蔡司EVO18电镜专业技术说明

合集下载

EVO18技术说明

EVO18技术说明

钨灯丝扫描电镜技术文件仪器型号:EVO 182009年6月3日目录附件一、品牌介绍附件二、设备用途附件三、技术指标附件四、供货范围及报价附件五、计划进度及培训附件六、环境要求附件七、质保及其它服务附件一:聚焦·CARL ZEISS世界可见光及电子光学的领导企业----德国蔡司公司始创于1846年。

其电子光学前身为LEO(里奥),更早叫Cambridge(剑桥)和Zeiss。

积扫描电镜领域40多年及透射电镜领域60年的经验,ZEISS电子束技术在世界上创造了数个第一:•第一台静电式透射电镜(1949)•第一台商业化扫描电镜(1965)•第一台数字化扫描电镜(1985)•第一台场发射扫描电镜(1990)•第一台带有成像滤波器的透射电镜(1992)•第一台具有Koehler照明的200kV 场发射透射电镜(2003)•第一台具有镜筒内校正Omega能量滤波器的场发射透射电镜(2003)CARL ZEISS其前瞻性至臻完美的设计融合欧洲至上制造工艺造就了该品牌在光电子领域无可撼动的王者地位。

自成立至今,一直延续不断创新的传统,公司拥有广泛的专有技术,,随着离子束技术和基于电子束的分析技术的加入、可为您提供钨灯丝扫描电镜、场发射扫描电镜、双束显微镜(FIB and SEM)、透射电子显微镜等全系列解决方案。

其产品的高性能、高质量、高可靠性和稳定性已得到全世界广大用户的信赖与认可。

作为全球电镜标准缔造者的CARL ZEISS将一路领跑高端电镜市场为您开创探求纳米科技的崭新纪元。

Carl Zeiss SMT下属的纳米技术系统部在北京,上海,广州,鞍山设有营销公司和维修服务站,致力于蔡司电镜的技术咨询,销售和售后服务工作。

附件二:设备主要用途扫描电镜是以电子束作为光源,电子束在加速电压的作用下经过三级电磁透镜,在末级透镜上部扫描线圈的作用下,在试样表面做光栅状扫描,,产生各种同试样性质有关的物理信息(如二次电子,背反射电子),然后加以收集和处理,从而获得表征试样形貌的扫描电子像。

EVO操作规范注意事项

EVO操作规范注意事项

EVO-18扫描电镜操作注意事项
1.高度严格要求在20mm以内,同一批样品高度尽量统一,
最大高度差不能超过5mm。

样品宽度和长度不能超过样品台宽度20mm,换样品和做能谱调样品高度距离时,以最高样品高度为基准,在TV模式下进行。

2.Fill target 灯丝电流不能超过2.8A,学生不允许私自拉动,
若不慎拉动,一定将其调到2.5-2.6A之间。

3.做能谱时,要求工作距离在调好聚焦情况下在10-15mm
之间,高低样品差距较大的尤其要注意高度调节。

进行能谱分析时,I-probe 数值拉动到700-800PA即可,一定不能超过1nA。

做完能谱分析后将电流再调回扫描状态下的数值,50-100PA。

4.样品换样放气时,减压阀已经调好气流量,不允许未经老
师同意私自加大气流量,容易造成能谱铍窗损坏。

5.将样品粘好之后,再进行样品室放气步骤,严禁将样品室
暴露于空气当中,再进行样品制备。

6.如若操作违规,造成设备损坏,将严格追究到个人责任。

7.未尽事宜可以再另外附加。

ZEISS CL 18DSL 18V Cordless Stud Cutter 商品说明书

ZEISS CL 18DSL 18V Cordless Stud Cutter 商品说明书

CL14DSL with BSL1450* * The battery has been discontinued.
CL 18DSL
18V Cordless Stud Cutter
Specifications Capacity:
Threaded Stud Size Battery Voltage No Load Speed (Stroke) Overall Length Weight Standard Accessories*1
CL 14DSL
14.4V Cordless Stud Cutter
Optionalt Trimmer
M10 308565 308570
M8 308564 308569
M6 308563 308568
Features • Designed for threaded stud cutting • Cutting speed of threaded studs: 2.3 sec. • Clean cutting without sparks, chips and noise • Easily replaceable cutters have 4 cutting edges each
Specifications Capacity: Bar Dia. Battery Voltage*1 Dimensions (L x W x H) Weight*2
Standard Accessories
φ8-16mm Rebar 36V 510 x 230 x 241mm 18.6kg (with BSL36A18) 19.2kg (with BSL36B18) 2 Batteries (BSL36A18), Charger (UC18YSL3), Cutter Set, Wrench, Battery Cover, Carrying Case

EVO18使用说明

EVO18使用说明

Carl Zeiss SMT - Nano Technology Sy st e ms EVO® MA /LS 系列扫描电子显微镜使用说明ZEISS EVO® MA/LS系列扫描电子显微镜使用说明Contents目录Section 1. General Information 第一章综合信息 (1)1.Abstract 概要 (1)2. Important Information 重要信息 (2)3. Safety Precautions (Warnings and Cautions) 安全措施(警告和注意) (2)4. Notes about the Mains Supply 关于主电源的说明 (4)5. Use of Liquid Nitrogen 液氮的使用 (4)6. Do’s and Don’ts 可做和不可做 (6)Section 2. Basic design Principles of the SEM 第二章SEM 的基本设计原理 (7)1. Introduction 介绍 (7)2. Resolution. 分辨率 (8)3. Depth of field 景深 (9)4. Microanalysis. 微区分析 (10)5. Beam Specimen interactions. 电子束与样品的相互作用 (12)6. Detectors 探测器 (14)7. How it works 如何工作 (16)8. Specimen preparation guidance. 样品制备指南 (21)Section 3. Operation of the SEM 第三章SEM的操作 (25)1. Consider the properties of the specimen 样品性质的考虑 (25)2. Guide to SEM Operating Parameters SEM工作参数指南 (26)2.1 Conductive specimens 导电样品 (26)2.2 Non-conductive specimens 非导电样品 (27)2.3 Imaging wet samples using the Peltier coolstage 使用帕尔贴冷台观察含水样品 (29)3.Sequence Guide to Operation of the SEM SEM操作顺序指南 (31)Section 4. Operation of the SmartSEM®第四章SmartSEM®的使用 (32)1. Introduction (32)1.1. Intended use 预期用途 (32)1.2. About this software 关于本软件 (32)1.3. Safety instructions in this section 本部分中的安全指示 (32)2. Description 描述 (34)2.1. System requirements 系统要求 (34)2.2. Installation 安装 (34)2.3. Principle of operation (34)2.4. SmartSEM® user interface (UIF) SmartSEM®用户界面 (35)2.5. User access levels 用户访问级别 (37)3. First steps 第一步 (38)3.1. Switching on the SEM 开启SEM (38)3.2. Starting the SmartSEM® user interface 启动SmartSEM®用户界面 (39)3.3. Finding your way in the software 在软件中找到您的方式 (41)3.4. Obtaining the first image 获得第一幅图像 (46)3.5. Using the help functions (63)3.6. Closing the SmartSEM®software 关闭SmartSEM®软件 (68)4. Operation 操作 (69)4.1. Controlling the vacuum 控制真空 (69)4.2. Navigating the specimen 样品导航 (75)4.3. Setting SEM conditions 设置电镜条件 (89)4.4. Imaging 成像 (99)4.5. Annotating images 注释图像 (125)4.6. Working with recipes 用配方工作 (135)4.7. Saving and managing images 存储和管理图像 (142)4.8. Customising the SmartSEM®software 定义SmartSEM®软件 (149)5. Troubleshooting 故障处理 (162)5.1. Initialising the stage 初始化样品台 (163)5.2. Changing the joystick TV angle 改变操纵杆TV 角 (164)5.3. Resetting touch alarm (165)Section 5. Appendices 第五章附录 (166)1. Replacement of filament 更换灯丝 (166)2.Table of Pressure Limiting Apertures 压差光栏表 (170)3. An introduction to Macros 宏指令介绍 (171)4.Shortcuts 快捷键 (182)5.Annotation icons 注释栏图标说明 (184)Section 1. General Information 第一章综合信息1.Abstract 概要本使用说明向新用户介绍ZEISS EVO系列扫描电子显微镜(SEM)。

超细铜线的微观组织、结构及物相的检验方法研究

超细铜线的微观组织、结构及物相的检验方法研究

前沿技术L eading-edge technology 超细铜线的微观组织、结构及物相的检验方法研究王丽丽,刘 奇,饶锦武,彭得林,艾圆华(江西省铜及铜产品质量监督检验中心,江西 鹰潭 335000)摘 要:超细铜线(直径小于0.05mm)因尺寸小,使用常规手段难以实现XRD、SEM等检测样品的制备及测试分析,不利于超细铜线生产过程中的组织结构表征。

本文拟采用集束手段,在不改变材料组织性能的前提下,将多根超细铜线集束成一体,以实现样品的制备及检测,为微细尺度材料组织、结构、物相的表征提供新思路。

关键词:超细铜线、集束手段、XRD、SEM中图分类号:TG146.11 文献标识码:A 文章编号:1002-5065(2021)07-0129-3Study on the test method of microstructure, structure and phase of ultra fine copper wireWANG Li-li, LIU Qi, RAO Jin-wu, PENG De-lin, AI Yuan-hua(Jiangxi copper and copper product quality supervision and inspection center, Yingtan 335000)Abstract: Due to the small size of ultra-fine copper wire (diameter less than 0.05 mm), it is difficult to achieve the preparation and test analysis of XRD, SEM and other test samples by conventional means, which is not conducive to the microstructure characterization of ultra-fine copper wire in the production process. In this paper, without changing the structure and properties of the material, we intend to cluster several ultra-fine copper wires to achieve the preparation and detection of samples, and provide a new idea for the characterization of the microstructure, structure and phase of micro scale materials.Keywords: ultra fine copper wire, cluster method, XRD, SEM超细铜线广泛用于集成电路用封装导线、高速宽频传输用缆线、航天航空电机用精细线等,是电子电器、轨道交通、航天航空等领域中的关键耗材。

蔡司EVO18扫描电镜操作规程

蔡司EVO18扫描电镜操作规程

蔡司E V O18扫描电子显微镜操作规程为保证人员安全和设备安全,扫描电镜操作人员必须经过培训并且严格按照操作规程进行操作,蔡司EVO 18扫描电镜的操作分为三大部分:一、准备工作检查实验室电源、温度和湿度等环境条件,并准备好所需实验材料;二、实验过程实验过程主要包括设备开机、待机、待机重启和关机四个部分:(一)、开机操作:1、打开墙上空气开关;2、启动UPS:打开UPS电池开关,按前面面板上ON键,至两个绿灯亮;3、按下电镜黄灯:机械泵打开,分子泵、潘宁计、离子泵顺序自动启动;4、按下绿灯:计算机自动启动;5、打开SmartSEM软件,输入用户名system以及密码;6、检查真空读数,等待几分钟至System vacuum<1.2×10-4mBar,真空就绪;7、检查灯丝设置,开启扫描电镜灯丝;8、检查灯丝像和光阑对中;9、观察样品,从低倍到高倍对样品进行观察和拍摄图片。

(二)、待机步骤:1、关闭灯丝;2、打开TV,降下样品台,注意样品台是否会碰到探头;3、关闭SmartSEM软件,包括关用户界面和EM Server;4、关闭电脑;5、关能谱控制器及能谱电脑;6、按下黄灯,电子光学系统、样品台、检测系统关闭,灯丝与真空系统继续工作。

(三)、待机重启步骤:1、按下绿灯,电脑自动启动;2、启动SmartSEM软件,输入用户名System以及密码;3、检查真空读数;4、换样或加高压观察样品。

(四)、关机步骤:1、关灯丝;2、打开TV,降下样品台;注意样品台是否会碰到探头;3、关SmartSEM软件;包括关用户界面和EM Server;4、关电脑;5、关能谱,包括能谱控制器及能谱电脑;6、按下黄灯,电子光学系统、样品台、检测系统关闭;7、按下红灯;真空系统关闭;8、必要时,关UPS;9、必要时,关总空气开关。

