定时计数器的结构与工作原理

合集下载

80c51单片机定时器计数器工作原理

80c51单片机定时器计数器工作原理

80c51单片机定时器计数器工作原理80C51单片机是一种常用的微控制器,其定时器/计数器(Timer/Counter)是实现定时和计数功能的重要组件。

以下简要介绍80C51单片机定时器/计数器的工作原理:1. 结构:定时器/计数器由一个16位的加法器构成,可以自动加0xFFFF(即65535)。

定时器/计数器的输入时钟可以来自系统时钟或外部时钟源。

2. 工作模式:定时模式:当定时器/计数器的输入时钟源驱动加法器不断计数时,可以在达到一定时间后产生中断或产生其他操作。

计数模式:当外部事件(如电平变化)发生时,定时器/计数器的输入引脚可以接收信号,使加法器产生一个增量,从而计数外部事件发生的次数。

3. 定时常数:在定时模式下,定时常数(即定时时间)由预分频器和定时器/计数器的初值共同决定。

例如,如果预分频器设置为1,定时器/计数器的初值为X,那么实际的定时时间 = (65535 - X) 预分频系数输入时钟周期。

在计数模式下,定时常数由外部事件发生的时间间隔决定。

4. 溢出和中断:当加法器达到65535(即0xFFFF)时,会产生溢出,并触发中断或其他操作。

中断处理程序可以用于执行特定的任务或重置定时器/计数器的值。

5. 控制寄存器:定时器/计数器的操作可以通过设置相关的控制寄存器来控制,如启动/停止定时器、设置预分频系数等。

6. 应用:定时器/计数器在许多应用中都很有用,如时间延迟、频率测量、事件计数等。

为了充分利用80C51单片机的定时器/计数器功能,通常需要根据实际应用需求配置和控制相应的寄存器,并编写适当的软件来处理定时器和计数器的操作。

51单片机定时-计数器结构和计数器工作原理

51单片机定时-计数器结构和计数器工作原理
使用中断方式时对IE寄存器赋值开发中断
使TR0或TR1置位,启动定时/计数器
晶体振荡器的振荡信号从XTAL2端输入到片内的时钟发生器上,时钟发
生器是一个二分频触发器电路,它将振荡器的信号频率除以2,向CPU提供
了两相时钟信号P1和P2。时钟信号的周期称为机器状态时间S,它是振荡
周期的2倍。在每个时钟周期(即机器状态时间S)的前半周期,相位1(即
P1信号)有效,在每个时钟周期的后半周期,相位2(即P2信号)有效。
提供
用途:定时器和计数器
核心:加1计数器
原理:每来一个脉冲则加1计数器加1,当加到全1时再来一个脉冲使加
1计数器归零,同时加1计数器的溢出使TCON寄存器中的TF0(或TF1)
置1,向CPU发出中断请求
脉冲来
补充:
计数器工作原理:
用作计数器时,对T0或T1引脚的外部脉冲计数,如果前一个机器周期
采样值为1,后一个机器周期采样值为0,则说明有一个脉冲,计数器加
1。
在每个机器周期的S5P2期间采样引脚输入电平。新的计数初值于下一个
机器周期的S3P1期间装入计数器。
此种方式需要两个机器周期来检测一个1->0负跳变信号,因此最高的计
数频率为时钟频率的1/24。
S5P2:
S5P2指的是第5个时钟周期的相位2。
工作原理:13位计数器,使用TL0的低5位和TH0的高8位组成,TL0
的低5位溢出时向TH0进位。TH0溢出时发出中断请求。
方式1
计算公式:
最大计数:65536个机器周期
工作原理:16位计数器,TL0作为低8位,TH0作为高8位
方式2:自动重装初值的8位计数方式
计算公式:p.s.晶振频率必须选择12的整数倍,因为定时器的频率是晶振

