201x-201x学年七年级数学下册第六章数据与统计图表6.4频数与频率一练习新版浙教版
2022年最新浙教版初中数学七年级下册第六章数据与统计图表专题测评试题(含答案解析)
![2022年最新浙教版初中数学七年级下册第六章数据与统计图表专题测评试题(含答案解析)](https://img.taocdn.com/s3/m/2ee19205a7c30c22590102020740be1e640ecc53.png)
初中数学七年级下册第六章数据与统计图表专题测评(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A.0.1 B.0.15C.0.25 D.0.32、在下列调查中,适宜采用全面调查的是()A.了解我省中学生视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全民新闻》栏目的收视率3、如图,是某企业甲、乙两位员工的能力测试结果的网状图,以O为圆心的五个同心圆分别代表能力水平的五个等级由低到高分别赋分1至5分,由原点出发的五条线段分别指向能力水平的五个维度,网状图能够更加直观的描述测试者的优势和不足,观察图形,有以下几个推断:①甲和乙的动手操作能力都很强;②缺少探索学习的能力是甲自身的不足;③与甲相比乙需要加强与他人的沟通合作能力;④乙的综合评分比甲要高.其中合理的是()A.①③B.②④C.①②③D.①②③④4、某公司的生产量在七个月之内的增长变化情况如图所示,从图上看,下列结论不正确的是( )A.2~6月生产量增长率逐月减少B.7月份生产量的增长率开始回升C.这七个月中,每月生产量不断上涨D.这七个月中,生产量有上涨有下跌5、2018年1~4月我国新能源乘用车的月销售情况如图所示,则下列说法错误..的是()A.1月份销售为2.2万辆B.从2月到3月的月销售增长最快C.4月份销售比3月份增加了1万辆D.1~4月新能源乘用车销售逐月增加6、今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计解析,以下说法正确的是( )A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量7、下列调查中,最适合采用全面调查的是()A.对全国中学生视力和用眼卫生情况的调查B.对某班学生的身高情况的调查C.对某鞋厂生产的鞋底能承受的弯折次数的调查D.对某池塘中现有鱼的数量的调查8、下列调查中,适宜采用全面调查方式的是()A.了解一批圆珠笔的使用寿命B.了解全国九年级学生身高的现状C.考查人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件9、某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %10、如图所示的两个统计图,女生人数多的学校是()A.甲校B.乙校C.甲、乙两校女生人数一样多D.无法确定二、填空题(5小题,每小题4分,共计20分)1、下列调查中,样本具有代表性的有________.①为了了解我校学生课外作业负担情况,抽取七(1)班学生调查;②为了了解班上学生的睡眠时间,调查班上学号为偶数的学生;③为了了解一批洗衣粉的质量情况,从中随意抽取50袋进行调查;④为了了解奥林匹克森林公园每天的游园人数,抽查一年中每个星期天的游园人数.2、为完成下列任务,你认为用什么调查方式更合适?(选填“全面调查”或“抽样调查”)(1)了解一批圆珠笔芯的使用寿命________.(2)了解全班同学周末时间是如何安排的________.(3)了解我国八年级学生的视力情况________.(4)了解中央电视台春节联欢晚会的收视率________.(5)了解集贸市场出售的蔬菜中农药的残留情况________.(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况________.3、为了了解某校七年级1500名学生的数学期中考试成绩,从中抽取了200名学生的成绩进行统计,在这个问题中,样本容量是________.4、九年级体育测试某班跳绳成绩的频数分布表如下:跳绳次数x在160≤x<180范围的学生占全班学生的_____(用百分数表示).5、已知某组数据的频数为63,样本容量为90,则频率为____.三、解答题(5小题,每小题10分,共计50分)1、为庆祝五四青年节,学校计划在“五四”前夕举行班级歌咏比赛,要确定一首喜欢唱的人数最多的A B C D四首备选曲目让学生选择,经过抽样调查,并将采集歌曲为每班必唱歌曲.为此提供代号为,,,的数据绘制成如下的两幅不完整的统计图.请根据图1,图2所提供的信息,解答下列问题:(1)本次抽样调查的学生有多少名?(2)请将条形统计图补充完整;(3)求扇形图中A的圆心角度数;(4)由统计图发现喜欢唱的人数最多的歌曲为哪一首?若全校共有1200名学生,根据抽样调查的结果估计全校共有多少名学生喜欢唱此歌曲?2、有人针对公交车上是否主动让座做了一次调查,结果如下:(1)参与本次调查的人数是多少?(2)“从来不让座的人”占调查总人数的百分比是多少?(3)面对以上的调查结果,你还能得到什么结论?3、每年夏天全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某中学为确保学生安全,开展了“远离溺水,珍爱生命”的防溺水安全竞赛.学校对参加比赛的学生获奖情况进行了统计,绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题.(1)参加此安全竞赛的学生共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为.(3)将条形统计图补充完整.4、某班同学上学方式的条形统计图如图所示.(1)这个班共有多少名学生?(2)根据条形统计图,制作相应的扇形统计图;(3)从两个统计图中,分别可以获得哪些信息?5、制作适当的统计图表示下面的信息.(1)某奥运商品特许专卖店盘点了近两周的福娃销售情况,信息如下:该店近两周“福娃”的销售量(单位:个)(2)这个店近两周除“福娃”外的奥运商品销售信息为:奥运纪念章的销售额占总销售额的17%,奥运玩具的销售额占总销售额的30%,奥运休闲服饰的销售额占总销售额的28%,其他奥运商品的销售额占总销售额的25%.(3)根据上述信息,为销售部提供合理建议.---------参考答案-----------一、单选题1、D【详解】∵根据频率分布直方图知道绘画兴趣小组的频数为12,∴参加绘画兴趣小组的频率是12÷40=0.3.2、B【详解】试题分析:采用全面调查时,调查的对象要小,A、C、D三个选项的调查对象庞大,不宜适用全面调查,只能采用抽样调查的方式.考点:调查的方式.3、D【分析】根据甲、乙两位员工的能力测试结果的网状图一一判断即可得到答案;【详解】解:因为甲、乙两位员工的动手操作能力均是5分,故甲乙两人的动手操作能力都很强,故①正确;因为甲的探索学习的能力是1分,故缺少探索学习的能力是甲自身的不足,故②正确;甲的与他人的沟通合作能力是5分,乙的与他人的沟通合作能力是3分,故与甲相比乙需要加强与他人的沟通合作能力,故③正确;乙的综合评分是:3+4+4+5+5=22分,甲的综合评分是:1+4+4+5+5=19分,故乙的综合评分比甲要高,故④正确;故选:D;【点睛】本题主要考查图象信息题,能从图象上获取相关的信息是解题的关键;4、D【详解】由折线统计图可知2~6月份生产量增长率逐渐减少,7月份生产量月增长率开始回升,这七个月中,生产量的增长率始终是正数,则每月的生产量不断上涨,所以A、B、C都正确,错误的只有D;故选D.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,注意在图形中纵轴表示的是增长率,只有增长率是负数,才表示生产量下跌.5、D【详解】【分析】观察折线统计图,一一判断即可.【解答】观察图象可知:A. 1月份销售为2.2万辆,正确.B. 从2月到3月的月销售增长最快,正确.C.4.3 3.31-=, 4月份销售比3月份增加了1万辆,正确.D. 1~4月新能源乘用车销售先减少后增大.故错误.故选D.【点评】考查折线统计图,解题的关键是看懂图象.6、C【分析】根据总体、个体、样本、样本容量的定义对各选项判断即可.【详解】解:A、1000名考生的数学成绩是样本,故本选项错误;B、4万名考生的数学成绩是总体,故本选项错误;C、每位考生的数学成绩是个体,故本选项正确;D、1000是样本容量,故本选项错误.故选C.7、B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似来进行判断.【详解】A、对全国中学生视力和用眼卫生情况的调查,适合抽样调查,故此选项错误;B、对某班学生的身高情况的调查,适合全面调查,故此选项正确;C、对某鞋厂生产的鞋底能承受的弯折次数的调查,适合抽样调查,故此选项错误;D、对某池塘中现有鱼的数量的调查,适合抽样调查,故此选项错误;故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、D【详解】试题解析:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选D.9、C【详解】【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.【详解】观察直方图,由图可知:A. 最喜欢足球的人数最多,故A选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C. 全班共有12+20+8+4+6=50名学生,故C选项正确;D. 最喜欢田径的人数占总人数的4100%=8 %,故D选项错误,50故选C.【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.10、D【详解】试题分析:根据题意,结合扇形图的性质,扇形统计图只能得到每部分所占的比例,具体人数不能直接体现,易得答案.解:根据题意,因不知道甲乙两校学生的总人数,只知道两校女生占的比例,故无法比较两校女生的人数,故选D.二、填空题1、②③【分析】根据抽样调查必须要具有代表性,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性,判断即可.【详解】①为了了解我校学生课外作业负担情况,抽取七(1)班学生调查,七(1)班不一定具有代表性,不符合题意;②为了了解班上学生的睡眠时间,调查班上学号为偶数的学生,具有代表性,符合题意;③为了了解一批洗衣粉的质量情况,从中随意抽取50袋进行调查,具有代表性,符合题意;④为了了解奥林匹克森林公园每天的游园人数,抽查一年中每个星期天的游园人数,星期天抽查不具有代表性,不符合题意.故答案为:②③.【点睛】本题考查在作调查时收集数据的代表性问题,掌握抽样调查必须要具有代表性,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性,这是解题关键.2、抽样调查全面调查抽样调查抽样调查抽样调查全面调查【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】(1)了解一批圆珠笔芯的使用寿命,具有破坏性,故适合用抽样调查.(2)了解全班同学周末时间是如何安排的,数量较小,故适合用全面调查.(3)了解我国八年级学生的视力情况,数量较大,故适合用抽样调查.(4)了解中央电视台春节联欢晚会的收视率,数量较大,故适合用抽样调查.(5)了解集贸市场出售的蔬菜中农药的残留情况,具有破坏性,故适合用抽样调查.(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况,数量较小,准确度要求高,故适合用全面调查.故答案为:抽样调查,全面调查,抽样调查,抽样调查,抽样调查,全面调查【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、200【分析】结合题意,根据样本容量的性质分析,即可得到答案.【详解】根据题意,样本容量是200;故答案为:200.【点睛】本题考查了样本容量的知识;解题的关键是熟练掌握样本容量的性质,从而完成求解.4、26%【分析】用此范围的频数除以总数,再乘以100%即可得到答案.解:跳绳次数x在160≤x<180范围的学生占全班学生的百分比为13100%=26% 2326136⨯++++,故答案为:26%.【点睛】此题考查利用频数求百分比,掌握百分比的计算公式是解题的关键.5、0.7【分析】根据频率=频数÷总数,求解即可.【详解】这组数据的频率63÷90=0.7,故答案为:0.7.【点睛】本题考查了频率的计算公式,解答本题的关键是掌握公式:频率=频数÷总数.三、解答题1、(1)本次抽样调查的学生有180人;(2)见解析;(3)72°;(4)由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有480人喜欢唱此歌曲.【分析】(1)用曲目D的人数除以其占比即可得到答案;(2)根据(1)所求,先算出曲目C的人数,然后补全统计图即可;(3)用360度乘以曲目A的人数占比即可得到答案;(4)根据统计图可知喜欢曲目C的人数最多,然后用全校人数乘以样本中曲目C的占比即可得到答案.解:(1)由题意得:总人数8442180360︒=÷=︒人,答:本次抽样调查的学生有180人;(2)由(1)得喜欢曲目C的人数180********=---=人,∴补全条形统计图如下所示:(3)由题意得扇形图中A的圆心角度数3636072180=︒⨯=︒;(4)由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有721200480180⨯=人,答:由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有480人喜欢唱此歌曲.【点睛】本题主要考查了扇形统计图与条形统计图信息相关联,用样本估计总体,补全统计图,求扇形圆心角度数等等,读懂统计图是解题的关键.2、(1)参与本次调查的人数是34921人;(2)“从来不让座的人”占调查总人数的百分比约是2%;(3)从来不让座的人所占比例是很少的,绝大多数的人都会让座(答案不唯一).【分析】(1)将所有情况的人数全部加起来求和即可;(2)用“从来不让座的人”除以总人数即可;(3)根据条形统计图得出其中一个结论即可.【详解】(1)参与本次调查的人数是:15365+13270+4540+1048+698=34 921人,答:参与本次调查的人数是34 921人;(2)“从来不让座的人”占调查总人数的百分比是:698100%2%34921≈,答:“从来不让座的人”占调查总人数的百分比约是2%;(3) 从来不让座的人所占比例是很少的,绝大多数的人都会让座.【点睛】本题主要考查了条形统计图的知识,属于基础题,根据条形统计图的数据计算是解题关键.3、(1)40;(2)90°;(3)见解析.【分析】(1)从两个统计图中可知“特等奖”的有18人,占全部参加竞赛人数的45%,可求出参加竞赛人数;(2)求出“三等奖”所占的百分比,即可求出相应的圆心角的度数;(3)求出“二等奖”的人数,即可补全条形统计图.【详解】解:(1)18÷45%=40(人),故答案为:40;(2)360°×1040=90°,故答案为:90°;(3)40﹣4﹣10﹣18=8(人),补全条形统计图如图所示:【点睛】本题考查条形统计图、扇形统计图的意义和制作方法,理解两个统计图中的数量关系是正确解答的关键.4、(1)班级总人数为48人;(2)见解析;(3)见解析.【分析】(1)把三种方式的学生数量相加即可;(2)根据条形图可知:乘车的人数是除以总人数就是乘车的百分比,步行的人数除以总人数就是步行的百分比,骑车的人数除以总人数就是骑车的百分比;(3)从图中即可得出①骑车的人最多,②步行的人最少.【详解】解:(1)这个班共有学生数为:2481648++=(人);(2)乘车的百分比是:2450%=,48步行的百分比是:817%≈,48骑车的百分比是:1633%≈,48∴扇形统计图如下图所示:(3)答案不唯一,例如:从条形统计图可知,乘车、步行、骑车的人数分别是24人、8人和16人,班级总人数为48人,乘车人数是步行人数的3倍等;从扇形统计图可知,乘车、步行、骑车的人数占班级总人数的百分比分别是50%,17%和33%,乘车的人数占到了班级总人数的一半等.【点睛】本题主要考查条形统计图及扇形统计图及相关计算.解题的关键是读懂统计图,从条形统计图中得到必要的信息是解决问题的关键.5、(1)可以选用条形统计图;见解析;(2)可以选用扇形统计图,见解析;(3)见解析.【分析】(1)根据表格中的数据画条形统计图即可;(2)根据所给的百分比画扇形统计图即可;(3)多制作销售量比较高的产品即可;【详解】(1)可以选用条形统计图(如图);(2)可以选用扇形统计图,(3)“福娃”多进“欢欢”,“福娃”外的奥运商品多进奥运玩具.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。
精品解析:最新浙教版初中数学七年级下册第六章数据与统计图表同步练习试卷(含答案详细解析)
![精品解析:最新浙教版初中数学七年级下册第六章数据与统计图表同步练习试卷(含答案详细解析)](https://img.taocdn.com/s3/m/28e6976a59fafab069dc5022aaea998fcc2240ad.png)