三、注意事项1、操作过程中一定注意样品和设备探头的工作距离,以防碰到探头;2、长时间不使用电镜时,每周至少保持抽真空两次,保持机器内真空度。

蔡司电镜汇总

蔡司电镜汇总

【型号】EVO MA 10/LS 10EVO MA 15/LS 15【钨灯丝扫描电子显微镜】【总体描述】放大倍数:7—1000000x 放大倍数:5—1000000x低真空压力范围:10—400Pa (LS10:10-3000Pa)低真空压力范围:10—400Pa (LS15:环扫模式10-3000Pa)工作室:310mm(φ)×220mm(h)工作室:365mm(φ)×275mm(h)5轴优中心自动样品台:X=80mm Y=100mm Z=35mm T=0-90°R=360°5轴优中心自动样品台:X=125mm Y=125mm Z=50mm T=0-90°R=360°最大试样高度:100mm,最大试样直径:200mm 最大试样高度:145mm,最大试样直径:250mm【主要特点】能在可变压力下操作先进X射线和EBSD分析可移动大平台快抽真空未来的保证,可升级在高压和水蒸气下成像和分析高亮度LaB6资源选择光线套选择探针电流:0.5μAX-射线分析工作距离:8.系统控制:基于Windows XP【技术参数】EVO系列电镜是高性能、功能强大的高分辨应用型扫描电子显微镜。

MA10/15/25用于生命科学领域。

该系列电镜采用多接口的大样品室和艺术级的物镜设计,提供高低真空成像功能,可对各种材料表面作分析,并且具有业界领先的X射线分析技术。

革命性的Beamsleeve的设计,确保在低电压条件下提供高分辨率的锐利图像,同时还可以进行准确的能谱分析。

样品台为五轴全自动控制。

标准的高效率无油涡轮分子泵能够满足快速的样品更换和无污染(免维护)成像分析。

OptiBeam®模式:分辨率(Resolution)、景深(Depth)、分可以使用的探测器:BSD -背散射ETSE-Everhart-Thornley 二次电子探测器VPSE-可变压力二次电子探测器SCD -样品电流探测器EPSE-延伸可变压力二次电子探测器图象处理:7种积分加速电压:0.分辨率: 3.0 nm(2nm) @4.5 nm @ 30 kV BSD(VP模式)15nm @ 30 kV 1nA, LaB620nm(15nm) @ 1kV SE和W(LaB6)10nm @ 3kV SE【产品应用】扫描电镜(SEM)广泛地应用于金属材料(钢铁、冶金、有色、机械加工)和非玻璃纤维)等检验和研究。

【VIP专享】EVO18技术说明

【VIP专享】EVO18技术说明
Carl Zei2009 年 6 月 3 日
Attachment-1/14
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。

德国蔡司钨灯丝扫描电镜EVO MA10技术说明

德国蔡司钨灯丝扫描电镜EVO MA10技术说明

德国蔡司钨灯丝扫描电镜技术文件仪器型号:EVO MA10北京欧波同光学技术有限公司2017年09月07日目录一、聚焦CARL ZEISS (3)二、产品概述 (4)三、技术参数 (5)四、计划进度及培训 (7)五、环境要求 (8)六、质保及其他服务 (9)一、聚焦CARL ZEISS世界可见光及电子光学的领导企业—德国蔡司公司始创于1846年。

其电子光学前身为LEO(里奥),更早叫Cambridge(剑桥)和Zeiss。

积扫描电镜领域50年及透射电镜领域60多年的经验,ZEISS电子束技术在世界上创造了数个第一:•第一台静电式透射电镜(1949)•第一台商业化扫描电镜(1965)•第一台数字化扫描电镜(1985)•第一台场发射扫描电镜(1990)•第一台带有成像滤波器的透射电镜(1992)•第一台具有Koehler照明的200kV 场发射透射电镜(2003)•第一台具有镜筒内校正Omega能量滤波器的场发射透射电镜(2003)CARL ZEISS其前瞻性至臻完美的设计融合欧洲至上制造工艺造就了该品牌在光电子领域无可撼动的王者地位。

自成立至今,一直延续不断创新的传统,公司拥有广泛的专有技术,随着离子束技术和基于电子束的分析技术的加入、可为您提供钨灯丝扫描电镜、场发射扫描电镜、双束显微镜(FIB and SEM)、扫描离子显微镜等全系列解决方案。

其产品的高性能、高质量、高可靠性和稳定性已得到全世界广大用户的信赖与认可。

作为全球电镜标准缔造者的CARL ZEISS将一路领跑高端电镜市场为您开创探求纳米科技的崭新纪元。

欧波同有限公司做为Carl Zeiss 集团显微镜事业部的战略合作伙伴,在北京,上海,广州,鞍山、济南、郑州、西安等地设有营销机构和维修服务站,致力于蔡司电镜的技术咨询,销售和售后服务工作。

二、产品概述扫描电镜是以电子束作为光源,电子束在加速电压的作用下经过三级电磁透镜,在末级透镜上部扫描线圈的作用下,在试样表面做光栅状扫描,产生各种同试样性质有关的物理信息(如二次电子,背散射电子),然后加以收集和处理,从而获得表征试样形貌的扫描电子像。