单片机定时器与计数器

单片机定时器与计数器

定时器计数器原理及应用一、知识点1、定时器/计数器的结构2、定时器和计数器两种工作模式3、工作方式控制寄存器TMOD4、定时器/计数器控制寄存器TCON5、定时器/计数器的4种工作方式方式0:13位计数器方式1:16位计数器方式2:8位可自动重装初值方式方式3只适用于T0,T1不能工作在方式36、定时器/计数器的初始化及编程实现(1)设置TMOD寄存器(2)计算定时器T0的计数初值X(3)设置IE寄存器(4)启动和停止定时器7、定时器的单次最大定时时间:2M*12/晶振频率9、定时器应用(方式1、2;编程:中断方式、查询方式)10、计数器应用(方式1、2;编程:中断方式、查询方式)二、复习题(一)判断题1、在MCS-51单片机内部结构中,TMOD为模式控制寄存器,主要用来控制定时器的启动与停止。

(F)2、在MCS-51单片机内部结构中,TCON为控制寄存器,主要用来控制定时器的启动与停止。

(T)3、MCS-51单片机的两个定时器的均有两种工作方式,即定时和计数工作方式。

(T)4、MCS-51单片机的TMOD模式控制寄存器不能进行位寻址,只能用字节传送指令设置定时器的工作方式及操作模式。

(T)5、定时器/计数器T1于定时模式,工作于方式2,则工作方式字为20H。

(T)6、定时器/计数器T1于计数模式,工作于方式1,则工作方式字为50H。

(T)7、单片机8051的定时/计数器是否工作可以,通过外部中断进行控制。

(T)8、定时/计数器工作于定时方式时,是通过8051片内振荡器输出经12分频后的脉冲进行计数,直至溢出为止。

(T)9、定时/计数器工作于计数方式时,是通过8051的P3.4和P3.5对外部脉冲进行计数,当遇到脉冲下降沿时计数一次。

(T)10、定时/计数器在工作时需要消耗CPU的时间。

(F)11、定时/计数器在使用前和溢出后,必须对其赋初值才能正常工作。

(F)12、特殊功能寄存器SCON,与定时器/计数器的控制无关。

定时器 计数器的结构、特殊功能寄存器TMOD、TCON

定时器 计数器的结构、特殊功能寄存器TMOD、TCON
特殊功能寄存器tmod控制定时计数器的工作方式14定时器计数器的结构特殊功能寄存器tmodtcon工作方式控制寄存器tmod不可位寻址1gate门控位gate0以运行控制位tr启动定时器gate1以外中断请求信号imt0或int1启动定时器计数工作方式采用外部引脚的输入脉冲为计数脉冲3m1m0工作方式选择位m1m000方式0m1m001方式1m1m010方式2m1m011方式314定时器计数器的结构特殊功能寄存器tmodtcon定时器控制寄存器tcon可位寻址1tf0tf1计数溢出标志位当计数器计数溢出计满时该位置1查询方式时此位作状态位供查询软件清0
TC=1微秒
可见,初值越小,定时时间越长。
实验27 初值与定时时间的关系
因为 脉冲个数=溢出值-初值=216-初值 ①
计数脉冲的频率fc = 振荡频率fosc÷12
所以
定时时间=脉冲个数×计数脉冲的周期
=(216-初值)×1/计数脉冲的频率fc =(216-初值)×12/振荡频率fosc 由②式可得: … ②
5. 1-4 定时器/计数器的结构、特殊功பைடு நூலகம்寄存器TMOD、TCON
教学目的
1、单片机定时/计数器的结构及工作原理。 2、掌握初值的计算公式,理解初值、满值 和溢出值等概念。 3、掌握专用寄存器TMOD、TCON 。
教学重点
1、了解定时/计数器组成框图; 2、掌握定时/计数器的初值计算公式。
教学难点
1、GATE 门控位 GATE=0 以运行控制位TR启动定时器 GATE=1 以外中断请求信号(/IMT0或/INT1)启动定时器 2、C/T 定时方式或计数方式选择位 C/T=0 定时工作方式 C/T=l 计数工作方式(采用外部引脚的输入脉冲为计数脉冲) 3、M1、M0 工作方式选择位 M1、M0=00 方式0 M1、M0=01 方式1 M1、M0=10 方式2 M1、M0=11 方式3