初中数学七年级下册第六章数据与统计图表同步练习(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④ B.③→④→①→② C.①→②→④→③ D.②→④→③→①2、在下列四项调查中,方式正确的是()A.了解本市中学生每天学习所用的时间,采用全面调查的方式B.为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C.了解某市每天的流动人口数,采用全面调查的方式D.了解全市中学生的视力情况,采用抽样调查的方式3、如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A.2010年至2014年间工业生产总值逐年增加B.2014年的工业生产总值比前一年增加了40亿元C.2012年与2013年每一年与前一年比,其增长额相同D.从2011年至2014年,每一年与前一年比,2014年的增长率最大4、为了估计湖里有多少条鱼,小刚先从湖里捞出了100条鱼做上标记,然后放回湖里去.经过一段时间,带有标记的鱼完全混合于鱼群后,小刚又从湖里捞出200条鱼,如果其中15条有标记,那么估计湖里有鱼()A.1333条B.3000条C.300条D.1500条5、某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四6、在大课间活动中,同学们积极参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,下列说法不正确...的是()A.第四小组有10人B.本次抽样调查的样本容量为50C.该校“一分钟跳绳”成绩优秀的人数约为480人D.第五小组对应圆心角的度数为457、如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A.该班总人数为50 B.步行人数为30C.乘车人数是骑车人数的2.5倍D.骑车人数占20%8、下面是两户居民家庭全年各项支出的统计图:根据统计图,下列对两户教育支出占全年总支出的百分比作出的判断中,正确的是()A.甲户比乙户大B.乙户比甲户大C.甲、乙两户一样大D.无法确定9、下列调查工作需采用普查方式的是()A.环保部门对长江某段水域的水污染情况的调查;B.电视台对正在播出的某电视节目收视率的调查;C.质检部门对各厂家生产的电池使用寿命的调查;D.企业在给职工做工作服前进行的尺寸大小的调查.10、下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况二、填空题(5小题,每小题4分,共计20分)1、为了了解某校800名初一学生的睡眠时间,从中抽取80名学生进行调查,在这个问题中样本容量是 ___.2、某校有2400名九年级学生,随机调查了其中的400名学生,结果有150名学生会游泳,估计该校会游泳的九年级学生人数约为 _______.3、分析数据的频数分布,首先计算出这组数据中________的差,参照这个差值决定________和________,对数据进行分组;然后列________来统计数据,进而画________更直观形象的反映数据的分布情况.4、很多中学生不能注意用眼卫生,小明和几位同学一起对全校3200名学生的视力状况进行了调查,并绘制了扇形统计图,则全校视力500度以上的学生有_____人.5、已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,7,6,10,第五组的频率是0.2,则第六组的频率是______.三、解答题(5小题,每小题10分,共计50分)1、某学习小组的同学想了解自己所在学校的同学每天在校体育活动的时间.小组成员讨论,想到了如下的调查方式.甲:抽取学校每个班学号是10,20,30的同学进行调查;乙:选择自己所在班级对全体同学进行调查;丙:选择每个班的体育委员进行调查;丁:在校门口,随机选择调查本校同学100人;戊:调查全校每一位同学.你认为哪些同学提出的调查方式比较合适?为什么?2、中国男子国家足球队冲击2010年南非世界杯失利后,某新闻机构就中国足球环境问题随机调查了400人,其结果如下:(1)计算出每一种意见人数占总调查人数的百分比(填在以上空格中);(2)请画出反映此调查结果的扇形统计图;(3)从统计图中你能得出什么结论?说说你的理由.3、为了完成下列任务,你认为采用什么调查方式更合适?(1)了解一沓钞票中有没有假钞;(2)了解一批西瓜是否甜;(3)了解你们班同学是否喜欢科普类书籍.4、2020年冬季达州市持续出现雾霾天气.某记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了尚不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m=,n=,扇形统计图中E组所占的百分比为%;(2)若该市人口约有200万人,请你估计其中持D组“观点”的市民人数.(3)治污减霾,你有什么建议?5、下面数据是某校男子足球队20名队员的身高(单位:cm):156,154,161,158,164,150,163,160,159,155,150,161,157,168,163,159,165,164,158,153.请按组距为4进行分组,列出频数分布表,画出频数分布直方图,并分析数据分布情况.---------参考答案-----------一、单选题1、D【分析】根据频数分布表、扇形统计图制作的步骤,可以解答本题.【详解】由题意可得:正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类.故选D.【点睛】本题考查了扇形统计图、频数分布表,解答本题的关键是明确制作频数分布表和扇形统计图的制作步骤.2、D分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选D.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、D【详解】解:A、2010年至2014年间工业生产总值逐年增加,正确,不符合题意;B、2014年的工业生产总值比前一年增加了40亿元,正确,不符合题意;C、2012年与2013年每一年与前一年比,其增长额相同,正确,不符合题意;D、从2011年至2014年,每一年与前一年比,2012年的增长率最大,故D符合题意;故选D.【点睛】本题考查折线统计图.4、A【分析】在样本中“捕捞200条鱼,发现其中15条有标记”,即可求得有标记的所占比例,而这一比例也适用于整体,据此即可解答.设湖中有x条鱼,则:15:200=100:x解得:x=40003≈1333(条).故选A.【点睛】本题考查了通过样本去估计总体,只需将样本“成比例地放大”为总体即可.5、A【分析】通过条形统计图可以看出套餐一出现了50人,最多,即可得出答案.【详解】解:通过观察条形统计图可得:套餐一一共出现了50人,出现的人数最多,因此通过利用样本估计总体可以得出学生最喜欢的套餐种类是套餐一;故选:A.【点睛】本题主要考查了条形统计图,明白条形统计图能清楚地表示出每个项目的数据,从条形统计图中得到必要的信息是解决问题的关键.6、D【分析】结合条形图和扇形图,求出样本人数,进行解答即可.【详解】根据直方图可知第二小组人数为10人,根据扇形图知第二小组占样本容量数的20%,则抽取样本人数为1020%50÷=人,故B选项正确;所以,第四小组人数为50410166410-----=人,故A选项正确;第五小组对应的圆心角度数为636043.250︒⨯=︒,故D选项错误;用样本估计总体,该校“一分钟跳绳”成绩优秀的人数约为1064120048050++⨯=人,故C选项正确;故选:D.【点睛】本题综合考查总体、个体、样本、样本容量,以及扇形统计图和频数(率)分布直方图.准确理解总体、个体、样本、样本容量、扇形统计图和频数(率)分布直方图等的相关概念是关键.7、B【分析】根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【详解】A、总人数是:25÷50%=50(人),故A正确;B、步行的人数是:50×30%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.由于该题选择错误的,故选B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8、B【分析】根据条形统计图求出甲户教育支出占全年总支出的百分比,再结合扇形统计图中的乙户教育支出占全年总支出的百分比是25%,进行比较即可.【详解】甲户教育支出占全年总支出的百分比1200÷(1200×2+2000+1600)=20%,乙户教育支出占全年总支出的百分比是25%.故选B.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.注意此题比较的仅仅是百分比的大小.9、D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A、环保部门对长江某段水域的水污染情况的调查不可能把全部的水收集起来,适合抽样调查.B、电视台对正在播出的某电视节目收视率的调查,因为普查工作量大,适合抽样调查.C、质检部门对各厂家生产的电池使用寿命的调查,如果普查,所有电池都报废,这样就失去了实际意义,适合抽样调查.D、企业在给职工做工作服前进行的尺寸大小的调查是精确度要求高的调查,适合全面调查.故选D.【点睛】本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、C【解析】解:A.了解我国民众对乐天集团“萨德事件”的看法调查范围广适合抽样调查,故A不符合题意;B.了解湖南卫视《人们的名义》反腐剧的收视率调查范围广适合抽样调查,故B不符合题意;C.调查我校某班学生喜欢上数学课的情况适合普查,故C符合题意;D.调查某类烟花爆竹燃放的安全情况调查具有破坏性适合抽样调查,故D不符合题意;故选C.二、填空题1、80【分析】根据样本容量是指样本中个体的数目,可得答案.【详解】解:为了了解某校800名初一学生的睡眠时间,从中抽取80名学生进行调查,在这个问题中样本容量是80.故答案为:80.【点睛】本题主要考查总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.2、900名【分析】用总人数乘以样本中会游泳的学生人数所占比例即可.【详解】解:估计该校会游泳的九年级学生人数约为2400×150400=900(名),故答案为:900名.【点睛】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.3、最大值与最小值组距组数频数分布表频数分布直方图【分析】根据频数分布直方图的步骤即可得出【详解】分析数据的频数分布,首先计算出这组数据中最大值与最小值的差,参照这个差值决定组距和组数,对数据进行分组;然后列频数分布表来统计数据,进而画频数分布直方图更直观形象的反映数据的分布情况.故答案为:最大值与最小值;组距;组数;频数分布表;频数分布直方图【点睛】本题考查频数直方分布图,掌握频数直方分布图的步骤与画法是解题关键,4、224【分析】根据扇形统计图可求出全校视力500度以上的学生所占的百分比,进而可得答案.【详解】全校视力500度以上的学生所占的百分比是1﹣10%﹣18%﹣20%﹣45%=7%,∴全校视力500度以上的学生有7%×3200=224(人).故答案为:224【点睛】本题考查扇形统计图,根据扇形统计图得出全校视力500度以上的学生所占的百分比是解题关键.5、0.1【分析】根据频率=频数÷总数,以及第五组的频率是0.2,可以求得第五组的频数;再根据各组的频率和等于1,求得第六组的频数,从而求得其频率.【详解】解:根据第五组的频率是0.2,其频数是40×0.2=8;则第六组的频数是40﹣(10+5+7+6+8)=4.故第六组的频率是4400.1.故答案:0.1.【点睛】本题是对频率=频数÷总数这一公式的灵活运用的综合考查,注意:各小组频数之和等于数据总和,各小组频率之和等于1.三、解答题1、作为抽样调查,甲、丁的方法都可行.理由见解析.【分析】根据抽样调查和全面调查的特点即可作出判断.抽样调查具有广泛性、代表性;适合普查的一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.【详解】解:作为抽样调查,甲、丁的方法都可行.理由如下:乙只考虑到自己所在班级,而不同年级的学生体育活动的时间是有差别的,因此样本不具有代表性.丙调查体育委员,这个群体比较特殊,样本同样不具有广泛性和代表性.戊同学提出的是普查,若学校规模较小则可行的,若学校规模很大则操作性就降低了.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、(1)见解析;(2)见解析;(3)绝大部分人对中国足球环境问题不满意.【分析】(1)由每个的人数除以总人数.再乘以100%,即可求得;(2)由各自的百分数乘以360°,即可得到每个小扇形的圆心角的度数,然后作扇形图即可;(3)扇形图能反映各种情况的百分比,根据扇形图即可得到答案.【详解】解:(1)∵200400×100%=50%,160400×100%=40%,32400×100%=8%,8400×100%=2%,(2)∵50%×360°=180°,40%×360°=144°,8%×360°=28.8°,2%×360°=7.2°,∴(3)人民对国家足球队非常不满意的人数占到一半.绝大部分人对中国足球环境问题不满意.【点睛】此题考查了扇形统计图的作法与含义.解题的难点在扇形统计图的角度的求得上,要注意掌握方法.3、(1)普查;(2)抽样调查;(3)普查【分析】根据抽查方式和意义,逐一判断选择即可.【详解】(1)假钞必须查实,故采用普查;(2)西瓜是消费品,不能逐一品尝,故采用抽样调查;(3)一个班的学生数量有限,故可采用普查.【点睛】本题考查了调查的两种方式,根据实际灵活选择是解题的关键.4、(1)400,100,15;(2)60万人;(3)见解析【分析】(1)根据A的人数除以BA所占的百分比,求得总人数,总人数乘以B的百分比可得m,总人数减去其余各组人数之和可得n,用E组人数除以总人数可得答案;(2)根据全市总人数乘以D类所占比例,可得答案;(3)根据以上图表提出合理倡议均可.【详解】解:(1)本次调查的总人数为80÷20%=400(人),则B组人数m=400×10%=40(人),C组人数n=400﹣(80+40+120+60)=100(人),∴扇形统计图中E组所占的百分比为(60÷400)×100%=15%;(2)200×120400=60(万人),答:估计其中持D组“观点”的市民人数有60万人;(3)由上面的统计可知,造成“雾霾”的主要原因是“工厂造成的污染”和“汽车尾气排放”.倡议关停重污染企业,加大对工厂排污的监管和处罚;倡议大家尽量乘坐公共交通工具出行,减少汽车尾气的排放.【点睛】本题主要考查了扇形统计图,统计表,能从图形中获取准确信息是解题的关键.5、列出频数分布表,画出频数分布直方图,见解析;大约有60%的队员的身高在158﹣166cm.【分析】求出极差,再根据组距为4,确定组数,进而列出频数分布表,根据各组频数绘制频数分布直方图,并作简单的数据分析即可.【详解】解:这组数据的最大值为168,最小值为150,极差为168﹣150=18,组距为4,组数为18÷4≈5,频数分布表为:频数分布直方图如下:由频数分布表和频数分布直方图可知,大约有60%的队员的身高在158﹣166cm.【点睛】本题考查频数分布表、频数分布直方图,掌握频数分布直方图的制作方法是正确解答的关键.。
中考特训浙教版初中数学七年级下册第六章数据与统计图表章节测评试题(含详细解析)
![中考特训浙教版初中数学七年级下册第六章数据与统计图表章节测评试题(含详细解析)](https://img.taocdn.com/s3/m/204439bac67da26925c52cc58bd63186bceb92d8.png)
初中数学七年级下册第六章数据与统计图表章节测评(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、某校开展以“了解传统习俗,弘扬民族文化”为主题的实践活动.实践小组就“是否知道端午节的由来”对部分学生进行了调查,调查结果如图所示,其中不知道的学生有8人.下列说法不正确的是( )A.被调查的学生共有50人B.被调查的学生中“知道”的人数为32人C.图中“记不清”对应的圆心角为60°D.全校“知道”的人数约占全校总人数的64%2、下面是两户居民家庭全年各项支出的统计图:根据统计图,下列对两户教育支出占全年总支出的百分比作出的判断中,正确的是()A.甲户比乙户大B.乙户比甲户大C.甲、乙两户一样大D.无法确定3、下列采用的调查方式中,不合适的是()A.了解澧水河的水质,采用抽样调查.B.了解一批灯泡的使用寿命,采用全面调查.C.了解张家界市中学生睡眠时间,采用抽样调查.D.了解某班同学的数学成绩,采用全面调查.4、为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1005、为了建设“书香校园”,某校计划购进一批新书,学校图书管理员对一周内本校学生借阅各类图书的情况,进行了统计,绘制成以下不完整的图表,根据图表中的信息,下列说法不正确的是( )A.一周内该校学生借阅各类图书一共约800本B.该校学生喜欢阅读文学类图书的约占35%C.一周内该校学生借阅漫画类图书约240本D.若该学校计划购进四类新书共1 000本,不能根据学生需要确定各类图书的数量,只能随机购买6、某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是()A.100B.被抽取的100名学生家长C.被抽取的100名学生家长的意见D.全校学生家长的意见7、每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,个体是()A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况8、为了解中学生获取资讯的主要渠道,随机抽取50名中学生进行问卷调查,调查问卷设置了“A.报纸,B.电视,C.网络,D.身边的人,E.其他”五个选项(五项中必选且只能选一项),根据调查结果绘制了如下的条形图.该调查的调查方式及图中a的值分别是( )A.全面调查;26 B.全面调查;24C.抽样调查;26 D.抽样调查;249、某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的扇形统计图,已知该学校共2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是()A.被调查的学生有60人B.被调查的学生中,步行的有27人C.估计全校骑车上学的学生有1152人D.扇形图中,乘车部分所对应的圆心角为54°10、为了了解某校1500名学生的体重情况,从中抽取了100名学生的体重,就这个问题来说,下面说法正确的是()A.1500名学生的体重是总体B.1500名学生是总体C.