详解EVO-18型扫描电镜钨灯丝的更换及其日常维护

详解EVO-18型扫描电镜钨灯丝的更换及其日常维护

第24卷第2期2018年6月分析测试技术与仪器ANALYSISANDTESTINGTECHNOLOGYANDINSTRUMENTSVolume24Number2㊀㊀㊀㊀June2018大型仪器维护与维修(115~119)收稿日期:2018-04-12ꎻ㊀修订日期:2018-05-02.作者简介:徐凌云(1987-)ꎬ女ꎬ硕士ꎬ实验师ꎬ主要研究方向为材料微观结构表征与分析ꎬE-mail:lyxu@suda.edu.cn通讯作者:严丽娟(1989-)ꎬ女ꎬ硕士ꎬ助理研究员ꎬ主要研究方向为仪器设备管理ꎬE-mail:ljyan@suda.edu.cn.详解EVO-18型扫描电镜钨灯丝的更换及其日常维护徐凌云ꎬ严丽娟(苏州大学分析测试中心ꎬ江苏苏州㊀215123)摘要:以EVO-18型扫描电子显微镜为例ꎬ阐述了钨灯丝扫描电镜灯丝更换的详细注意事项及灯丝日常维护保养的具体办法.关键词:扫描电镜ꎻ钨灯丝更换ꎻ维护保养中图分类号:O657.3文献标志码:B文章编号:1006 ̄3757(2018)02 ̄0115 ̄05DOI:10.16495/j.1006-3757.2018.02.009ReplacementandDailyMaintenanceofTungstenFilamentonEVO-18ScanningElectronMicroscopeXULing-yunꎬYANLi-juan(AnalysisandTestingCenterꎬSoochowUniversityꎬSuzhou215123ꎬJiangsuChina)Abstract:Scanningelectronmicroscope(SEM)hasbecomeanindispensabletoolinuniversitiesandfactories.TaketheEVO-18scanningelectronmicroscopeasanexampleꎬthedetailsoffilamentreplacementanddailymaintenanceofthetungstenfilamentwasdescribed.Keywords:scanningelectronmicroscopeꎻreplacementoftungstenfilamentꎻdailymaintenance㊀㊀扫描电子显微镜(简称扫描电镜)是电子学与光学相结合的一类大型精密仪器ꎬ目前在材料学㊁冶金工业㊁地质学㊁生物学及临床医学等领域得到日益广泛的应用[1-3].扫描电镜的电子枪主要有热电子枪和场发射电子枪两种类型.其中热电子枪中的钨灯丝由于价格最便宜而受广泛仪器管理者青睐ꎬ但是钨灯丝相比较其他灯丝(如:六硼化镧㊁六硼化铈)具有寿命短这一缺点(一般只有几十个小时).灯丝寿命短会带来仪器运行成本增加㊁有效运行时间降低㊁污染增加和仪器性能降低等不良后果[4-5].因此ꎬ这就要求管理人员要定期更换钨灯丝.准确规范的安装灯丝不但能提高其能散和亮度还能延长寿命[6].EVO-18型扫描电镜是德国卡尔蔡司生产的一款比较成熟的钨灯丝电镜ꎬ此款电镜由于其价格便宜㊁样品室大等优点被广泛应用于高校和钢铁等企业ꎬ在样品宏观和微观形貌测定及元素定性㊁定量分析上[7-9]起到重要作用.因此ꎬ如何正确规范的维护与更换EVO-18型扫描电镜的钨灯丝是确保教学科研服务顺利进行㊁企业工作者顺利解决产品实际问题㊁充分发挥仪器的测试功能㊁实现资源共享的一项重要任务[10-14].1㊀钨灯丝更换前准备工作EVO-18型扫描电镜如果在正常操作过程中突然出现视场变黑㊁无电子图像等现象ꎬ并且软件右下角有提示窗口提示灯丝已断ꎬ说明要及时更换钨灯丝.此时ꎬ要依次关掉电镜软件㊁能谱(EDS)软件㊁能谱电脑和电镜电脑.然后将电镜开关由ON调为分析测试技术与仪器第24卷Standbyꎬ然后再调为OFF.此时ꎬ电镜处于关机状态ꎬ真空泵已不工作ꎬ样品室在缓慢放气.准备好更换钨灯丝时需要的无尘布㊁螺丝刀㊁竹签㊁无纺布㊁一次性乳胶手套等.2㊀更换新灯丝(灯丝型号AgarA054)具体步骤2.1㊀取出灯丝组件待电镜样品室放气结束ꎬ样品室能被轻轻拉开时ꎬ关上样品室ꎬ戴上乳胶手套ꎬ打开镜筒顶盖ꎬ用匹配的螺丝刀拧松三个固定螺钉ꎬ取下灯丝组件并将灯丝阳极的两个固定螺丝拧松并取下.在干净的无尘布上把灯丝组件分解ꎬ从栅极帽中按顺序取出调节圈㊁对中圈㊁弹簧片㊁固定盘和已断的钨灯丝ꎬ如图1所示.㊀㊀分解后会有8颗螺钉ꎬ其中尖头螺钉和平头螺钉分别各为4颗ꎬ组件如图2所示.图1㊀样品室示意图Fig.1㊀Figureofsamplecompartment图2㊀灯丝组件Fig.2㊀Partsoffilament2.2㊀清洁灯丝组件在竹签前端包裹无纺布ꎬ粘取少量抛光膏清洁固定盘表面㊁栅极帽内孔㊁阳极盘表面及内孔处的黑斑.重复以上步骤多次抛光ꎬ直至用干净的无纺布再也擦拭不到黑色脏污后并露出金属光泽ꎬ将以上擦拭过后的灯丝组件全部放入大烧杯ꎬ倒入能没过组件的酒精并超声清洗.酒精超声清洗3次确保灯丝组件上不再有抛光膏残留且在放大镜(约50倍)下确保内孔没有残留物后ꎬ将组件取出并用吹风机吹干置于干净的无尘布上待用.2.3㊀安装及对准新灯丝用镊子小心取出新灯丝并将灯丝卡在固定盘凹槽的一面ꎬ注意灯丝脚与固定盘上的两个槽口对齐ꎬ用4颗尖头螺钉简单固定好灯丝后ꎬ再调节4个螺钉使灯丝的陶瓷座与固定盘内孔同心ꎬ调好后ꎬ拧紧4个螺钉.将上述组件放入对中圈内ꎬ调整另一组4个平头螺钉ꎬ使灯丝组件与对中圈同心.调好后ꎬ拧紧4个螺钉ꎬ注意固定盘上的缺口和小孔要与对中圈上的销和槽对齐.将弹簧片放入栅极帽内ꎬ再放入上述组件ꎬ利用调节圈锁紧ꎬ将组件翻转ꎬ使栅极帽内孔向上ꎬ观察钨尖是否在孔中心.可以重复上述调整步骤ꎬ使钨尖位于孔中心ꎬ最好在体视显微镜下调整ꎬ转动栅极帽ꎬ从两个方向判断钨尖是否调整到孔心.如灯丝不在正中心会很容易导致灯丝亮度偏暗ꎬ而由此操作者又会增加偏压或电流来提高亮度ꎬ从而损伤灯丝.手持整个组件ꎬ转动调节圈ꎬ使611第2期徐凌云ꎬ等:详解EVO-18型扫描电镜钨灯丝的更换及其日常维护钨尖与栅极帽大平面同高.反时针转动调节圈:1圈加1/4圈ꎬ钨尖缩入下表面约0.6mmꎬ每次更换灯丝均要保证这个缩入量.也可以反转3/4圈ꎬ增加灯丝发射束流ꎬ分辨率可适当改善ꎬ但灯丝寿命可能略短.为操作简单起见ꎬ建议反转一圈即可.将灯丝组件和阳极安装到电镜中ꎬ盖好顶盖ꎬ将电镜开关由OFF调为Standbyꎬ然后再调为ONꎬ此时ꎬ真空泵开始工作ꎬ样品室在缓慢抽真空ꎬ打开扫描电镜软件ꎬ观测样品室真空度ꎬ新灯丝安装完成.3㊀灯丝饱和点与电子枪合轴的调整待电镜软件真空模块中显示真空度为5ˑ10-3Pa左右ꎬ真空状态栏显示 ready 后ꎬ开启高压ꎬ加速电压选20kVꎬ缓慢向右拖动灯丝加热电流滑尺ꎬ观察图亮度变化ꎬ灯丝电流在2.4和2.9A两个位置附近ꎬ图像亮度变大.自动找饱和点(AutoSat)ꎬ在弹出窗口中可选第1峰位或第2峰位ꎬ自动找到灯丝电流.选择第1峰位亮度较低ꎬ灯丝寿命较长ꎬ此时放大倍率在几千倍以下的图像可以使用.而第2峰位ꎬ如果灯丝缩入距离合适ꎬ通常灯丝饱和点电流小于2.8Aꎬ亮度高ꎬ发射电流稳定ꎬ寿命符合要求.适合各种图像放大要求.经测试加速电压变化对灯丝饱点电流影响不大.灯丝发射电流设定与灯丝种类和偏压有关ꎬ建议选择80μA或100μA.电子枪合轴调整可以手动或自动ꎬ如图3所示.手动模式:在有图像时ꎬ选择发射(Emission)ꎬ黑屏上出现黄色米字线ꎬ交叉点为屏幕中心ꎬ在中心附近出现一个椭圆亮斑.如果灯丝处于第1峰位附近ꎬ中间小亮斑外围有较暗的大亮斑ꎬ此时亮斑会在第2峰位饱和点时逐步缩小并和中间小亮斑聚合.先利用GunShift调节大亮斑在正中ꎬ再调节GunTilt使小亮斑在正中.而后选择正常(Normal)ꎬ高亮度图形复出.自动模式:选择自动合轴(AutoAlign)ꎬ稍等片刻图像就变得最亮.操作时ꎬ每次改变加速电压后ꎬ必须对电子枪重新合轴.图3㊀灯丝饱和点与电子枪合轴的调整的软件界面Fig.3㊀Softwareinterfaceforadjustingfilamentsaturationpointandelectrongunshift711分析测试技术与仪器第24卷4㊀提高灯丝寿命的几点措施4.1㊀保持镜筒的高真空度镜筒中残余的气体会不断腐蚀灯丝从而缩短其使用寿命ꎬ因此镜筒的真空度直接影响到钨灯丝寿命[15].电子显微镜镜筒的真空度主要是由电镜抽真空系统决定的ꎬ目前一般都采用机械泵和油扩散泵两级抽气系统组成.保证各级泵的性能是必须的ꎬ必要时要更换泵油.再有就是待观察样品应尽量干燥㊁无挥发性物质.干燥好的样品若暂时不用ꎬ可放在干燥器或真空中保存.高真空抽到后最好再等几分钟ꎬ让真空度更高.换样品放气前等几分钟ꎬ让灯丝冷却下来再放气ꎬ避免过热灯丝与大气接触氧化灯丝.4.2㊀准确找到灯丝的 饱和点我们都知道灯丝在 饱和点 工作时是最稳定且此时电子流相对较高ꎬ如果给灯丝所加的电流超过 饱和点 电流ꎬ则灯丝在超负荷(过饱和状态)工作ꎬ这样会缩短灯丝寿命.因此ꎬ如何准确找到灯丝的饱和点是至关重要的.新灯丝刚开始加高压后ꎬ其发射的电子束流(灯丝像的亮度)是随加热电流的增加而迅速增加ꎬ此时要缓慢增加电流ꎬ因为灯丝的成像会比较缓慢ꎬ当加热电流增加到一定程度时ꎬ灯丝发射的电子束流并不再随加热电流的增加而增加ꎬ此时对应的灯丝电流称为该灯丝的 饱和点 .当然ꎬ随着灯丝的逐步工作ꎬ其 饱和点 电流也不是一直不变的ꎬ随着使用时间的增加会出现逐渐减小的趋势ꎬ为了避免灯丝处于 过饱和 状态ꎬ必须经常调整灯丝电流到新的 饱和点 .EVO-18型扫描电镜钨灯丝有两个饱和点ꎬ第二饱和点用于高分辨率观察照相ꎬ如果对图像要求不高或做EDSꎬ可以在第一饱和点工作ꎬ这样可以延长灯丝的寿命.4.3㊀正确安装与预处理新灯丝安装新灯丝时ꎬ应将灯丝与栅极帽间的距离调至仪器要求的最佳距离ꎬ不同电镜要求可能不同.比如EVO-18型扫描电子显微镜要求钨尖缩入下表面约0.6mmꎬ并调整灯丝尖精确位于栅极帽小孔中心.灯丝工作时发射电子束ꎬ灯丝的发射束流与灯丝的加热电流和灯丝高度有关.灯丝高度越大ꎬ则灯丝达饱和点的工作温度就越低ꎬ灯丝表面蒸发得也越慢.因此在保证理论高度的条件下ꎬ我们可以将灯丝高度适当增加.新灯丝的表面可能吸附一定量的空气㊁水汽ꎬ当它被安装到电镜镜筒里时ꎬ会从灯丝表面缓缓释放ꎬ影响镜筒的真空度ꎬ腐蚀灯丝ꎬ因此新灯丝在更换前要先经过去潮㊁去气和预热处理ꎬ因为真空泵无法把镜筒内的水分抽出ꎬ可将新灯丝置于45ħ电热箱内放置数小时以除去灯丝吸收的潮气然后置于其他仪器的真空室预抽气数小时ꎬ以除去新灯丝上吸附的残余空气和水汽.更换新灯丝时应同时清洗灯丝组件ꎬ并用电吹风吹干.4.4㊀其他的小经验加速电压不宜用得过高ꎬ满足要求即可ꎬ能用低电压就不用高电压.放大倍数不超过一万倍时一般15~20kV就可以了.同时ꎬ应保持工作电压与工作距离的相对稳定ꎬ如无特殊需要ꎬ不要经常更换电压与工作距离.因为频繁更改电镜工作参数不利于电镜稳定工作.平时尽量少频繁开关灯丝ꎬ次数过多对灯丝不利.5㊀结语扫描电镜是综合型大型精密仪器ꎬ在高校使用频次较高ꎬ尤其EVO-18型扫描电镜的样品繁多ꎬ来源复杂ꎬ钨灯丝作为定期耗材如何充分发挥它的自身价值ꎬ更好的服务科研与企业需求是至关重要的.作为工作人员ꎬ只有进一步做好仪器日常维护和保养工作ꎬ才能发挥仪器的最大功效.参考文献:[1]㊀迟广成ꎬ殷晓ꎬ伍月ꎬ等.扫描电镜/能谱仪用于变质岩中榍石的鉴定[J].冶金分析ꎬ2016ꎬ36(4):11-16.[CHIGuang-chengꎬYINXiaoꎬWuYueꎬetal.Applicationofscanningelectronmicroscope/energydispersivespectrometerintheidentificationofspheneinmetamorphicrock[J].MetallurgicalAnalysisꎬ2016ꎬ36(4):11-16.][2]㊀刘伟明ꎬ滕傲雪.扫描电镜/能谱法在微量物证检验中的应用[J].微量元素与健康研究ꎬ2014ꎬ31(4):56-57.[LIUWei-mingꎬTENGAo-xue.Applicationofscanningelectronmicroscope/energydispersivespectrometerintheinspectionoftracematerialevidence[J].StudiesofTraceElementsandHealthꎬ2014ꎬ31(4):56-57.][3]㊀时巧翠ꎬ严恺伦ꎬ林顺雷.扫描电镜/能谱仪在刑事技术中的应用[J].实验室研究与探索ꎬ2010ꎬ29(10):32-35.[SHIQiao-cuiꎬYANKai-lunꎬLINShun-leiꎬetal.ApplicationsofSEM/EDAXinforensicscienceandtechnology[J].ResearchandExplorationin811第2期徐凌云ꎬ等:详解EVO-18型扫描电镜钨灯丝的更换及其日常维护Laboratoryꎬ2010ꎬ29(10):32-35.][4]㊀刘文波ꎬ朱杰ꎬ张谨娜.延长电镜钨灯丝使用寿命的方法探讨[J].现代科学仪器ꎬ2009ꎬ1:95-96.[LIUWen-boꎬZHUJieꎬZHANGJin-naꎬetal.MethodsofprolonginglifetimeofEMtungstenfilament[J].ModernScientificInstrumentsꎬ2009ꎬ1:95-96.] [5]㊀邹龙江ꎬ高路斯ꎬ周全.JSM-5600LV扫描电镜的保养及常见故障的排除[J].实验室科学ꎬ2013ꎬ16(4):180-182.[ZOULong-jiangꎬGAOLu-siꎬZHOUQuan.MaintenanceandcommontroubleshootingofJSM-5600LVSEM[J].LaboratoryScienceꎬ2013ꎬ16(4):180-182.][6]㊀周广荣.钨灯丝扫描电镜拍图最佳状态的维护与思考[J].分析仪器ꎬ2013ꎬ6:74-77.[ZHOUGuang-rong.MaintenanceandthinkingonimagecollectingoptimumworkingstateoftungstenfilamentSEM[J].AnalyticalInstrumentationꎬ2013ꎬ6:74-77.] [7]㊀杜佳美ꎬ黄生龙ꎬ沈艳.扫描电镜在中高碳钢质量控制中的应用[J].金属制品ꎬ2014ꎬ40(1):44-49.[DUJia-meiꎬHUANGSheng-longꎬSHENYan.ApplicationofSEMtomediumandhighcarbonsteelqualitycontrol[J].MetalProductsꎬ2014ꎬ40(1):44-49.][8]㊀寇沙沙ꎬ李智丽ꎬ靳燕.扫描电镜在金属材料检测中的应用[J].包钢科技ꎬ2016ꎬ42(1):42-46.[KOUSha-shaꎬLIZhi-liꎬJINYan.Applicationsofscanningelectronmicroscopeindetectingmetallicmaterials[J].ScienceandTechnologyofBaotouSteelꎬ2016ꎬ42(1):42-46.][9]㊀王玉鹏ꎬ樊艳梅ꎬ孙亚洲.扫描电镜能谱仪对涂层的分析[J].涂料技术与文摘ꎬ2016ꎬ37(3):10-18.[WANGYu-pengꎬFANYan-meiꎬSUNYa-zhou.Analysisofcoatingbyscanningelectronmicroscopeenergyspectrometer[J].CoatingsTechnology&Abstractsꎬ2016ꎬ37(3):10-18.][10]㊀刘小娟ꎬ吴锋景ꎬ张何ꎬ等.扫描电镜在应用型本科院校实验教学中的应用[J].广州化工ꎬ2016ꎬ44(20):201-203.[LIUXiao-juanꎬWUFeng-jingꎬZHANGHeꎬetal.Explorationontheexperimentalteachingofscanningelectronmicroscopyinapplication-orientedundergraduateuniversities[J].GuangzhouChemicalIndustryꎬ2016ꎬ44(20):201-203.][11]㊀冯善娥ꎬ高伟建.扫描电镜中背散射电子成像功能的应用[J].分析测试技术与仪器ꎬ2015ꎬ21(1):54-57.[FENGShan-eꎬGAOWei-jian.Applicationofbackscatteredelectronimagingfunctioninscanningelectronmicroscopy[J].AnalysisandTestingTechnologyandInstrumentsꎬ2015ꎬ21(1):54-57.][12]㊀史永红ꎬ许长峰ꎬ缪有志ꎬ等.扫描电镜工作距离和加速电压与图像清晰度的关系研究[J].实验技术与管理ꎬ2010ꎬ27(8):48-53.[SHIYong-hongꎬXUChang-fengꎬMIAOYou-zhiꎬetal.TherelationshipbetweentheimagedefinitionofSEManddifferentworkdistancesandacceleratingvoltagesofelectronbeam[J].ExperimentalTechnologyandManagementꎬ2010ꎬ27(8):48-53.][13]㊀冯善娥ꎬ高伟建.扫描电镜附EDS能谱仪的使用与维护[J].分析测试技术与仪器ꎬ2014ꎬ20(2):115-117.[FENGShan-eꎬGAOWei-jian.OperationandmaintenanceofSEM&EDS[J].AnalysisandTestingTechnologyandInstrumentsꎬ2014ꎬ20(2):115-117.][14]㊀陈木子ꎬ高伟建ꎬ张勇ꎬ等.浅谈扫描电子显微镜的结构及维护[J].分析仪器ꎬ2013ꎬ4:91-93.[CHENMu-ziꎬGAOWei-jianꎬZHANGYongꎬetal.Structureandmaintenanceofscanningeletronmicroscope[J].AnalyticalInstrumentationꎬ2013ꎬ4:91-93.] [15]㊀陈晓霞.影响高真空钨灯丝扫描电镜成像因素分析[J].武钢技术ꎬ2005ꎬ43(3):30-32.[CHENXaio-xia.AnalysisonfactorsaffectingimageformationofhighvacuumtungstenfilamentSEM[J].WiscoTechnologyꎬ2005ꎬ43(3):30-32.]911。