定时器和计数器的工作原理 -回复

定时器和计数器的工作原理 -回复

定时器和计数器的工作原理-回复定时器和计数器都是常见的电子设备,用于测量时间和计数事件。

它们在多个领域得到广泛应用,包括计算机、通信、工业自动化等。

在本文中,我们将详细介绍定时器和计数器的工作原理,并逐步回答中括号内的问题。

一、定时器的工作原理:定时器是一种用于计量时间间隔的设备。

它通常由一个时钟源和一个计数器组成。

时钟源提供一个稳定的时钟信号,用于驱动计数器进行计数。

计数器通过不断累加时钟信号来测量时间间隔。

那么,定时器如何工作呢?我们可以从以下几个方面来解答:1. 时钟源选择:定时器的精度和稳定性与时钟源的选择有关。

常见的时钟源包括晶体振荡器、电压控制振荡器等。

时钟源的频率决定了定时器的计数速度和分辨率。

2. 计数器初始化:在开始计时之前,计数器需要进行初始化。

初始化可以将计数器的值设置为0,或者根据具体应用需求设置一个起始值。

3. 时钟信号计数:一旦计数器被初始化,它开始接受时钟信号,并不断累加。

每个时钟信号的到来,计数器的值就会增加1。

通过记录计数器的值,可以推算出已经经过的时间。

4. 计数器溢出:计数器是有限的,它的值通常是一个固定的位数。

当计数器的值超过它的最大值时,会发生溢出。

在溢出时,计数器会重新从0开始计数。

5. 测量时间间隔:通过记录开始和结束时计数器的值,我们可以计算出时间间隔。

例如,假设在计数器溢出前经过了n个时钟信号,每个时钟信号间隔t。

则总的时间间隔为n*t。

通过上述步骤,我们可以看到定时器是如何工作的,并能够测量出时间间隔。

接下来,我们将探讨计数器的工作原理。

二、计数器的工作原理:计数器是一种用于计数事件次数的设备。

它通过记录事件的发生次数来实现计数功能。

常见的应用包括频率测量、步进电机控制等。

下面是计数器的工作原理解释:1. 事件触发:计数器需要接收到一个事件信号来触发计数。

事件信号可以是外部信号,例如来自传感器的触发信号,或者是内部信号,例如时钟信号。

每当事件发生时,计数器的值就会增加1。

第6讲 定时器与计数器

第6讲 定时器与计数器
≥1
TMOD T0引脚 0 M0 1 M1 C/T 0 机器周期 GATE M0 1 INT0引脚 M1 C/T GATE D7 D0
工作方式2结构
定时器T0工作方式2结构
溢出 申请 中断 申请 中断 TCON TF1 TR1 TF0 TR0 溢出 TH0 8位 T0引脚 1 TL0 8位 &
≥1
四、定时计数器控制寄存器
1、工作方式控制寄存器TMOD
C/T用于选择定时或计数方式,定时计数器4种工作方式 可通过TMOD中的M1、M0进行选择。
MCS-51单片机将门控位GATE、定时计数方式选择位C/T、
工作方式选择位M1、M0组合在工作方式控制寄存器TMOD 中,TMOD是特殊功能寄存器,字节地址为89H。TMOD共8位, 低4位用于T0的工作方式选择,高4位用于T1的工作方式选择。 各位定义如下:
每个计数脉冲使加1计数器加1。(f< fosc/24 ,)
4. 加1计数器
加1计数器由特殊功能寄存器TH0与TL0组成,工作前应
先将TH0与TL0置初值Count。然后由定时或计数脉冲使加1计
数器加1,当加1计数器加到FFFFH后再加1时,发生溢出回零,
硬件自动将中断标志TF0置1,并以此向CPU发中断请求。 溢出回零后硬件要完成以下几项工作: ① 将溢出标志TF0置1。 ② 以TF0=1为标志向CPU发中断请求信号。 ③ 若CPU响应,则在响应过程中由硬件将TF0清零。并转入中断 处理程序执行定时或计数任务。
工作方式
00; 01; M1M0 = 10; 11;
加1计数器位数
13位 16位
加1计数器
TH15~8,TL4~0 TH15~8,TL7~0
方式0 方式1 方式2 方式3