每个学生是个体D.100名学生是所抽取的一个样本二、填空题(5小题,每小题4分,共计20分)1、某同学对全班50名同学感兴趣的课外活动项目进行了调查,绘制下表:(1)全班同学最感兴趣的课外活动项目是______;(2)对音乐感兴趣的人数是____,占全班人数的百分比是_______.2、某商店今年1﹣4月的手机销售总额如图1;其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下五个结论:①从1月到4月,手机销售总额连续下降;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;③音乐手机4月份的销售额比3月份有所上升;④1~4月中,音乐手机销售额最低的是3月;⑤1~4月音乐手机的销售额一共53.4万元.其中正确的结论有 ___(填写序号).3、学校举办科技节,英才班选择以下A:高铁技术;B:东风快递;:5C G技术;D:北斗卫星四个项目,收集资料制作宣传画册,每位同学限报一项,统计学生所选内容的频数,绘制成如图所示的折线统计图,则选择“东风快递”的学生人数与全班人数的比值为__.4、为促进城市交通更加文明,公共秩序更加优良,各个城市陆续发布“车让人”的倡议,此倡议得到了市民的一致赞赏.为了更好地完善“车让人”倡议,某市随机抽取一部分市民对“车让人”的倡议改进意见支持情况进行统计,分为四类:A.加大倡议宣传力度;B.加大罚款力度;C.明确倡议细则;D.增加监控路段,并将统计结果绘制成如图所示的两幅不完整的统计图.则扇形统计图中α∠的度数为__________.5、已知某组数据的频数为63,样本容量为90,则频率为____.三、解答题(5小题,每小题10分,共计50分)1、每年夏天全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某中学为确保学生安全,开展了“远离溺水,珍爱生命”的防溺水安全竞赛.学校对参加比赛的学生获奖情况进行了统计,绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题.(1)参加此安全竞赛的学生共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为.(3)将条形统计图补充完整.2、为了完成下列任务,你认为采用什么调查方式更合适?(1)了解班级同学中哪个月份出生的人数最多;(2)了解一批冷饮的质量是否合格;(3)了解京剧在全校同学中的受欢迎程度;(4)了解全国人口的平均寿命.3、某市教育局在全市党员教职工中开展的“学党史,知党情,颂党恩”活动中,进行了论文的评比,论文的交稿时间为6月1日至25日,评委会把各校交的论文的篇数按4天一组分组统计,绘制成如图所示的频数分布直方图(每组包括左端点,不包括右端点)已知从左往右各小长方形的高的比为2:3:4:6:4:1,第二组的频数为18.请回答下列问题.(1)本次活动共有多少篇论文参加评比?(2)哪组上交的论文数量最多?是多少?(3)经过评比,第四组和第六组分别有20篇、4篇论文获奖,则这两组哪组获奖率高?4、佳佳调查了初一600名学生选择课外兴趣班的情况,根据调查结果绘制了统计图的一部分如下:(1)补全条形统计图;(2)求扇形统计图中表示“书法”的扇形圆心角的度数;(3)估计在3000名学生中选择音乐兴趣班的学生人数.5、今年是中国共产党建党100周年,某校七年级开展“学党史,诵经典”主题诗歌诵比赛,评选出一、二、三等奖若干名.现随机抽取部分获奖学生的情况进行统计,绘制成如下统计图(均不完整).请你根据给出的信息完成下列问题:(1)本次统计抽取的获奖学生人数是多少?(2)补全条形统计图,并求出扇形统计图中二等奖的圆心角度数;(3)若本次比赛七年级有120名学生获奖,估计其中有多少人获三等奖?---------参考答案-----------一、单选题1、C【解析】∵816%50÷=,5064%=32⨯,∴选项A、B的说法正确.--=,∵(116%64%)20%∴图中“记不清”所对应的圆心角为:36020%=72,∴选项C的说法错误.由样本数据可估计总体情况可知:选项D的说法正确.故选C.2、B【分析】根据条形统计图求出甲户教育支出占全年总支出的百分比,再结合扇形统计图中的乙户教育支出占全年总支出的百分比是25%,进行比较即可.【详解】甲户教育支出占全年总支出的百分比1200÷(1200×2+2000+1600)=20%,乙户教育支出占全年总支出的百分比是25%.故选B.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.注意此题比较的仅仅是百分比的大小.3、B【分析】根据调查对象的特点,结合普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果接近准确数值,从而可得答案.【详解】解:了解澧水河的水质,采用普查不太可能做到,所以采用抽样调查,故A合适,了解一批灯泡的使用寿命,不宜采用全面调查,因为调查带有破坏性,故B不合适,了解张家界市中学生睡眠时间,工作量大,宜采用抽样调查,故C合适,了解某班同学的数学成绩,采用全面调查.合适,故D合适,故选B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4、C【详解】本题考查的对象是了解一批电视机的使用寿命,故样本是所抽取的100台电视机的使用寿命.故选C.5、D【分析】结合统计图的数据,正确的分析求解即可得出答案.【详解】解:A、一周内该校学生借阅各类图书一共月200÷25%=800本,此选项正确;B、该校学生喜欢阅读文学类图书的约占280÷800=35%,此选项正确;C、一周内该校学生借阅漫画类图书约800-200-800×10%-280=240本,此选项正确;D、该学校计划购进四类新书共1000本,能根据学生需要确定各类图书的数量,此选项错误.故选D.【点睛】本题考查条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解题关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.6、C【分析】根据样本的定义,结合题意,即可得到答案.【详解】解:某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是:被抽取的100名学生家长的意见.故选C.【点睛】本题考查样本的定义,解题的关键是熟练掌握样本的定义.7、D【分析】个体是总体中的每一个调查的对象,据此判定即可.【详解】在这次调查中,个体是每一名学生对“世界读书日”的知晓情况故选:D.【点睛】本题考查了调查中个体的定义,掌握理解个体的概念是解题关键.8、D【详解】试题分析:本次调查方式为抽样调查,a=50﹣6﹣10﹣6﹣4=24.故选D.考点:1.条形统计图2.全面调查与抽样调查.9、C【详解】试题分析:根据汽车的人数和百分比可得:被调查的学生数为:21÷35%=60人,故A正确;步行的人数为60×(1-35%-15%-5%)=27人,故B正确;全校骑车上学的学生数为:2560×35%=896人,故C 错误;乘车部分所对应的圆心角为360°×15%=54°,故D正确,则本题选C.10、A【解析】分析:根据总体、个体、样本的意义解答即可.详解: A. 1500名学生的体重是总体,正确;B. ∵1500名学生的体重是总体,错误;C. ∵每个学生的体重是个体,错误;D. 100名学生的体重是所抽取的一个样本,错误;故选A.点睛: 本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.二、填空题1、体育运动 10 20%【分析】(1)从统计表中直接通过比较即可得到.(2)利用统计表,找到对音乐感兴趣的人数,再用对音乐感兴趣的人数除以全班人数,求出对应的百分比.【详解】解:从统计表分析人数可得到结论.由表可得:(1)体育运动小组人数最多,所以全班同学最感兴趣的课外活动项目是体育运动;(2)对音乐感兴趣的人数是10,占全班人数的百分比是10÷50=20%.故答案为:(1)体育运动;(2)10,20%【点睛】本题主要是统计表的相关知识,如何读懂统计表,从统计表获取信息是关键.2、③④⑤【分析】根据折线统计图、条形统计图中的信息解答即可.【详解】解:①从1月到4月,手机销售总额不是连续下降,3月到4月是增长的,原说法错误;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比不是连续下降,2月到3月是增长的,原说法错误;③音乐手机4月份的销售额比3月份有所下降,原说法正确;④今年1~4月中,音乐手机销售额最低的是3月,原说法正确;⑤1~4月音乐手机的销售额是:85×23%+80×15%+60×18%+65×17%=53.4(万元),所以1~4月音乐手机的销售额一共53.4万元,原说法正确.故答案为:③④⑤.【点睛】本题考查折线统计图,条形统计图等知识,解题的关键是熟练掌握折线统计图、条形统计图的相关知识.3、1 3【分析】求“东风快递”人数与全班人数之比,则求出“东风快递”人数,再除以全班人数即可.【详解】解:由图知,英才班的全体人数为:102025560+++=(人),选择“东风快递”的学生人数为:20人,∴选择“东风快递”的学生人数与全班人数的比值为:201 603=.故答案为:13.【点睛】本题考查折线统计图的读图和数据处理,掌握相关概念是解题关键.4、36︒【分析】利用A的人数除以所占总数的百分比求出总数,再求出D的百分数,再求对应角度即可得结论.【详解】解:由题意总数4020020%==(本),∵D占2010% 200=,∴圆心角36010%36α=︒⨯=︒,故答案为:36︒.【点睛】本题考查条形统计图,条形统计图等知识,解题的关键是知道圆心角=360°×百分比.5、0.7【分析】根据频率=频数÷总数,求解即可.【详解】这组数据的频率63÷90=0.7,故答案为:0.7.【点睛】本题考查了频率的计算公式,解答本题的关键是掌握公式:频率=频数÷总数.三、解答题1、(1)40;(2)90°;(3)见解析.【分析】(1)从两个统计图中可知“特等奖”的有18人,占全部参加竞赛人数的45%,可求出参加竞赛人数;(2)求出“三等奖”所占的百分比,即可求出相应的圆心角的度数;(3)求出“二等奖”的人数,即可补全条形统计图.【详解】解:(1)18÷45%=40(人),故答案为:40;(2)360°×1040=90°,故答案为:90°;(3)40﹣4﹣10﹣18=8(人),补全条形统计图如图所示:【点睛】本题考查条形统计图、扇形统计图的意义和制作方法,理解两个统计图中的数量关系是正确解答的关键.2、(1)普查;(2)抽样调查;(3)普查或抽样调查都可以;(4)抽样调查【分析】对全体对象的调查叫全面调查,也叫普查;只对一部分个体进行的调查叫抽样调查,根据定义解答即可.【详解】解:(1)了解班级同学中哪个月份出生的人数最多应是普查;(2)了解一批冷饮的质量是否合格应是抽样调查;(3)了解京剧在全校同学中的受欢迎程度应是普查或抽样调查都可以;(4)了解全国人口的平均寿命应是抽样调查.【点睛】此题考查普查和抽样调查,正确理解概念并应用解决问题是解题的关键.3、(1)本次活动共有120篇论文参加评比;(2)计算可知第四组上交的论文数量最多,有36篇;(3)第六组的获奖率较高【分析】(1)由题意可知:从左至右各长方形的高的比为2:3:4:6:4:1,则从左到右的各组的频率为0.1、0.15、0.2、0.3、0.2、0.05,又知第二组的频数为18,则总篇数==第二组的频数÷第二组的频率;(2)由图可以看出第四组的频率组大,则第四组的论文数量最多;(3)第四组的论文的频数=120×0.3=36篇,第六组的论文的频数=120×0.05=6篇;则第四组的获奖率=20÷36=56%,第六组的获奖率为4÷6=67%;则第六组的获奖率较高.【详解】解:(1)第二组的频率是32+3+4+6+4+1=0.15总篇数是18÷0.15=120(篇),则本次活动共有120篇论文参加评比.(2)由题意可知:从左至右各长方形的高的比为2:3:4:6:4:1,则从左到右的各组的频率为0.1、0.15、0.2、0.3、0.2、0.05,第四组的论文的频数=120×0.3=36篇,则计算可知第四组上交的论文数量最多,有36篇.(3)第六组的论文的频数=120×0.05=6篇;第四组的获奖率=20÷36×100%≈56%,第六组的获奖率为4÷6≈67%;56%<67%,则第六组的获奖率较高.【点睛】本题考查频率的分布直方图,能从图表中提取有用的信息是解题的关键.4、(1)见解析;(2)72゜;(3)750人【分析】(1)根据参与调查的总人数及条形统计图中的数据信息,可求得选择美术的人数,从而可补全条形统计图;(2)求得选择书法在参与调查的总人数中所占的百分比,它与360度的积即是所求扇形圆心角的度数;(3)求出选择音乐兴趣班的百分比,即可估计出3000名学生中选择音乐兴趣班的学生人数.【详解】(1)由条形统计图知,选择除美术兴趣班外的学生共有:150+180+120+30=480(人),则选择美术兴趣班的学生有:600-480=120(人),所以可以补充完整条形统计图,补全的条形统计图如下:(2)选择书法兴趣班的学生人数占所参与调查的学生人数的百分比为:120100%20% 600⨯=,则表示“书法”的扇形圆心角的度数为20%×360゜=72゜(3)选择音乐兴趣班的学生人数占所参与调查的学生人数的百分比为:150100%25%600⨯=,则估计在3000名学生中选择音乐兴趣班的学生人数大约有;25%×3000=750(人)【点睛】本题是条形统计图与扇形统计图的综合,考查了求扇形统计图中圆心角的度数,画条形统计图,用样本的百分数估计总体的百分数,关键是读懂统计图中包含的信息,能正确运用这些信息解决问题.5、(1)40;(2)图见解析,108°;(3)72人【分析】(1)根据条形图可得一等奖人数为4人,根据扇形图可得一等奖所占百分比为10%,根据频率公式即可求解;(2)根据样本容量减去一等奖,二等奖人数可三等奖人数即可补全条形图如图,然后求出二等奖所占百分比,利用360°×二等奖百分比便可求出扇形圆心角;(3)先求出样本的百分比,然后用样本的百分比乘以年级总数即可.【详解】解:(1)∵一等奖人数为4人,一等奖所占百分比为10%,本次统计随机抽取部分获奖学生人数为4÷10%=40人;(2)三等奖人数为40-4-12=24,补全条形图如图,∵二等奖所占百分比为12÷40×100%=30%,∴扇形统计图中二等奖的圆心角度数360°×30%=108°;(3)∵样本中获三等奖的百分比为24÷40×100%=60%,∴本次比赛七年级有120名学生中获三等奖人数为120×60%=72人.【点睛】本题考查条形统计图与扇形统计图获取信息,样本容量,补画条形图,求扇形圆心角,用样本的百分比含量估计总体中的数量,习题难度适中,能灵活运用统计知识是解题关键.。
201X年春七年级数学下册第6章数据与统计图表6.4第2课时频率练习(新版)浙教版
![201X年春七年级数学下册第6章数据与统计图表6.4第2课时频率练习(新版)浙教版](https://img.taocdn.com/s3/m/2590ecd1f242336c1fb95e5f.png)
6.4 频数与频率第2课时频率知识点1频率为了了解数据分组后各组频数的大小在总数中所占的份量,常常需要求出各组频数与数据总数的比.每一组数据频数与数据总数的比叫做这一组数据(或事件)的频率,频率×100%即为百分比.1.某校抽取了40名同学进行体能测试,其中获得优秀的频数是5,则获得优秀的频率是( )A.5 B.0.5 C.0.25 D.0.125知识点2频数与频率(1)频率=频数样本的容量;(2)各小组的频率之和为1,各小组的频数之和等于样本的容量.2.某校七年级(1)班某次数学测试成绩如下(单位:分):63 84 91 53 69 81 61 69 91 7875 81 80 67 76 81 79 94 61 6989 70 70 87 81 86 90 88 85 6771 82 87 75 87 95 53 65 74 77(1)请你把频数表补充完整;成绩x(分)划记频数频率50≤x<6020.05060≤x<70正90.22570≤x<80正正0.25080≤x<90正正140.35090≤x<100正5(2)(3)如果60分以上(包括60分)为及格,80分以上(包括80分)为优秀,求这次考试的及格率和优秀率.探究频率在实际生活中的应用下表是某校两个班级期中数学成绩统计结果:项目班级优秀人数及格人数不及格人数总人数甲2045550乙1838240(1)甲、乙两班中,哪个班级的优秀人数、及格人数多?哪个班级的优秀率高?高多少?哪个班级的及格率高?高多少?(2)你觉得哪个班级的成绩较好?根据是什么?比较两个班级的学习成绩,用频数和频率哪个好?为什么?[归纳总结] (1)判断成绩的好坏,主要看优秀率、及格率的高低;(2)要明确频数与频率的意义.1.下列说法正确的是( )A.频数表示所有对象出现的次数B.频率表示每个对象出现的次数C.所有频率之和等于1D.频数和频率都不能够反映每个对象出现的频繁程度2.某校对学生参加体育锻炼的时间进行调查,将所得数据分成5组.已知第一组的频率是0.18,第二、三、四小组的频率之和为0.62,故第五组的频率是( )A.0.20 B.0.09C.0.31 D.不能确定3.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是( )A.16 B.14C.4 D.6二、填空题4.2015·漳州我市今年中考数学学科开考时间是6月22日15时,数串“201506221500”中“0”出现的频数是________.5.某商店在8月份售出同一品牌四种规格的空调台数分别是:1匹的14台;1.2匹的24台,1.5匹的8台,2匹的4台.那么该商店售出的空调中,规格为________匹的频数最大,是________,频率是________.6.已知样本75,71,73,75,77,79,75,78,80,79,76,74,75,77,76,72,74,75,76,78,这20个数据中,最大值是________,最小值是________,它们的差是________;如果取组距为2,那么这组数据应该分为________组;如果用x表示其中任意一个数据,第一组的数据范围为________,75≤x<77这组数据的频数是________,频率是________.三、解答题7.从某班抽取30名学生的一次数学测试成绩如下表(单位:分):(2)①及格(60分及以上为及格)率是多少?若80分以上(含80分)为优秀,则优秀率是多少?②哪个分数段的人数最多?有多少人?占总人数的百分比是多少?记录方式如下:如果一个顾客购买某一品牌的饮料,就将这一饮料的名称记录一次.下表是她记录的原始资料:(2)如果让你给冷饮店提出进货建议,你会有什么建议呢?详解详析【预习效果检测】 1.D2.解:(1)空格内分别填入10,0.125.(2)80≤x <90分数段的学生最多,50≤x <60分数段的学生最少. (3)及格率为3840×100%=95%,优秀率为1940×100%=47.5%.【重难互动探究】例 解:(1)甲班的优秀人数与及格人数都比乙班多. 由题意可知甲班的优秀率=2050×100%=40%,乙班的优秀率=1840×100%=45%,所以乙班的优秀率高,高5%.由题意可知甲班的及格率=4550×100%=90%,乙班的及格率=3840×100%=95%,所以乙班的及格率高,高5%.(2)乙班的成绩较好,因为乙班的优秀率与及格率都比甲班高.比较两个班级的学习成绩用频率好,频数大小与总人数多少有直接关系,频率是频数在总人数中所占的百分比,不受总人数的影响.【作业高效训练】 [课堂达标]1.[解析] C 本题考查了频数与频率的概念.注意频数是指每个对象出现的次数,频率是指每个对象出现的次数与总次数的比值.它们能够反映每个对象出现的频繁程度.故选C.2.[解析] A 第五组的频率为1-0.18-0.62=0.20. 3.A4.[答案] 45.[答案] 1.2 24 0.48[解析] 售出最多的是1.2匹的,为24台;各种规格的空调总共售出了14+24+8+4=50(台),故1.2匹的占2450=0.48,即其频率为0.48.6.[答案] 80 71 9 5 71≤x <73 8 0.47.解:(1)频数依次是6,12,6,3,3;频率依次是0.2,0.4,0.2,0.1,0.1. (2)①及格率是90%,优秀率是60%.②80~89分的人数最多,有12人,占总人数的40%. [数学活动][解析] 按品牌分组统计,绘制统计表,根据频数分布提出建议. 解:(1)根据原始资料进行频数统计,绘制的频数、频率统计表如下:此进货时可口可乐、百事可乐按0.3∶0.225,即4∶3的比例进货,且这两种饮料的和占五种饮料的52.5%左右,其余三种占47.5%左右,且“露露”略高于三种的平均数.。