EVO 18扫描电镜操作规程

EVO 18扫描电镜操作规程

EVO 18扫描电镜操作规程1、打开总电源。

2、打开UPS不间断电源的黑色主机箱后面的电源开关。

3、打开电源电池机箱的开关,再按黑色主机箱前面的电源开关。

4、打开扫描电镜主机后面的电源开关。

5、按SEM主机前面的上面中间黄色按钮,约30秒后按绿色启动按钮,开启扫描电镜。

6、双击Smart SEM图标开启SEM软件,输入用户名,用户界面打开,保留EM Server界面。

7、打开氮气开关给样品室进气,点击主界面右下方的VAC键,从弹出菜单中点击VENT放气。

8、待样品室充入氮气,缓慢打开样品门,安装样品,尽可能短时间保持样品门处于打开状态。

9、正确安装样品台后,小心关闭舱门。

关闭氮气瓶的开关。

在SEM Control面板中点击Pump按钮。

真空状态信息显示当前的真空度。

10、点击TV模式,观察样品室,使用双操纵杆移动样品台接近物镜,确保驱动样品台的过程中不要碰到物镜。

11、点击Vacuum标签,检查Vac State=Ready显示。

12、在状态栏点击Gun按钮。

从弹出菜单中选择Beam On。

电子枪启动。

此时状态栏按钮聚集到一起,All按钮出现。

13、在SEM Control面板中,点击Gun标签,设定加速电压,输入所需的加速电压值。

14、点击Detectors标签,从Detectors下拉列表中选择SE1.15、点击Scanning标签,从下拉列表中选择快扫描速度。

16、点击工具栏的Magnification/Focus图标,按住鼠标左键并拖动鼠标设置低放大倍数,例如200倍。

17、按住中建并拖动鼠标聚焦。

放大倍数和工作距离WD显示在状态栏中。

18、点击Detectors标签,使用 Brightness和Contrast滑动条,调整对比度和亮度。

19、选择样品表面的一个细节,对细节聚焦。

再次调整亮度及对比度。

20、点击状态栏中的Coarse/Fine按钮,切换至Coarse(粗调)。

21、边聚焦,边放大至高倍数,选择高倍数时,推荐使用电子束位移功能来移动样品:点击Beam Shift面板按钮。

ZEISS EVO 扫描显微鉴定仪 3说明书

ZEISS EVO 扫描显微鉴定仪 3说明书

Scanning Electron MicroscopeIn an industrial quality, failure analysis, or research environment, the scanning electron microscope is the solution of choice for metallography and failure analysis applications, due to its ability to provide both high resolution imaging and high spatial resolution elemental chemistry.Designed specifically for routine inspection and analysis applications, ZEISS EVO excels at offering an operational concept that appeals not only to experienced microscopists, but also to engineers who are not SEM experts. It delivers best-in-class, high quality data, especially for non-conductive parts that cannot be coated with a conductive layer due to a requirement for subsequent inspection.A truly unique attribute of EVO is its seamless integration into a multi-modal QA or FA workflow, thanks to features like semi-automated relocation of regions of interest and data integrity solutions – across systems, labs or even locations.EVO is also the platform for certain turn-key industrial solutions for cleanliness as well as mineral analysis and processing.With a wide choice of chamber sizes, vacuum system, electron emitter types, and analytical options, the odds are good that your EVO can be matched closely to your price-performance requirements.Industry has a New Ally.Count on ZEISS EVO as the best qualified SEM to support industrial QA and FA labs.High Resolution Surface MorphologySecondary electron (SE) imaging – with a maximum resolution of a couple of nanometers – comfortably covers most of the sub-micron length-scale. While light microscopy yields contrast (reflections) from surfaces, secondary electron emission yields contrast from edges on the sample surface, thereby providing greater detail of surfacemorphology, such as that of metal fractures.High Spatial Resolution Elemental AnalysisIn Energy Dispersive Spectroscopy (EDS), X-rays generated by the interaction of the finely focused electron beam with the part yields the elemental composition of the surface. Applying a scanning beam yields the distribution of chemical elements across the region of interest. EVO with EDS offers a great solution for visualizing the possiblecontribution of elemental chemistry to quality challenges or material failures.Take Your Investigation to the Next Level.EVO takes over when you’ve reached the resolution or contrast limit of light microscopy, but still need answers.Compositional ImagingBackscattered electron (BSE) imaging yields contrast that is directly proportional to the density of the materials that constitute your parts or assemblies. It provides a snapshot of compositional heterogeneity that can help you determine the root cause of material failure or quality excursions.Stainless steel fracture surface, with strong contrast from the fracture surface edges likely delineating metal grains. Horizontal field of view: 10 μm.Backscattered electron image of dissimilar joint of low alloy steel (8630) with nickel alloy (625) weld metal, revealing complex compositional heterogeneities across the joint. Horizontal field of view: 100 μm. Sample courtesy: TWI Ltd.Elemental map across the dissimilar joint shown above, revealing the spatial distribution of MolybdenumElectron SourceChoose between the standard thermal electron emitter (tungsten hairpin), or treat yourself to a lanthanum hexaboride (LaB 6) thermal emitter and benefit from up to 10 times more electron beam brightness. ZEISS has continuously improved the implementation of LaB 6 in SEMs over decades, resulting in enhanced ease- of-use and better image quality, especially when using VP mode.The Environment to Match Your SamplesChoose between the standard (high) vacuum configuration for metallic andother conductive parts, or add the optional Variable Pressure (VP) mode for imaging and analysis of non-conductive parts, without coating or preparation that might interfere with your multi-modal QA or FA analysis workflow. When choosing VP, be sure to also select the best-in-class secondary electron detector, the ZEISS C2D, for surface morphology imaging of non-conductive parts.Powerful Yet AffordableThe perfect match to your price–performance requirementsAnalytical Capabilities that Extend EVO’s UtilityOptionally, configure your EVO with particle analysis capabilities, enablingyou to greatly enhance productivity through overnight runs of filters from your colleagues’ cleanliness analysis workflows.Chamber SizeChoose from three vacuum chamber sizes (EVO models 10, 15 and 25) to select the one that best fits your imaging and analysis requirements, whether you work with smallcomponents, or very large parts or assemblies, such as powertrain or electrical components.Backscattered electron image of a tyre cord, showing the steel wire (bright) intermixed with rubber (dark). Horizontal field of view: 2 mm.Secondary electron image of a lanthanum hexaboride electron emitterBackscattered electron image of particles on a filter. Horizontal field of view: 4 mm1 µmThe ZEISS EVO product family caters to a wide range of configuration options:“New SmartSEMTouch is so easyto learn, ourintern Laurenis up to speedin 20 minutes!Thanks”@ZEISS_Group,@zeiss_microECR EnginesGet More Hands on Deck.SEM operation for both expert and novice usersIn industrial material laboratories, throughput and time todata suddenly becomes critical when quality excursions inmanufacturing are discovered, or failed parts are returned fromthe field. As resources are deployed to get answers, it is goodto know that the EVO SEM can be operated by both expert andnon-expert electron microscopists by means of the dedicated,simplified graphical user interface.SEM Operation forExperienced UsersBy default, the EVO is operated from aWindows 10 graphical user interface,ZEISS SmartSEM, which features all thefunctionality required by the expertuser. Additionally, a control panel isavailable providing convenient shortcutsto the most common functions, such asmagnification, focus and stigmation, orcontrast and brightness.SEM Operation forNon-MicroscopistsFor novice and occasional users,EVO also can be operated from thesimplified graphical user interfaceSmartSEM Touch, by mouse or touchcontrol. This interface allows pre-programming of instrument settings forrepetitive imaging of parts commonlyoccuring in a quality inspection orfailure analysis environment.SmartSEM Touch: interface for novice users ECR Engines is a high-performance engineproduction and development company that hasearned over 250 victories in NASCAR racing series.The company extracts the maximum performancefrom conventional V8 engines by relentlesslyengineering parts to find every possible bit ofincremental improvement and through systematicquality inspection of all failure prone parts. Overthe last few years, ECR Engines has replacedtheir equipment from other vendors and is nowoperating exclusively with ZEISS instruments. SmartSEM: interface for experienced usersUnderstandably, there may be reluctance to move a particular part to SEM. Non-conductive surfaces will charge under the electron beam. While a range of sample preparation solutions exist to mitigate this challenge, parts that will continue through a multi-modal QA or FA workflow must remain unaltered.EVO excels at extracting the maximum data quality from uncoated and unaltered parts. EVO’s variable pressure operation suppresses surface charge by a process of gas ionization in the vacuum chamber. Dedicated variable pressure detectors (in particular, EVO’s charge cascade detector, C2D) are optimized for secondary electron detection, at reduced beam acceleration voltages, and – if required – long working distances. And last but not least: the optional lanthanum hexaboride (LaB 6) emitter ensures the best possible noise-free images under these challenging conditions.Image as Presented.Analyze samples in their native state for the most accurate, best quality image and data.Image of impregnated woven fiber material, revealing the fibers and the filler material. Imaged at low kV with secondary electrons in variable pressure. Particularly at such challenging conditions, the benefits of LaB 6 become most apparent.In industrial quality assurance, as well as in failure analysis, a thorough assessment may require data acquired from other inspection or analysis modalities to get to the root of a problem.Plays Well with Others.Benefit from workflow automation and correlative microscopy with ZEISS EVO.This is where EVO excels, by “playing well with others”. The power of the multi-modal workflow, where a part moves from instrument to instrument, is in the acquisition of data complementary to SEM data, which provides an even broader perspective to the problem. The Shuttle & Find module of ZEISS image analysis and archive software, ZEN 2 core, allows EVO to be included in a multi-modal workflow with other ZEISS microscopes. Shuttle & Find and ZEN 2 core streamline sample exchanges and speed workflows with fast, semi-automated relocation of region of interests, automatic storage of data from multiple modalities in a single project folder, and overlay of imaging and elemental chemistry data from multiple modalities.Multimodal data acquisition is reality already for some, and near future for others in industrial QA and FA environments. In any case, EVO is ready for integration in correlative microscopy or analysis workflows. And for regulated industries such as pharmaceutical or aerospace, every EVO is GxP compliant through the GxP module in ZEN 2 core.Popular Multimodal Workflows are: • ZEISS stereo or digital light microscopes to EVO for enhanced part inspection and documentation • ZEISS (light) particle analyzers to EVO Correlative Particle Analysis (ZEISS CAPA)• EVO to ZEISS confocal microscopyfor tribology applicationsOverview image of the same sample, acquired at lower magnification in variable pressure mode with the C2D detector. Horizontal field of view: 1 mm.Value Beyond Routine SEM ApplicationsTurnkey solutions for industrial cleanliness and mineral processingCompliant with Industry Standards The current SmartPI solution was developed in collaboration with a major global automotive component supplier, which assures it meets the most current and demanding industrial cleanliness requirements, including the latest VDA 19 Part 1 and 2 cleanliness measurement standard.Cross-Frame Particle Detection One unique characteristic of SmartPI is the ability to detect cross-frame particles, ensuring the largest particles are not omitted from the measurement.Correlative Particle Analysis SmartPI on the EVO, working together with ZEISS light microscopy particle analyzers, enable a correlative workflow, whereby the light microscopes detect particle size, differentiate shape, and classify metallic particles, before EVO takes over to measure the elemental composition of the metallic particles. This highly efficient workflow not only finds particles, but also classifies particles by size, shape and likely contamination or wear origin.A second turnkey solution available for EVO is Mineralogic, an automated mineralogy solution for geosciences and the mineral processing industry. Request more information about Mineralogic from your ZEISSrepresentative.SmartPI is the ZEISS automated, standards-compliant SEM Particle Analysis solution that, in contrast to light microscopy-based cleanliness solutions, allows particle classification on the basis of elemental composition. SmartPI data helps engineers relate the cleanliness data to the source of particle contamination. SmartPI is implemented on EVO as a turnkey solution for industrial cleanliness, and is supported entirelyby ZEISS.Get more Answers.Connect with other solutions in the ZEISS QA portfolio.Optical Inspection and Documentation ZEISS Smartzoom 5Smartzoom 5 is the ZEISS digital light microscope for routine industrial QA inspection and documentation applications. Designed for imaging and measurement repeatability, enhanced depth of field, and automated intelligent illumination, it is the most popular companion to EVO in a multimodal QA inspection workflow.Surface and Roughness Analysis ZEISS Smartproof 5This digital confocal microscope delivers quantitative 3D imaging and roughness measurements for surface analysis investigations. Smartproof 5 is a turnkey and easy to use instrument that can be implemented with minimal training. Non-microscopist users can take advantage of guided workflows to produce fast, precise and repeatable results.Optical 2D Measurements ZEISS O-SELECTO-SELECT is the digital profile projector for 2D optical metrology applications. Equally turnkey and as easy to use as Smartzoom 5, O-SELECT makes 2D optical measurements available with the touch of a single button.3D X-ray Microscopy ZEISS XradiaXRM is the ZEISS non-destructive 3D imaging solution that performs X-ray computed tomography with imaging resolutions well below 1 micrometer. XRM is ideal for parts or assemblies that cannot be sectioned or dismantled for inspection of the internal materials and structures.Particle Analysis SolutionsFor advanced analysis of technical cleanliness, ZEISS has a range of light and electron microscope particle analysis solutions to cover a wide range of particle sizes and types. CAPA Correlative Particle Analyzer combines light and electron microscopy for particle classifications that require understanding of both morphology and elemental composition.ZEISS Industrial Metrology PortfolioIf you need to include additional capabilities to meet your QA requirements, check out the ZEISS IMT group’s dedicated industrial metrology solutions which include a range of sensor, infrared and X-ray based inspection and metrology solutions./metrologyYou Work Hard: We Make Sure Your Microscope Keeps Pace with You.High imaging quality, reliable results and instrument availability are the parameters of your day-to-day working life. Your ZEISS microscope integrates seamlessly into this demanding workflow. It provides you with insights and results that you can trust: thorough, comprehensive and reproducible. With ZEISS Life Cycle Management we help you to keep your microscope in optimum condition to get these optimum results. Life Cycle Management Comes with Your MicroscopeLife Cycle Management from ZEISS backs up our solutions throughout the working life of your ZEISS microscope system. From the procurement phase onward, you can count on our support, starting with site surveys to optimize the location for your microscope system. Throughout the operational phase we will complement our service with support for relocations and upgrade opportunities that enhance or expand your possibilities. As soon as you think about replacing your long-serving microscope with a new one, we will take care of the disassembly and disposal of systems that are no longer needed. Rely on our service features: our employees analyse the status of your system and solve problems via remote maintenance or directly at your location.From Expert to ExpertNever hesitate to ask our application specialists to support your specific tasks. And be sure to tap into our training sessions for any colleagues or employees who will be working with your ZEISS microscope.Peace of Mind and Availability with Regular MaintenanceYour service plan is tailor-made for you. Make sure you take advantage of all the oppor t unities your ZEISS microscope system offers. Get optimized performance, instrument r eliability and availability at predictable costs. Choose from different service levels of our Protect Service Plans, ranging from Protect preventive, via Protect advanced, to Protect premium. We look forward to discussing your ideal service plan personally.Service and Supportfor Your ZEISS Microscope System.ZEISS Moments are about passion. The same passion that drives us to support and accompany you andyour ZEISS microscope over its life cycle makes sure that yourwork will lead systematically to success.Carl Zeiss Microscopy GmbH 07745 Jena, Germany******************** /evo Notfortherapeutic,treatmentormedicaldiagnosticevidence.Notallproductsareavailableineverycountry.ContactyourlocalZEISSrepresentativeformoreinformation.EN_42_12_245|CZ1/17|Subjecttodesignchangesandchangestocontentsincludedindelivery,aswellastechnologicaladvancements.|©CarlZeissMicroscopyGmbH。