定时器和计数器的工作原理

定时器和计数器的工作原理

定时器和计数器是电子设备中常用的两种工作原理。

它们都是通过一定的逻辑电路或芯片来实现特定功能的,为各种应用提供了灵活且准确的计时和计数功能。

定时器的工作原理定时器的工作原理主要是基于计数器和比较器。

它通常由一个计数器和一个比较器组成。

计数器从零开始计数,当计数到设定的值时,比较器发出一个信号,触发相应的动作。

具体来说,定时器的输入信号是时钟信号,这个信号可以是系统的时钟信号,也可以是外部的输入信号。

当定时器接收到输入信号后,计数器开始计数。

当计数到设定的值时,比较器将输入信号与预设值进行比较,如果相等,则发出一个触发信号。

触发信号可以控制输出门的开启或关闭,从而控制输出信号的电平。

当定时器触发时,输出信号的电平会从低电平变为高电平,或者从高电平变为低电平。

这个输出信号可以用于控制其他电路或设备的工作。

计数器的工作原理计数器的工作原理主要是基于触发器的翻转和组合逻辑电路。

它通常由多个触发器和组合逻辑电路组成。

具体来说,计数器的输入信号是时钟信号,这个信号可以是系统的时钟信号,也可以是外部的输入信号。

当计数器接收到输入信号后,触发器开始翻转。

在每个时钟周期内,触发器都会翻转一次。

当触发器翻转到一定的次数后,组合逻辑电路会输出一个触发信号。

触发信号可以控制输出门的开启或关闭,从而控制输出信号的电平。

当计数器触发时,输出信号的电平会从低电平变为高电平,或者从高电平变为低电平。

这个输出信号可以用于控制其他电路或设备的工作。

在计数器中,每个触发器的状态都会被传递到下一个触发器,从而实现连续的计数。

计数器的计数值可以通过改变组合逻辑电路的连接方式来实现不同的功能和计数值。

总的来说,定时器和计数器的工作原理都是基于特定的逻辑电路或芯片来实现特定的计时和计数功能。

它们的应用范围广泛,可以用于各种电子设备中,如定时开关、定时报警器、计数器等。

第5章定时计数器 (2)

第5章定时计数器 (2)

5.4 8XX51定时/计数器的应用程序设计
5.4.3 应用编程举例 例1 如图所示,
P1中接有八个发光二极管, 编程使八个管轮流点亮,每 个管亮100ms,设晶振为 6MHz。 分析利用T1完成100ms的定时、 当P1口线输出“1”时,发光二 极管亮,每隔100ms”1”左移一 次,采用定时方式1,先计算计 数初值: MC=2μs 100ms/2μs =50000=C350H C =10000H-C350H=3CB0H
★若将T0设置为模式3,TL0和TH0被分成为两个互相独立的8位计数器
TH0和 TL0 。
★TL0可工作为定时方式或计数方式。占用原T0的各控制位、引脚和 中断源。即C/T、GATE、TR0、TF0和T0 (P3.4)引脚、INT0 (P3.2) 引脚。 TH0只可用作定时功能,占用定时器T1的控制位TR1和T1的中断标 志位TF1,其启动和关闭仅受TRl的控制。
ORG 0000H
AJMP
AJMP
MAIN
;T0中断服务程序入口 ;主程序开始 ;T0定时100ms IP0
ORG 000BH ORG 0030H MAIN:CLR P1.7
MOV TMOD,#01H MOV TH0,#3CH MOV TL0,#0B0H
SETB
SETB
ET0
EA
5.4 8XX51定时/计数器的应用程序设计
本章介绍的主要内容
★ ★

定时计数器结构和工作原理 定时计数器的控制寄存器
定时计数器的应用编程
5· 1 8XX51定时/计数器结构和工作原理
★51系列单片机片内有两个十六位定时/计数器:定时器0(T0) 和定时器1(T1)。 ★两个定时器都有定时或事件计数的功能,可用于定时控制、 延时、对外部事件计数和检测等场合。 ★定时/计数器实际上是16位加1计数器。 T0由2个8位持殊功能寄存器TH0和TL0构成, T1由2个8位持殊功能寄存器TH1和TL1构成。 ★每个定时器都可由软件设置为定时工作方式或 计数工作方式。