精品解析2021-2022学年浙教版初中数学七年级下册第六章数据与统计图表专题训练练习题(无超纲)
![精品解析2021-2022学年浙教版初中数学七年级下册第六章数据与统计图表专题训练练习题(无超纲)](https://img.taocdn.com/s3/m/7704c2dca48da0116c175f0e7cd184254b351b60.png)
初中数学七年级下册第六章数据与统计图表专题训练(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有27人获得奖励(每位同学均可获得不同级别、不同类别多项奖励),其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为()A.3项B.4项C.5项D.6项2、随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入为2.8万D.前年年收入不止①②③三种农作物的收入3、对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人4、请指出下列抽样调查中,样本缺乏代表性的是()①在某大城市调查我国的扫盲情况;②在十个城市的十所中学里调查我国学生的视力情况;③在一个鱼塘里随机捕了十条鱼,了解鱼塘里鱼的生长情况;④在某一农村小学里抽查100名学生,调查我国小学生的健康状况.A.①②B.①④C.②④D.②③5、下列调查中,调查方式选择最合理的是()A.调查“乌金塘水库”的水质情况,采用抽样调查B.调查一批飞机零件的合格情况,采用抽样调查C.检验一批进口罐装饮料的防腐剂含量,采用全面调查D.企业招聘人员,对应聘人员进行面试,采用抽样调查6、某公司的生产量在七个月之内的增长变化情况如图所示,从图上看,下列结论不正确的是( )A.2~6月生产量增长率逐月减少B.7月份生产量的增长率开始回升C.这七个月中,每月生产量不断上涨D.这七个月中,生产量有上涨有下跌7、今年我市有4万名考生参加中考,为了了解这些考生的数学成绩,从中抽取2 000名学生的数学成绩进行统计分析,在这个问题中,下列说法:①这4万名考生的中考数学成绩的全体是总体;②每个考生是个体;③2 000名考生是总体的一个样本;④样本容量是2 000. 其中说法正确的有( )A.4个B.3个C.2个D.1个8、下列调查中,最适合采用全面调查的是()A.对全国中学生视力和用眼卫生情况的调查B.对某班学生的身高情况的调查C.对某鞋厂生产的鞋底能承受的弯折次数的调查D.对某池塘中现有鱼的数量的调查9、为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.10010、新区四月份第一周连续七天的空气质量指数(AQI)分别为:118,96,60,82,56,69,86,则这七天空气质量变化情况最适合用哪种统计图描述()A.折线统计图B.扇形统计图C.条形统计图D.以上都不对二、填空题(5小题,每小题4分,共计20分)1、对某班同学的身高进行统计(单位:厘米),频数分布表中,165.5-170.5这一组学生人数是12,频率是0.24,则该班共有________名学生;155.5-160.5这一组学生人数是8,频率是________.2、2020年末,我国完成了第7次人口普查,国家统计局采取的调查方式是_______.(填“全面调查”“抽样调查”)3、为了解某校七年级学生的视力情况,从中抽取了100名学生进行了检查,发现只有30名学生的视力在5.0及以上,则该问题中的样本容量是______.4、某商店今年1﹣4月的手机销售总额如图1;其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下五个结论:①从1月到4月,手机销售总额连续下降;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;③音乐手机4月份的销售额比3月份有所上升;④1~4月中,音乐手机销售额最低的是3月;⑤1~4月音乐手机的销售额一共53.4万元.其中正确的结论有 ___(填写序号).5、为了了解学生对《未成年人保护法》的知晓情况.某学校随机选取了部分学生进行调查,并将调查结果绘制成如图所示的扇形图.若该学校共有学生1800人.则可以估计其中对《未成年人保护法》非常清楚的学生约有 __人.三、解答题(5小题,每小题10分,共计50分)1、下面是A,B两球从不同高度自由下落到地面后反弹高度的统计图.(1)比较两个球反弹高度的变化情况,哪个球的弹性大?(2)如果两个球下落的起始高度继续增加,那么你认为A球的反弹高度会继续增加吗?B球呢?(3)分别比较A球、B球的反弹高度和起始高度,你认为反弹高度会超过起始高度吗?2、某校为了解学生“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人必须报且只能报一项)进行调查.下面是根据调查数据绘制的两幅不完整的统计图请根据图中提供的信息,解答下面的问题:(1)此次共调查了多少名学生;(2)扇形统计图中“艺术鉴赏”部分的圆心角是多少度;(3)选“数学思维”的人数比“科技制作”的人数多几分之几?3、某公司2009年至2010年的支出情况如下:(1)2010年原料的支出金额是多少?工资的支出金额是多少?(2)2009年公司的工资支出占总支出的60%,2010年与2009年相比,公司在工资方面的金额支出是变多了还是变少了?4、制作适当的统计图表示下列数据.(1)全世界受到威胁的动物种类数:(2)对某城市家庭人口数的一次统计结果表明:2口人家占23%,3口人家占42%,4口人家占21%,5口人家占9%,6口人家占3%,其他占2%.(3)1949年以后我国历次人口普查情况:5、吴老师为了解本班学生的数学学习情况,对某次数学考试成绩(成绩取整数,满分为100分)作了统计,绘制成如下频数分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:(1)补全频数分布表和频数分布直方图;(2)如果用扇形统计图表示这次数学考试成绩,那么成绩在69.5~79.5范围内的扇形圆心角的度数为________度.---------参考答案-----------一、单选题1、C【分析】获奖人次共计17+3+1+5+2+1+12+2+1=44人次,减去只获两项奖的13人计13×2=26人次,则剩下44-13×2=18人次,27-13=14人,这14人中有只获一次奖的,有获三次以上奖的.【详解】解:根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的14人中的一人获奖最多,其余14-1=13人获奖最少,只获一项奖励,则获奖最多的人获奖项目为18-13=5项.故选C.【点睛】本题主要考查从统计表中获取信息的能力,解决本题的关键是要熟练掌握从统计表中获取信息的方法.2、C【详解】A、前年①的收入为60000×117360=19500,去年①的收入为80000×117360=26000,此选项错误;B、前年③的收入所占比例为360135117360--×100%=30%,去年③的收入所占比例为360126117360--×100%=32.5%,此选项错误;C、去年②的收入为80000×126360=28000=2.8(万元),此选项正确;D、前年年收入即为①②③三种农作物的收入,此选项错误,故选C.【点睛】本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.3、D【分析】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【详解】解:鱼类总数:40÷20%=200(人),选择黄鱼的:200×40%=80(人),故选D.【点睛】本题考查的是扇形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;扇形统计图直接反映部分占总体的百分比大小.4、B【详解】试题分析:在某大城市调查我国的扫盲情况,不具备代表性,故①正确;在十个城市的十所中学里调查我国学生的视力情况,具备代表性,故②不正确;在一个鱼塘里随机捕了十条鱼,了解鱼塘里鱼的生长情况,具备代表性,故③不正确;在某一农村小学里抽查100名学生,调查我国小学生的健康状况,不具备代表性,故④正确.故选B.5、A【详解】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A.了解“乌金塘水库”的水质情况,采用抽样调查,故A正确;B.了解一批飞机零件的合格情况,适合全面调查,故B错误;C.了解检验一批进口罐装饮料的防腐剂含量,调查范围广,适合抽样调查,故C错误;D.企业招聘人员,对应聘人员进行面试,适合全面调查,故D错误,故选A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、D【详解】由折线统计图可知2~6月份生产量增长率逐渐减少,7月份生产量月增长率开始回升,这七个月中,生产量的增长率始终是正数,则每月的生产量不断上涨,所以A、B、C都正确,错误的只有D;故选D.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,注意在图形中纵轴表示的是增长率,只有增长率是负数,才表示生产量下跌.7、C【详解】试题解析:这4万名考生的数学中考成绩的全体是总体;每个考生的数学中考成绩是个体;2000名考生的中考数学成绩是总体的一个样本,样本容量是2000.故正确的是①④.故选C.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8、B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似来进行判断.【详解】A、对全国中学生视力和用眼卫生情况的调查,适合抽样调查,故此选项错误;B、对某班学生的身高情况的调查,适合全面调查,故此选项正确;C、对某鞋厂生产的鞋底能承受的弯折次数的调查,适合抽样调查,故此选项错误;D、对某池塘中现有鱼的数量的调查,适合抽样调查,故此选项错误;故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、C【详解】本题考查的对象是了解一批电视机的使用寿命,故样本是所抽取的100台电视机的使用寿命.故选C.10、A【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【详解】解:由题意得,要描述这七天空气质量变化情况最适合用折线统计图.故选A.【点睛】此题根据扇形统计图、折线统计图、条形统计图各自的特点,熟练掌握三种统计图的特点是解答本题的额关键.二、填空题1、50 0.16【分析】根据总数等于频数除以总数,频率等于频数除以总数求解即可.【详解】依题意120.2450÷=(人)÷=8500.16故答案为:50,0.16【点睛】本题考查了频率与频数,理解频率,频数,总数之间的关系是解题的关键.频率表示每个对象出现的次数与总次数的比值.2、全面调查【分析】根据全面调查和抽样调查的概念判断即可.【详解】解:为了全面的、可靠的得到我国人口信息,所以国家统计局采取的调查方式是全面调查,故答案为:全面调查.【点睛】本题考查的是全面调查和抽样调查,解题的关键是掌握通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其一,调查者能力有限,不能进行普查,其二,调查过程带有破坏性,其三,有些被调查的对象无法进行普查.3、100【分析】样本容量则是指样本中个体的数目.【详解】解:从中抽取了100名学生进行了检查,发现只有30名学生的视力在5.0及以上,则该问题中的样本容量是100,故答案为:100.【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4、③④⑤【分析】根据折线统计图、条形统计图中的信息解答即可.【详解】解:①从1月到4月,手机销售总额不是连续下降,3月到4月是增长的,原说法错误;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比不是连续下降,2月到3月是增长的,原说法错误;③音乐手机4月份的销售额比3月份有所下降,原说法正确;④今年1~4月中,音乐手机销售额最低的是3月,原说法正确;⑤1~4月音乐手机的销售额是:85×23%+80×15%+60×18%+65×17%=53.4(万元),所以1~4月音乐手机的销售额一共53.4万元,原说法正确.故答案为:③④⑤.【点睛】本题考查折线统计图,条形统计图等知识,解题的关键是熟练掌握折线统计图、条形统计图的相关知识.5、540【分析】先求出非常清楚所占的百分比,再乘以该校的总人数,即可得出答案.【详解】解:根据题意得:901800(130%15%100%)⨯---⨯360=⨯180030%=(人).540答:可以估计其中对《未成年人保护法》非常清楚的学生约有540人.故答案为:540.【点睛】此题考查了用样本估计总体,在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.三、解答题1、(1)A球的弹性大;(2)根据统计图预测,A球可能会继续增加,而B球可能不会;(3)不会超过起始高度.【分析】(1)根据折线统计图可知A球每次反弹的高度都比B球高,由此即可得到答案;(2)由折线统计图可知A球的反弹高度变化趋势还非常明显,而B球的反弹高度变化趋势趋于平缓,由此即可判断;(3)从折线统计图可知,反弹的高度是不会超过下路的起始高度的.【详解】解:(1)比较两个球反弹高度的变化情况可知,A球每次反弹的高度都比B球高,所以A球的弹性大;(2)根据统计图预测,A球可能会继续增加,而B球可能不会;(3)从统计图上看,反弹高度一直低于起始高度,并且差距越来越大,因此不会超过起始高度.【点睛】本题主要考查了折线统计图,解题的关键在于能够准确读懂统计图.2、(1)50人;(2)144度;(3)选“数学思维”的人数比“科技制作”的人数多三分之一.【分析】(1)用阅读写作的人数除以其所占百分比即可得到总人数;(2)用360°乘以艺术鉴赏的所占百分比即可得到答案;(3)先求出数学思维的人数,由此进行求解即可.【详解】解:(1)由题意得:调查的人数=50÷25%=200人,答:得出人数为50人;(2)80360144200⨯=,答:扇形统计图中“艺术鉴赏”部分的圆心角是144度;(3)数学思维的人数:200﹣80﹣30﹣50=40人,科技制作的30人,(40﹣30)÷301=,3答:选“数学思维”的人数比“科技制作”的人数多三分之一.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,解题的关键在于能够准确根据题意求出总人数.3、(1)2010年原料的支出金额是6万元,工资的支出金额是12万元;(2)2009年公司的工资支出是9万元,2010年与2009年相比,工资支出的金额增多了.【分析】(1)根据2010年的总支出乘以原料支出占的百分比即可得到结果;根据2010年的总支出乘以工资支出占的百分比即可得到结果;(2)求出2009年与2010年工资支出之差,即可得到结果.【详解】解:(1)2010年原料的支出金额是2425%6⨯=(万元),工资的支出金额是2450%12⨯=(万元);(2)2009年公司的工资支出是1560%9⨯=(万元),由(1)知2010年工资的支出金额是12万元,∴2010年与2009年相比,工资支出的金额增多了.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.4、(1)条形统计图;见解析;(2)扇形统计图;见解析;(3)折线统计图或条形统计图,作一个即可,见解析.【分析】各统计图特点如下:条形统计图能清楚地表示出每个项目的具体数据;折线统计图能清楚地反映事物的变化情况;扇形统计图能清楚地表示出各部分在总体中所占的百分比,由各小题的数据结合统计图的特点选择合适的统计图即可【详解】解:(1)选择条形统计图,如下图所示:(2)选择扇形统计图,如下图所示:(3)选择条形统计图或折线统计图,作一个即可,如下图所示:【点睛】本题主要考查统计图,属于基础题,能根据已知条件选择适当的统计图,并能正确地作出统计图是解题关键5、(1)见解析;(2)72【分析】(1)根据69.5-79.5这一组的频数为10,频率为0.2,求出总人数,由此进行求解即可;(2)依据扇形的圆心角度数=360°×占比进行求解即可.【详解】解:(1)∵69.5-79.5这一组的频数为10,频率为0.2,∴总人数=10÷0.2=50人,∴59.5-69.5这一组的人数=50×0.1=5人,∴89.5-100.5这一组的频率=6÷50=0.12,列表如下:补全统计图如下:(2)由题意可得成绩在69.5~79.5范围内的扇形圆心角的度数=360°×0.20=72°,故答案为:72.【点睛】本题主要考查了频率与频数分布表,频数分布直方图,求扇形圆心角度数,解题的关键在于能够熟练掌握相关知识进行求解.。