EVO18扫描电镜操作培训

EVO18扫描电镜操作培训

• 关机 • 关闭软件 • 关闭电脑 • 按下黄色按钮 • 30秒后按下红色按钮
Optibeam®
分析模式 探针电流不断改变的情况下仍可聚焦试样 视场模式
大视场预览和大景深
分辨率模式 在任何的工作距离或电压下,保证探针 电流直径是最小的 景深模式 在任何的工作距离或电压下,选择的 探针电流确保具有最大的景深 鱼眼模式 大视场预览和大景深
3、电子束在样品中的散射。
分辨率取决 于电子束的散 射范围。 二次电子: 几nm; 背散射电子 和X射线:由几 百nm至几um。
俄歇电子 二次电子 背散射电子
阴极荧光
特征 X 光线
连续 X 光线 荧光 X 光线
电子束与样品的相互作用区域
2、衬度——影响衬度的因素:
1、表面形貌(倾 斜效应):
入射电子束 方向一定,试样表 面的凹凸决定电子 束入射角。 检测器固定 后,对试样表面各 区域产生的二次电 子收集角不同。
• 电子束斑大(也即探针电流大),景深大, 信号强,图像噪音小,但分辨率较低,样 品表面易充电。 • 电子束斑的大小取决于第一聚光镜的励磁 电流,电流数值越小,电子束斑直径越大。
工作距离的选择
工作距离(WD) 是指物镜下表面
与样品表面的距
离,WD短可以得 到较高的分辨率, WD长可以得到大 的倾斜角度和大
?打开氮气?在控制面板里点击真空vaccum标签?点放气vent?拉开舱门?把样品座安装在样品台上?关紧舱门?点击抽真空pump键?加灯丝电流?真空度达到要求后屏幕右下角的vac会打?灯丝电流加载完后gun也会打上绿钩?样品定位?选取stagenavigation?双击所要观测样品桩在tv模式下调整高度样品台目前所在的位置输入移动目的地的坐标输入移动的距离选择时样品台在泄真空时自动下降到最低点选择时sem显示的工作距离随样品台的z方向移动自动进行更改选择时不使用样品台控制器调整至所需要的放大倍数并聚焦清晰选择相应的探测器选择探头收集器偏压选择两种信号混合两种混合信号的比例调节图像的亮度调节图像对比度?图像调整的优化?点击reducedraster?在小框中进一步聚焦物镜光阑合轴?消象散?点击aperature下的stigmation拖动xy轴直至图像清晰选择endframe当扫描完毕后橙点变为红点图像静止

