的综合性,希望同学们认真学习,熟练掌握相关性质和应用。

知识梳理讲解用时:20分钟图形的旋转(1)旋转的定义在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转过的角称为旋转角。

从以下几点理解定义:①旋转中心在旋转过程中保持不变;①图形的旋转是由旋转中心、旋转角度和旋转方向共同决定(三要素);①旋转角度一般小于360°。

(2)旋转的特征①旋转后图形上每一点都绕着旋转中心旋转了同样的角度;①旋转后的图形与原图形对应线段相等、对应角相等;①对应点到旋转中心的距离相等;①旋转后的图形与原来的图形的形状和大小都没有发生变化。

课堂精讲精练【例题1】将小鱼图案绕着头部某点顺时针旋转90°后可以得到的图案是()A.B.C.D.【答案】B【解析】本题考查的是图形的旋转变化,小鱼图案绕着头部某点顺时针旋转90°后可以得到的图案是B中图案,故选:B.讲解用时:3分钟解题思路:根据旋转的意义,找出图中眼、尾巴等关键处按顺时针方向旋转90°后的形状即可选择答案。

教学建议:看清是顺时针还是逆时针旋转,旋转多少度。

难度:3 适应场景:当堂例题例题来源:大渡口区模拟年份:2017 【练习1】观察下列图案,其中旋转角最大的是()。

A.B.C.D.【答案】A【解析】根据旋转的定义来判断旋转的度数,A、旋转角是120°;B、旋转角是90°;C、旋转角是72°;D、旋转角是60°.故选:A.讲解用时:2分钟解题思路:根据定义,一个图形围绕一个定点旋转一定的角度,得到另一个图形叫做旋转。

人教版九年级数学上册教案:24.1 圆的有关性质

人教版九年级数学上册教案:24.1 圆的有关性质

数学教学设计人教版九年级数学第二十四章《圆》——24.1圆的有关性质(一)课题:圆圆一、教学设计思想本节课是九年义务制教育九年级上册第二十四章第一节的内容,选用的是人民教育出版社教材。

圆是初中几何中重要的内容之一。

本节通过第一课时建立圆的概念,认识圆的轴对称性与中心对称性。

讲解时将观察与思考、操作与实践等活动贯穿于教学全过程,使学生积累一定的数学活动经验。

《新课程标准》提出“使数学教育面向全体学生,实现人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展。

”本节课在遵循这一基本理念下,尽量实现几何课程的教育价值。

数学源于生活,又服务于生活,最终要解决生活中的问题。

利用现代多媒体帮助学生理解和学习数学,探索与分析,讨论与归纳等数学活动是学习的主要方式。

形成应用数学意识和创新思维,进而使学生获得对数学知识理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

二、教学背景分析(一)教学内容分析圆是继三角形、四边形等基本图形后的又一个重要内容。

圆的知识在科学技术和日常生活中有广泛应用。

圆是平面几何中最基本的图形之一,它在几何中有重要的地位。

圆的有关概念是圆这一章的起始课,在本节课之前学生小学已经学习了圆的初步知识,联系学生实际,整合课外资源来充实课堂教学内容。

圆的有关概念是中学阶段应用圆知识解决实际问题的开端,也是为今后学习圆的知识奠定基础.通过对实际问题的探索让学生初步感受从实际问题中抽象出数学问题的过程,培养学生的数学价值观,增强学数学、用数学的意识。

(二)学生情况分析初三年级的学生是初中阶段的高年级的学生,课堂中的学习行为趋于理性化,思维的成熟度,内心深处探求真理的欲望比初二年级高,因此要引导轻松和谐的课堂气氛,充分激活学生的创造欲望,让学生在教师创设的情境中充满好奇心的学,留给学生充分的自主活动和相互交往的空间,在观察中不断地发现数学问题,在实践中日益领悟数学思想,在评价中逐步形成数学价值观。

人教版初三数学知识点归纳(超级经典,全面,吐血推荐)

人教版初三数学知识点归纳(超级经典,全面,吐血推荐)

初三数学知识点汇总(超级经典)第二十一章 二次根式∙知识网络图表∙∙习题练习∙1.2)x > 2.0=,求x 、y 的值。

3..已知0b >4.a b ==a 、b 表示为多少? 5.6.=x 的取值范围是多少? 7.当x=_____时3的值最小,最小值是:_______.8.在实数范围内分解因式:425x -(0,(0,ab a b a b ≥≥>a b ab =(a a a =9.计算21)(2).22--10.等式:x y-=:________11.下列二次根式中,最简二次根式是( )B.12.下列各式中,( )13.若3x=-成立,则x的取值范围为( )A.2x≥ B.3x≤ C.23x≤≤ D.23x<<14.计算结果是:( )A.B.C.D.15.数5x, 小数部分是y, 则x-2y的值是()A.1B.1- C.1 D.1--16.已知a b==()A.5 B.6 C.3 D.417.有意义,则x的取值范围是:_________18.实数a在数轴上的位置如图,化简:1a-19.0=1 2第二十二章 一元二次方程∙∙习题练习∙1.下列关于x 的方程中:①20ax bx c ++=,②2560k k ++=,3102x x -=,④22(3)20m x +-=.是关于x 的一元二次方程的是:______(只填序号) 2.关于x 的方程1(3)50a a xx --++=是一元二次方程,则a =_______.3.如果210x x +-=,那么代数式3227x x +-的值为:____________.4.已知m 是方程210x x --=的一个根,则代数式2m m -的值为多少?12c x a=数量关系5.用配方法解方程2410x x ++=,经过配方得:_____________6.对于二次三项式21036,x x -+小明同学得出如下的结论:无论x 取何值什么实数时,它的值都不可能等于11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档