2021-2022学年浙教版初中数学七年级下册第六章数据与统计图表章节训练试题(含详解)
![2021-2022学年浙教版初中数学七年级下册第六章数据与统计图表章节训练试题(含详解)](https://img.taocdn.com/s3/m/e20746fa05a1b0717fd5360cba1aa81144318fbe.png)
初中数学七年级下册第六章数据与统计图表章节训练(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计解析,以下说法正确的是( )A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量2、某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A.1100B.1000C.900D.1103、下列调查中,调查方式选择最合理的是()A.调查“乌金塘水库”的水质情况,采用抽样调查B.调查一批飞机零件的合格情况,采用抽样调查C.检验一批进口罐装饮料的防腐剂含量,采用全面调查D.企业招聘人员,对应聘人员进行面试,采用抽样调查4、某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④ B.③→④→①→② C.①→②→④→③ D.②→④→③→①5、为了解某市参加中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析.下面叙述正确的是()A.32000名学生是总体B.1600名学生的体重是总体的一个样本C.每名学生是总体的一个个体D.以上调查是普查6、随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入为2.8万D.前年年收入不止①②③三种农作物的收入7、为了了解青海湖自然保护区中白天鹅的分布数量,保护区的工作人员捕捉了40只白天鹅做记号后,放飞在大自然保护区里,过一段时间后又捕捉了40只白天鹅,发现里面有5只白天鹅有记号,试推断青海湖自然保护区里有白天鹅( )A.40只B.1600只C.200只D.320只8、某学生某月有零花钱a元,其支出情况如图所示,那么下列说法不正确的是()A.该学生捐赠款为0.6a元B.捐赠款所对应的圆心角为240°C.捐赠款是购书款的2倍D.其他消费占10%9、为了解学生体育锻炼的用时情况,陈老师对本班50名学生一天的锻炼时间进行调查,并将结果绘制成如图统计图,那么一天锻炼时间为1小时的人数占全班人数的()A.14% B.16% C.20% D.50%10、如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( ).A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳二、填空题(5小题,每小题4分,共计20分)1、某校学生自主建立了一个学习用品义卖社团,已知八年级200名学生义卖所得金额的频数分布直方图如图所示,那么40~50元这个小组的组频率是__________.2、为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞60条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.3、在对某班的一次数学测验成绩进行统计分析中,各分数段的人数如图所示.由图可知:(1)该班有________名学生;(2)69.5~79.5这一组的频数是________,频率是________.4、抽样调查是只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况的一种方法.这种方法在生产中经常用到.例如,我们可以用这种方法估计一个养鱼池中鱼的数目.具体方法如下:第一步,从鱼池的不同地方捞出一些鱼,记录这些鱼的数量为120条;第二步,在这些鱼的身上做上记号,并将做上记号的120条鱼放回鱼池;第三步,过一段时间后,在同样的地方再捞出一些鱼,记录鱼的数量为450条,这450条鱼中有30条是带有记号的.请你估计这个鱼池中共有______________条鱼.5、如图,是小垣同学某两天进行四个体育项目(ABCD)锻炼的时间统计图,第一天锻炼了1小时,第二天锻炼了40分钟,根据统计图,小垣这两天体育锻炼时间最长的项目是__.三、解答题(5小题,每小题10分,共计50分)1、调查你们班同学出生时的体重(或身高),然后将数据适当分组,并绘制相应的频数直方图,看看你们班大多数同学出生时的体重(或身高)处于哪个范围.2、为落实“每天锻炼一小时,快乐学习一整天”的要求,某校举行校园阳光大课间活动,为了解七年级学生每周在校体育锻炼时间,随机抽取了部分学生进行调查,并绘制了以下不完整的频数分布表和频数分布直方图.(1)本次调查的学生总人数为______;(2)求a、b的值,并补全频数分布直方图;(3)若将调查结果绘制成扇形统计图,求锻炼时间在“56t≤<”所对应的扇形圆心角的度数.3、判断下面这些抽样调查选取样本的方式是否合适,并说明理由.(1)为了了解某厂家生产的零件质量,在其生产线上每隔300个零件抽取1个检查;(2)为了了解某城市全年的降水情况,随机调查该城市某月的降水量.4、某市对老城进行改造,根据2008年至2010年的发展情况,制作了下列两个统计图,根据统计图回答下列问题:(1)2008年各个房地产公司建筑房屋的平均面积是多少?2009年呢?2010年呢?(2)根据统计图中的数据,你还能得到什么信息?5、下图反映了我国2009年对三个地区货物的出口额情况(数据来源:www.stats.gov.cn).(1)直观地看这个条形统计图,2009年我国对哪个地区货物出口额最大?对哪个地区货物出口额最小?(2)最多的大约是最小的几倍?图中所表现出的直观情况与此相符吗?为什么?(3)为了更为直观、清楚地反映我国对三个地区货物出口额之间的比例关系,应做怎样的改动?---------参考答案-----------一、单选题1、C【分析】根据总体、个体、样本、样本容量的定义对各选项判断即可.【详解】解:A、1000名考生的数学成绩是样本,故本选项错误;B、4万名考生的数学成绩是总体,故本选项错误;C、每位考生的数学成绩是个体,故本选项正确;D、1000是样本容量,故本选项错误.故选C.2、A【分析】先求出“良”和“优”的人数所占的百分比,然后乘以2000即可.【详解】解:“良”和“优”的人数所占的百分比:852518728525++++×100%=55%,∴在2000人中成绩为“良”和“优”的总人数估计为2000×55%=1100(人),故选:A.【点睛】本题考查了用样本估计总体,求出“良”和“优”的人数所占的百分比是解题关键.3、A【详解】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A.了解“乌金塘水库”的水质情况,采用抽样调查,故A正确;B.了解一批飞机零件的合格情况,适合全面调查,故B错误;C.了解检验一批进口罐装饮料的防腐剂含量,调查范围广,适合抽样调查,故C错误;D.企业招聘人员,对应聘人员进行面试,适合全面调查,故D错误,故选A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4、D【分析】根据频数分布表、扇形统计图制作的步骤,可以解答本题.【详解】由题意可得:正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类.故选D.【点睛】本题考查了扇形统计图、频数分布表,解答本题的关键是明确制作频数分布表和扇形统计图的制作步骤.5、B【详解】试题分析:A、总体是:某市参加中考的32000名学生的体质情况,故本选项错误,B、样本是:1600名学生的体重,故本选项正确,C、每名学生的体重是总体的一个个体,故本选项错误,D、是抽样调查,故本选项错误,故选B.考点:1.总体、个体、样本、样本容量;2.全面调查与抽样调查.6、C 【详解】A、前年①的收入为60000×117360=19500,去年①的收入为80000×117360=26000,此选项错误;B、前年③的收入所占比例为360135117360--×100%=30%,去年③的收入所占比例为360126117360--×100%=32.5%,此选项错误;C、去年②的收入为80000×126360=28000=2.8(万元),此选项正确;D、前年年收入即为①②③三种农作物的收入,此选项错误,故选C.【点睛】本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.7、D【分析】先根据样本求出有记号的白天鹅所占的百分比,再用40除以这个百分比即可.【详解】根据题意得:540=32040÷(只),答:青海湖自然保护区里有白天鹅320只;故选D.【点睛】本题考查了用样本估计总体,解题关键是熟记总体平均数约等于样本平均数.8、B根据扇形统计图给出的信息逐项计算即可.【详解】试题分析:捐赠款的圆心角的度数为:360°×60%=216°.选项B错误故选B【点睛】本题考查扇形统计图.9、D【分析】根据条形统计图中的数据,可以计算出一天锻炼时间为1小时的人数占全班人数的百分比,从而可以解答本题.【详解】解:由题意可得,25÷(8+25+10+7)×100%=0.5×100%=50%,即一天锻炼时间为1小时的人数占全班人数的50%,故选:D.【点睛】本题考查样本估计总体,从条形统计图中读取信息是解题的关键.10、D折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.【详解】解:A.甲的数学成绩高于班级平均分,且成绩比较稳定,正确;B.乙的数学成绩在班级平均分附近波动,且比丙好,正确;C.丙的数学成绩低于班级平均分,但成绩逐次提高,正确D.就甲、乙、丙三个人而言,丙的数学成绩最不稳,故D错误.故选D.【点睛】本题是折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.二、填空题1、0.15【分析】求出40~50元的人数,再根据频率=频数÷总数进行计算即可.【详解】解:“40~50元”的人数为:200−10−30−50−80=30(人),“40~50元”的频率为:30÷200=0.15,故答案为:0.15.【点睛】本题考查频数分布直方图,掌握频率=频数÷总数是正确解答的关键.2、2400先打捞200条鱼,发现其中带标记的鱼有5条,求出有标记的鱼占的百分比,再根据共有60条鱼做上标记,即可得出答案.【详解】解:∵打捞200条鱼,发现其中带标记的鱼有5条,∴有标记的鱼占5200×100%=2.5%,∵共有60条鱼做上标记,∴鱼塘中估计有60÷2.5%=2400(条).故答案为:2400.【点睛】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.3、60 18 0.3【分析】(1)根据直方图的意义,将各组频数之和相加可得答案;(2)由直方图可以看出:频数为18,又已知总人数,相除可得其频率.【详解】解:(1)根据直方图的意义,总人数为各组频数之和=6+8+10+18+16+2=60(人),故答案是:60;(2)读图可得:69.5~79.5这一组的频数是18,频率=18÷60=0.3,故答案是:18,0.3.【点睛】本题主要考查频率和频数,频数直方图,读图时要全面细致,关键要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.4、1800【分析】设这个鱼池中共有x条鱼,根据450条鱼中有30条是带有记号的列出算式,再进行计算即可.【详解】解:设这个鱼池中共有x条鱼,,根据题意得:12030,x450解得:x=1800,经检验x=1800是原方程的解,所以,估计这个鱼池中共有1800条鱼.故答案为:1800.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.5、C【分析】根据统计图上的百分比求出两天的各项运动时间即可.【详解】解:由统计图可知,这两天锻炼时间,A有60×20%+40×20%=20(分钟),B有60×30%+40×20%=26(分钟),C有60×50%=30(分钟),D有40×60%=24(分钟),∵20<24<26<30,∴小垣这两天体育锻炼时间最长的项目是C,故答案为:C.【点睛】本题主要考查了扇形统计图的应用,熟记概念是解题的关键,注意第一天和第二天锻炼时间是不相同的.三、解答题1、见解析【分析】先调查,将我们班同学出生时候的体重数据进行分组列表,然后绘制频数直方图,进而分析可得学出生时的题中处于那个范围.【详解】调查所得数据,分组如下:绘制频数直方图如下:从频数直方图可知,大多数同学出生时的体重处于3.6-4.0kg之间.【点睛】本题考查了调查与统计,绘制频数分布表,绘制频数直方图,掌握频数分布表和直方图是解题的关键.2、(1)40 (2)a=6,b=10%,频数分布直方图见解析(3)72°【分析】(1)根据体育锻炼时间“3≤t<4”频数10,占学生总人数的百分比是25%,可得答案;(2)由(1)的结果学生总人数可求a,由学生总人数和频数4,可求b;(3)根据体育锻炼时间“5≤t<6”占学生总人数的百分比20%,即可得答案.【详解】解:(1)∵体育锻炼时间“3≤t<4”频数10,百分比是25%,∴学生总人数为10÷25%=40;(2)∵学生总人数为40,∴a=40-4-10-8-12=6,b=41%=%=10% 4010;∴频数分布直方图为下图:(3)体育锻炼时间“5≤t<6” 占学生总人数的百分比为20%,∴对应的扇形圆心角的度数=20%360=72⨯︒︒.【点睛】本题考查了数据的收集与整理,做题的关键是掌握由频数和对应的百分比会求总数,频数和总数会求扇形的圆心角.3、(1)比较合适,可以保证样本的广泛性和代表性;(2)不合适,用某月的降水量代表全年的降水量不具有代表性【分析】根据调查应具有代表性分析解答.【详解】解:(1)比较合适,可以保证样本的广泛性和代表性;(2)不合适,用某月的降水量代表全年的降水量不具有代表性.【点睛】此题考查调查样本的选取,掌握样本的选取应具有代表性的特点是解题的关键.4、(1)2008年、2009年、2010年各个房地产开发公司的平均建筑面积是8万2m,15.5万2m,13.75万2m;(2)答案不唯一.例如,2008年至2010年房地产开发公司的数量在不断增长,建筑总面积也在增长,但增长的幅度在变小;2008年至2009年,各个房地产开发公司的平均建筑面积有大幅提高,2009年至2010年,各个房地产开发公司的平均建筑面积减少了.【分析】(1)用对应年份的建筑总面积÷建筑公司数量即可得到答案;(2)根据统计图写出相应的结论即可.【详解】解:(1)2008年、2009年、2010年各个房地产开发公司的平均建筑面积是:120158÷=万m2,÷=万m2,6204015.5÷=万m2,6604813.75(2)2008年至2010年房地产开发公司的数量在不断增长,建筑总面积也在增长,但增长的幅度在变小;2008年至2009年,各个房地产开发公司的平均建筑面积有大幅提高,2009年至2010年,各个房地产开发公司的平均建筑面积减少了.【点睛】本题主要考查了条形统计图,解题的关键在于能够准确根据统计图获取信息进行求解.5、(1)2009年我国对欧盟的货物出口额最大,对香港的货物出口额最小;(2)图中所表现出来的直观情况与实际不相符,易给人造成错觉;(3)应将0作为纵轴上出口额的起始值.【分析】(1)直接观察图形得到;(2)通过计算及观察图形进行比较得到即可;(3)根据条形统计图的特征,为更直观的反映情况应将0作为纵轴的起始值.【详解】(1)2009年我国对欧盟的货物出口额最大,对香港的货物出口额最小;(2)最大的约是最小的1.5倍;但直观地看条形统计图,容易使人误认为最大的是最小的5倍多,因此图中所表现出来的直观情况与实际不相符,易给人造成错觉;(3)应将0作为纵轴上出口额的起始值【点睛】本题考查了条形统计图的特征,掌握相关知识是解题的关键.。
2019年春七年级数学下册第6章数据与统计图表6.4第1课时频数统计表课件(新版)浙教版
![2019年春七年级数学下册第6章数据与统计图表6.4第1课时频数统计表课件(新版)浙教版](https://img.taocdn.com/s3/m/1a90da034b35eefdc8d33362.png)
请制作相应的频数统计表.(提示:可取组距为 5 min)
6.4 频数与频率
解:最大值-最小值=34-15=19,19÷5=3.8,所以组数为 3+1=4. 20 名学生每天做数学作业所花时间的频数统计表
组别(min) 14.5~19.5 19.5~24.5 24.5~29.5 29.5~34.5 合计 20 划记 正 正 正 频数 5 8 5 2
第6章 数据与统计图表
6.4 频数与频率
第6章 数据与统计图表
第1课时 频数统计表
学知识
筑方法 勤反思
6.4 频数与频率
学知识
知识点一 频数与频数统计表
数据个数 叫做频数. 频数:数据分组后落在各小组内的________
频数统计表:反映数据分布情况的统计表叫做频数统计表,也称 频数表. 有时我们还可以将发生的事件按类别进行分组,这时,频数就是 各类事件发生的次数.
小结
概念
频数
组距 制作频数统计 表的一般步骤 组数
频数统计表
6.4 频数与频率
反思
已知一组数据,在列频数统计表时,如何确定组距和组数?
解:略
6.4 频数与频率
解:(1)成绩在 60 分以下的人数为 1,所以这次测试成绩在 60 分及以上的 人数为 50-1=49. (2)21÷ 50×100%=42%. (3)从这次测试的及格人数和 90 分及以上的人数来看, 这个年级此学科的学 习情况较好(言之有理即可).