卡尔蔡司光谱显微镜 Corona extreme 更换灯管和校准 服务手册说明书

卡尔蔡司光谱显微镜 Corona extreme 更换灯管和校准 服务手册说明书

Service ManualCarl Zeiss Spectroscopy GmbHLamp Replacement and CalibrationCorona extremeKnowledge of this manual is required for operation of the device. Therefore, please familiarize yourself with its contents and pay special attention to information concerning safe handling of the device.We reserve the right to make changes in the interest of technical advancement. The manual is not covered by an update service.© Unless expressly authorized, forwarding and duplication of this manual, and the utilization and communication of its contents are not permitted. Violations will result in claims for damages. All rights reserved in the event of granting of patents or registration of a utility model.GENERAL HAZARDObserve the safety instructions in the "Corona extreme" User manual, publication number:UM Corona extreme / E.Further information on the proper use of the spectrometer system can be found in the "Coronaextreme" User manual.Carl Zeiss Spectroscopy GmbHCarl-Zeiss-Promenade 10 07745 Jena, Germany Service: + 49 3641 64-3200Tel: + 49 3641 64-2838email:****************************** /spectroscopyEN_40_070_0011I | 2022-10Design, scope of delivery and technical information subject to change. © Carl Zeiss Spectroscopy GmbHContents1 Preparing lamp replacement 52 Getting device information 63 Performing firmware update 114 Replacing the halogen lamp 194.1 General work 194.2 Opening the housing 214.3 Replacing halogen lamp – Hardware Revision 2 244.4 Replacement of halogen lamp – Hardware Revision 3 304.5 Closing the housing 345 Performing sensor calibration 366 Create *.ini file containing device information 487 Accessories and spare parts 52 EN_40_070_0011I | Service Manual | Lamp replacement and calibration - Corona extreme3List of figuresFig. 1 Device selection 6 Fig. 2 Entering or scanning the IP address 7 Fig. 3 Opening the “Get device information” context menu 8 Fig. 4 Selecting device (measuring system) 8 Fig. 5 Getting the device information 9 Fig. 6 Creation of *.ini file 10 Fig. 7 Opening the “Get device information” context menu 11 Fig. 8 Getting the firmware version 12 Fig. 9 Performing firmware update 13 Fig. 10 Firmware version warning 14 Fig. 11 Firmware update confirmation 14 Fig. 12 Updating of firmware 15 Fig. 13 Confirming successful firmware update 15 Fig. 14 Confirmation prompt for batch file 16 Fig. 15 Entering IP address 17 Fig. 16 Running batch file 17 Fig. 17 Entering IP address 18 Fig. 18 Removing housing screws 21 Fig. 19 Lifting the base plate off the housing 22 Fig. 20 Removing housing seal 23 Fig. 21 Removing the old lamp cable 24 Fig. 22 Removing the lamp holder 25 Fig. 23 Installing adapter cable for type B lamp 26 Fig. 24 Inserting new O-ring and new reflector 26 Fig. 25 Mounting the reflector holder 27 Fig. 26 Centering the reflector 27 Fig. 27 Installing a new halogen lamp 28 Fig. 28 Connecting lamp cable and adapter cable 28 Fig. 29 Attaching the lamp cable 29 Fig. 30 Exposing the lamp cable 30 Fig. 31 Disconnecting the lamp cablefrom the adapter cable 31 Fig. 32 Removing the halogen lamp 31 Fig. 33 Installing a new halogen lamp 32 Fig. 34 Connecting lamp cable and adapter cable 32 Fig. 35 Attaching the lamp cable 33 Fig. 36 Applying the new housing sealand insert mounting pins 34 Fig. 37 Inserting the base plate into the housingand screw tight 35 Fig. 38 System overview – Flanges and standards 37 Fig. 39 Performing device scan 38Fig. 40 Confirming device selection 38 Fig. 41 Device information displayed 39 Fig. 42 Selecting device profile 39 Fig. 43 Selecting certificates 40 Fig. 44 Calibrating white reference standard 40 Fig. 45 Calibrating cavity (black reference standard) 41 Fig. 46 Photometric verification 41 Fig. 47 Calibrating gray reference standard 42 Fig. 48 Calibrating white reference standard 42 Fig. 49 Evaluating photometric verification 43 Fig. 50 Photometric verification unsuccessful 43 Fig. 51 Resetting counter 44 Fig. 52 Saving new configurations 44 Fig. 53 Backup of factory configuration 45 Fig. 54 Opening the acceptance protocol 45 Fig. 55 Back to profile selection 46 Fig. 56 Selecting a further device profile 46 Fig. 57 Exporting calibration workflow data 47 Fig. 58 Selecting device 48 Fig. 59 Entering or scanning the IP address 49 Fig. 60 Opening the “Get device information”context menu 49 Fig. 61 Selecting device (measuring system) 50 Fig. 62 Creating *.ini file 504Lamp replacement and calibration - Corona extreme | Service Manual | EN_40_070_0011I5EN_40_070_0011I | Service Manual | Lamp replacement and calibration - Corona extreme Preparing lamp replacementLamp Replacement and Calibration - Corona extreme 1 Preparing lamp replacement• Determine the hardware revision status of the Corona extreme measuringsystemIf possible, ask the customer for the serial number of the device. You can obtain the hardware revision status of the device from the ZEISS Servicedepartment(******************************)bygivingtheserial number.• Download the Test Center SoftwareMake sure that the latest version of the Test Center Software is installed on your test computer. This can be downloaded from /info-ce .• Have the following service / maintenance parts ready / on hand.–Maintenance package ȩHardware revision 2: Maintenance Package 2,order no. 000000-2397-832 ȩHardware revision 3: Maintenance Package 3,order no. 000000-2402-119–Ethernet cable, order no. 000000-2036-573–Laboratory power supply unit, order no. 000000-2045-548• Check the white, gray and black reference standardsSENSITIVE SURFACESDo not touch the surface of the white reference standard.Make sure that the white, gray and black reference standards are clean. If necessary, clean the reference standards with compressed air.The white and gray reference standards are set in glass and can be cleaned using alcohol.Make sure that the white and gray reference standard certificates are not expired.The corresponding certificate can be found on the USB memory stick included in the delivery package.Requirements6Lamp replacement and calibration - Corona extreme | Service Manual | EN_40_070_0011I⇒ C:\Program Files (x86)\ZEISS\InProcess⇒ C:\Program Files (x86)\ZEISS\InProcess\OSIS\ManagementConsole\3 Select deviceSelect the Corona extreme measuring system.Fig. 1 Device selectionup to InProcess version 2.9:from InProcess version 2.10:7EN_40_070_0011I | Service Manual | Lamp replacement and calibration - Corona extremeFig. 2 Entering or scanning the IP address8Lamp replacement and calibration - Corona extreme | Service Manual | EN_40_070_0011IFig. 3 Opening the “Get device information” context menu6 Select device (measuring system)Select Corona extreme under “Please select one entry ...” if necessary.Fig. 4 Selecting device (measuring system)9EN_40_070_0011I | Service Manual | Lamp replacement and calibration - Corona extremeFig. 5 Getting the device information8 Decide on further actionIt is not possible to change the lamp on a Revision 1 sensor on your own. To have the necessary work performed, the sensor must be sent to Carl Zeiss Spectroscopy GmbH in Jena.Please contact the service department of Carl Zeiss Spectroscopy GmbH for this purpose.⇒ ******************************If Hardware Revision 2 is displayed, the lamp can be replaced with a new lamp (type B).⇒ You will need Maintenance Package 2 for this.If Hardware Revision 3 is displayed, the lamp can be replaced with a new lamp (type B).⇒ You will need Maintenance Package 3 for this.Hardware revision 1:Hardware revision 2:Hardware revision 3:Fig. 6 Creation of *.ini file10Lamp replacement and calibration - Corona extreme | Service Manual | EN_40_070_0011I1 Open the “Get device information” context menuRight click on Corona extreme and then select Get device information.. . Fig. 7 Opening the “Get device information” context menuProcedureFig. 8 Getting the firmware version3 Decide on further actionIn this case a batch file must be run.⇒ “Install.bat” (see step 5 in this chapter)If the displayed firmware version is < 210, we recommend updating to thelatest version. ⇒ “V03.01_0210.fwx”Hardware revision 2:Hardware revision 3:Fig. 9 Performing firmware update Select the correct firmware.Fig. 10 Firmware version warningOnce you have selected the correct firmware, the following window appears. Start the firmware update by clicking OK.Fig. 11 Firmware update confirmationFig. 12 Updating of firmwareThe update was successful.Confirm by clicking OK.Fig. 13 Confirming successful firmware updateOpen the folder. It contains several files and subfolders. Do not remove these. Use only the file “Install.bat”.Start the batch file by double-clicking on Install.bat .Read the info text.Fig. 14 Confirmation prompt for batch fileSelect [y] (Yes) if Hardware Revision 2 is installed and you intend to replace the lamp.Select [n] (No) if you do not intend to replace the lamp.[y][n]Fig. 15 Entering IP addressThe batch file is run. This can take several minutes.Fig. 16 Running batch fileFig. 17 Entering IP addressThe preparatory work for the lamp replacement is now complete.Return to chapter “4 Replacing the halogen lamp” on page 19 and read the safety instructions. Replace the lamp as follows.ResultReplacing the halogen lamp Lamp Replacement and Calibration - Corona extreme4 Replacing the halogen lamp4.1 General workHAZARD FROM ELECTRICAL ENERGYMake sure that the power supply is disconnected. The entire measuringsystem must be disconnected from the power supply.Make sure that the measuring system cannot be unintentionally reconnectedto the power supply by third parties.GENERAL HAZARDThe activities below may only be performed by Service employees ofCarl Zeiss Spectroscopy GmbH or by appropriately trained personnel.HAZARD FROM THERMAL ENERGYAllow the halogen lamp to cool down for approx. 10 minutes beforeremoving it.SENSITIVE OPTICAL COMPONENTSBe careful not to touch the reflector and the glass bulb of the new halogenlamp without cotton gloves.Only carry out work on optical components in a very clean workingenvironment. Use gloves which are free of all traces of lint, powder orgrease.SENSITIVE ELECTRONIC COMPONENTSPerform all the activities below at an ESD workstation.Replacing the halogen lampLamp Replacement and Calibration - Corona extreme 1 Exit control software Exit the InProcess control software.2 Disconnect power supply Disconnect the power supply to the Corona extreme measuring system.3 Dismantle Corona extreme from customer interface If necessary, dismantle the Corona extreme measuring system from the customer interface (tool selection based on specific constellation).4 Remove system cables Loosen the sleeve nuts of the connected plugs and remove the cables from the connection sockets on the Corona extreme measuring system.5 Set up ESD workstation Perform all the activities described below at an ESD workstation. 6 Have the spare parts ready If you have not already done so, have the following spare parts ready: –Maintenance Package 2, order no. 000000-2397-832 –Maintenance Package 3, order no. 000000-2402-1197 Have all tools and equipment ready If you have not already done so, have the following tools and equipment ready: –TX 10 and TX 25 Torx screwdrivers – 2 mm slot-head screwdriver –Gloves ProcedureHardware revision 2:Hardware revision 3:4.2 Opening the housing1 Remove housing screwsPlace the Corona extreme spectrometer system so that the measurementwindow is facing upwards.Unscrew the 12 Torx screws 2 from the base plate 1 of the housing. Use a TX 25 Torx screwdriver for this.2 Lift the base plate off the housingCarefully lift the base plate 1 straight off the housing 2.This disconnects the plug connections between the boards, which are located in the housing and on the base plate.Turn the base plate through 180° and place it on the ESD workstation.3 Remove old housing seal Remove the housing seal 1 from the groove 2 in the base plate.The seal must be replaced by a new seal each time the housing is opened (see chapter “4.5 Closing the housing” on page 34).Fig. 20Removing housing seal4.3 Replacing halogen lamp – Hardware Revision 2• The base plate has been removed and placed on an ESD base (see section “4.2 Opening the housing” on page 21).• If you have not already done so, put the following spare parts ready: –Maintenance package 2, order no. 000000-2397-8321 Disconnect the plug connections Disconnect the lamp cable from the halogen lamp 2.Disconnect the lamp cable plug from the connector / jack 4 on the lampRequirementsProcedure3 Remove the lamp holderUnscrew the two Torx screws 1 from the lamp holder. Use a TX 25 Torx screwdriver for this.Remove the entire lamp holder – consisting of the lower lamp holder ring 3 and upper lamp holder ring 4 together with the old halogen lamp 2 – carefully upwards.Put all disassembled type A lamps aside. These are no longer needed.5Install adapter cable for type B lamp If necessary, open the right cable clip 1. If necessary, use a slot-head screwdriver for this.Insert the adapter cable 2 into the cable clip and close it again. Place the new O-ring 3 concentrically into the reflector 2.7 Mount the reflector holderAlign the hole in the reflector holder 4 and the centerbore in the lamphousing 5 (red line in the diagram below).Place the reflector holder 2 onto the lamp housing centrally above thereflector.Provisionally screw the two fixing screws 3 only half way into the threaded holes in the lamp housing 1. Use a TX 25 Torx screwdriver for this.9 Install a new halogen lampBring the hole on the edge of the lamp cap 4 in line with the counterbore in the lamp housing 2 (red line in the diagram below).Insert the new halogen lamp 3 carefully into the opening of the reflector holder 1.Tighten the three Torx screws 5 on the lamp cap. Use a TX 10 Torxscrewdriver for this.11 Insert lamp cable into cable clipInsert the lamp cable 2 in the left cable clip 3 so that the connecting plugs are secured between both cable clips.Close the left cable clip again.12 Attach screw-on cable tieScrew on a new cable tie 1. Use a TX 10 Torx screwdriver for this.recalibrated.Refer to chapter “5 Performing sensor calibration” on page 36.4.4 Replacement of halogen lamp – Hardware Revision 3• The base plate has been removed and placed on an ESD base (see section “4.2 Opening the housing” on page 21)• If you have not already done so, put the following spare parts ready: –Maintenance Package 3, order no. 000000-2402-1191 Remove the lamp cable from the cable clip Open the left cable clip 1 . If necessary, use a slot-head screwdriver for this. Proceed very carefully. Take the lamp cable 2 out of the cable clip.2 Remove screw-on cable tie Unscrew the cable tie 3. Use a TX 10 Torx screwdriver for this.Cut the cable tie and remove it.Note: The screw-on cable tie 3 must be replaced by a new one each timeRequirementsProcedureReplacing the halogen lamp Lamp Replacement and Calibration - Corona extreme3 Disconnect the lamp cable from the adapter cableUnplug the lamp cable plug 1 from the adapter cable 2.Replacing the halogen lamp Lamp Replacement and Calibration - Corona extreme5 Install a new halogen lampBring the hole on the edge of the lamp cap 4 in line with the counterbore inthe lamp housing 2 (red line in the diagram below).Insert the new halogen lamp 3 carefully into the opening of the reflectorholder 1 .Tighten the three Torx screws 5 on the lamp cap. Use a TX 10 Torxscrewdriver for this.Replacing the halogen lamp Lamp Replacement and Calibration - Corona extreme7 Insert lamp cable into cable clipInsert / place the lamp cable 2 in the left cable clip 3 so that the connectingplugs are secured between both cable clips.Close the left cable clip again.8 Attach screw-on cable tieScrew on a new cable tie 1. Use a TX 10 Torx screwdriver for this.recalibrated.Refer to chapter “5 Performing sensor calibration” on page 36.Replacing the halogen lamp Lamp Replacement and Calibration - Corona extreme 4.5 Closing the housing • All service activities have been properly complete. All disconnected plug connection have been reconnected and cables are laid properly.• Put the following spare parts ready: –Housing seal (part of the Maintenance Package)• P ut the following tools and equipment ready: –Centering aid for seal replacement (part of the Service Package), consisting of 8 mounting pins –TX 25 Torx screwdriver 1 Apply the new housing seal and insert mounting pins Always apply a new housing seal 2 to the housing 3 .Make sure the seal is correctly positioned. The side of the seal with the larger corner radius (red circle) must coincide with the corresponding corner of the housing. Insert the 8 mounting pins 1 into the threads of the housing 3 . The 8 pins can be distributed freely to any of the threads as they will be removed in a later step.Requirements ProcedureReplacing the halogen lampLamp Replacement and Calibration - Corona extreme 2 Insert the base plate into the housing and secureFirst check the correct mounting position. The electrical connectors of the board and the housing need to be aligned to each other.RISK OF COMPONENT DAMAGEWhen the base plate is put back onto the housing, there is a risk of damage to the boards, e.g. through individual components shearing off.Therefore put the base plate very slowly and carefully back onto the housing, visually monitoring the movement at all times.[ A ] Carefully put the base plate 1 in a straight line back onto the housing 2.The two plug connections between the boards of the housing and the base plate are reconnected.[ B ] Remove the 8 mounting pins 3.[ C ] Screw the 12 fixing screws 4 back into the housing.Use a TX 25 Torx screwdriver for this.Fig. 37 3A BC412Inserting the base plate into the housing and screw tightPerforming sensor calibration Lamp Replacement and Calibration - Corona extreme 5 Performing sensor calibration • The halogen lamp has been replaced and the device is closed.• The “TestCenter” software is installed on your test computer. If this is not the case, you can download the software from your download portal at /info-ce .• The white and gray reference standard certificates are already on the test computer. If this is not the case, they must be copied to the test computer.• If not already done so, put the following equipment ready: –Laboratory power supply unit (000000-2045-548) –Ethernet cable (000000-2036-573) –Reference holder “Sapphire Flange“ (000000-1462-668) incl. 3x Fixing screw (000000-0452-139) –Reference holder “Sample pan - 5.5 mm thick base” (in TURNSTEP) (000000-2130-893) –Reference holder “Sample pan - thin base” (in TURNSTEP) (000000-2285-627) –Centering aid for reference standards (000000-2051-306) –White reference standard with certificate (000000-2393-701) –Gray reference standard with certificate (000000-2394-676) –Black reference standard (cavity) (000000-1270-164)1 Connect the device to the power supply For acceptance testing with “TestCenter”, always connect the device to a power supply unit.2 Connect the device to the test computer Connect the device to the measuring computer via Ethernet cable.Make sure that you have the same IP address range. You may need to change the IP address range on the test computer.3 Apply the reference holder to the device Apply the required reference holder to the device.Requirements ProcedurePerforming sensor calibrationLamp Replacement and Calibration - Corona extreme 4 Position the reference standard on the reference holderPlace the required reference standard on the reference holder.Ensure that the reference standard is correctly oriented.IMPORTANT NOTETo ensure a correct position during calibration, the sapphire flange must be fixed with the three enclosed screws (000000-0452-139) when placing it.Fig. 38System overview – Flanges and standardsFig. 39 Performing device scanOnce the scanning process is completed, any devices which have been found will be displayed.Confirm your device selection by clicking OK.Fig. 40 Confirming device selectionFig. 41 Device information displayedClick to proceed to the next step.6 Select test block/device profileA scan is performed for potential / available / connected test blocks / device profiles.Select a test block.Fig. 42 Selecting device profileClick to proceed to the next step.= Skip to next program section= Restart workflowConnection status:yellow: "connected to device"gray: "not connected" Profile: Sapphire Flange⇨ Reference holder:“1462-668”Profile: Sample pan - 5.5 mmthick base (in TURNSTEP)⇨ Reference holder:“2130-893”Profile: Sample pan - thin base(in TURNSTEP)⇨ Reference holder:“2285-627”Use the buttons to select your reference standard certificates.Fig. 43 Selecting certificatesNote: Make sure that the correct profile attachment is placed on the sensor.Click to proceed to the next step.8 Referencing – Calibration of white reference standardPlace the white reference standard on the centering aid. Ensure correct alignment (interlocking of groove and pin).Click OK to start the calibration.Fig. 44 Calibrating white reference standardRemove the white reference standard when the measurement is complete.“Maximum certificate ”= White reference standard= SRS-99“Gray reference standard ”= Gray reference standard= SRS-60Fig. 45 Calibrating cavity (black reference standard)10 Photometric verification – Cavity measurement (black reference standard)Place the black reference standard on the centering aid.Click OK to start the measurement.Fig. 46 Photometric verificationClick to repeat the measurement.Click to proceed to the next step.Fig. 47 Calibrating gray reference standardRemove the gray reference standard when the measurement is complete.12 Photometric verification – White reference standard measurementPlace the white reference standard on the centering aid. Ensure correct alignment (interlocking of groove and pin).Click OK to start the measurement.Fig. 48 Calibrating white reference standardFig. 49 Evaluating photometric verificationIf measurements are unsuccessful, this is indicated by the following pictogram: .Fig. 50 Photometric verification unsuccessfulClickto repeat the measurement.Click to proceed to the next step.= Measurement successful= Restart the workflow= Measurement unsuccessfulFig. 51 Resetting counterSeveral steps now need to be taken to store the current reference as the new default setting on the device.Fig. 52 Saving new configurationsFig. 53 Backup of factory configuration15 Open and transmit protocolClick Open Protocol to open the acceptance protocol.Fig. 54 Opening the acceptance protocolThis protocol can be printed out or sent in digital form to the customer.Send the protocol to the Service department of Carl Zeiss Spectroscopy GmbH.⇒******************************Fig. 55 Back to profile selection 17 Select a further test block / device profile A scan is performed for potential / available test blocks / device profiles.Select the next test block / device profile.Fig. 56 Selecting a further device profile Click to proceed to the next step. Profile: Sapphire Flange⇨ Reference holder:“1462-668”Profile: Sample pan - 5.5 mmthick base (in TURNSTEP)⇨ Reference holder:“2130-893”Profile: Sample pan -thin base (in TURNSTEP)⇨ Reference holder:“2285-627”Click onto start the export.Fig. 57 Exporting calibration workflow data19 Transmission of *.zip filesSend the TestCenterExport_*.zip files to the Service department ofCarl Zeiss Spectroscopy GmbH. ⇒ ******************************20 Exiting the “TestCenter” softwareWhen all steps are complete, close the TestCenter program.= Start export Final steps2 Select deviceSelect the Corona extreme measuring system.Fig. 58 Selecting deviceFig. 60 Opening the “Get device information” context menuFig. 61 Selecting device (measuring system)6 Create *.ini fileClick on Export details under “Device info”.An *.ini file is created. Save this file.Fig. 62 Creating *.ini file。