定时计数器的工作原理

定时计数器的工作原理

定时计数器的工作原理定时计数器是一种常见的计时器,用于测量时间间隔,控制定时操作或执行循环等。

该计数器具有一定的精度和稳定性,其工作原理及应用场景也非常广泛。

下面我们将为大家介绍定时计数器的工作原理,包括硬件和软件实现。

硬件实现定时计数器通常由一个计数器和一个时钟源组成。

时钟源提供固定的时钟信号,计数器通过计数来测量时间间隔或执行定时操作。

时钟源通常是晶振,可以提供极高的稳定性和精度。

计数器可以是简单的二进制计数器,也可以是复杂的倒计数器和分频器等。

不同类型的计数器可以根据不同的应用场景进行选择。

在定时计数器的设计中,需要考虑到时钟信号的频率和计数器的位数。

时钟信号的频率决定了时间分辨率的大小,而计数器的位数则限制了计数器的最大值。

一个10位二进制计数器可以计数到1023,而一个16位二进制计数器可以计数到65535。

选取合适的时钟频率和计数器位数可以满足不同的应用要求。

定时计数器还可以通过外部信号触发计数器开始计数。

这种触发方式通常称为外部触发或同步触发,可以提高计数器的精度和控制性能。

在测试仪器中,可以通过外部触发控制测试时序,在控制系统中,可以通过外部触发控制执行任务。

在嵌入式系统中,定时计数器通常由软件实现。

软件实现的定时计数器主要依赖于系统时钟和定时中断。

系统时钟提供了一个固定的时钟信号,一般由晶振或外部时钟源提供。

定时中断是一个由硬件实现的中断,可以周期性地触发软件中断服务程序的执行。

定时计数器通过定时中断实现定时操作和时间测量。

每当定时中断发生时,中断服务程序会对定时计数器进行更新,并执行相应的定时操作。

在控制系统中,可以通过定时计数器实现周期性的任务执行,定时采样和控制输出等功能。

在嵌入式系统中,定时计数器还可以用于实现延时等操作。

1. 定时中断的触发频率:定时中断的触发频率决定了定时计数器的分辨率和响应速度。

合理的触发频率可以提高定时计数器的精度和控制性能。

2. 定时计数器的位数:定时计数器的位数决定了定时器的最大值和分辨率。

定时器 计数器的工作原理

定时器 计数器的工作原理

定时器计数器的工作原理
定时器和计数器是电子设备中常见的两种功能模块。

它们可以分别完成精确计时和计数的任务。

定时器的工作原理是基于一个稳定的时钟源,通常是晶体振荡器。

时钟源会产生一个固定频率的周期性信号,这个信号频率可以根据系统需求进行调节。

定时器的主要组成部分是一个计数器和一些辅助逻辑电路。

计数器用于记录时钟脉冲的数量,根据计数值和时钟频率可以确定经过的时间。

辅助逻辑电路用于控制计数器的工作方式,例如开始计数、计数暂停、计数清零等。

当定时器启动后,时钟信号会连续地输入计数器。

每个时钟脉冲都会使计数器的计数值加1。

当计数器的计数值达到某个预先设置的目标值时,辅助逻辑电路会触发一个中断信号,以通知系统达到了设定的时间。

计数器的工作原理与定时器相似,但它主要用于计数任务,而不是计时。

计数器通常用于记录输入信号的脉冲数量,可以用来测量运动物体的速度、计算输入信号的频率等。

计数器也是由一个计数器和辅助逻辑电路组成。

计数器记录输入脉冲的数量,辅助逻辑电路用于控制计数器的工作方式,例如开始计数、计数暂停、计数清零等。

当计数器启动后,每个输入脉冲都会使计数器的计数值加1。

当计数器的计数值达到预先设置的目标值时,辅助逻辑电路会触发一个中断信号,通知系统完成了预定的计数任务。

总结起来,定时器和计数器都是基于时钟脉冲的工作,通过计数器记录时钟脉冲的数量来实现计时或计数的功能。

它们在很多电子设备中都有广泛的应用。

单片机定时器计数器工作原理

单片机定时器计数器工作原理

单片机定时器计数器工作原理单片机定时器计数器是单片机中非常重要的一个模块,它通常用于实现各种定时和计数功能。

通过定时器计数器,单片机能够精准地进行定时操作,实现定时中断、计数、脉冲生成等功能。

本文将详细介绍单片机定时器计数器的工作原理。

1. 定时器计数器的功能单片机定时器计数器通常由若干寄存器和控制逻辑组成,可以实现以下几种功能:- 定时功能:通过设置计数器的初始值和工作模式,可以实现一定时间的定时功能,单片机能够在计时结束时触发中断或产生输出信号。