6.4 频数与频率
勤反思
6.4 频数与频率
1.将数据 83,85,87,89,84,85,86,88,87 分组,86.5~ 88.5 这一组的频数是( B ) A. 2 B. 3 C.4 D.0.3
2022年最新浙教版初中数学七年级下册第六章数据与统计图表综合训练试题(含答案及详细解析)
![2022年最新浙教版初中数学七年级下册第六章数据与统计图表综合训练试题(含答案及详细解析)](https://img.taocdn.com/s3/m/c980bbee162ded630b1c59eef8c75fbfc77d941d.png)
初中数学七年级下册第六章数据与统计图表综合训练(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、如图是九年级某考生做的水滴入一个玻璃容器的示意图(滴水速度保持不变),能正确反映容器中水的高度(h)与时间(t)之间对应关系的大致图象是().A.B.C.D.2、体育老师对八年级(2)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成如图所示的折线统计图.由图可知,最喜欢篮球的学生的频率是()A.16% B.24% C.30% D.40%3、某校九(1)班的全体同学最喜欢的球类运动用如图所示的统计图来表示,下面说法正确的是( )A.从图中可以直接看出喜欢各种球类的具体人数B.从图中可以直接看出全班的总人数C.从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系4、要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台《开学第--课》的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程5、为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工6、今年我市有4万名考生参加中考,为了了解这些考生的数学成绩,从中抽取2 000名学生的数学成绩进行统计分析,在这个问题中,下列说法:①这4万名考生的中考数学成绩的全体是总体;②每个考生是个体;③2 000名考生是总体的一个样本;④样本容量是2 000. 其中说法正确的有( )A.4个B.3个C.2个D.1个7、以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况 B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量8、对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人9、下列调查中,适宜采用全面调查方式的是()A.了解一批圆珠笔的使用寿命B.了解全国九年级学生身高的现状C.考查人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件10、某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是()A.100B.被抽取的100名学生家长C.被抽取的100名学生家长的意见D.全校学生家长的意见二、填空题(5小题,每小题4分,共计20分)1、某校对七年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.根据收集的评价结果绘制了如图所示的统计图,已知图中从左到右的五个长方形的高之比为2:3:3:1:1,评价结果为“A”的学生有68名,则该校七年级学生共有___________.2、2021年6月6日是全国爱眼日,某校对七年级学生进行了视力监测,收集了部分学生的监测数据,并绘制成了频数分布直方图,从左至右每个小长方形的高的比为2:3:4:1,其中第三组的频数为80,则共收集了______名学生的监测数据.3、为了了解某校七年级1500名学生的数学期中考试成绩,从中抽取了200名学生的成绩进行统计,在这个问题中,样本容量是________.4、科学技术的发展离不开大量的研究与试验,右面的统计图反映了某市2013~2017年研究与试验经费支出及增长速度的情况.根据统计图提供的信息,有以下三个推断:①2013~2017年,某市研究与试验经费支出连年增高;②2014~2017年,某市研究与试验经费支出较上一年实际增长最多的是2017年;③与2015年相比,2016年某市研究与试验经费支出的增长速度有所下降.其中正确的有_______________.5、如图,是小垣同学某两天进行四个体育项目(ABCD)锻炼的时间统计图,第一天锻炼了1小时,第二天锻炼了40分钟,根据统计图,小垣这两天体育锻炼时间最长的项目是__.三、解答题(5小题,每小题10分,共计50分)1、某班男女生人数比例如图(1)所示,如果用图(2)的正方形表示该班全体人数,你能在图(2)中直观地表示该班男女生人数的比例关系吗?2、第41届世界博览会于2010年5月1日至2010年10月31日在上海举办,其中7月31日(截至18:00),经后滩、上南路、长清路、高科西路入园游客人数如下(数据来源:www.expo.cn):(“△”表示和2010年7月30日(截至18:00)相比入园人数增加的百分比)(1)2010年7月31日(截至18:00),以上4个入口共有多少游客入园?(2)2010年7月30日(截至18:00),后滩入口约有多少游客入园?(结果精到0.1万)(3)假设游客在园区内的餐饮消费为人均40元,请你设法估计:园区内一个月(以30天计)的餐饮营业额大约是多少?(4)从图中你还能获得哪些信息?3、某校数学兴趣小组的同学,为了了解初一学生上学期参加公益活动的情况,随机调查了学校部分初一学生,并用得到的数据绘制了下面两幅统计图(统计图不完整)根据统计图中的信息完成下列问题:(1)本次随机调查了名学生;(2)扇形统计图中的a=;(3)对于“参加公益活动为6天”的扇形,对应的圆心角为度.4、2020年冬季达州市持续出现雾霾天气.某记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了尚不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m=,n=,扇形统计图中E组所占的百分比为%;(2)若该市人口约有200万人,请你估计其中持D组“观点”的市民人数.(3)治污减霾,你有什么建议?5、为了调查居民的生活水平,有关部门对某个地区5个街道的50户居民的家庭存款额进行了调查,数据(单位:万元)如下:1.6 3.52.3 6.5 2.2 1.9 6.8 4.8 5.0 4.7 2.31.5 3.1 5.6 3.72.23.3 5.84.3 3.6 3.8 3.05.1 7.0 3.1 2.9 4.4 5.8 3.8 3.7 3.3 5.2 4.14.2 4.8 3.0 4.0 4.6 6.0 2.4 3.3 6.15.0 4.93.0 3.1 7.2 1.8 5.0 1.9将数据适当分组,并绘制相应的频数直方图.---------参考答案-----------一、单选题1、D【分析】先根据容器的上下的大小,判断水上升快慢和对应的图象,再对题中的每一种结论进行判断.【详解】解:由于容器的形状是下宽上窄,所以水的深度上升是先慢后快.表现出的函数图形为先缓,后陡.故选D.【点睛】本题考查单式折线统计图,解题关键在于根据容器的上下的大小,判断水上升快慢和对应的图象2、D【详解】解:读图可知:共有(4+12+6+20+8)=50人,其中最喜欢篮球的有20人,故频率最喜欢篮球的频率=20÷50=0.4.故选D.3、D【详解】考点:扇形统计图.分析:利用扇形统计图的特点,可以得到各类所占的比例,但总数不确定,不能确定每类的具体人数.解答:因为扇形统计图直接反映部分占总体的百分比大小,不能反映具体数量的多少和变化情况,所以A、B、C都错误.4、C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.【详解】A、中央电视台《开学第--课》的收视率适合采用抽样调查方式,故不符合题意;B、某城市居民6月份人均网上购物的次数适合采用抽样调查方式,故不符合题意;C、即将发射的气象卫星的零部件质量适合采用全面调查方式,故符合题意;D、某品牌新能源汽车的最大续航里程适合采用抽样调查方式,故不符合题意,故选:C.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5、C【详解】【分析】样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.根据样本的确定方法与原则,结合实际情况,依次分析选项可得答案.【详解】A、调查对象只涉及到男性员工,选取的样本不具有代表性质;B、调查对象只涉及到即将退休的员工,选取的样本不具有代表性质;C、用企业人员名册,随机抽取三分之一的员工,选取的样本具有代表性;D调查对象只涉及到新进员工,选取的样本不具有代表性,故选C.【点睛】本题考查了样本的确定方法,明确样本要具有代表性和广泛性是解题的关键.6、C【详解】试题解析:这4万名考生的数学中考成绩的全体是总体;每个考生的数学中考成绩是个体;2000名考生的中考数学成绩是总体的一个样本,样本容量是2000.故正确的是①④.故选C.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.7、A【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.【详解】A.检测长征运载火箭的零部件质量情况,必须全面调查才能得到准确数据;B.了解全国中小学生课外阅读情况,量比较大,用抽样调查;C.调查某批次汽车的抗撞击能力,具有破坏性,用抽样调查;D.检测某城市的空气质量,不可能全面调查,用抽样调查.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、D【分析】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【详解】解:鱼类总数:40÷20%=200(人),选择黄鱼的:200×40%=80(人),故选D.【点睛】本题考查的是扇形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;扇形统计图直接反映部分占总体的百分比大小.9、D【详解】试题解析:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选D.10、C【分析】根据样本的定义,结合题意,即可得到答案.【详解】解:某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是:被抽取的100名学生家长的意见.故选C .【点睛】本题考查样本的定义,解题的关键是熟练掌握样本的定义.二、填空题1、340【分析】用A 的学生有68名除以A 等级人数所占比例即可得.【详解】解: “综合素质”评价结果为“A ”的学生所占比例为:21233115=++++, ∴该校七年级学生共有:1683405÷=(名), 故答案为:340.【点睛】本题主要考查频数分布直方图,从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容.2、200【分析】根据频率=频数除以总数进行计算即可.【详解】 解:4802002341÷=+++(人), 故答案为:200.【点睛】本题考查了频数分布直方图,掌握频率=频数除以总数是解答本题的关键.3、200【分析】结合题意,根据样本容量的性质分析,即可得到答案.【详解】根据题意,样本容量是200;故答案为:200.【点睛】本题考查了样本容量的知识;解题的关键是熟练掌握样本容量的性质,从而完成求解.4、①③【分析】根据统计图中2013~2017年,研究与试验经费支出的数据即可判断①;计算出2014~2017年每年的增长量即可判断②;根据统计图中的增长速度即可判断③.【详解】解:因为1185.01268.81384.01484.61595.3<<<<,所以2013~2017年,某市研究与试验经费支出连年增高,①正确;2014年比2013年实际增长量为1268.8118583.8-=(亿元),2015年比2014年实际增长量为13841268.8115.2-=(亿元),2016年比2015年实际增长量为1484.61384100.6-=(亿元),2017年比2016年实际增长量为1595.31484.6110.7-=(亿元),由此可知,2014~2017年,某市研究与试验经费支出较上一年实际增长最多的是2015年,则②错误;因为115.2>100.6,所以与2015年相比,2016年某市研究与试验经费支出的增长速度有所下降,③正确;综上,正确的有①③,故答案为:①③.【点睛】本题考查了统计图,读懂统计图是解题关键.5、C【分析】根据统计图上的百分比求出两天的各项运动时间即可.【详解】解:由统计图可知,这两天锻炼时间,A有60×20%+40×20%=20(分钟),B有60×30%+40×20%=26(分钟),C有60×50%=30(分钟),D有40×60%=24(分钟),∵20<24<26<30,∴小垣这两天体育锻炼时间最长的项目是C,故答案为:C.【点睛】本题主要考查了扇形统计图的应用,熟记概念是解题的关键,注意第一天和第二天锻炼时间是不相同的.三、解答题1、见解析【分析】根据扇形统计图的比例关系,在正方形中按比例画出男女生的比例即可.注意:一般情况下用圆和扇形代表总体和部分要比其他形式更加直观方便.【详解】如图所示在扇形统计图中,是从圆的圆心出发,用360︒乘该部分所占比例,得到角度后画扇形的;但在正方形的图中,若从正方形的中心出发,则不能用360︒乘该部分所占比例,得到角度再分割正方形.【点睛】本题考查了扇形统计图,理解扇形统计图是解题的关键.2、(1)27.1(万人);(2)约7.6万人;(3)2520万元;(4)答案不唯一.例如,能得到长清路入园人数增加的百分比最大.【分析】(1)将各入口入园人数相加即可.(2)设2010年7月30日(截至18:00),后滩入口有x万人入园,即可列出关于x的等式,求出x 即可.(3)同(2)计算出7月30日(截至18:00)其它入口入园人数,即可计算出从7月30日(截至18:00)到7月31日(截至18:00)入园的人数,再结合题意即可估算出园区内一个月(以30天计)的餐饮营业额.(4)答案不唯一,写出符合题意的答案即可.【详解】+++=(万人)(1) 8. 3 6.7 6.8 5.327.1(2)设2010年7月30日(截至18:00),后滩入口有x万人入园,根据题意,得:(19.2%)8.3x+=.解得:7.6x≈.故2010年7月30日(截至18:00),后滩入口有7.6万人入园.(3)与(2)同理可求出7月30日(截至18:00),高科西路进入游客约为4.9万人,长清路进入游客约为6.2万人,上南路进入游客约为6.3万人.∴7月30日(截至18:00)进入的总人数为7.6+4.9+6.2+6.3=25万人.∴从7月30日(截至18:00)到7月31日(截至18:00)入园的人数为:27.1-25=2.1万人.∵游客在园区内的餐饮消费为人均40元,∴估计园区内一个月(以30天计)的餐饮营业额大约是:2.140302520⨯⨯=万元.(4)答案不唯一.例如,能得到长清路入园人数增加的百分比最大.【点睛】本题考查扇形统计图的相关知识,由样本估计总体.从扇形统计图中获取必要的信息是解答本题的关键.3、(1)100;(2)25;(3)54.【分析】(1)根据4天的人数及百分比求出总人数即可;(2)先算出参加公益活动7天的人数,再用总人数减去其它天数的人数,求出参加公益活动为5天的人数,再用5天的人数除以总人数即可求出;(3)根据圆心角=360°×百分比计算即可.【详解】解:(1)本次随机调查的学生数是:30÷30%=100(名);故答案为:100;(2)7天的人数有:100×5%=5(名),5天的人数有:100﹣10﹣15﹣30﹣15﹣5=25(名),则扇形统计图中的a%=25100×100%=25%.即a=25;故答案为:25;(3)“参加公益活动为6天”的扇形,对应的圆心角为:360°×15100=54°;故答案为:54.【点睛】本题考查了条形统计图、扇形统计图等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.4、(1)400,100,15;(2)60万人;(3)见解析【分析】(1)根据A的人数除以BA所占的百分比,求得总人数,总人数乘以B的百分比可得m,总人数减去其余各组人数之和可得n,用E组人数除以总人数可得答案;(2)根据全市总人数乘以D类所占比例,可得答案;(3)根据以上图表提出合理倡议均可.【详解】解:(1)本次调查的总人数为80÷20%=400(人),则B组人数m=400×10%=40(人),C组人数n=400﹣(80+40+120+60)=100(人),∴扇形统计图中E组所占的百分比为(60÷400)×100%=15%;(2)200×120400=60(万人),答:估计其中持D组“观点”的市民人数有60万人;(3)由上面的统计可知,造成“雾霾”的主要原因是“工厂造成的污染”和“汽车尾气排放”.倡议关停重污染企业,加大对工厂排污的监管和处罚;倡议大家尽量乘坐公共交通工具出行,减少汽车尾气的排放.【点睛】本题主要考查了扇形统计图,统计表,能从图形中获取准确信息是解题的关键.5、见解析【分析】绘制频数分布直方图的一般步骤为:1、收集数据;2、整理数据;3、分析数据(决定组距、频数);4、绘制频数分布表;5、绘制频数分布直方图,在本题中,由于最大的数据为7.2,最小的数据为1.5,则极差为7.2-1.5=5.7,于是需将数据分为6组,接下来对数据进行分组,统计出每组数据的个数,按照绘制频数分布直方图的方法来作图即可.【详解】解:第一步,计算最大值与最小值的差:在所给的数据中,最大值是7.2,最小值是1.5,它们的差是7.2-1.5=5.7,第二步,决定组距与组数:由于最大值与最小值的差是5.7,如果取组距为1,那么由于5.77=5110,可分成6组,组数合适,于是取组距为1,组数为6,第三步,列频数分布表:第四步,画频数直方图:【点睛】本题考查了绘制频数分布直方图的方法,属于基础题,熟练掌握绘制频数分布直方图的一般步骤是解题关键.。
浙教版2019-2020学年七年级数学下学期第六章数据与统计图表单元测试题(含答案)
![浙教版2019-2020学年七年级数学下学期第六章数据与统计图表单元测试题(含答案)](https://img.taocdn.com/s3/m/e751ed9eb8f67c1cfbd6b834.png)
第六章数据与统计图表单元检测卷姓名:__________ 班级:__________一、选择题(共9题;每小题4分,共36分)1.下面获取数据的方法不正确的是()A. 我们班同学的身高用测量方法B. 快捷了解历史资料情况用观察方法C. 抛硬币看正反面的次数用实验方法D. 全班同学最喜爱的体育活动用访问方法2.一个容量为80的样本,最大值是141,最小值是50,取组距为10,可以分成()A. 10组B. 9组C. 8组D. 7组3.为丰富学生课外活动,某校积极开展社团活动,学生可根据自己的爱好选择一项,已知该校开设的体育社团有:A:篮球,B:排球C:足球;D:羽毛球,E:乒乓球.李老师对某年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是()A. 选科目E的有5人B. 选科目D的扇形圆心角是72°C. 选科目A的人数占体育社团人数的一半D. 选科目B的扇形圆心角比选科目D的扇形圆心角的度数少21.6°4.下列各数:π,,cos60°,0,,其中无理数出现的频率是()A. 20%B. 40%C. 60%D. 80%5.下列说法中,不正确的是()A. 可以很清楚地表示出各部分同总体之间关系的统计图是条形统计图B. 能清楚地反映出数量增减变化的统计图是折线统计图C. 为了清楚地知道你的各科成绩,你可以选择制作条形统计图D. 为了清楚地反映出全校人数同各年级人数之间的关系,应选择扇形统计图6.如图,是某商场4种品牌的商品销售情况统计图,其中甲品牌所占的扇形的圆心角是()A. 36°B. 108°C. 72°D. 162°7.如图阴影部分扇形的圆心角是()A. 15°B. 23°C. 30°D. 36°8.有一个样本有100个数据,落在某一组内的频率是0.3,那么落在这一组内的频数是()A. 50B. 30C. 15D. 39.武汉市某校在“创新素质实践行”活动中组织学生进行社会调查,并对学生的调查报告进行评比,下面是将某年级60篇学生调查报告的成绩进行整理,分成五组画出的频数分布直方图.已知从左至右5个小组的频数之比为1:3:7:6:3,则在这次评比中被评为优秀的调查报告(分数大于或等于80分为优秀,且分数为整数)占百分之()A. 45B. 46C. 47D. 48二、填空题(共10题;共30分)10.随着综艺节目“爸爸去哪儿”的热播,问卷调查公司为调查了解该节目在中学生中受欢迎的程度,走进某校园随机抽取部分学生就“你是否喜欢看爸爸去哪儿”进行问卷调查,并将调查结果统计后绘制成如下不完整的统计表:则a﹣b=________11.如图,一项统计数据的频数分布直方图中,如果直方图关于第三组的小长方形呈轴对称图形(坐标轴忽略不计),那么,落在110~130这一组中的频数是________。
七年级数学下册 第六章 数据与统计图表 6.4 频数与频率(一)课件
![七年级数学下册 第六章 数据与统计图表 6.4 频数与频率(一)课件](https://img.taocdn.com/s3/m/ebeefe746529647d262852e6.png)
上学方式
频数
步行
骑自行车
坐公交车
(2)该班同学用不同方式上学的人数各为多少? (3)该班同学最常用的上学方式是什么? 【解析】 (1)从上到下依次填:9,17,14. (2)该班同学用不同方式上学的人数分别为: 步行 12/10/2021 9 人,骑自行车 17 人,坐公交车 14 人. (3)该班同学最常用的上学方式是骑自行车.