蔡司EVO18电镜技术说明

蔡司EVO18电镜技术说明

钨灯丝扫描电镜技术文件仪器型号:EVO 18目录附件一、品牌介绍附件二、设备用途附件三、技术指标附件四、供货范围附件五、计划进度及培训附件六、环境要求附件七、质保及其它服务附件一:聚焦·CARL ZEISS世界可见光及电子光学的领导企业----德国蔡司公司始创于1846年。

其电子光学前身为LEO(里奥),更早叫Cambridge(剑桥)和Zeiss。

积扫描电镜领域40多年及透射电镜领域60年的经验,ZEISS电子束技术在世界上创造了数个第一:第一台静电式透射电镜(1949)第一台商业化扫描电镜(1965)第一台数字化扫描电镜(1985)第一台场发射扫描电镜(1990)第一台带有成像滤波器的透射电镜(1992)第一台具有Koehler照明的200kV 场发射透射电镜(2003)第一台具有镜筒内校正Omega能量滤波器的场发射透射电镜(2003)CARL ZEISS其前瞻性至臻完美的设计融合欧洲至上制造工艺造就了该品牌在光电子领域无可撼动的王者地位。

自成立至今,一直延续不断创新的传统,公司拥有广泛的专有技术,,随着离子束技术和基于电子束的分析技术的加入、可为您提供钨灯丝扫描电镜、场发射扫描电镜、双束显微镜(FIB and SEM)、透射电子显微镜等全系列解决方案。

其产品的高性能、高质量、高可靠性和稳定性已得到全世界广大用户的信赖与认可。

作为全球电镜标准缔造者的CARL ZEISS将一路领跑高端电镜市场为您开创探求纳米科技的崭新纪元。

Carl Zeiss SMT下属的纳米技术系统部在北京,上海,广州,鞍山设有营销公司和维修服务站,致力于蔡司电镜的技术咨询,销售和售后服务工作。

附件二:设备主要用途扫描电镜是以电子束作为光源,电子束在加速电压的作用下经过三级电磁透镜,在末级透镜上部扫描线圈的作用下,在试样表面做光栅状扫描,,产生各种同试样性质有关的物理信息(如二次电子,背反射电子),然后加以收集和处理,从而获得表征试样形貌的扫描电子像。

EVO10电镜安装须知——【蔡司安装】

EVO10电镜安装须知——【蔡司安装】

EVO10电镜安装须知
1、装箱:两个木箱
较小木箱:约长宽高150*120*120,重288KG,装零部件,十字螺丝钉(难开);
大木箱:约长宽高150*150*220,重820KG,电镜主机重六百多公斤无轮子。

快拆装置。

2、搬运
卸车前确认箱体上平衡指示装置。

锯齿标识应在30°,环形标识应在中间。

需叉车和地牛,木箱落地和电镜主机落地均需要。

大木箱一面可向下半侧开,对面一面可全开作为出口。

1
地牛宽度以55cm(小于59cm)为宜,电梯门大于80cm;地牛若大于60cm宽,最宽不可超过75cm,此时电镜主机可侧着拉,要求过道宽度105cm以上,较难操作,容易挤压线。

1
放置距墙约90cm。

左侧或右侧放置桌子,大约需要130cm空间。

桌子100*115cm。

电镜序列号(2个,以10位数字)在机身后面
1。

电子显微镜分析及研究

电子显微镜分析及研究

蔡司EVO18电镜分析三.仪器概述3.1. 总体描述:蔡司最新推出的EVO 18, 具有处理所有类型材料能力的分析显微镜为您提供卓越的成像质量。

配备X射线能谱仪接口,并有领先的X 射线几何条件对所有样品提供了最精确的分析。

对于非导体采用电子束衬管技术也提高了图像质量和分析精度。

扫描电子显微镜(SEMScanning electron microscope)的电子束不穿过样品,仅以电子束尽量聚焦在样本的一小块地方,然后一行一行地扫描样本。

入射的电子导致样本表面被激发出次级电子。

显微镜观察的是这些每个点散射出来的电子,放在样品旁的闪烁晶体接收这些次级电子,通过放大后调制显像管的电子束强度,从而改变显像管荧光屏上的亮度。

显像管的偏转线圈与样品表面上的电子束保持同步扫描,这样显像管的荧光屏就显示出样品表面的形貌图像,这与工业电视机的工作原理相类似。

由于这样的显微镜中电子不必透射样本,因此其电子加速的电压不必非常高。

扫描式电子显微镜的分辨率主要决定于样品表面上电子束的直径。

放大倍数是显像管上扫描幅度与样品上扫描幅度之比,可从几十倍连续地变化到几十万倍。

扫描式电子显微镜不需要很薄的样品;图像有很强的立体感;能利用电子束与物质相互作用而产生的次级电子、吸收电子和X射线等信息分析物质成分。

扫描式电子显微镜的电子枪和聚光镜与透射式电子显微镜的大致相同,但是为了使电子束更细,在聚光镜下又增加了物镜和消像散器,在物镜内部还装有两组互相垂直的扫描线圈。

物镜下面的样品室内装有可以移动、转动和倾斜的样品台。

场发射扫描电子显微镜(FESEM)是一种比较简单的扫描电子显微镜,它观察样本上因强电场导致的场发射所散发出来的电子。

假如观察的是透过样本的扫描电子的话,那么这种显微镜被称为扫描透射电子显微镜(Scanning Transmission Electron Microscopy,STEM)。

标配能谱仪(EDS)和波谱仪(WDS)接口,领先的X 射线几何条件对所有样品提供了最精确的分析。

EVO应用指南

EVO应用指南

第三章 结构和工作原理
6
一.电镜结构
电子枪 合轴线圈 聚光镜C1 镜筒 同步扫描发生器 荧光屏 聚光镜C2 物镜光阑 扫描线圈 物镜 样品 样品室 探测器 放大器
从上结构示意图可见,左面为镜筒和样品室,右面室是成像和记录系统,两 部分是由同步扫描发生器和信号探测器连接在一起。 1.镜筒:由电子枪、两个聚光镜和一个物镜组成,包括扫描线圈和消像散器。 电子枪产生电子束,通过三个透镜把电子束聚焦在样品表面,利用“Optibeam” 控制软件提供较大束流,而聚焦电子束斑直径可以小到几个纳米,在扫描线圈作 用下,在样品表面做光栅扫描,与样品逐点发生相互作用,产生信号。 2.样品室:样品放在样品台上,可以调整在 XYZ 三个方向移动,也可以倾斜或 自转,使样品的每个部位都可以移动到电子束下,将产生的信号送入探测器。 3.探测器:装在样品室,通
第五章 操作参数的选择与调整
11
一.电子枪 1.更换新灯丝(灯丝型号 Agar A054) (1)电镜放气后,打开镜筒顶盖,拧松三个固定螺钉,取下灯丝组件。 (2)把组件分解,从栅极帽中按顺序取出调节圈、对中圈、弹簧片、固定盘和 钨灯丝,见下图。
钨灯丝Biblioteka 固定盘对中圈弹簧片
栅极帽
调节圈
(3)用抛光膏清洁固定盘表面、栅极帽内孔的黑斑,直到露出金属光泽,酒精 超声清洗这两件,在放大镜下确保内孔没有残留物。 (4)安装新灯丝,注意灯丝脚与固定盘上的两个槽口对齐,调 节四个螺钉使陶瓷座与固定盘内孔同心,调好后,拧紧四个螺 钉,见左图所示。 (5)按左图,将上述组件放入对中圈内,调整另一组四个螺钉, 使灯丝组件与对中圈同心。调好后,拧紧四个螺钉。注意固定 盘上的缺口和小孔要与对中圈上的销和槽对齐。 (6)将弹簧片放入栅极帽内,再放入上述组件,利用调节圈 锁紧,见左图。 将组件翻转,使栅极帽内孔向上,观察钨尖 是否在孔中心,可以重复上述调整步骤,使钨尖位于孔中心, 最好在体视显微镜下调整,转动栅极帽,从两个方向判断钨尖 是否调整到孔心。 (7)手持整个组件,转动调节圈,使钨尖与栅极帽大平面同高。反时针转动调 节圈 1 圈加 1/4 圈,钨尖缩入下表面 0.6mm,见下图。每次更换灯丝均要保证这 个缩入量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钨灯丝扫描电镜技术文件仪器型号:EVO 18Attachment-1/24目录附件一、品牌介绍附件二、设备用途附件三、技术指标附件四、供货范围附件五、计划进度及培训附件六、环境要求附件七、质保及其它服务附件一:聚焦·CARL ZEISS世界可见光及电子光学的领导企业----德国蔡司公司始创于1846年。