- 计数功能:可以实现对外部信号的计数功能,用于测量脉冲个数、频率等。

也可以用于实现脉冲输出、PWM等功能。

- 脉冲发生功能:可以在一定条件下控制定时器输出脉冲,用于控制外部器件的工作。

2. 定时器计数器的工作原理定时器计数器的工作原理可以分为初始化、计数及中断处理几个基本环节。

(1)初始化:在使用定时器前,需要对定时器计数器进行初始化设置。

主要包括选择工作模式、设置计数器的初始值、开启中断等。

不同的单片机厂商提供了不同的定时器初始化方式和寄存器设置方式,通常需要查阅相关的单片机手册来进行设置。

(2)计数:初始化完成后,定时器开始进行计数工作。

根据不同的工作模式,定时器可以以不同的频率进行计数。

通常采用的计数源是内部时钟频率,也可以选择外部时钟源。

通过对计数器的频率设置和初始值的设定,可以实现不同的定时功能。

(3)中断处理:在定时器计数完成后,可以触发中断来通知单片机进行相应的处理。

通过中断服务程序,可以定时执行一些任务,或者控制一些外部设备。

中断服务程序的编写需要根据具体的单片机和编程语言来进行相应的设置。

3. 定时器计数器的应用定时器计数器广泛应用于各种嵌入式系统中,最常见的应用包括定时中断、PWM输出、脉冲计数、定时控制等。

可以利用定时器计数器实现LED呼吸灯效果、马达控制、红外遥控编码等功能。

在工业自动化、通信设备、电子仪器等领域也有着广泛的应用。

定时器计数器工作原理

定时器计数器工作原理

定时器计数器工作原理
定时器计数器是一种用于计算时间间隔的电子设备。

它通过内部的晶振、分频器和计数器等组件实现精确的计时功能。

工作原理如下:
1. 晶振:定时器计数器内部搭载了一个晶振,晶振的频率非常稳定,一般为固定的几十千赫兹。

2. 分频器:晶振的频率可能非常高,但计数器需要较低的频率进行计数,所以需要一个分频器将晶振的频率降低,得到一个更低的频率作为计数器的输入。

3. 计数器:分频器将得到的较低频率信号送入计数器,计数器会根据信号的脉冲个数来进行计数。

4. 触发器:计数器会将计数结果保存在一个触发器中,可以通过读取这个触发器来获取时间间隔的计数值。

5. 重置:当计数器达到设定的计数值后,会自动重置为初始状态,重新开始计数。

通过以上几个步骤的组合,定时器计数器可以实现精确的时间间隔计算。

可以根据不同的需求设置不同的晶振频率、分频器的分频倍数和触发器的位数,以实现不同精度的计数功能。

定时器计数器广泛应用于各种电子设备中,如计时器、时钟、
定时开关等。

它们都依赖于定时器计数器的准确计时功能,来实现精确的时间控制。

定时器计数器工作原理

定时器计数器工作原理

定时器计数器工作原理
定时器计数器工作原理是利用双色LED分别显示计数值的方法,实时记录时间。

定时器计数器通常由一个时钟信号源和一个计数寄存器组成。

首先,时钟信号源提供完整的周期性时钟信号,如晶振或外部脉冲源。

该信号被传输到计数寄存器中,开始计数。

计数寄存器是一个二进制寄存器,能够计数时钟信号的脉冲次数。

当计时器启动时,计数寄存器开始从初始值开始计数,然后每接收到一个时钟信号,计数值就会加一。

计数器通过一个高速时钟信号和一个除频器来控制计数频率。

除频器可以通过设置不同的分频比来改变计数频率,从而实现不同的计时精度。

双色LED用来显示计时值。

例如,一个红色LED用于表示小时位,一个绿色LED用于表示分钟位。

当计数器的值递增到下一个单位时,相应的LED会亮起,显示出当前的计数值。

通过以上步骤循环执行,定时器计数器可以实时记录时间,并在LED上显示出来。