12/10/2021
第四页,共十页。
【解析】 (1)极差为 34-15=19(min). (2)组距=极差÷组数=19÷5≈4(min).
12/10/2021
第五页,共十页。
反思
(fǎn sī)
绘制频数表的一般步骤:①计算极差;②确定组距,确定
组距时要预计组数是否符合其他条件;③确定组数,组数
极差 通常取大于组距的最小整数;④列出频数表.
12/10/2021
第二页,共十页。
重要提示
1.列频数统计表的一般步骤如下: 极差
(1)选取组距,确定组数.组数通常取大于组距的最小整数. (2)确定各组的边界值. (3)列表,填写组别和统计各组频数. 2.各组边界值都比实际数据多取一位小数,第一组的起始边 界值通常取得比最小数据要小一些. 3.频数是一个具体数字,不带任何单位,所有频数之和等于 数据总数.
12/10/2021
第三页,共十页。
解题指导
【例 1】 某校为了了解七年级学生的数学作业量情况, 抽查了 20 名同学每天做数学作业所花的时间,获得如 下数据(单位:min): 15, 18, 20, 25, 28, 21, 31, 34, 22, 19, 17, 20, 23, 25, 20, 18, 24, 25, 21, 26. (1)求这些数据的极差. (2)若将这些数据分为 5 组,请制作相应的频数表.
2019年春七年级数学下册第6章数据与统计图表6.4第1课时频数统计表练习新版浙教
![2019年春七年级数学下册第6章数据与统计图表6.4第1课时频数统计表练习新版浙教](https://img.taocdn.com/s3/m/e6509d2cbed5b9f3f90f1c73.png)
频数与频率第课时频数统计表知识点频数统计表组距:每一组数据的后一个边界值与前一个边界值的差叫做组距.频数:数据分组后落在各小组内的数据个数叫做频数.频数统计表:反映数据分布情况的统计表叫做频数统计表,也称频数表.有时我们还可以将发生的事件按类别进行分组,这时,频数就是各类事件发生的次数..已知一个样本含个数据:,,,,,,,,,,,,,,,,,,,.在列频数分布表时,如果取组距为,那么应分成组,~这一小组的频数为.知识点制作频数统计表制作频数统计表的一般步骤:①计算最大值与最小值的差;②确定组距,确定组距时要预计组数是否符合要求;③确定组数,组数通常取大于的最小整数;④确定各组的边界值;⑤列出频数统计表..某校为了解七年级学生的数学作业量情况,抽查了名同学每天做数学作业所花的时间,获得如下数据(单位:分):请制作相应的频数统计表.(提示:可取组距为分钟)频数统计表的应用教材补充题某校为了了解一个年级学生的学习情况,在这个年级抽取了名学生,对某学科进行测试,将所得的成绩(成绩均为整数)进行了整理(如下表所示):请回答下列问题:()这次测试成绩在分及以上的人数为多少?()求本次测试这名学生的成绩在分及以上的人数所占的比例;()这个年级此学科的学习情况如何?[反思] 已知一组数据,在列频数统计表时,如何确定组距和组数?一、选择题.列一组数据的频数分布表时,落在各小组内的数据的个数叫做( ).组距.频数.频率.个数.在频数统计表中,各小组的频数之和( ).小于数据总数.等于数据总数.大于数据总数.不能确定.已知一个样本数据如下:,,,,,,,,,.对这些数据进行分组,其中~这组的频数是( ) .....若某个小组的划记为“正正一”,则它对应的频数为( ).....已知一组数据的最大值为,最小值为,若选取组距为,则这组数据可分成( ) .组.组.组.组二、填空题.有一个含有个数据的数据组,已知最小数据是,最大数据是,且各数据都是整数,则这个数据分为组时,组距是;若第组的下限为,则其上限是,最末一组的上限是..某校名学生参加生命安全知识测试,测试分数均大于或等于且小于,分数段的频数分布情况如下表所示(其中每个分数段包括最小值,不包括最大值).结合下表中的信息,可得三、解答题.·绍兴为了解七年级学生上学期参加社会实践活动的情况,随机抽查市七年级部分学生参加社会实践活动的天数,并根据抽查结果制作了如下尚不完整的频数统计表和条形统计图(如图--所示).市七年级部分学生参加社会实践活动天数的条形统计图图--根据以上信息,解答下列问题:()求出频数统计表中的值,并补全条形统计图;()市七年级学生共有人,请你估计该市七年级学生参加社会实践活动不少于天的人数.[信息阅读题] 某市部分学生参加了年全国初中数学竞赛决赛,并取得了优异的成绩.已知竞赛成绩都是整数,试题满分为分,参赛学生的成绩分布情况如下:()全市共有多少名学生参加本次数学竞赛决赛?最低分和最高分分别在什么分数范围内?()经竞赛组委会评定,竞赛成绩在分以上(含分)的考生均可获得不同等级的奖励,求该市参加本次竞赛决赛的考生获奖率;()上表还提供了其他信息,例如:未获奖的有人.请你再写出两条此表提供的信息.详解详析【预习效果检测】.[答案][解析] 最大值-最小值=-=,组距为,÷=,故组数为+=(组)..解:最大值-最小值=-=,÷=,所以组数为+=(组).名同学每天做数学作业所花的时间的频数表【重难互动探究】例解:()成绩在分以下的人数为,所以这次测试成绩在分及以上的人数为-=.()÷×=.()从这次测试的及格人数和分及以上的人数来看,这个年级此学科的学习情况较好.【课堂总结反思】[反思] 略【作业高效训练】[课堂达标]..[解析] 一个“正”五笔,两个“正”十笔,划记共笔,所以频数为..[解析] 组数为大于的最小整数.本题中==,故组数为..[答案][解析] -=,<÷<,∴组距应为.若第组的下限为,则上限为+=;最末一组的上限是+×=+=..[答案].解:()=÷×=,补全条形统计图,如图:()×(++)=.所以估计该市七年级学生参加社会实践活动不少于天的有人.[数学活动]解:()全市共有++++++=(名)学生参加本次数学竞赛决赛,最低分在~分之间,最高分在~分之间.()本次决赛共有+++=(名)学生获奖,获奖率为÷×=.()答案不唯一,如:分以上(包括分)的有人,~分数段的人数最多等.。
2019年春七年级数学下册第6章数据与统计图表6.5频数直方图练习新版浙教
![2019年春七年级数学下册第6章数据与统计图表6.5频数直方图练习新版浙教](https://img.taocdn.com/s3/m/87cd453258fafab068dc022a.png)
频数直方图知识点频数直方图.频数直方图:由若干个宽等于组距,面积表示每一组频数的长方形组成的统计图叫做频数直方图,简称直方图..频数直方图的结构:由横轴、纵轴、条形图三部分组成.横柚表示分组情况,纵轴表示频数,条形图中每一个条形是立于横轴上的一个长方形,长方形的宽等于组距,高度对应频数..在对样本数据进行分组统计时,若第一组的组别为~,则这一组的组中值是.知识点绘制频数直方图作频数直方图的步骤:.列出频数表;.画具有相同原点,横、纵两条互相垂直的数轴,分别表示各组别和相应的频数.然后分别以横轴上每一组的两边界点为端点的线段为底边,作高为相应频数的长方形,就得到所求的频数直方图..某中学为了了解本校学生的身体发育情况,对同年龄的名女生的身高进行了测量,结果如下(数据均为整数,单位:):,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.请将上述的数据整理后,列出频数表,画出频数直方图,并根据所画的直方图说明:大部分女生处于哪个身高段?身高的整体分布情况如何?学会从频数直方图中获取相关信息在一次体育测试中,七年级若干名学生分钟跳绳次数的频数直方图如图--所示.请根据这个直方图求参加测试的总人数以及自左至右最后一组的频率.图--[反思] 如果从收集的数据出发,作出频数直方图需要经过哪些步骤?一、选择题.在频数直方图中,各小长方形的宽等于( ).频数.频率.所有数据中最大值与最小值的差.组距.对某班名同学的一次数学测验成绩进行统计,如果频数直方图中~分这一组的频数是,那么这个班的学生这次数学测验成绩在~分之间的频率是( ).....·温州图--是七年级()班名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是( )图--.~小时.~小时.~小时.~小时.某校为了解学生的身体素质情况,对七年级()班的名学生进行了立定跳远、铅球、米短跑三个项目的测试,每个项目满分为分,图--所示的是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,分成组画出的频数直方图.已知从左到右前个小组的频率分别为,,,.则下列说法中,正确的是( )①学生成绩大于或等于分的有人;②第四小组的人数最多;③第名的学生在第四小组(~)内..①②.②③.①③.①②③图--二、填空题.某校对七年级学生进行了一次数学应用问题小测验,如图--所示是将()班名学生的成绩(分数为整数)进行整理后,分成组画出的频数直方图.已知从左至右个小组的频率分别是,,,,那么在这次测试中成绩优秀(分数大于或等于分为优秀)的有人.图--三、解答题.某校举行电脑设计作品比赛,各班派学生代表参加.现将所有比赛成绩(得分取整数,满分为分)进行处理后分成五组,并绘制了频数直方图.请结合图--中提供的信息,解答下列问题:图--()参加比赛的学生的总人数是多少?()~这一分数段的频数、频率分别是多少?()根据统计图,请你也提出一个问题,并做出回答..·台州某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间(单位:时)进行分组整理,并绘制了如图--所示的不完整的频数直方图和扇形统计图.图--根据图中提供的信息,解答下列问题:()补全频数直方图;()求扇形统计图中的值和组对应的圆心角度数;()请估计该校名学生中每周的课外阅读时间不少于小时的人数..·无锡某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数分布直方图图--根据以上图表信息,解答下列问题:()表中的=,=.()请把频数直方图补充完整.(画图后请标注相应的数据)()若该校共有名学生,请估计该校在上学期参加社区活动超过次的学生有多少人.某社区为了进一步提高居民珍惜水、保护水和水忧患意识,提倡节约用水,从本社区户家庭中随机抽取户,调查他们家庭每月的平均用水量,并将调查的结果绘制成如下的两幅尚不完整的统计图表:图--请根据上面的统计图表,解答下列问题:()在频数表中:=,=;()根据题中数据补全频数直方图;()如果自来水公司将基本月用水量定为每户每月吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社区用户中约有多少户家庭能够全部享受基本价格?详解详析【预习效果检测】 .[答案].[解析] 由于有个数据,最小的数据为 ,最大的数据为 ,差为 ,可将数据分成组,整理数据列出频数表,画出频数直方图,可从总体上把握数据的分布情况.解:列频数表如下:正正正画频数直方图如图所示.观察频数直方图可知,大部分女生身高处于 到 之间,占抽查人数的,低于 和高于 (包括 )的女生比较少,分别占和.【重难互动探究】例 [解析] 从频数直方图中获取信息,并结合信息加以评价,解决相关问题. 解:参加测试的总人数为,自左至右最后一组的频率为÷=.【课堂总结反思】[反思] 需要经过的步骤为:()分组;()划记;()编制频数表;()作出频数直方图.【作业高效训练】[课堂达标]..[解析] 频率等于÷=.故选...[解析] 根据公式:频率=即可计算出各组的人数.即第一组人数为×=;第二组人数为×=;第三组人数为×=;第四组人数为×=;第五组人数为×(----)=.所以学生成绩大于或等于分的有人,第四小组的人数最多,第名的学生在第五小组..[答案][解析] 由于各小组频率之和等于,所以~分数段的频率等于,所以优秀人数为×(+)=..解:()参赛学生的总人数为++++=.()~这一分数段的频数为,频率为.()答案不唯一,所提问题举例如下:①~这一分数段内的学生人数与~这一分数段内的学生人数哪一个多?答:在~这一分数段内的学生人数多.②若规定分以上(不含分)为优秀,则此次比赛的优秀率为多少?(精确到)答:×≈..解:()图略(组频数).()根据题意,组对应的人数是,而总人数是÷=,×=,所以组对的圆心角的度数是×°=°,=----=.所以=.()∵每周的课外阅读时间不少于小时的人数的百分数是+=,∴每周的课外阅读时间不少于小时的人数为×=..解:() ()图略(频数:)()×(--)=(人).答:上学期参加社区活动超过次的学生有人.[数学活动]解:()÷=,÷=,解得=,=÷=.故答案为,.()补全频数直方图如图:用户月用水量频数直方图()×(++)=(户).答:该社区用户中约有户家庭能够全部享受基本价格.。
最新浙教版初中数学七年级下册第六章数据与统计图表综合练习试卷(含答案详细解析)
![最新浙教版初中数学七年级下册第六章数据与统计图表综合练习试卷(含答案详细解析)](https://img.taocdn.com/s3/m/99a74fec80c758f5f61fb7360b4c2e3f57272529.png)
初中数学七年级下册第六章数据与统计图表综合练习(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、2018年1~4月我国新能源乘用车的月销售情况如图所示,则下列说法错误..的是()A.1月份销售为2.2万辆B.从2月到3月的月销售增长最快C.4月份销售比3月份增加了1万辆D.1~4月新能源乘用车销售逐月增加2、体育老师对八年级(2)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成如图所示的折线统计图.由图可知,最喜欢篮球的学生的频率是()A.16% B.24% C.30% D.40%3、下面是两户居民家庭全年各项支出的统计图:根据统计图,下列对两户教育支出占全年总支出的百分比作出的判断中,正确的是()A.甲户比乙户大B.乙户比甲户大C.甲、乙两户一样大D.无法确定4、下列调查中,调查方式选择最合理的是()A.调查“乌金塘水库”的水质情况,采用抽样调查B.调查一批飞机零件的合格情况,采用抽样调查C.检验一批进口罐装饮料的防腐剂含量,采用全面调查D.企业招聘人员,对应聘人员进行面试,采用抽样调查5、要反映台州市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布统计图6、如图所示的两个统计图,女生人数多的学校是()A.甲校B.乙校C.甲、乙两校女生人数一样多D.无法确定7、要调查安顺市中学生了解禁毒知识的情况,下列抽样调查最适合的是()A.在某中学抽取200名女生B.在安顺市中学生中抽取200名学生C.在某中学抽取200名学生D.在安顺市中学生中抽取200名男生8、在大课间活动中,同学们积极参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,下列说法不正确...的是()A.第四小组有10人B.本次抽样调查的样本容量为50C.该校“一分钟跳绳”成绩优秀的人数约为480人D.第五小组对应圆心角的度数为459、某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是()A.第一天B.第二天C.第三天D.第四天10、在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的14,且数据有160个,则中间一组的频数为()A.0.2B.0.25C.32D.40二、填空题(5小题,每小题4分,共计20分)1、要想了解中国疫情的变化情况,最好选用 ___统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用 ___统计图.2、某兴趣班有A、B、C、D、E五个小组,如图是根据各小组人数分布绘制成的不完整统计图,则该班学生人数为___人.3、某班级有45名学生在期中考试学情分析中,分数段在70~79分的频率为0.4,则该班级在这个分数段内的学生有 _____人.4、某调查小组就400名学生对小品的喜欢程度进行了调查,并将调查结果用条形统计图进行表示.已知条形统计图中非常喜欢、喜欢、有一点喜欢、不喜欢四类满意程度对应的小长方形面积的比为6:9:2:1,那么将这个调查结果用扇形统计图表示时,不喜欢部分对应的扇形的圆心角的度数是________.5、在频数分布直方图中,横坐标表示________,纵坐标表示各组的________,各个小长方形的面积等于相应各组的________,全体小长方形总面积即________,各小长方形面积占全体小长方形总面积的百分比好等于相应各组的________,等距分组时,通常直接用小长方形的高表示________.三、解答题(5小题,每小题10分,共计50分)1、要调查下面的问题,你觉得用什么调查方式比较合理?(1)调查某种灯泡的使用寿命;(2)调查你们学校七年级学生的体重;(3)调查你们班学生早餐是否有喝牛奶的习惯.2、如果你们学校需要建造新的自行车停车棚,至少需要多大面积?