其电子光学前身为LEO(里奥),更早叫Cambridge(剑桥)和Zeiss。

积扫描电镜领域40多年及透射电镜领域60年的经验,ZEISS电子束技术在世界上创造了数个第一:•第一台静电式透射电镜(1949)•第一台商业化扫描电镜(1965)•第一台数字化扫描电镜(1985)•第一台场发射扫描电镜(1990)•第一台带有成像滤波器的透射电镜(1992)•第一台具有Koehler照明的200kV 场发射透射电镜(2003)•第一台具有镜筒内校正Omega能量滤波器的场发射透射电镜(2003)CARL ZEISS其前瞻性至臻完美的设计融合欧洲至上制造工艺造就了该品牌在光电子领域无可撼动的王者地位。

自成立至今,一直延续不断创新的传统,公司拥有广泛的专有技术,,随着离子束技术和基于电子束的分析技术的加入、可为您提供钨灯丝扫描电镜、场发射扫描电镜、双束显微镜(FIB and SEM)、透射电子显微镜等全系列解决方案。

其产品的高性能、高质量、高可靠性和稳定性已得到全世界广大用户的信赖与认可。

作为全球电镜标准缔造者的CARL ZEISS将一路领跑高端电镜市场为您开创探求纳米科技的崭新纪元。

Carl Zeiss SMT下属的纳米技术系统部在北京,上海,广州,鞍山设有营销公司和维修服务站,致力于蔡司电镜的技术咨询,销售和售后服务工作。

附件二:设备主要用途扫描电镜是以电子束作为光源,电子束在加速电压的作用下经过三级电磁透镜,在末级透镜上部扫描线圈的作用下,在试样表面做光栅状扫描,,产生各种同试样性质有关的物理信息(如二次电子,背反射电子),然后加以收集和处理,从而获得表征试样形貌的扫描电子像。

扫描电镜(SEM)广泛地应用于金属材料(钢铁、冶金、有色、机械加工)和非金属材料(化学、化工、石油、地质矿物学、橡胶、纺织、水泥、玻璃纤维)等检验和研究。

在材料科学、金属材料、陶瓷材料半导体材料、化学材料等领域,进行材料的微观形貌、组织、成分分析。

各种材料的形貌组织观察,材料断口分析和失效分析,材料实时微区成分分析,元素定量、定性成分分析,快速的多元素面扫描和线扫描分布测量,晶体/晶粒的相鉴定,晶粒尺寸、形状分析,晶体、晶粒取向测量。

选配第三方附件:能谱仪:即X射线能量色散谱仪,简称EDS主要是用来分析材料表面微区的化学成分,分析方式有定点定性分析、定点定量分析、元素的线分布、元素的面分布。

波谱仪:(即X射线波长色散谱仪,简称WDS),用作微区成分分析。

分析精度方面比能谱仪精度更高,可以做成分的定量分析。

EBSD(电子背散射衍射仪):EBSD主要可做单晶体的物相分析,同时提供花样质量、置信度指数、彩色晶粒图,可做单晶体的空间位向测定、两颗单晶体之间夹角的测定、可做特选取向图、共格晶界图、特殊晶界图,同时提供不同晶界类型的绝对数量和相对比例,即多晶粒夹角的统计分析、晶粒取向的统计分析以及它们的彩色图和直方统计图,还可做晶粒尺寸分布图,将多颗单晶的空间取向投影到极图或反极图上可做二维织构分析,也可做三维织构即ODF分析。

离子溅射仪:样品镀覆导电膜(金膜),喷碳,使绝缘材料能够导电,是配合扫描电子显微镜制样必备的仪器。

附件三:技术指标EVO18是一台高性能、功能强大的高分辨应用型扫描电子显微镜。

系统采用多接口的大样品室和艺术级的物镜设计,提供高真空成像功能,可对各种材料表面作分析。

并且具有业界领先的X射线分析条件,样品台为五轴全自动控制。

标准的高效率无油涡轮分子泵满足快速的样品更换和无污染成像分析。

主要参数:光学系统1.1、光源:钨灯丝。

预对中式灯丝,灯丝具有自动加热、自动对中功能。

1.2、聚焦:具有手动及自动聚焦功能。

1.3、光阑:三级可调物镜光阑。

1.3、加速电压:200V-30kV,10V步进连续可调。

1.4、图像电平移:±50µm。

1.5、放大倍数:5×~1000,000×,连续可调。

1.6、分辨率:高真空二次电子像<3.0nm(30kV);低真空背散射电子像<4.0nm(30kV)。

1.7、探针电流范围:0.5 pA~5 μA,连续可调。

1.8、聚焦工作距离:2mm~145mm。

1.9、电子束气体路径长度:<2mm。

2、真空系统2.1、真空泵系统:涡轮分子泵+机械泵,不需要冷却水。

2.2、真空度:最高真空度:优于0.1mPa;低真空压力范围:10Pa~400Pa。

2.3、在低真空条件下,保持8.5的工作距离,并且可以做能谱分析。

3、样品系统3.1、样品室内部尺寸:φ365mm×275mm。

3.2 可放置的最大样品尺寸:直径250mm,高度145mm3.3、最大允许样品重量:不小于5kg。

3.4、样品台移动方式:五轴马达驱动。

3.5、样品台移动范围:X 125mm, Y 125mm, Z 50mm,0°~+90°倾斜,360°旋转。

3.6、样品台移动精度:重复性<2 µm;最小步长90nm;漂移<40nm/6min。

3.7、样品台具有接触报警与自动停止功能。

3.8、具备样品位置感知功能。

注:如配热台样品台XY轴移动范围必须大于100MM4、探测器系统4.1、具备高真空二次电子探测器。

4.2、具备低真空二次电子探测器。

(选配)4.3、具备背散射电子探测器。

4.4、具备X射线能谱仪接口。

4.5、探测器成像模式:同时对二次电子和背散射电子成像,并可在一种图像中任意位置显示另外一种图像。

4.6、扫描方式:全屏、选区、定点、线扫描、线轮廓、扫描旋转、倾斜补偿。

4.7、整机系统控制要求独立控制单元,为检修提供方便。

图像解析度: 3072x 2304 扫描点阵操作系统: WindowsXP 以及简单友好的SmartSEM扫描电镜操作控制软件显示器:19" TFT5、牛津电制冷X射线能谱仪Inca X-Act5.1、探测器制冷方式:电制冷型。

5.2、探测器:硅漂移探头。

5.3、有效探测面积: 10mm2。

5.3、20,000cps时的能量辨率:Mn Ka:≤129eVF Ka:≤66eVC Ka:≤56eV6.4、元素探测范围:Be(4)~Pu(94)6.5、最大输入计数:>750,000cps蔡司电镜独有技术优势世界顶级光学品牌,可见光学和电子光学的领导者。

其电子光学前身为LEO,更早叫Cambridge和ZEISS。

1965年推出世界第一台商业化扫描电镜;1985年推出世界上第一台数字化扫描电镜。

其电子光学产品包括钨灯丝扫描电镜、场发射扫描电镜、同步双束显微镜(FIB and SEM)、透射电子显微镜等。

所有ZEISS系列的电子显微镜全部采用高效率无污染的涡轮分子泵真空系统1.束流稳定,可与电子探针媲美蔡司的扫描电镜配有自动法拉第笼。

它安装在扫描电镜的镜筒内,由气动控制其进出,用以直接测量电子束流。

镜筒内还含有闭环反馈控制系统,以便对电子束流进行精确控制。

其电子束流的稳定度优于0.2%/h,已达到电子探针的水平。

此外,束流稳定,非常有利于能谱分析,特别是波谱仪的分析工作(如果将来购买的话)。

2.Optibeam透镜:-----五种观察模式的电子光学系统蔡司是电子光学设计的领导者。

其扫描电镜采用最先进的电子光学系统,在电子束对中、消像散、调焦等方面均处于业内领先地位。

蔡司扫描电镜的每个镜筒均独立供电所以可提供五种观察模式:分辨率模式、大景深模式、广角模式、分析模式,鱼眼模式。

分辨率模式使得高分辨率图像的观察容易;大景深模式有利于非常粗糙样品和大斜面样品的观察;ZEISS束流很大可以到5uA,所以景深度可以达到业内最好。

广角模式使得观察的范围很大,最小放大倍数仅为五倍;而分析模式用于能谱波谱分析。

鱼眼模式可同时观察九桩样品座的全貌。

大景深模式3.设计优化无需复杂附件ZEISS EVO系列已经不需要冷却系统,冷却系统的需求与E-beam的使用率有关,如果利用率低耗散会较大需要冷却,Zeiss对电子束利用率很高耗散很少所以不需要冷却.而且本身电子束耗散大的话对Column也是一种损耗,会影响仪器寿命.所以Zeiss可以减少这些对仪器的不必要的损耗.所以也不需要空压机等附件,使用方便。

其他厂家都需要空压机与冷却系统。

4.卓越的低真空技术蔡司专利的低真空二次电子探头解决了不导电样品在不做导电处理的情况下在低真空环境下的二次电子像问题。

目前在低真空环境下普遍使用背散射电子探头来获取图像,但是背散射电子信号并不能很真实的反映样品最表面的形貌信息,所以能够直接用二次电子信号成像是低真空二次电子探头在反映样品表面形貌信息时最大的优势。

ZEISS是低真空技术的研发者。

ZEISS的低真空技术可以做到400Pa,超低真空(环扫)可达3000 Pa,对一般的非导体比如陶瓷,塑料,头发等可以直接观察,而且可以对含有水分的生物样品比如猪脑, 细胞, 植物, 微生物也可以直接观察, 但FEI,日本电子和日立的低真空只是到270Pa,对含有水分等动植物样品都不可以直接做。

5.BeamSleeve技术Zeiss独有Beamsleeve(电子束套管)的专利设计(如下图)缩小了电子束与样品的气体路径长度(可低到1mm),最大限度的将电子束与样品室内的荷电补偿气体隔离开来,使得在低加速电压时,电子枪的虚拟电子源在光轴上的移动距离最小,避免低电压下电子束斑在样品表面上的大范围离焦,保证在低电压和低真空条件下提供高分辨率的锐利图像,同时电子束能量没有缺失和扩散确保能谱分析的准确。

Beamsleeve(电子束套管)还起到了隔断样品室的低真空与Column的高真空保护了Column不受污染,所以ZEISS的EVO系列几乎不需要去清洗Column,同时因为其仪器的设计aperture(光阑)很难堵也是十几年都不需要更换(至今ZEISS大陆的钨灯丝的用户还没有更换过aperture(光阑)的历史)。

而其他家的钨灯丝则需要1-2年更换aperture(光阑), 3年左右就需要清洗Column。

而ZEISS EVO 系列是不需要的。

6. 最短的X射线分析工作距离:ZEISS的电镜能谱仪的分析工作距离可以低到8.5mm,为业内最低. 一般能谱仪的分辨率都是用专门的样品吸附在能谱仪的探头上(如下图左侧探头)测的,实际使用样品与能谱仪的探头有很长的距离,所以实际使用是达不到标准的分辨率, 而ZEISS的做工可以使能谱仪低到8.5mm为业内最低,所以能谱仪可以达到更好的分辨率. 另一方面因为一般SE的成像如果上千倍工作距离是5-9mm,而8.5也在5-9mm之间所以客户可以一边做SE的成像一边做EDS 元素分析,使用非常方便.而其他家的能谱分析距离都是10mm,12mm, 所以在做完SE成像一定要调整样品台等, 而且需要重新聚焦等工作, 而ZEISS不需要调来调去,直接SE拍完直接用能谱电脑进行分析,使用非常方便.6. EBSD的几何共面:在所有的EVO仪器中,镜筒的电子光学光轴,EBSD摄像机,EDS探测器和试样的倾斜方向均处于同一平面。

相关文档
最新文档