这种设计简单、可靠,广泛应用于计时器、时钟等各种设备中。

定时器 计数器的基本结构及工作原理

定时器 计数器的基本结构及工作原理

定时器计数器的基本结构及工作原理80C51单片机内部设有两个16位的可编程定时器/计数器。

可编程的意思是指其功能(如工作方式、定时时间、量程、启动方式等)均可由指令来确定和改变。

在定时器/计数器中除了有两个16位的计数器之外,还有两个特殊功能寄存器(控制寄存器和方式寄存器)。

定时器/计数器的结构:从上面定时器/计数器的结构图中我们可以看出,16位的定时/计数器分别由两个8位专用寄存器组成,即:T0由TH0和TL0构成;T1由TH1和TL1构成。

其访问地址依次为8AH-8DH。

每个寄存器均可单独访问。

这些寄存器是用于存放定时或计数初值的。

此外,其内部还有一个8位的定时器方式寄存器TMOD和一个8位的定时控制寄存器TCON。

这些寄存器之间是通过内部总线和控制逻辑电路连接起来的。

TMOD主要是用于选定定时器的工作方式;TCON主要是用于控制定时器的启动停止,此外TCON还可以保存T0、T1的溢出和中断标志。

当定时器工作在计数方式时,外部事件通过引脚T0(P3.4)和T1(P3.5)输入。

定时计数器的原理:16位的定时器/计数器实质上就是一个加1计数器,其控制电路受软件控制、切换。

当定时器/计数器为定时工作方式时,计数器的加1信号由振荡器的12分频信号产生,即每过一个机器周期,计数器加1,直至计满溢出为止。

显然,定时器的定时时间与系统的振荡频率有关。

因一个机器周期等于12个振荡周期,所以计数频率fcount=1/12osc。

如果晶振为12MHz,则计数周期为:T=1/(12×106)Hz×1/12=1μs这是最短的定时周期。

若要延长定时时间,则需要改变定时器的初值,并要适当选择定时器的长度(如8位、13位、16位等)。

当定时器/计数器为计数工作方式时,通过引脚T0和T1对外部信号计数,外部脉冲的下降沿将触发计数。

计数器在每个机器周期的S5P2期间采样引脚输入电平。

若一个机器周期采样值为1,下一个机器周期采样值为0,则计数器加1。

定时计数器实验-单片机

定时计数器实验-单片机

单片机实验报告G A T EC /TM 1M 0G A T EC /TM 1M 0TH1TL1TH0TL0T1方式T1引脚T0引脚机器周期脉冲内部总线TMODTCON 外部中断相关位T F 1T R 1T F 0T R 0实验五 定时/计数器实验一、实验目的1.学习8051内部定时/计数器的工作原理及编程方法; 2.掌握定时/计数器外扩中断的方法。

二、实验原理8051单片机有2个16位的定时/计数器:定时器0(T0)和定时器1(T1)。

它们都有定时器或事件计数的功能,可用于定时控制、延时、对外部事件计数和检测等场合。

T0由2个特殊功能寄存器TH0和TL0构成,T1则由TH1和TL1构成。

作计数器时,通过引脚T0(P3.4)和T1(P3.5)对外部脉冲信号计数,当输入脉冲信号从1到0的负跳变时,计数器就自动加1。

计数的最高频率一般为振荡频率的1/24。

定时/计数器的结构:定时/计数器的实质是加1计数器(16位),由高8位和低8位两个寄存器组成。

TMOD 是定时/计数器的工作方式寄存器,确定工作方式和功能;TCON 是控制寄存器,控制T0、T1的启动和停止及设置溢出标志。

计数器初值的计算:设计数器的最大计数值为M(根据不同工作方式,M 可以是213、216或28),则计算初值X的公式如下:X=M-要求的计数值(十六进制数)定时器初值的计算:在定时器模式下,计数器由单片机主脉冲fosc经12分频后计数。

