中考数学——平行四边形的综合压轴题专题复习及答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、平行四边形真题与模拟题分类汇编(难题易错题)
1.如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M 沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.
(1)P点的坐标为多少(用含x的代数式表示);
(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;
(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.
【答案】(1)P点坐标为(x,3﹣x).
(2)S的最大值为,此时x=2.
(3)x=,或x=,或x=.
【解析】
试题分析:(1)求P点的坐标,也就是求OM和PM的长,已知了OM的长为x,关键是求出PM的长,方法不唯一,①可通过PM∥OC得出的对应成比例线段来求;
②也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ的长和∠ACB的正切值求出PQ的长,然后根据PM=AB﹣PQ来求出PM的长.得出OM和PM的长,即可求出P点的坐标.
(2)可按(1)②中的方法经求出PQ的长,而CN的长可根据CN=BC﹣BN来求得,因此根据三角形的面积计算公式即可得出S,x的函数关系式.
(3)本题要分类讨论:
①当CP=CN时,可在直角三角形CPQ中,用CQ的长即x和∠ABC的余弦值求出CP的表达式,然后联立CN的表达式即可求出x的值;
②当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ的长,然后根据QN=CN﹣CQ求出QN的表达式,根据题设的等量条件即可得出x的值.
③当CN=PN时,先求出QP和QN的长,然后在直角三角形PNQ中,用勾股定理求出PN 的长,联立CN的表达式即可求出x的值.
试题解析:(1)过点P作PQ⊥BC于点Q,
有题意可得:PQ∥AB,
∴△CQP∽△CBA,
∴
∴
解得:QP=x,
∴PM=3﹣x,
由题意可知,C(0,3),M(x,0),N(4﹣x,3),P点坐标为(x,3﹣x).
(2)设△NPC的面积为S,在△NPC中,NC=4﹣x,NC边上的高为,其中,0≤x≤4.
∴S=(4﹣x)×x=(﹣x2+4x)
=﹣(x﹣2)2+.
∴S的最大值为,此时x=2.
(3)延长MP交CB于Q,则有PQ⊥BC.
①若NP=CP,
∵PQ⊥BC,
∴NQ=CQ=x.
∴3x=4,
∴x=.
②若CP=CN,则CN=4﹣x,PQ=x,CP=x,4﹣x=x,∴x=;
③若CN=NP,则CN=4﹣x.
∵PQ=x,NQ=4﹣2x,
∵在Rt△PNQ中,PN2=NQ2+PQ2,
∴(4﹣x)2=(4﹣2x)2+(x)2,
∴x=.
综上所述,x=,或x=,或x=.
考点:二次函数综合题.
2.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC △的外部作等腰Rt CED △,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .
()1请直接写出线段AF ,AE 的数量关系;
()2①将CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;
②若25AB =,2CE =,在图②的基础上将CED 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.
【答案】(1)证明见解析;(2)①AF 2AE =
②4222
【解析】
【分析】 ()1如图①中,结论:AF 2AE =,只要证明AEF 是等腰直角三角形即可; ()2①如图②中,结论:AF 2AE =,连接EF ,DF 交BC 于K ,先证明
EKF ≌EDA 再证明AEF 是等腰直角三角形即可;
②分两种情形a 、如图③中,当AD AC =时,四边形ABFD 是菱形.b 、如图④中当AD AC =时,四边形ABFD 是菱形.分别求解即可.
【详解】
()1如图①中,结论:AF 2AE =.
理由:四边形ABFD 是平行四边形,
AB DF ∴=,
AB AC =,
AC DF ∴=,
DE EC =,
AE EF ∴=,
DEC AEF 90∠∠==,
AEF ∴是等腰直角三角形,
AF 2AE ∴=.
故答案为AF 2AE =.
()2①如图②中,结论:AF 2AE =.
理由:连接EF ,DF 交BC 于K .
四边形ABFD 是平行四边形,
AB//DF ∴,
DKE ABC 45∠∠∴==,
EKF 180DKE 135∠∠∴=-=,EK ED =,
ADE 180EDC 18045135∠∠=-=-=,
EKF ADE ∠∠∴=,
DKC C ∠∠=,
DK DC ∴=,
DF AB AC ==,
KF AD ∴=,
在EKF 和EDA 中,
EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩
,
EKF ∴≌EDA ,
EF EA ∴=,KEF AED ∠∠=,
FEA BED 90∠∠∴==,
AEF ∴是等腰直角三角形,
AF 2AE ∴=.
②如图③中,当AD AC =时,四边形ABFD 是菱形,设AE 交CD 于H ,易知EH DH CH 2===,22AH (25)(2)32=-=,AE AH EH 42=+=,
如图④中当AD AC =时,四边形ABFD 是菱形,易知
AE AH EH 32222=-=-=,
综上所述,满足条件的AE 的长为4222