解决这个问题你需要哪些数据?你准备如何收集这些数据?3、一个面粉批发商统计了前48个星期的销售量(单位:t):请将数据适当分组,列出频数分布表,画出频数分布直方图,并分析这个面粉批发商每星期进面粉多少吨比较合适.4、某市对老城进行改造,根据2008年至2010年的发展情况,制作了下列两个统计图,根据统计图回答下列问题:(1)2008年各个房地产公司建筑房屋的平均面积是多少?2009年呢?2010年呢?(2)根据统计图中的数据,你还能得到什么信息?5、中国男子国家足球队冲击2010年南非世界杯失利后,某新闻机构就中国足球环境问题随机调查了400人,其结果如下:(1)计算出每一种意见人数占总调查人数的百分比(填在以上空格中);(2)请画出反映此调查结果的扇形统计图;(3)从统计图中你能得出什么结论?说说你的理由.---------参考答案-----------一、单选题1、D【详解】【分析】观察折线统计图,一一判断即可.【解答】观察图象可知:A. 1月份销售为2.2万辆,正确.B. 从2月到3月的月销售增长最快,正确.C.4.3 3.31-=, 4月份销售比3月份增加了1万辆,正确.D. 1~4月新能源乘用车销售先减少后增大.故错误.故选D.【点评】考查折线统计图,解题的关键是看懂图象.2、D【详解】解:读图可知:共有(4+12+6+20+8)=50人,其中最喜欢篮球的有20人,故频率最喜欢篮球的频率=20÷50=0.4.故选D.3、B【分析】根据条形统计图求出甲户教育支出占全年总支出的百分比,再结合扇形统计图中的乙户教育支出占全年总支出的百分比是25%,进行比较即可.【详解】甲户教育支出占全年总支出的百分比1200÷(1200×2+2000+1600)=20%,乙户教育支出占全年总支出的百分比是25%.故选B.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.注意此题比较的仅仅是百分比的大小.4、A【详解】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A.了解“乌金塘水库”的水质情况,采用抽样调查,故A正确;B.了解一批飞机零件的合格情况,适合全面调查,故B错误;C.了解检验一批进口罐装饮料的防腐剂含量,调查范围广,适合抽样调查,故C错误;D.企业招聘人员,对应聘人员进行面试,适合全面调查,故D错误,故选A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5、C【详解】根据题意,得要求直观反映长沙市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选C.6、D【详解】试题分析:根据题意,结合扇形图的性质,扇形统计图只能得到每部分所占的比例,具体人数不能直接体现,易得答案.解:根据题意,因不知道甲乙两校学生的总人数,只知道两校女生占的比例,故无法比较两校女生的人数,故选D.7、B【详解】分析:根据具体情况正确选择普查或抽样调查方法,并理解有些调查是不适合使用普查方法的.要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析.详解:要调查安顺市中学生了解禁毒知识的情况,就对所有学生进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可.考虑到抽样的性别差异和学校差异,所以应在安顺市中学生中随机抽取200名学生.故选B.点睛:本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、D【分析】结合条形图和扇形图,求出样本人数,进行解答即可.【详解】根据直方图可知第二小组人数为10人,根据扇形图知第二小组占样本容量数的20%,则抽取样本人数为1020%50÷=人,故B选项正确;所以,第四小组人数为50410166410-----=人,故A选项正确;第五小组对应的圆心角度数为636043.250︒⨯=︒,故D选项错误;用样本估计总体,该校“一分钟跳绳”成绩优秀的人数约为1064120048050++⨯=人,故C选项正确;故选:D.【点睛】本题综合考查总体、个体、样本、样本容量,以及扇形统计图和频数(率)分布直方图.准确理解总体、个体、样本、样本容量、扇形统计图和频数(率)分布直方图等的相关概念是关键.9、B【分析】根据图象中的信息即可得到结论.【详解】由图象中的信息可知,利润=售价﹣进价,利润最大的天数是第二天,故选B.10、C【分析】由频率分布直方图分析可得“中间一个小长方形”对应的频率,再由频率与频数的关系,中间一组的频数.解:设中间一个小长方形的面积为x,其他10个小长方形的面积之和为y,则有x+y=1,x=14y,解得x=0.2∴中间一组的频数=160×0.2=32.【详解】解:设中间一个小长方形的面积为x,其他10个小长方形的面积之和为y,则有x+y=1, x=14y,解得x=0.2∴中间一组的频数=160×0.2=32.故选C.【点睛】本题是对频率、频数灵活运用的考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系二、填空题1、折线扇形【分析】根据折线统计图不仅能够表示数量的多少而且能够表示数量的增减变化趋势;扇形统计图能够表示部分与整体之间的关系进行解答即可.【详解】解:根据统计图的特点可知:要想了解中国疫情,既要知道每天患病数量的多少,又要反映疫情变化的情况和趋势,最好选用折线统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用扇形统计图.故答案为:折线,扇形.【点睛】此题考查了统计图的选择,掌握三种统计图的特点和作用是解答此题的关键.2、50【分析】根据A组人数和所占的百分比,可以计算出该班学生人数.【详解】解:5÷10%=50(人),即该班学生有50人,故答案为:50.【点睛】本题考查了条形统计图、扇形统计图,掌握条形统计图与扇形统计图的特点并能读懂统计图中的相关信息是解题的关键.3、18【分析】根据频数=总数×频率,直接求解即可.【详解】依题意该班级在在70~79分数段内的学生有450.418⨯=(人).故答案为:18.【点睛】本题考查了根据描述求频数,掌握频数、频率、总数之间的关系是解题的关键.4、20︒【分析】根据条形图中长方形的面积比求得各个量的比值为6:9:2:1,再求扇形的圆心角度数.【详解】解:∵条形统计图中非常喜欢、喜欢、有一点喜欢、不喜欢四类满意程度对应的小长方形面积的比为6:9:2:1,∴将这个调查结果用扇形统计图表示时,不喜欢部分对应的扇形的圆心角的度数是16921+++×360°=20°,故答案为:20︒.【点睛】扇形统计图中,所表示的量的扇形所占圆的面积的百分比是它在总量中所占的百分比.所以该量所表示的扇形的圆心角度数是360度×它在总量中所占的百分比.本题的解题关键是根据条形图中长方形的面积比求得各个量的比值.5、组距频数组距频数样本容量频率频数【分析】根据画频数直方图的相关概念分析即可.【详解】在频数分布直方图中,横坐标表示组距,纵坐标表示各组的频数组距,各个小长方形的面积等于相应各组的频数,全体小长方形总面积即样本容量,各小长方形面积占全体小长方形总面积的百分比好等于相应各组的频率,等距分组时,通常直接用小长方形的高表示频数.故答案为:组距;频数组距;频数;样本容量;频率;频数【点睛】本题考查了频数直方图,掌握画频数直方图是解题的关键.三、解答题1、(1)抽样调查更合理,因为灯泡寿命的调查具有破坏性;(2)全面调查和抽样调查都可以;(3)全面调查【分析】根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.【详解】解:(1)调查某种灯泡的使用寿命,适合抽样调查,因为灯泡寿命的调查具有破坏性.(2)调查学校七年级学生的体重,普查和抽样调查都可以;(3)调查你们班学生早餐是否有喝牛奶的习惯.适合全面调查.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、可以先调查一下学校骑自行车的同学有多少人,然后测量出10辆自行车占多大的面积,再加上一些过道的面积,由此即可推算出新自行车棚至少需要多大的面积;也可以根据现有的自行车棚为基础,再调查一下有多少学生没有在车棚停车,由此也可推算出新自行车棚至少需要多大的面积.【分析】可以利用抽样调查的方法:首先确定学校骑自行车学生的人数,然后测量出10辆自行车占多大的面积,由此即可推算出新自行车棚至少需要多大的面积.【详解】解:可以先调查一下学校骑自行车的同学有多少人,然后测量出10辆自行车占多大的面积,再加上一些过道的面积,由此即可推算出新自行车棚至少需要多大的面积;也可以根据现有的自行车棚为基础,再调查一下有多少学生没有在车棚停车,由此也可推算出新自行车棚至少需要多大的面积.【点睛】本题主要考查了抽样调查与普查的应用,解题的关键在于能够熟练掌握相关知识进行求解.3、见解析【分析】先算出数据最大值与最小值之差,取组距进行分组即可得频数分布表,频数分布直方图;【详解】解:计算最大值与最小值的差:数据的最小值是18.5t,最大值是24.4t,24.418.5 5.9-=(t),决定组距与组数:取组距为1t,则分成6组,设每星期销售面粉x t,则可分为:xx≤≤,≤≤,20.521.5≤≤,19.520.518.519.5xx≤≤≤≤,23.524.5x21.522.5≤≤,22.523.5x频数分布表:正正频数分布直方图:∵这组数据的中位数在21.522.5≤≤,x∴这批面粉批发商每星期进22吨面粉比较合适.【点睛】本题考查了频数分布表,频数分布直方图,解题的关键是将熟练掌握绘制频数分布表的方法.4、(1)2008年、2009年、2010年各个房地产开发公司的平均建筑面积是8万2m,15.5万2m,13.75万2m;(2)答案不唯一.例如,2008年至2010年房地产开发公司的数量在不断增长,建筑总面积也在增长,但增长的幅度在变小;2008年至2009年,各个房地产开发公司的平均建筑面积有大幅提高,2009年至2010年,各个房地产开发公司的平均建筑面积减少了.【分析】(1)用对应年份的建筑总面积÷建筑公司数量即可得到答案;(2)根据统计图写出相应的结论即可.【详解】解:(1)2008年、2009年、2010年各个房地产开发公司的平均建筑面积是:120158÷=万m2,÷=万m2,÷=万m2,6604813.756204015.5(2)2008年至2010年房地产开发公司的数量在不断增长,建筑总面积也在增长,但增长的幅度在变小;2008年至2009年,各个房地产开发公司的平均建筑面积有大幅提高,2009年至2010年,各个房地产开发公司的平均建筑面积减少了.【点睛】本题主要考查了条形统计图,解题的关键在于能够准确根据统计图获取信息进行求解.5、(1)见解析;(2)见解析;(3)绝大部分人对中国足球环境问题不满意.【分析】(1)由每个的人数除以总人数.再乘以100%,即可求得;(2)由各自的百分数乘以360°,即可得到每个小扇形的圆心角的度数,然后作扇形图即可;(3)扇形图能反映各种情况的百分比,根据扇形图即可得到答案.【详解】解:(1)∵200400×100%=50%,160400×100%=40%,32400×100%=8%,8400×100%=2%,(2)∵50%×360°=180°,40%×360°=144°,8%×360°=28.8°,2%×360°=7.2°,∴(3)人民对国家足球队非常不满意的人数占到一半.绝大部分人对中国足球环境问题不满意.【点睛】此题考查了扇形统计图的作法与含义.解题的难点在扇形统计图的角度的求得上,要注意掌握方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.4 频数与频率(一)
A 组
1.某校学生会成员的年龄如下表所示,则出现频数最多的年龄是(B ) 年龄 13 14 15 16 频数
4
5
4
3
A. 4
B. 14
C. 13或15
D. 2
2.有若干个数据,最大值是124,最小值是104,用频数表描述这组数据时,若取组距为3,则应分为(B )
A. 6组
B. 7组
C. 8组
D. 9组
3.小明随机写了一串数字“123321223311”,则出现数字“3”的频数是(B ) A. 3 B. 4 C. 5 D. 6
4.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频数是总数的1
5
,则第六组的频数是(B )
A. 10
B. 5
C. 15
D. 20
5.如表所示是某校七年级(8)班共50位同学身高情况的频数表,则表中的组距是__7__,身高最大值与最小值的差至少是__14__cm.
组别 (cm) 145.5~ 152.5 152.5~ 159.5 159.5~ 166.5 166.5~ 173.5 频数
9
19
14
8
3.14159265358979423846264338327950288.
试用画“正”字的方法记录圆周率的上述近似值中各数字出现的频数(完成下表). 数字 0
1
2
3
4
5
6
7
8
9 划记 频数
数字 0
1
2
3
4
5
6
7
8
9 划记 频数
1 2 5 6 4 4 3 2 5
4
7.体育委员统计了全班同学60 s跳绳的次数,并列出频数表如下:
(2)组距是多少?组数是多少?
(3)跳绳次数在120≤x<160范围内的学生有多少?
【解】(1)全班共有2+4+21+13+8+4=52(名)学生.
(2)组距是80-60=20,组数是6.
(3)跳绳次数在120≤x<160范围内的学生有13+8=21(人).
B组
8.若数据3,0,m,-1的极差是5,则m的值为(C)
A. -2
B. 4
C. -2或4
D. 不确定
【解】当m为最大值时,m-(-1)=5,得m=4;当m为最小值时,3-m=5,得m =-2;当m既不是最大值,又不是最小值时,3-(-1)=4≠5,不可能.故m的值为-2或4.
9.为了解某校七年级学生每天干家务的平均时间,小颖同学在该校七年级每班随机抽查5名学生,统计这些学生xx年3月每天干家务的平均时间(单位:min),绘制成如下统计表(其中A表示0~10 min,B表示11~20 min,C表示21~30 min,时间取整数):
__25____12.5%____40__
(2)该校七年级共有240名学生,其中大约有__150__名学生每天干家务的平均时间是11~20 min.
【解】(1)由题意,得
c=10
25%
=40,a=40×62.5%=25,
b=5
40
×100%=12.5%.
(2)240×62.5%=150(名).
10.某校为了了解学生的身高情况,抽测了60名17岁男生的身高,将数据分成7组,列出了相应的频数表如下:
组别(m) 划记
频数 1.565~1.595
3 1.595~1.625 正正 13 1.625~1.655 正 6 1.655~1.685 正正 11 1.685~1.715 正正正 17 1.715~1.745 正
6 1.745~1.775
4
请根据频数表回答下列问题:
(1)表中的组距是多少?最大数据与最小数据的差至多是多少? (2)这60名17岁男生中,身高在哪个范围内的频数最多?
(3)这60名17岁男生中,身高不低于1.655 m 且不高于1.715 m 的学生所占的百分比是多少?
【解】 (1)组距=1.775-1.745=0.03(m).最大数据与最小数据的差至多是7×0.03=0.21(m).
(2)身高在1.685~1.715 m 范围内的频数最多.
(3)身高不低于1.655 m 且不高于1.715 m 的学生所占的百分比为11+17
60×100%≈46.7%.
数学乐园
11.某校七年级(1)班50名学生参加1 min 跳绳体育考试.1 min 跳绳次数与频数经统计后绘制成下面的频数表(60~70表示为大于等于60并且小于70,其余类同)和扇形统计图.
等级
分数段(分) 1 min 跳绳 次数段 频数 A 120 254~300 0 110~120 224~254 3 B 100~110 194~224 9
90~100 164~194 m
C 80~90 148~164 12
70~80 132~148 n
D
60~70 116~132 2 0~60
0~116
(第11题)
(1)求m ,n 的值.
(2)求该班1 min 跳绳成绩在80分以上(含80分)的人数占全班人数的百分比. (3)根据频数表估计该班学生1 min 跳绳考试的平均分.
【解】 (1)由题意,得
⎩⎨
⎧3+9+m +12+n +2=50,9+m =50×54%,解得⎩
⎨⎧m =18,
n =6. (2)(3+9+18+12)÷50×100%=84%.
(3)用各分数段的组中值(两个边界值的平均数)来代替该组分数,可得平均分为(115×3+105×9+95×18+85×12+75×6+65×2)÷50=92(分).。