因此,定时器定时初值计算公式:X=M-(要求的定时值)/(12/fosc)80C51单片机定时/计数器的工作由两个特殊功能寄存器控制。

TMOD用于设置其工作方式;TCON用于控制其启动和中断申请。

❖工作方式寄存器TMOD:工作方式寄存器TMOD用于设置定时/计数器的工作方式,低四位用于T0,高四位用于T1。

其格式如下:GATE:门控位。

GATE=0时,只要用软件使TCON中的TR0或TR1为1,就可以启动定时/计数器工作;GATA=1时,要用软件使TR0或TR1为1,同时外部中断引脚或也为高电平时,才能启动定时/计数器工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定时器方式寄存器TMOD (不能按位寻址)
注意 TMOD只能以字节方式进行初始化
T1
T0
定时器方式寄存器TMOD (不能按位寻址)
振荡器
Tx端 TRx位 GATE位 01 INTx端
12 C/T=0
C/T=1
10
1&
≥1 与门
或门
计数器
控制=1 开关接通
TFx
申请 中断
GATE门控位: Timer可由软件与硬件两者控制 ▼ GATE = 0 ——普通用法
单片机的定时/计数器 -定时/计数器的结构与工作原理
秒表计时器
家用定时器ຫໍສະໝຸດ 智能计数器智能排插 计时器
定时/计数器的结构
▼ 2个16位计数器T0 (TH0、TL0)和T1 (TH1、TL1)——加1计数器 ▼ 8位特殊功能寄存器TMOD——选择定时/计数器的工作模式和工作方式 ▼ 8位特殊功能寄存器TCON ——控制定时器的启动与停止 ▼ 2个外部引脚T0(P3.4)和T1(P3.5)——接入外部计数脉冲
Timer的启/停由软件对TRx位写“1”/“0”控制
▼ GATE = 1 ——门控用法 (很少用到) Timer的启/停由软件对TRx位写“1”/“0” 和在INTx引脚上出现的信号的高/低共同控制
小 结
▼定时/计数器的内部结构与工作原理 ▼定时器控制寄存器TCON ▼定时器方式寄存器TMOD
D7
D0
TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0
▼ TFx: T0/T1计数溢出标志位。
=1 计数溢出; =0 计数未满 TFx标志位可用于申请中断或供CPU查询。
在进入中断服务程序时会自动清零; 但在查询方式时必须软件清零。
▼ TRx: T0/T1运行控制位。
=1 启动计数; =0 停止计数
定时/计数器的工作原理
振荡器 12 C/T=0
Tx端
C/T=1
控制信号
加1计数器
申请 TFx 中断
▼定时和计数的本质都是对脉冲信号计数,只不过是计数信号的来源不同。
▼ C T 0 →定时器模式
▼定时/计数器工作在定时模式时,计数脉冲信号由单片机内部时钟提供,实
质是对单片机内部的机器周期进行计数,每一个机器周期计数器自动加1。
定时/计数器的工作原理
振荡器 12 C/T=0
Tx端
C/T=1
控制信号
加1计数器
申请 TFx 中断
▼ C T 1 →计数器模式
▼定时/计数器工作在计数模式时,计数脉冲来自相应的外部输入引脚T0(P3.4) 和T1(P3.4),当外部输入脉冲信号由1跳变到0时,计数器自动加1。
定时器控制寄存器TCON(可按位寻址)
定时器方式寄存器TMOD (不能按位寻址)
注意 TMOD只能以字节方式进行初始化
T1
T0
▼ M1,M0:工作方式定义位
▼ 0 0:13位定时/计数器——操作麻烦,用得比较少,不用掌握! ▼ 0 1:16定时/计数器——经常用到,重点掌握; ▼ 1 0:8位自动重装定时/计数器——经常用到,重点掌握; ▼ 1 1:T0 分为2个8位 Timer;T1 此时不工作——几乎不用 。
相关文档
最新文档